JP3768350B2 - Wireless receiving apparatus and method - Google Patents

Wireless receiving apparatus and method Download PDF

Info

Publication number
JP3768350B2
JP3768350B2 JP10219798A JP10219798A JP3768350B2 JP 3768350 B2 JP3768350 B2 JP 3768350B2 JP 10219798 A JP10219798 A JP 10219798A JP 10219798 A JP10219798 A JP 10219798A JP 3768350 B2 JP3768350 B2 JP 3768350B2
Authority
JP
Japan
Prior art keywords
signal
weighting factor
weighting
interference
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10219798A
Other languages
Japanese (ja)
Other versions
JPH11284530A (en
Inventor
勝彦 平松
淳志 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10219798A priority Critical patent/JP3768350B2/en
Priority to EP99909347A priority patent/EP0991197A4/en
Priority to CN99800350A priority patent/CN1262817A/en
Priority to PCT/JP1999/001589 priority patent/WO1999050965A1/en
Priority to AU28567/99A priority patent/AU2856799A/en
Priority to US09/423,660 priority patent/US6636729B1/en
Publication of JPH11284530A publication Critical patent/JPH11284530A/en
Application granted granted Critical
Publication of JP3768350B2 publication Critical patent/JP3768350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • H04B1/126Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means having multiple inputs, e.g. auxiliary antenna for receiving interfering signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03535Variable structures
    • H04L2025/03547Switching between time domain structures
    • H04L2025/0356Switching the time direction of equalisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、指向性を制御可能なアダプティブアレーアンテナ無線受信装置及びその方法に関する。
【0002】
【従来の技術】
指向性を制御可能なアンテナシステムとしてアダプティブアレーアンテナが知られている。「ディジタル移動通信のための波形等化技術」(堀越 淳監修、(株)トリケップス)によれば、複数アンテナで構成されるアレーアンテナにおいて、各アンテナ出力に振幅・位相シフトを加えて合成するとアレーの指向性が変化する。アダプティブアレーは、上記原理を利用したものであり、ある制御アルゴリズムに基づいて各アンテナ出力の重み係数を決定し、周囲の状態の変化に適応しながら指向性を制御する。
【0003】
図6に従来のアダプティブアレー受信装置(以下、「受信アダプティブアレー」と呼ぶ)の構成例を示す。同図に示すように、複数のアンテナ601のアンテナ出力602に対して重み係数603が乗じられ、重み係数603によってアンテナ別に重み付けされたアンテナ出力が合成されてアレー出力604となる。
【0004】
各アンテナ出力に対する重み係数は重み係数制御部605が制御している。重み係数制御部605は、アレーの合成出力604、各アンテナ出力602、希信号に関する事前知識606の3つの情報を重み係数の制御に使用する。なお、重み係数の制御にアレー出力604を用いない方式もある。
【0005】
従来、重み係数制御部605は同期干渉を想定した重み係数制御アルゴリズムが適用されている。同期干渉を想定した重み係数制御アルゴリズムでは、図7に示すように、所望信号の始めから終わりまで連続して干渉信号が存在している場合(以降、同期干渉)に対して干渉信号を除去するよう重み係数制御される。
【0006】
【発明が解決しようとする課題】
しかしながら、所望信号を送信している通信事業者と違う通信事業者が提供する信号が干渉信号となるような場合には、所望信号と干渉信号との同期が保証されないので、図8に示すように希望信号の途中から干渉信号が混入してくる可能性が有る。
【0007】
このように、希望信号の途中から干渉信号が混入してくる場合においては、干渉信号混入前に所望信号の既知信号を用いて算出された重み係数では干渉信号を除去しきれないという問題がある。
【0008】
本発明は以上のような実情に鑑みてなされたものであり、希望信号の途中から干渉信号が混入してくる場合においてもアレー合成の重み係数を適切に制御でき、干渉信号を効果的に除去又は抑制することのできるアダプティブアレーアンテナ無線受信装置及びその方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために以下の手段を講じた。
【0010】
本発明の無線受信装置は、複数のアンテナ素子での受信信号を重み付けして合成する合成手段と、干渉信号が混入しない受信信号を重み付けする第1の重み係数を算出する第1算出手段と、干渉信号が混入した受信信号を重み付けする第2の重み係数を算出する第2算出手段と、受信信号と干渉信号の既知信号との相関が最も高い位置を検出する検出手段と、前記合成手段での重み付けに使用される重み係数を、前記検出手段で検出された位置で、前記第1の重み係数から前記第2の重み係数に切り替える切替手段と、を具備する構成を採る。
【0011】
本発明の無線受信装置は、複数のアンテナ素子での受信信号を重み付けして合成する合成手段と、スロットの前部にある既知信号により第1の重み係数を算出する第1算出手段と、前記スロットの後部にある既知信号により第2の重み係数を算出する第2算出手段と、前記第1の重み係数で重み付けして合成された合成信号の受信品質と、前記第2の重み係数で重み付けして合成された合成信号の受信品質とを比較し、受信品質の良い方の合成信号を採用する比較手段と、を具備する構成を採る。
【0040】
【発明の実施の形態】
本発明の第1の態様に係る無線受信装置は、複数のアンテナ素子の各受信信号を重み付けして合成する合成手段と、所望信号に対して干渉信号が混入する時刻により前記受信信号に対する重み付けを適応制御する係数適合化手段とを具備した構成を採る。また、本発明の第2の態様に係る無線受信方法は、複数のアンテナ素子の各受信信号を重み付けして合成するし、所望信号に対して干渉信号が混入する時刻により前記受信信号に対する重み付けを適応制御する構成を採る。これらの構成により、同期干渉、非同期干渉の両方に対応できるので、干渉信号が最初から存在している場合はもちろんのこと、干渉信号が所望信号の途中から混入してくる場合においても干渉信号を効果的に除去することができる。
本発明の第3の態様に係る無線受信装置は、係数適合化手段が、合成手段から出力される合成信号から受信品質を測定する手段と、受信品質が劣化した場合に劣化後の受信信号から求めた重み係数に切り替える手段とを具備する構成を採る。また、本発明の第4の態様に係る記載の無線受信方法は、重み付けして合成した合成信号から受信品質を測定し、受信品質が劣化した場合に劣化後の受信信号から求めた重み係数に切り替える構成を採る。これらの構成により、受信信号の品質によって適応的に重み係数を切替えることができ、干渉信号を効果的に除去あるいは抑圧することができる。
本発明の第5の態様に係る無線受信装置は、係数適合化手段が、所望信号に対して干渉信号が混入する位置を検出する位置検出手段と、干渉信号の混入位置以降の受信信号から求めた重み係数に切り替える手段と、を具備する構成を採る。また、本発明の第6の態様に係る無線受信方法は、所望信号に対して干渉信号が混入する位置を検出し、干渉信号の混入位置以降の受信信号から求めた重み係数で各受信信号を重み付けする構成を採る。これらの構成により、干渉信号が混入してきた位置から重み係数を切替えることができ、干渉信号を効果的に除去あるいは抑圧することができる。
本発明の第7の態様に係る無線受信装置は、位置検出手段が、受信信号と干渉信号の既知信号との相関をとる相関器を備える構成を採る。また、本発明の第8の態様に係る無線受信方法は、受信信号と干渉信号の既知信号との相関をとることにより干渉信号の混入位置を検出する構成を採る。これらの構成により、所望信号と干渉信号が混ざり合った受信信号から干渉信号の混入開始位置を検出することができる。
本発明の第9の態様に係る無線受信装置は、受信信号と所望信号の既知信号とから重み係数を算出する構成を採る。この構成により、同期干渉の場合は既知信号を重み係数算出に用いて、効果的に干渉信号を除去あるいは抑圧することができる。
本発明の第10の態様に係る無線受信装置は、ある重み係数による合成信号と既知信号との誤差と、受信信号とにより重み係数を更新する構成を採る。この構成により、非同期干渉の場合は既知信号を重み係数算出に用いることなく、効果的に干渉信号を除去あるいは抑圧することができる。
本発明の第11の態様に係る無線受信装置は、複数のアンテナ素子の各受信信号を重み付けして合成する合成手段と、スロット内の複数箇所に配置された既知信号のうち少なくとも干渉信号が存在する既知信号部分を用いて重み係数を算出する重み係数算出手段とを具備した構成を採る。また、本発明の第12の態様に係る無線受信方法は、スロット内の複数箇所に既知信号を配置した送信信号を受信し、干渉信号が存在する既知信号部分を用いて重み係数を求め、この求めた重み係数で複数のアンテナ素子の各受信信号を重み付けして合成する構成を採る。これらの構成により、所望信号に対して干渉信号がどの時刻で混入してきても、アンテナ受信信号のいずれかの既知信号部分に干渉信号が存在していれば、そこから算出される重み係数による合成信号から、干渉信号を抑圧した所望信号を得るような復調方式を採用することができる。
本発明の第13の態様に係る無線受信装置は、スロットの前部と後部の2個所に既知信号が含まれている構成を採る。この構成により、スロット(フレームフォーマット)の前部の既知信号で重み係数を算出し、前方から後方へと又は後方から前方へと合成していく復調方式と、後部の既知信号で重み係数を算出し、後方から前方へと又は前方から後方へ と合成していく復調方式の2通りが状況に応じて適宜選択することができる。
本発明の第14の態様に係る無線受信装置は、スロット内に配置された複数の既知信号により重み係数を算出する構成を採る。この構成により、所望信号に対して干渉信号がどの時刻で混入してきても、アンテナ受信信号のいずれかの既知信号部分に干渉信号が存在していれば、そこから算出される重み係数による合成信号から、干渉信号を抑圧した所望信号を得ることができる。
本発明の第15の態様に係る無線受信装置は、スロットの前部にある既知信号により重み係数を算出する第1の重み係数算出手段と、スロットの後部にある既知信号により重み係数を算出する第2の重み係数算出手段と、前記第1、第2の重み係数算出手段で算出した重み係数で重み付けされた両合成信号の受信品質を比較する手段とを具備する構成を採る。また、本発明の第16の態様に係る無線受信方法は、スロットの前部にある既知信号により重み係数を算出し、同一スロットの後部にある既知信号により重み係数を算出し、前記重み係数で重み付けされた両合成信号の受信品質を比較する構成を採る。これらの構成により、同期干渉の場合は前部の既知信号を用いて重み係数を算出することで干渉信号を除去することができ、また、非同期干渉の場合は後部の既知信号を用いて重み係数を算出することで干渉信号を除去することができる。
本発明の第17の態様に係る無線送信装置は、送信データをスロット単位に分割し1スロットの複数箇所に既知信号を配置した送信信号を無線受信装置に対して送信する構成を採る。この構成により、前方から後方へと又は後方から前方へと合成していく復調方式と、後部の既知信号で重み係数を算出し、後方から前方へと又は前方から後方へと合成していく復調方式の2通りが状況に応じて適宜選択することができる。
本発明の第18の態様に係る無線通信方法は、送信側においてスロット内の複数箇所に既知信号を配置した送信信号を無線送信し、受信側において前記送信信号を受信して干渉信号が存在する既知信号部分を用いて重み係数を求め、この求めた重み係数で複数のアンテナ素子の各受信信号を重み付けして合成する構成を採る。この構成により、受信側において、前方から後方へと又は後方から前方へと合成していく復調方式と、後部の既知信号で重み係数を算出し、後方から前方へと又は前方から後方へと合成していく復調方式の2通りが状況に応じて適宜選択することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0041】
(実施の形態1)
図1は、本発明の実施の形態1にかかるアダプティブアレーアンテナ無線受信装置の構成例を示す。このアダプティブアレーアンテナ無線受信装置は、複数のアンテナ素子101−1〜101−nから出力される受信信号をそれぞれ対応する乗算器102−1〜102−nに入力してウエイトを掛ける。乗算器102−1〜102−nの出力信号を加算器103で合成してアレー出力となる合成信号104を得る。受信信号に掛け合わされるウエイトは第1の重み係数計算部105及び第2の重み係数計算部106のいずれかで計算されたものである。重み係数切替部107は、第1の重み係数計算部105及び第2の重み係数計算部106のいずれかで計算された重み係数を選択して乗算器102−1〜102−nに与える。重み係数切替部107は、受信品質測定部108から入力するアレー出力である合成信号104の受信品質測定結果に基づいて切替制御を実施する。
【0042】
次に、以上のように構成されたアダプティブアレーアンテナ無線受信装置の動作について具体的に説明する。
【0043】
各アンテナ素子101−1〜101−nで受信された受信信号は第1の重み係数算出部105及び第2の重み係数算出部106に入力される。第1の重み係数算出部105では、アンテナ受信信号と所望信号の既知信号とにより、干渉信号を除去するような重み係数109を算出する。また、第2の重み係数算出部106では、第1の重み係数算出部105が算出した重み係数109を初期値として、合成信号104とその参照信号との誤差が最小となるような重み係数110を逐次更新しながら計算している。
【0044】
ここで、図7に示すような同期干渉の場合は、第1の重み係数算出部105が算出した重み係数109を対応するアンテナ受信信号に乗算した上で合成することにより、受信信号から干渉信号を除去した所望信号が得られる。これは、第1の重み係数算出部105が重み係数109を算出する際の受信信号の既知信号部分には、所望信号と干渉信号の両方が存在しており、そこから得られる重み係数は受信信号から干渉信号を除去し、所望信号のみを抽出し得るものとなるからである。
【0045】
一方、図8に示すような非同期干渉の場合は、受信信号の既知信号部分には干渉信号は存在していないため、そこから得られる重み係数では後から混入いてくる干渉信号を除去し得るものとはならず、干渉信号が混入してきた時刻で受信品質が劣化する。
【0046】
本実施の形態では、非同期干渉に対応するために第2の重み係数算出部106において重み係数110を逐次的に更新しておき、干渉信号が混入してきた時点でアンテナ受信信号に掛け合わせる重み係数を重み係数109から重み係数110に切り替える。このような重み係数の切替を行うことにより、非同期干渉の場合であってもアンテナ受信信号に含まれる干渉信号を抑圧することができ、所望信号を抽出することができる。
【0047】
そこで、受信品質測定部108において合成信号104の受信品質を測定し、その測定値を重み係数切替部107に入力する。重み係数切替部107が、受信品質測定値より合成信号104の品質が変化した時刻を判断し、その時刻で重み係数を第2の重み係数算出部106から出力される重み係数110に切替える。
【0048】
以上のように本発明の実施の形態1によれば、図7に示す同期干渉および図8に示す非同期干渉のどちらにも対応して、その時の受信品質が最も良くなる重み係数を用いたアダプティブアレー受信が可能となり、効果的に干渉信号を抑圧し、所望信号を抽出することができる。
【0049】
また、第2の重み係数算出部106のような逐次的に重み係数を更新していくアルゴリズムでは、演算量が膨大となる性質があるが、本実施の形態に示したように重み係数算出部を切替えることができる構成にしたことにより、必要な時のみそのアルゴリズムを適宜用いることができ、重み係数算出に必要な時間やメモリ等を削減することができる。
【0050】
なお、上記の実施の形態1では、第2の重み係数算出部106において、合成信号とその参照信号との誤差が最小となるように逐次重み係数110が更新されるもととしたが、本発明において上記手段は必須ではなく、既知信号を用いない別の手段においても重み係数が算出できることは明らかである。
【0051】
また、重み係数算出部が2つの場合を示したが、必ずしも2つである必要はなく、さらに重み係数算出部を追加しても構わない。
【0052】
また、第2の重み係数算出部106では第1の重み係数算出部105で算出された重み係数を初期値としていたが、必ずしもその必要はなく、任意の定数を用いることも考えられ、始めから第2の重み係数算出部106による重み係数を用いてアンテナ受信信号を合成することも考えられる。
【0053】
(実施の形態2)
図2は、本発明の実施の形態2にかかるアダプティブアレーアンテナ無線受信装置の構成例を示す。図1に示したアダプティブアレーアンテナ無線受信装置と同一機能を有する部分には同一符号を付している。
【0054】
本実施の形態は、合成前のアンテナ受信信号から干渉信号の混入位置を検出して重み係数の切替えタイミングを獲得するようにしている。
【0055】
本実施の形態のアダプティブアレーアンテナ無線受信装置では、複数のアンテナ受信信号を第1、第2の重み係数算出部105,106へ入力すると共に、干渉混入位置検出部200へ入力している。干渉混入位置検出部200は、アンテナ受信信号の先頭から最後まで(1スロット又はセル等の送信単位の先頭から最後のこと)について、干渉信号の既知信号により相関検出を行う。干渉混入位置検出部200は、その相関値が最も高く検出された位置を干渉信号混入位置と予測し、予測した干渉信号混入位置を重み係数切替部107’へ出力する。
【0056】
次に、以上のように構成されたアダプティブアレーアンテナ無線受信装置の動作について具体的に説明する。
【0057】
アンテナ受信信号は第1の重み係数算出部105および第2の重み係数算出部106および干渉混入位置検出部200に入力される。第1の重み係数算出部105では、アンテナ受信信号と所望信号の既知信号により、干渉信号を除去するような重み係数109を算出する。また、第2の重み係数算出部106では、第1の重み係数算出部105が算出した重み係数109を初期値として、合成信号104とその参照信号との誤差が最小となるように逐次重み係数110が更新される。
【0058】
に示す同期干渉の場合は、第1の重み係数算出部105が算出した重み係数109を用いて各アンテナ受信信号を合成することにより、受信信号から干渉信号を除去した所望信号のみが得られる。これは、第1の重み係数算出部105が重み係数を算出する際の受信信号の既知信号部分には、所望信号と干渉信号の両方が存在しており、そこから得られる重み係数は受信信号から干渉信号を除去し、所望信号のみを抽出し得るものとなるからである。しかしながら、図に示す非同期干渉の場合には、受信信号の既知信号部分には干渉信号は存在していないため、そこから得られる重み係数では後から混入してくる干渉信号を除去し得るものとはならず、干渉信号が混入してきた時刻で受信品質が劣化する。この場合は、第2の重み係数算出部106において重み係数110を逐次的に更新していくことで、アンテナ受信信号に含まれる干渉信号を抑圧することができ、所望信号を抽出することができる。
【0059】
そこで、アンテナ受信信号を干渉混入位置検出部200に入力し、アンテナ受信信号の先頭から最期までについて、干渉信号の既知信号により相関検出を行う。その相関値が最も高く検出された位置を干渉信号混入位置と予測し、重み係数切替部107’に入力する。重み係数切替部107’はその検出位置が適当な位置より後ろであれば、その位置で合成に用いる重み係数を重み係数110に切替える。
【0060】
以上のように本発明の実施の形態2によれば、図に示す同期干渉および図に示す非同期干渉のどちらにも対応して、干渉信号が混入してくる位置を予想し、その位置から重み係数を切替えることで、効果的に干渉信号を抑圧し、所望信号を抽出することができる。
【0061】
なお、所望信号に対して干渉信号が混入してくる位置を予測する手段として、相関検出を用いたが、必ずしもその必要はなく、例えば受信電界強度でも干渉信号の混入位置が予想できると考えられる。
【0062】
(実施の形態3)
本実施の形態の無線通信システムは、送信側においてスロット内の複数箇所に既知信号を配置した送信信号を無線送信し、受信側において前記送信信号を受信して干渉信号が存在する既知信号部分を用いて重み係数を求め、この求めた重み係数で複数のアンテナ素子の各受信信号を重み付けして合成する。
【0063】
図3に示すように送信データの前半と後半のそれぞれに既知信号301,302が配置されたスロット構成(フレームフォーマット)となっており、送信データの前半又は後半のいずれの既知信号部分に所望信号と干渉信号の両方が存在しているかによって合成方向を切り替えられるようにした。
【0064】
に示す同期干渉の場合、及び図4に示すように途中で干渉信号が存在しなくなる場合は、アンテナ受信信号における前半の既知信号部分301を用いて重み係数を算出する。この前半の既知信号部分には所望信号と干渉信号の両方が存在しているので、この部分を用いて算出する重み係数は、干渉信号を抑圧し得るものとなる。その重み係数を用いたアンテナ受信信号の合成信号から、干渉信号を抑圧した所望信号を抽出することができる。
【0065】
また、図5に示すように前半の既知信号500には干渉信号が存在しないが、後半の既知信号501には干渉信号が存在する場合、アンテナ受信信号における後半の既知信号部分501を用いて重み係数を算出する。この場合、少なくとも1スロット分のアンテナ受信信号をバッファリングしておき、後半の既知信号部分501を用いて重み係数を算出した後、バッファリングしておいたアンテナ受信信号をその重み係数を用いて合成する。この結果、その合成信号から干渉信号を抑圧した所望信号を抽出できる。
【0066】
上記実施の形態3では、スロット構成(フレームフォーマット)の前半301と後半302のそれぞれに既知信号を含む構成としたが、干渉信号がどの時刻で混入してきても補えるように既知信号部分を配置すれば同様に所望信号を抽出できると考えられる。
【0067】
また、スロットの前部にある既知信号により重み係数を算出し、同一スロットの後部にある既知信号により重み係数を算出し、前記重み係数で重み付けされた両合成信号の受信品質を比較し、受信品質の良い方の重み係数での合成信号を採用する構成を採ることもできる。
【0068】
この構成により、同期干渉の場合は前部の既知信号を用いて重み係数を算出することで干渉信号を除去することができ、また、非同期干渉の場合は後部の既知信号を用いて重み係数を算出することで干渉信号を除去することができる。
【0069】
また、上記したアダプティブアレーアンテナ無線受信装置を移動体及び又は基地局装置に搭載して、移動体と基地局との間で無線通信を行う無線システムを構築することもできる。
【0070】
【発明の効果】
以上詳記したように本発明によれば、所望信号に対して干渉信号が混入する時刻によって、重み係数を適応的に選択し切替えることで、合成した受信信号から干渉信号を効果的に抑圧することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかるアダプティブアレーアンテナ無線受信装置のブロック図
【図2】本発明の実施の形態2にかかるアダプティブアレーアンテナ無線受信装置のブロック図
【図3】本発明の実施の形態3にかかる無線通信システムでのスロット構成図
【図4】実施の形態3において前半の既知信号位置による合成方向を示す図
【図5】実施の形態3において後半の既知信号位置による合成方向を示す図
【図6】受信アダプティブアレーの構成図
【図7】所望信号に対して干渉信号が連続して混入している場合を示す図
【図8】所望信号に対して干渉信号が途中から混入してくる場合を示す図
【符号の説明】
101−1〜101−n アンテナ素子
102−1〜102−n 乗算器
103 加算器
104 合成信号
105 第1の重み係数計算部
106 第2の重み係数計算部
107 重み係数切替部
108 受信品質測定部
109、110 重み係数
200 干渉混入位置検出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adaptive array antenna radio receiving apparatus and method for controlling directivity.
[0002]
[Prior art]
An adaptive array antenna is known as an antenna system capable of controlling directivity. According to “Waveform Equalization Technology for Digital Mobile Communication” (supervised by Satoshi Horikoshi, Trikeps Co., Ltd.), array antennas composed of multiple antennas are combined by adding amplitude and phase shifts to each antenna output. The directivity of changes. An adaptive array uses the above principle, determines a weighting factor for each antenna output based on a certain control algorithm, and controls directivity while adapting to changes in the surrounding state.
[0003]
FIG. 6 shows a configuration example of a conventional adaptive array reception apparatus (hereinafter referred to as “reception adaptive array”). As shown in the figure, the antenna outputs 602 of a plurality of antennas 601 are multiplied by a weighting factor 603, and the antenna outputs weighted for each antenna by the weighting factor 603 are combined into an array output 604.
[0004]
The weighting coefficient control unit 605 controls the weighting coefficient for each antenna output. The weighting factor control unit 605 uses three pieces of information of the combined output 604 of the array, each antenna output 602, and prior knowledge 606 regarding the rare signal for controlling the weighting factor. There is also a method that does not use the array output 604 for controlling the weighting factor.
[0005]
Conventionally, a weighting factor control algorithm that assumes synchronous interference is applied to the weighting factor control unit 605. In the weighting factor control algorithm assuming synchronous interference, as shown in FIG. 7, the interference signal is removed when there is an interference signal continuously from the beginning to the end of the desired signal (hereinafter, synchronous interference). The weight coefficient is controlled as follows.
[0006]
[Problems to be solved by the invention]
However, when a signal provided by a telecommunications carrier different from the telecommunications carrier that transmits the desired signal is an interference signal, synchronization between the desired signal and the interference signal is not guaranteed, as shown in FIG. There is a possibility that an interference signal is mixed in the middle of the desired signal.
[0007]
As described above, when the interference signal is mixed from the middle of the desired signal, there is a problem that the interference signal cannot be completely removed by the weighting coefficient calculated using the known signal of the desired signal before mixing the interference signal. .
[0008]
The present invention has been made in view of the above circumstances, and even when an interference signal is mixed from the middle of a desired signal, the weight coefficient of array synthesis can be appropriately controlled, and the interference signal is effectively removed. It is another object of the present invention to provide an adaptive array antenna radio receiving apparatus and method that can be suppressed.
[0009]
[Means for Solving the Problems]
The present invention has taken the following measures in order to solve the above problems.
[0010]
The wireless receiver of the present invention includes a combining unit that weights and combines reception signals from a plurality of antenna elements , a first calculation unit that calculates a first weighting factor that weights a reception signal that does not include an interference signal, A second calculating means for calculating a second weighting coefficient for weighting the received signal mixed with the interference signal; a detecting means for detecting a position where the correlation between the received signal and the known signal of the interference signal is highest; the weighting coefficients used in weighting, at the detected position by said detecting means employs a configuration comprising a switching means for switching from said first weighting factor to the second weighting factor.
[0011]
The wireless receiver of the present invention includes a combining unit that weights and combines received signals from a plurality of antenna elements, a first calculating unit that calculates a first weighting factor based on a known signal at the front of the slot, Second calculation means for calculating a second weighting factor by a known signal at the rear of the slot; reception quality of a synthesized signal weighted by the first weighting factor; and weighting by the second weighting factor and by comparing the reception quality of the synthesized composite signal, it employs a configuration which comprises comparing means for adopting the composite signal the better reception quality, the.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
The radio reception apparatus according to the first aspect of the present invention includes a combining unit that weights and combines received signals of a plurality of antenna elements, and weights the received signal according to a time at which an interference signal is mixed with a desired signal. A configuration including coefficient adaptation means for adaptive control is adopted. The radio reception method according to the second aspect of the present invention weights and combines the received signals of a plurality of antenna elements, and weights the received signal according to the time at which the interference signal is mixed with the desired signal. A configuration for adaptive control is adopted. With these configurations, both synchronous interference and asynchronous interference can be dealt with, so the interference signal can be used not only when the interference signal exists from the beginning, but also when the interference signal enters from the middle of the desired signal. It can be effectively removed.
In the radio receiving apparatus according to the third aspect of the present invention, the coefficient adapting unit is configured to measure the reception quality from the synthesized signal output from the synthesizing unit, and the received signal after degradation when the received quality is degraded. And a means for switching to the obtained weight coefficient. In addition, the wireless reception method according to the fourth aspect of the present invention measures the reception quality from the combined signal weighted and combined, and when the reception quality deteriorates, the weighting coefficient obtained from the deteriorated reception signal is used. Use a configuration to switch. With these configurations, the weighting factor can be adaptively switched depending on the quality of the received signal, and the interference signal can be effectively removed or suppressed.
In the wireless reception device according to the fifth aspect of the present invention, the coefficient adaptation means obtains from position detection means for detecting the position where the interference signal is mixed with the desired signal, and the received signal after the interference signal mixing position. And a means for switching to the weighting factor. Further, the radio reception method according to the sixth aspect of the present invention detects a position where an interference signal is mixed into a desired signal, and uses each received signal with a weighting coefficient obtained from the received signal after the interference signal mixing position. A weighting configuration is adopted. With these configurations, the weight coefficient can be switched from the position where the interference signal has been mixed, and the interference signal can be effectively removed or suppressed.
The radio reception apparatus according to the seventh aspect of the present invention employs a configuration in which the position detection unit includes a correlator that correlates the received signal and the known signal of the interference signal. In addition, the radio reception method according to the eighth aspect of the present invention employs a configuration in which the interference signal mixing position is detected by correlating the received signal with the known signal of the interference signal. With these configurations, it is possible to detect the mixing start position of the interference signal from the reception signal in which the desired signal and the interference signal are mixed.
The radio reception apparatus according to the ninth aspect of the present invention employs a configuration for calculating a weighting factor from a received signal and a known signal of a desired signal. With this configuration, in the case of synchronous interference, it is possible to effectively remove or suppress the interference signal by using the known signal for calculating the weighting coefficient.
The radio reception apparatus according to the tenth aspect of the present invention employs a configuration in which a weighting coefficient is updated based on an error between a combined signal based on a certain weighting coefficient and a known signal, and the received signal. With this configuration, in the case of asynchronous interference, it is possible to effectively remove or suppress the interference signal without using the known signal for calculating the weighting factor.
According to an eleventh aspect of the present invention, there is provided a radio receiving apparatus including a combining unit that weights and combines received signals of a plurality of antenna elements, and at least an interference signal among known signals arranged at a plurality of locations in the slot. And a weighting factor calculating means for calculating a weighting factor using the known signal portion. Further, the radio reception method according to the twelfth aspect of the present invention receives a transmission signal in which known signals are arranged at a plurality of locations in a slot, obtains a weighting factor using a known signal portion where an interference signal exists, A configuration is adopted in which the received signals of a plurality of antenna elements are weighted and combined with the obtained weighting coefficient. With these configurations, even if an interference signal is mixed in with a desired signal at any time, if there is an interference signal in any known signal portion of the antenna reception signal, synthesis is performed using a weighting coefficient calculated from the interference signal. A demodulation method that obtains a desired signal in which an interference signal is suppressed from the signal can be employed.
The radio reception apparatus according to the thirteenth aspect of the present invention employs a configuration in which known signals are included in two locations, the front part and the rear part of the slot. With this configuration, the weighting factor is calculated with the known signal at the front of the slot (frame format), and the weighting factor is calculated with the demodulation method that combines from the front to the rear or from the rear to the front, and the known signal at the rear. In addition, two types of demodulation methods of combining from the rear to the front or from the front to the rear can be selected as appropriate according to the situation.
The radio reception apparatus according to the fourteenth aspect of the present invention employs a configuration for calculating a weighting factor using a plurality of known signals arranged in a slot. With this configuration, even if the interference signal is mixed in with the desired signal at any time, if the interference signal exists in any known signal portion of the antenna reception signal, the combined signal based on the weighting coefficient calculated therefrom Thus, a desired signal in which the interference signal is suppressed can be obtained.
A radio receiving apparatus according to a fifteenth aspect of the present invention calculates a weighting factor by using a first weighting factor calculating unit that calculates a weighting factor from a known signal at the front of a slot, and a known signal at the rear of the slot. The second weighting factor calculating means and a means for comparing the reception qualities of both composite signals weighted by the weighting factors calculated by the first and second weighting factor calculating means are adopted. The radio reception method according to the sixteenth aspect of the present invention calculates a weighting factor from a known signal at the front of a slot, calculates a weighting factor from a known signal at the rear of the same slot, A configuration is adopted in which the reception qualities of both weighted composite signals are compared. With these configurations, in the case of synchronous interference, the interference signal can be removed by calculating the weighting factor using the known signal in the front part, and in the case of asynchronous interference, the weighting factor can be obtained using the known signal in the rear part. The interference signal can be removed by calculating.
The radio transmitting apparatus according to the seventeenth aspect of the present invention employs a configuration in which transmission data is divided into slot units and transmission signals in which known signals are arranged at a plurality of locations in one slot are transmitted to the radio receiving apparatus. With this configuration, a demodulation method that combines from the front to the back or from the back to the front, and a demodulation that calculates the weighting factor from the rear known signal and combines from the back to the front or from the front to the back Two methods can be appropriately selected according to the situation.
The wireless communication method according to the eighteenth aspect of the present invention wirelessly transmits a transmission signal in which known signals are arranged at a plurality of locations in a slot on the transmission side, and receives the transmission signal on the reception side to cause an interference signal. A configuration is employed in which a weighting factor is obtained using a known signal portion, and the received signals of a plurality of antenna elements are weighted and synthesized with the obtained weighting factor. With this configuration, the receiving side calculates the weighting factor using the demodulation method that combines from the front to the back or from the back to the front and the known signal at the rear, and combines from the back to the front or from the front to the back The two demodulation methods to be performed can be appropriately selected according to the situation.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0041]
(Embodiment 1)
FIG. 1 shows a configuration example of an adaptive array antenna radio reception apparatus according to Embodiment 1 of the present invention. This adaptive array antenna radio receiving apparatus inputs received signals output from a plurality of antenna elements 101-1 to 101-n to corresponding multipliers 102-1 to 102-n and applies weights thereto. The output signals of the multipliers 102-1 to 102-n are combined by an adder 103 to obtain a combined signal 104 that becomes an array output. The weight multiplied by the received signal is calculated by either the first weighting factor calculation unit 105 or the second weighting factor calculation unit 106. The weighting factor switching unit 107 selects the weighting factor calculated by either the first weighting factor calculating unit 105 or the second weighting factor calculating unit 106 and supplies the selected weighting factor to the multipliers 102-1 to 102-n. The weighting factor switching unit 107 performs switching control based on the reception quality measurement result of the combined signal 104 that is the array output input from the reception quality measurement unit 108.
[0042]
Next, the operation of the adaptive array antenna radio receiving apparatus configured as described above will be specifically described.
[0043]
The reception signals received by the antenna elements 101-1 to 101-n are input to the first weighting factor calculation unit 105 and the second weighting factor calculation unit 106. The first weighting factor calculation unit 105 calculates a weighting factor 109 that removes the interference signal from the antenna reception signal and the known signal of the desired signal. The second weighting factor calculation unit 106 uses the weighting factor 109 calculated by the first weighting factor calculation unit 105 as an initial value, and the weighting factor 110 that minimizes the error between the synthesized signal 104 and its reference signal. Is calculated while sequentially updating.
[0044]
Here, in the case of synchronous interference as shown in FIG. 7, the weighting factor 109 calculated by the first weighting factor calculation unit 105 is multiplied by the corresponding antenna reception signal, and then combined, thereby synthesizing the interference signal from the reception signal. A desired signal from which is removed is obtained. This is because both the desired signal and the interference signal exist in the known signal portion of the received signal when the first weighting factor calculating unit 105 calculates the weighting factor 109, and the weighting factor obtained therefrom is received. This is because the interference signal can be removed from the signal and only the desired signal can be extracted.
[0045]
On the other hand, in the case of asynchronous interference as shown in FIG. 8, since there is no interference signal in the known signal portion of the received signal, the interference coefficient mixed later can be removed by the weighting coefficient obtained therefrom. However, the reception quality deteriorates at the time when the interference signal is mixed.
[0046]
In this embodiment, in order to cope with asynchronous interference, the weighting factor 110 is sequentially updated in the second weighting factor calculating unit 106, and the weighting factor to be multiplied to the antenna reception signal when the interference signal is mixed. Is switched from the weighting factor 109 to the weighting factor 110. By switching such weighting factors, even in the case of asynchronous interference, the interference signal included in the antenna reception signal can be suppressed, and a desired signal can be extracted.
[0047]
Therefore, reception quality measuring section 108 measures the reception quality of synthesized signal 104 and inputs the measured value to weighting coefficient switching section 107. The weighting factor switching unit 107 determines the time when the quality of the combined signal 104 has changed from the received quality measurement value, and switches the weighting factor to the weighting factor 110 output from the second weighting factor calculation unit 106 at that time.
[0048]
As described above, according to the first embodiment of the present invention, adaptive using a weighting coefficient that provides the best reception quality at that time, corresponding to both the synchronous interference shown in FIG. 7 and the asynchronous interference shown in FIG. Array reception is possible, and interference signals can be effectively suppressed and desired signals can be extracted.
[0049]
In addition, an algorithm that sequentially updates the weighting coefficient such as the second weighting coefficient calculating unit 106 has a property that the amount of calculation becomes enormous, but as shown in the present embodiment, the weighting factor calculating unit By adopting a configuration that can switch between them, the algorithm can be used as appropriate only when necessary, and the time, memory, and the like necessary for calculating the weighting factor can be reduced.
[0050]
In Embodiment 1 described above, the second weighting factor calculation unit 106 is configured to sequentially update the weighting factor 110 so that the error between the synthesized signal and its reference signal is minimized. In the invention, the above means is not essential, and it is obvious that the weight coefficient can be calculated by another means that does not use a known signal.
[0051]
In addition, although the case where there are two weighting coefficient calculation units is shown, it is not always necessary that two are provided, and a weighting factor calculation unit may be further added.
[0052]
The second weighting factor calculation unit 106 uses the weighting factor calculated by the first weighting factor calculation unit 105 as an initial value. However, it is not always necessary, and an arbitrary constant may be used. It is also conceivable to combine the antenna reception signal using the weighting factor by the second weighting factor calculation unit 106.
[0053]
(Embodiment 2)
FIG. 2 shows a configuration example of an adaptive array antenna radio receiving apparatus according to the second embodiment of the present invention. Parts having the same functions as those of the adaptive array antenna radio receiving apparatus shown in FIG.
[0054]
In the present embodiment, the position where the interference signal is mixed is detected from the antenna reception signal before synthesis, and the switching timing of the weighting factor is obtained.
[0055]
In the adaptive array antenna radio receiving apparatus of the present embodiment, a plurality of antenna reception signals are input to the first and second weighting coefficient calculation units 105 and 106 and also input to the interference mixed position detection unit 200. The interference mixed position detection unit 200 performs correlation detection from the beginning to the end of the antenna reception signal (from the beginning to the end of the transmission unit such as one slot or cell) using the known signal of the interference signal. The interference mixed position detection unit 200 predicts the position detected with the highest correlation value as the interference signal mixed position, and outputs the predicted interference signal mixed position to the weight coefficient switching unit 107 ′.
[0056]
Next, the operation of the adaptive array antenna radio receiving apparatus configured as described above will be specifically described.
[0057]
The antenna reception signal is input to the first weighting factor calculator 105, the second weighting factor calculator 106, and the interference mixing position detector 200. The first weighting factor calculation unit 105 calculates a weighting factor 109 that eliminates the interference signal based on the antenna reception signal and the known signal of the desired signal. Further, the second weighting factor calculation unit 106 uses the weighting factor 109 calculated by the first weighting factor calculation unit 105 as an initial value, and sequentially increases the weighting factor so that the error between the synthesized signal 104 and its reference signal is minimized. 110 is updated.
[0058]
In the case of the synchronous interference shown in FIG. 7 , only the desired signal obtained by removing the interference signal from the received signal is obtained by synthesizing each antenna received signal using the weighting factor 109 calculated by the first weighting factor calculating unit 105. It is done. This is because both the desired signal and the interference signal exist in the known signal portion of the received signal when the first weighting factor calculating unit 105 calculates the weighting factor, and the weighting factor obtained therefrom is the received signal. This is because the interference signal can be removed from the signal and only the desired signal can be extracted. However, those in the case of asynchronous interference shown in FIG. 8, the interference signal is the known signal portion of the received signal because it does not exist, that can remove an interference signal that is mixed later in weighting coefficient obtained therefrom However, the reception quality deteriorates at the time when the interference signal is mixed. In this case, by sequentially updating the weighting factor 110 in the second weighting factor calculating unit 106, it is possible to suppress the interference signal included in the antenna reception signal and extract the desired signal. .
[0059]
Therefore, the antenna reception signal is input to the interference mixed position detection unit 200, and correlation detection is performed using the known signal of the interference signal from the beginning to the end of the antenna reception signal. The position detected with the highest correlation value is predicted as the interference signal mixed position and input to the weighting coefficient switching unit 107 ′. If the detected position is behind an appropriate position, the weight coefficient switching unit 107 ′ switches the weight coefficient used for synthesis at the position to the weight coefficient 110.
[0060]
According to the second embodiment of the present invention as described above, in response to either of the asynchronous interference shown in synchronous interferer and 8 shown in FIG. 7, expect the position where the interference signals being mixed, the position By switching the weighting factor, the interference signal can be effectively suppressed and the desired signal can be extracted.
[0061]
Although correlation detection is used as a means for predicting a position where an interference signal is mixed with a desired signal, it is not always necessary. For example, it is considered that the position where the interference signal is mixed can be predicted even with the received electric field strength. .
[0062]
(Embodiment 3)
The wireless communication system of the present embodiment wirelessly transmits a transmission signal in which known signals are arranged at a plurality of locations in a slot on the transmission side, and receives the transmission signal on the reception side to obtain a known signal portion where an interference signal exists. The weighting factor is obtained using the weighting factors, and the received signals of the plurality of antenna elements are weighted and synthesized by the obtained weighting factor.
[0063]
As shown in FIG. 3, it has a slot configuration (frame format) in which known signals 301 and 302 are arranged in the first half and the second half of the transmission data, and the desired signal is present in either the first half or the second half of the transmission data. The compositing direction can be switched depending on whether both interference signals exist.
[0064]
In the case of the synchronous interference shown in FIG. 7 and when there is no interfering signal in the middle as shown in FIG. 4, the weight coefficient is calculated using the known signal portion 301 in the first half of the antenna reception signal. Since both the desired signal and the interference signal exist in the first half of the known signal portion, the weighting coefficient calculated using this portion can suppress the interference signal. A desired signal in which the interference signal is suppressed can be extracted from the combined signal of the antenna reception signal using the weight coefficient.
[0065]
Further, as shown in FIG. 5, when there is no interference signal in the first half known signal 500, but there is an interference signal in the second half known signal 501, weighting is performed using the second half known signal portion 501 in the antenna reception signal. Calculate the coefficient. In this case, the antenna reception signal for at least one slot is buffered, a weighting factor is calculated using the known signal portion 501 in the latter half, and the buffered antenna reception signal is then calculated using the weighting factor. Synthesize. As a result, a desired signal in which the interference signal is suppressed can be extracted from the combined signal.
[0066]
In the third embodiment, the first half 301 and the second half 302 of the slot configuration (frame format) each include a known signal. However, the known signal portion is arranged so as to compensate for any interference signal at any time. Similarly, it is considered that a desired signal can be extracted.
[0067]
Also, the weighting factor is calculated from the known signal at the front of the slot, the weighting factor is calculated from the known signal at the rear of the same slot, the reception quality of both synthesized signals weighted by the weighting factor is compared, and the reception It is also possible to adopt a configuration that employs a composite signal with a weighting factor having a better quality.
[0068]
With this configuration, in the case of synchronous interference, the interference signal can be removed by calculating the weighting factor using the front known signal, and in the case of asynchronous interference, the weighting factor can be set using the rear known signal. By calculating, an interference signal can be removed.
[0069]
In addition, the above-described adaptive array antenna radio receiving apparatus can be mounted on a mobile body and / or a base station apparatus to construct a radio system that performs radio communication between the mobile body and the base station.
[0070]
【The invention's effect】
As described above in detail, according to the present invention, the interference signal is effectively suppressed from the combined received signal by adaptively selecting and switching the weighting factor according to the time at which the interference signal is mixed with the desired signal. be able to.
[Brief description of the drawings]
FIG. 1 is a block diagram of an adaptive array antenna radio receiving apparatus according to a first embodiment of the present invention. FIG. 2 is a block diagram of an adaptive array antenna radio receiving apparatus according to a second embodiment of the present invention. FIG. 4 is a diagram showing a slot configuration in a wireless communication system according to a third embodiment of the present invention. FIG. 4 is a diagram showing a synthesis direction based on known signal positions in the first half in the third embodiment. FIG. 6 is a diagram showing a composition of a receiving adaptive array. FIG. 7 is a diagram showing a case where an interference signal is continuously mixed with a desired signal. FIG. Figure showing the case of mixing from the middle [Explanation of symbols]
101-1 to 101-n Antenna elements 102-1 to 102-n Multiplier 103 Adder 104 Combined signal 105 First weighting factor calculation unit 106 Second weighting factor calculation unit 107 Weighting factor switching unit 108 Reception quality measurement unit 109, 110 Weight coefficient 200 Interference mixing position detection unit

Claims (8)

複数のアンテナ素子での受信信号を重み付けして合成する合成手段と、
干渉信号が混入しない受信信号を重み付けする第1の重み係数を算出する第1算出手段と、
干渉信号が混入した受信信号を重み付けする第2の重み係数を算出する第2算出手段と、
受信信号と干渉信号の既知信号との相関が最も高い位置を検出する検出手段と、
前記合成手段での重み付けに使用される重み係数を、前記検出手段で検出された位置で、前記第1の重み係数から前記第2の重み係数に切り替える切替手段と、
を具備することを特徴とする無線受信装置。
Combining means for weighting and combining received signals from a plurality of antenna elements;
First calculating means for calculating a first weighting factor for weighting a received signal not mixed with an interference signal;
Second calculating means for calculating a second weighting coefficient for weighting the received signal mixed with the interference signal;
Detection means for detecting a position having the highest correlation between the received signal and the known signal of the interference signal;
Switching means for switching a weighting factor used for weighting in the synthesizing unit from the first weighting factor to the second weighting factor at a position detected by the detecting unit;
A wireless receiver characterized by comprising:
前記第1算出手段は、受信信号と所望信号の既知信号とから前記第1の重み係数を算出し、
前記第2算出手段は、前記第1の重み係数を初期値として、前記合成手段で合成された信号とその合成された信号の参照信号との誤差が最小となる前記第2の重み係数を算出する、
ことを特徴とする請求項1記載の無線受信装置。
The first calculation means calculates the first weighting factor from a received signal and a known signal of a desired signal,
The second calculating means calculates the second weighting coefficient that minimizes an error between the signal synthesized by the synthesizing means and a reference signal of the synthesized signal, using the first weighting coefficient as an initial value. To
The wireless receiver according to claim 1.
複数のアンテナ素子での受信信号を重み付けして合成する合成手段と、
スロットの前部にある既知信号により第1の重み係数を算出する第1算出手段と、
前記スロットの後部にある既知信号により第2の重み係数を算出する第2算出手段と、
前記第1の重み係数で重み付けして合成された合成信号の受信品質と、前記第2の重み係数で重み付けして合成された合成信号の受信品質とを比較し、受信品質の良い方の合成信号を採用する比較手段と、
を具備することを特徴とする無線受信装置。
Combining means for weighting and combining received signals from a plurality of antenna elements;
First calculating means for calculating a first weighting factor from a known signal at the front of the slot;
Second calculating means for calculating a second weighting factor from a known signal at the rear of the slot;
A reception quality of said first weighted synthesized synthesis signal by the weighting factor, compares the reception quality of said second weighted synthesized synthesis signal by the weighting factor, the synthesis of the better reception quality A comparison means employing a signal ;
A wireless receiver characterized by comprising:
請求項1から請求項3のいずれかに記載の無線受信装置を備えることを特徴とする移動体装置。  A mobile device comprising the wireless reception device according to claim 1. 請求項1から請求項3のいずれかに記載の無線受信装置を備えることを特徴とする基地局装置。  A base station apparatus comprising the radio reception apparatus according to any one of claims 1 to 3. 複数のアンテナ素子での受信信号を重み付けして合成する無線受信方法において、
受信信号と干渉信号の既知信号との相関が最も高い位置を検出し、
前記重み付けに使用される重み係数を、検出された前記位置で、干渉信号が混入しない受信信号を重み付けする第1の重み係数から干渉信号が混入した受信信号を重み付けする第2の重み係数に切り替える、
ことを特徴とする無線受信方法。
In a radio reception method for weighting and combining reception signals from a plurality of antenna elements,
Detect the position with the highest correlation between the received signal and the known signal of the interference signal,
The weighting factor used for the weighting is switched from the first weighting factor that weights the received signal that is not mixed with the interference signal to the second weighting factor that weights the received signal mixed with the interference signal at the detected position. ,
A wireless reception method.
複数のアンテナ素子での受信信号を重み付けして合成する無線受信方法において、
スロットの前部にある既知信号により第1の重み係数を算出する一方で前記スロットの後部にある既知信号により第2の重み係数を算出し、
前記第1の重み係数で重み付けして合成された合成信号の受信品質と、前記第2の重み係数で重み付けして合成された合成信号の受信品質とを比較し、受信品質の良い方の合成信号を採用する
ことを特徴とする無線受信方法。
In a radio reception method for weighting and combining reception signals from a plurality of antenna elements,
Calculating a first weighting factor with a known signal at the front of the slot while calculating a second weighting factor with a known signal at the back of the slot;
A reception quality of said first weighted synthesized synthesis signal by the weighting factor, compares the reception quality of said second weighted synthesized synthesis signal by the weighting factor, the synthesis of the better reception quality Adopt signal
A wireless reception method.
送信側においてスロット内の複数箇所に既知信号を配置した送信信号を無線送信し、
受信側において前記送信信号を受信して干渉信号が存在する既知信号部分を用いて重み係数を求め、この求めた重み係数で複数のアンテナ素子の各受信信号を重み付けして合成する、
ことを特徴とする無線通信方法。
On the transmission side, wirelessly transmit a transmission signal in which known signals are arranged at a plurality of locations in the slot,
The receiving side receives the transmission signal and obtains a weighting factor using a known signal portion where an interference signal exists, and weights and combines the received signals of a plurality of antenna elements with the obtained weighting factor.
A wireless communication method.
JP10219798A 1998-03-30 1998-03-30 Wireless receiving apparatus and method Expired - Fee Related JP3768350B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10219798A JP3768350B2 (en) 1998-03-30 1998-03-30 Wireless receiving apparatus and method
EP99909347A EP0991197A4 (en) 1998-03-30 1999-03-29 Radio receiver and method of reception
CN99800350A CN1262817A (en) 1998-03-30 1999-03-29 Radio receiver and method of reception
PCT/JP1999/001589 WO1999050965A1 (en) 1998-03-30 1999-03-29 Radio receiver and method of reception
AU28567/99A AU2856799A (en) 1998-03-30 1999-03-29 Radio receiver and method of reception
US09/423,660 US6636729B1 (en) 1998-03-30 1999-03-29 Apparatus and method for receiving radio signals according to variable weighting factors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10219798A JP3768350B2 (en) 1998-03-30 1998-03-30 Wireless receiving apparatus and method

Publications (2)

Publication Number Publication Date
JPH11284530A JPH11284530A (en) 1999-10-15
JP3768350B2 true JP3768350B2 (en) 2006-04-19

Family

ID=14320944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10219798A Expired - Fee Related JP3768350B2 (en) 1998-03-30 1998-03-30 Wireless receiving apparatus and method

Country Status (6)

Country Link
US (1) US6636729B1 (en)
EP (1) EP0991197A4 (en)
JP (1) JP3768350B2 (en)
CN (1) CN1262817A (en)
AU (1) AU2856799A (en)
WO (1) WO1999050965A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60022569T2 (en) * 1999-04-05 2006-05-18 Nippon Telegraph And Telephone Corp. Adaptive array antenna system
DE69912995T2 (en) * 1999-04-06 2004-09-02 Sanyo Electric Co., Ltd., Moriguchi DEVICE WITH ADAPTIVE GROUP ANTENNA
US6141567A (en) 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
KR100586586B1 (en) * 1999-12-18 2006-06-02 주식회사 케이티 Weight Varying Method for Interference Cancellation
CN1136673C (en) * 2000-01-14 2004-01-28 松下电器产业株式会社 Radio base station device and radio communication method
JP2001203619A (en) * 2000-01-19 2001-07-27 Matsushita Electric Ind Co Ltd Wireless base station device and wireless communication method
JP4509297B2 (en) * 2000-04-26 2010-07-21 三菱電機株式会社 Spread spectrum receiver
GB2363256B (en) * 2000-06-07 2004-05-12 Motorola Inc Adaptive antenna array and method of controlling operation thereof
JP3580495B2 (en) * 2000-08-25 2004-10-20 日本電気株式会社 Adaptive antenna receiver
JP4531969B2 (en) * 2000-12-21 2010-08-25 三菱電機株式会社 Adaptive antenna receiver
US7062273B2 (en) 2000-12-25 2006-06-13 Kabushiki Kaisha Toshiba Mobile communication terminal apparatus having an array antenna for communication to at least one base station
DE10109359C2 (en) * 2001-02-27 2003-01-16 Bosch Gmbh Robert Diversity antenna arrangement
KR100416978B1 (en) * 2001-09-27 2004-02-05 삼성전자주식회사 Method for initialization weighting factor in closed loop mode transmit diversity
US20030171834A1 (en) * 2002-03-07 2003-09-11 Silvester Kelan C. Method and apparatus for connecting a portable media player wirelessly to an automobile entertainment system
JP2004005492A (en) * 2002-04-26 2004-01-08 Casio Comput Co Ltd Data communication device, data communication system, animated document display method and animated document display program
CN100355219C (en) * 2002-06-14 2007-12-12 华为技术有限公司 Method and uses for transmitting and receiving reference signal in array receiving-transmitting system
DE10234433A1 (en) * 2002-07-29 2004-02-19 Infineon Technologies Ag Parameter transmission to rake finger of rake receiver involves changing access to rake finger from first parameter set memory area to second as soon as existence of changeover condition exists
JP4309110B2 (en) * 2002-09-27 2009-08-05 パナソニック株式会社 Adaptive antenna wireless communication device
JP4090331B2 (en) * 2002-11-20 2008-05-28 三洋電機株式会社 Reception method and apparatus
US7221722B2 (en) * 2003-02-27 2007-05-22 Motorola, Inc. Method and apparatus for reducing interference within a communication system
US7321632B2 (en) * 2003-09-30 2008-01-22 Intel Corporation Method and apparatus for multi-algorithm detection
JP4543737B2 (en) * 2004-05-10 2010-09-15 ソニー株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
JP4658132B2 (en) * 2005-09-28 2011-03-23 パイオニア株式会社 Diversity receiver
JP4743629B2 (en) * 2006-09-06 2011-08-10 株式会社国際電気通信基礎技術研究所 Adaptive array antenna receiver
DE102006051587A1 (en) * 2006-11-02 2008-05-08 Robert Bosch Gmbh Radio receiving system with multiple receiving antennas
CN101034901B (en) * 2007-04-29 2010-07-21 中国民航大学 Civil aviation ground-air communication self-adaptive disturbance restraining method based on the constant mode array and its system
CN101034899B (en) * 2007-04-29 2010-05-19 中国民航大学 Civil aviation ground-air communication self-adaptive disturbance restraining method based on the single channel and its system
JP5117316B2 (en) * 2008-08-04 2013-01-16 ルネサスエレクトロニクス株式会社 Radio receiving apparatus and radio receiving method
JP5325624B2 (en) * 2009-03-24 2013-10-23 日本無線株式会社 Multi-antenna receiver and reception method using multi-antenna receiver
CN104320149B (en) * 2014-10-11 2016-11-30 中国民航大学 Disturbance restraining method and system is continued based on twin-channel civil aviation air-ground communication

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717919A (en) * 1985-05-28 1988-01-05 Hughes Aircraft Company Feedback limited adaptive antenna with signal environment power level compensation
JP2721203B2 (en) * 1988-10-31 1998-03-04 株式会社東芝 Adaptive antenna device
JPH0795716B2 (en) * 1992-05-19 1995-10-11 郵政省通信総合研究所長 Decision feedback equalizer
US5369801A (en) * 1992-09-25 1994-11-29 Northern Telecom Limited Antenna diversity reception in wireless personal communications
JP2518502B2 (en) 1993-02-25 1996-07-24 日本電気株式会社 Equalizer
JP2541503B2 (en) 1994-04-28 1996-10-09 日本電気株式会社 Interference wave remover
US6038272A (en) * 1996-09-06 2000-03-14 Lucent Technologies Inc. Joint timing, frequency and weight acquisition for an adaptive array
US5887037A (en) * 1996-02-27 1999-03-23 Lucent Technologies Inc. Introducing processing delay as a multiple of the time slot duration
JPH1056406A (en) * 1996-08-09 1998-02-24 Hitachi Ltd Waveform equalizing processing method for equalizer
US5819168A (en) * 1997-05-01 1998-10-06 At&T Corp Adaptive communication system and method using unequal weighting of interface and noise
US6147985A (en) * 1997-05-01 2000-11-14 Lucent Technologies Inc. Subspace method for adaptive array weight tracking
JP3391662B2 (en) 1997-06-06 2003-03-31 松下電器産業株式会社 Adaptive array antenna receiver
US6208632B1 (en) * 1998-01-29 2001-03-27 Sharp Laboratories Of America System and method for CDMA channel estimation

Also Published As

Publication number Publication date
WO1999050965A1 (en) 1999-10-07
EP0991197A1 (en) 2000-04-05
CN1262817A (en) 2000-08-09
EP0991197A4 (en) 2005-08-24
US6636729B1 (en) 2003-10-21
JPH11284530A (en) 1999-10-15
AU2856799A (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP3768350B2 (en) Wireless receiving apparatus and method
JP3092798B2 (en) Adaptive transceiver
EP1263151B1 (en) Adaptive antenna reception apparatus
US6509872B2 (en) Adaptive antenna receiving apparatus
AU2002324021A1 (en) Receiver, Transmitter, Communication System, and Method of Communication
EP1176737B1 (en) Radio equipment capable of real time change of antenna directivity and doppler frequency estimating circuit used for the radio equipment
JPH11340886A (en) Radio communication equipment and radio communication method
JP4865764B2 (en) Receiver and method thereof
JP3933597B2 (en) Transmission method and wireless device using the same
JP2002016579A (en) Communication system
JP4068500B2 (en) Array antenna communication device
JP3851478B2 (en) Adaptive array antenna device
JP3548156B2 (en) Adaptive array radio
JP4538963B2 (en) OFDM receiver using diversity adaptive array
JP3597694B2 (en) Adaptive antenna device
WO2003077446A1 (en) Radio reception device, array parameter optimal value estimation method, and array parameter optimal value estimation program
JP4253173B2 (en) Wireless device, transmission control switching method, and transmission control switching program
JP4732161B2 (en) Wireless communication apparatus and wireless communication control method
JP2007089067A (en) Radio communication method and radio communication apparatus
JP4570900B2 (en) Receiver, transmitter, radio communication system, and reception method
JP4601859B2 (en) Adaptive receiver
JP3554226B2 (en) Receiver
JP3935750B2 (en) Wireless receiver, reception response vector estimation method, and reception response vector estimation program
JP2021087085A (en) Radio receiver
JP4606647B2 (en) Adaptive transceiver

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees