JP3767644B2 - Plasma display apparatus and driving method thereof - Google Patents

Plasma display apparatus and driving method thereof Download PDF

Info

Publication number
JP3767644B2
JP3767644B2 JP00840097A JP840097A JP3767644B2 JP 3767644 B2 JP3767644 B2 JP 3767644B2 JP 00840097 A JP00840097 A JP 00840097A JP 840097 A JP840097 A JP 840097A JP 3767644 B2 JP3767644 B2 JP 3767644B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
cell
plasma display
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00840097A
Other languages
Japanese (ja)
Other versions
JPH10207420A (en
Inventor
義一 金澤
治男 小泉
重晴 淺生
Original Assignee
株式会社日立プラズマパテントライセンシング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラズマパテントライセンシング filed Critical 株式会社日立プラズマパテントライセンシング
Priority to JP00840097A priority Critical patent/JP3767644B2/en
Priority to US08/887,371 priority patent/US6288692B1/en
Priority to FR9709407A priority patent/FR2758641B1/en
Priority to KR1019970034820A priority patent/KR100322788B1/en
Publication of JPH10207420A publication Critical patent/JPH10207420A/en
Application granted granted Critical
Publication of JP3767644B2 publication Critical patent/JP3767644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • G09G3/2983Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using non-standard pixel electrode arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • G09G3/299Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using alternate lighting of surface-type panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/28Auxiliary electrodes, e.g. priming electrodes or trigger electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/32Disposition of the electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/444Means for improving contrast or colour purity, e.g. black matrix or light shielding means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メモリ機能を有する表示素子であるセルの集合によって構成された表示パネルを駆動する技術に係わり、特にAC(交流)型プラズマディスプレイパネル(Plasma Display Panel:PDP)において、インタレース表示を行う装置およびその駆動方法に関する。
【0002】
上記のAC型PDPは、2本の維持電極に、交互に電圧波形を印加することで放電を持続し、発光表示を行うものである。一度の放電は、パルス印加直後、1μsから数μsで終了する。放電によって発生した正電荷であるイオンは、負の電圧が印加されている電極上の絶縁層の表面に蓄積され、同様に負電荷である電子は、正の電圧が印加されている電極上の絶縁層の表面に蓄積される。
【0003】
従って、初めに高い電圧(書き込み電圧)のパルス(書き込みパルス)で放電させ壁電荷を生成した後、極性の異なる前回よりも低い電圧(維持電圧または維持放電電圧)のパルス(維持パルスまたは維持放電パルス)を印加すると、前に蓄積された壁電荷が重畳され、放電空間に対する電圧は大きなものとなり、放電電圧のしきい値を越えて放電を開始する。つまり、一度書き込み放電を行い壁電荷を生成したセルは、その後、維持パルスを交互に逆極性で印加することで、放電を持続するという特徴がある。これをメモリ効果、またはメモリ機能と呼んでいる。一般に、AC型PDPは、このメモリ効果を利用して表示を行うものである。
【0004】
【従来の技術】
フルカラー表示を行うAC型PDPにおいては、面放電を利用した3電極構造が一般に用いられている。さらに、この3電極型においても、第3の電極を維持放電を行う第1と第2の電極が配置されている基板に形成する場合と、対向するもう一つの基板に配置する場合がある。また、同一基板に前記の3種の電極を形成する場合でも、維持放電を行う2本の電極の上に第3の電極を配置する場合と、その下に第3の電極を配置する場合がある。さらに、蛍光体から発せられた可視光を、その蛍光体を透過して見る場合(透過型)と、蛍光体からの反射を見る場合(反射型)がある。また、放電を行うセルは、障壁(リブ、バリア)によって、隣接セルとの空間的な結合が断ち切られている。この障壁は、放電セルを取り囲むように四方に設けられ完全に密封されている場合や、一方向のみに設けられ、他方は、電極間のギャップ(距離)の適正化によって結合が切られている場合等がある。
【0005】
本明細書では、維持放電を行う電極の基板とは別な対向する基板に第3の電極を形成するパネルで、障壁が垂直方向(つまり、第1電極と第2電極に直交し、第3電極と平行)にのみ形成され、維持電極の一部が透明電極によって構成されている反射型の例をもとに説明する。
上記の3電極・面放電型のPDPとして、図1にその概略的平面図を示すようなものが知られている。また、図2は、これらのパネルの概略的断面図であり、図3は同様に水平方向の概略的断面図である。
【0006】
パネルは、2枚のガラス基板21と28によって構成されている。第1の基板21には、平行する維持電極である第1および第2の電極(X電極、Y電極)11と12を備えており、これらの電極は透明電極22a,22bとバス電極23a,23bとによって構成されている。透明電極は蛍光体からの反射光を透過させ、バス電極は、電極抵抗による電圧低下を防ぐ目的で金属が使用される。さらにそれらを、誘電体層24で被覆し、放電面には保護膜としてMgO(酸化マグネシューム)膜25を形成する。また、前記第1のガラス基板21と向かい合う第2の基板28には、第3の電極(アドレス電極)13を、維持電極11,12と直交する形で形成する。また、アドレス電極13間には、障壁14を形成し、その障壁の間には、アドレス電極13を覆う形で赤、緑、青の発光特性を持つ蛍光体27を形成する。障壁の尾根14と、MgO面25が密着する形で2枚のガラス基板が組み立てられている。
【0007】
また、図4は、図1、図2および図3に示したPDPをインタレース表示するための周辺回路を示した概略的ブロック図である。アドレス電極13は1本毎にアドレスドライバ105に接続され、そのアドレスドライバによってアドレス放電時のアドレスパルスが印加される。また、Y電極11は個別にスキャンドライバ102に接続される。スキャンドライバ102、奇数Y電極の駆動用と偶数Y電極の駆動用にブロック分けされ、さらに、維持放電パルスを生成しY電極に印加するY共通ドライバも第1と第2のY共通ドライバ103aと103bに分けられている。アドレス放電時の走査パルスはスキャンドライバ102から発生し、維持パルス等はY側共通ドライバ103aと103bで発生し、スキャンドライバ102を経由して、Y電極11に印加される。X電極12はパネルの全表示ラインに渡って共通に接続される。X側共通ドライバ104は、書き込みパルス、維持パルス等を発生する。これらのドライバ回路は、制御回路106によって制御され、その制御回路は、装置の外部より入力される、同期信号CLOCK,VSYNC,HSYNCや表示データ信号DATAによって制御される。
【0008】
図5は、図1〜図3に示すPDPを図4に示した回路によってインタレース表示を行う場合の、従来の駆動方法を示す波形図であり「アドレス/維持放電分離型・書き込みアドレス方式」の1サブフィールド期間を示している。この例では、1サブフィールドは、リセット期間とアドレス期間さらに、維持放電期間に分離される。リセット期間においては、まず、全てのY電極が0Vレベルにされ、同時に、X電極に電圧Vs+Vw(約300V)からなる全面書き込みパルスが印加される。さらに、維持放電が行われ消去パルスで消去放電が行われる。このリセット期間は、前のサブフィールドの点灯状態に係わらず全てのセルを同じ状態にする作用があり、次のアドレス(書き込み)放電を安定に行うことができる。
【0009】
次に、アドレス期間において、表示データに応じた、セルのON/OFFを行うために、線順次でアドレス放電が行われる。まず、Y電極にスキャンパルスを印加すると共に、アドレス電極中、維持放電を起すセル、すなわち、点灯させるセルに対応するアドレス電極に電圧Va(約50V)のアドレスパルスが選択的に印加され、点灯させるセルのアドレス電極とY電極の間で放電が起こる。次にこれをプライミング(種火)として、直ちにX電極とY電極間の放電に移行する。これにより、選択ラインの選択セルのX電極とY電極上のMgO面に維持放電が可能な量の壁電荷が蓄積する。
【0010】
以下、順次、他の表示ラインについても、同様の動作が行われ、全表示ラインにおいて、新たな表示データの書き込みが行われる。
その後、維持放電期間になると、Y電極とX電極に交互に、電圧がVs(約180V)からなる維持パルスが印加されて維持放電が行われ、1サブフィールドの画像表示が行われる。なお、インタレース表示であるため、放電を行わない表示ラインに対応するY電極はハイインピーダンス状態として、消費電力を低く抑えている。
【0011】
なお、かかる「アドレス/維持放電分離型・書き込みアドレス方式」においては、維持放電期間の長短、つまり、維持パルスの回数によって、輝度が決定される。
具体的には、多階調表示の一例として、256階調表示を行う場合の駆動方法を図6に示すこととする。この例では、1フィールドは、8個のサブフィールド:SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8に区分される。1フィールドでは奇数ラインもしくは偶数ラインの一方の表示を行う、さらに続くフィールドでは他方の表示ラインの表示を行う。
【0012】
これらのサブフィールド、SF1〜SF8においては、リセット期間とアドレス期間は、それぞれ、同一の長さとなる。また、維持放電期間の長さは、1:2:4:8:16:32:64:128の比率となる。従って、点灯させるサブフィールドを選択することで、0から255までの256段階の輝度の違いを表示できる。
【0013】
本出願人は、特願平8−194320号でインタレース表示を行うプラズマディスプレイ装置を開示している。図7〜11は、この特願平8−194320号に開示したインタレース駆動を行うプラズマディスプレイ装置の構成と駆動波形を示す図である。
図7はY電極の両側のスリットを放電スリットとして活用したインタレース表示のパネルおよび回路構成の概略を示す図である。図8はその断面構造である。また、図9はその駆動方法を示す電極の駆動波形図である。この駆動方法の特徴は、アドレス時にX電極に印加する電圧を選択することでアドレス電極とY電極間で発生させた放電をトリガにして、Y電極の両側のいずれのスリットで放電を起こすかが選択される。これによって維持放電を行いたい側のスリットのセルに壁電荷を形成することができる。また、放電を行わないスリットに隣接する電極同士は同位相の維持パルスが印加され誤放電が発生することを防いでいる。そのために、放電維持を行う手段であるYサスティン回路とXサスティン回路を、それぞれ奇数Yサスティン回路124と偶数Yサスティン回路125と、奇数Xサスティン回路126と偶数Xサスティン回路127とに分離して、独立にアドレス動作とサスティン動作のためのパルスが印加できるようにしている。
【0014】
ここに示されたプラズマディスプレイ装置では、奇数フィールドと偶数フィールドの表示行が互いに影響しなくなるため、縦方向の表示セルを規定するための隔壁をY電極とX電極の間に設ける必要がなくなり、プラズマディスプレイパネルを高精細化することが可能である。
更に、特願平8−194320号は、表示に関係しない放電による表示コントラストの低下を防止するため、表示に関係しないスリットの部分に遮光体を設けることを開示している。図10は、特願平8−194320号に開示された遮光体を設けた構成を示す図である。図10に示したプラズマディスプレイパネルは、図1及び図2に示すような一対のY電極とX電極の間を表示用スリット131とする従来のもので、表示用スリットでない異なる列のY電極とX電極の間のスリットに遮光体132が設けられる。これにより、表示用でないスリットからの反射光が低減される。
【0015】
また、プラズマディスプレイ装置では、アドレス放電、及び維持放電がスムーズに行われるように、プライミング放電と呼ばれる放電が行われる。従来例では、例えば、リセット期間に行われるリセット放電が、このプライミング放電の役割を果たしている。このようなプライミング放電は表示画像には関係せず、表示のコントラストを低下させる。例えば、Y1電極とX2電極間でプライミング放電を行う場合に、上記のような遮光体132を設ければ、この表示に関係しない不要な光が遮断されることになる。
【0016】
上記のように、図7に示すような構成を使用することにより、隔壁をY電極とX電極に平行に設ける必要がなくなるため、プラズマディスプレイパネルを高精細化することが可能になるが、Y電極の選択手段であるスキャンドライバと放電維持手段であるYサスティン回路もしくは、Y共通ドライバとの接続が複雑になるという問題がある。図4および図7の従来例においては、Y電極は奇数と偶数に分けてサスティン回路に接続される。一般にスキャンドライバは、例えば、1つのチップが64ビット出力の集積回路によって構成されている。よって、1ビット毎に異なるサスティン回路に接続すると配線が複雑になる。また、1チップの出力を全て奇数電極用もしくは偶数電極用とした場合、サスティン回路とスキャンドライバ間の接続は簡略化されるが、スキャンドライバとパネルの電極間の接続が複雑になる。いずれの場合であっても、装置が複雑となりコストアップの要因となった。また、規模の増大および配線の複雑化によって性能および信頼性を低下させていた。特願平8−194320号には、このような問題が解決できるプラズマディスプレイ装置が開示されている。
【0017】
図11は、特願平8−194320号に開示されたプラズマディスプレイ装置の別の構成例を示す図である。このプラズマディスプレイ装置では、図11に示すように、Y1電極の両側にX1電極とX2電極を、Y2電極の両側にX3電極とX4電極をという具合に、各Y電極の両側に2つのX電極を設ける。奇数フィールドでは、各Y電極と奇数番目のX電極の間に電圧を印加して放電を行わせ、偶数フィールドでは各Y電極と偶数番目のX電極の間に電圧を印加して放電を行わせることにより、インタレース表示を行う。偶数番目のX電極と奇数番目のX電極の間は完全な非表示行になるが、隔壁がないので高精細化が可能である上、Y電極を2系統に分離する必要がないので、スキャンドライバとYサスティン回路間の接続やスキャンドライバとパネル間の接続が簡単になる。
【0018】
【発明が解決しようとする課題】
特願平8−194320号に開示されたプラズマディスプレイ装置で、従来と同様にリセット期間に、Y電極とX電極間に大きな電圧を印加して全面書込みを行い、その放電をプライミング放電とした場合、プライミング放電は表示セルと同じ部分で行われることになる。前述のように、プライミング放電は表示画像には関係せず表示のコントラストを低下させるため、遮光することが望ましいが、特願平8−194320号に開示された装置ではプライミング放電は表示セルの部分で行われるため、この部分に図10に示したような遮光体を設けることはできない。そのため、特願平8−194320号に開示された従来の装置では、表示コントラストを十分に高くできないという問題があった。
【0019】
このように、リセット放電として、全面書き込み放電および、全面自己消去放電を使用する図9の駆動方法や、全面書き込みおよび維持放電さらに消去を行う図5の駆動方法を使用する場合には、放電を行わないスリットにおいてもリセット放電(プライミング放電)が行われるため、コントラストを低下させていた。また、これらの例では、プライミング放電を表示セルにおいて行うため放電の規模が維持放電と同じように大きく、大きな電力を消費するという問題もあった。
【0020】
本発明は、このようなプライミング放電による表示コントラストの低下を防止し、電力消費を低減することが可能なプラズマディスプレイ装置およびその駆動方法を実現することを目的とする。
【0021】
【課題を解決するための手段】
本発明のプラズマディスプレイ装置は、第1の基板に第1、第2および第3の電極を交互に平行に配置するとともに、第1の基板もしくは第2の基板に第4の電極を第1の電極と直交するように配置したプラズマディスプレイパネルと、第1の電極を選択駆動する第1電極選択駆動手段と、第2の電極を駆動する第2電極駆動手段と、第3の電極を駆動する第3電極駆動手段とを備え、第1の電極と第2の電極を含み第4の電極との交点に第1の表示セルが形成され、第1の電極と第3の電極を含み第4の電極との交点に第2の表示セルが形成され、第1の表示セルと第2の表示セルで発光表示を交互に繰り返すインタレース表示が行われるプラズマディスプレイ装置において、リセット期間中に、第2電極駆動手段と第3電極駆動手段は、第2と第3の電極間に電圧を印加して、第3のセルにおいてプライミング放電を行わせ、第2の電極と第3の電極によってプライミング用の第3のセルが形成されることを特徴とする。
【0022】
また、本発明のプラズマディスプレイ装置の駆動方法は、上記のようなインタレース表示を行うプラズマディスプレイ装置の駆動方法であって、表示セルの状態を均一にするリセット工程と、表示データの書き込みを行うアドレス工程と、点灯させるセルにおいて放電を維持する維持放電工程とを繰り返し行う駆動方法において、第1の表示セルで放電維持を行う維持放電工程において、第1の電極に印加する維持パルスとは逆位相の維持放電パルスを第2の電極に印加するとともに、第3の電極の電位を前記維持放電パルスの電圧より低い所定の値とし、第2の表示セルで放電維持を行う維持放電工程において、第1の電極に印加する維持パルスとは逆位相の維持放電パルスを第3の電極に印加するとともに、第2の電極の電位を維持放電パルスの電圧より低い所定の電圧値とし、リセット工程において、第2と第3の電極間に電圧を印加することにプライミング放電が行われ、第2と第3の電極によってプライミング用の第3のセルが形成されることを特徴とする。
【0023】
図12は、本発明における発光位置を示す図である。図12において、Y1,Y2,…はY電極を、Xoは第2の電極を、Xeは第3の電極を示し、(1)のT1は第3のセルを、T2は第1の表示セル(奇数行の表示セル:odd表示セル)を、T3は第2の表示セル(偶数行の表示セル:evenセル)をそれぞれ示している。本発明によれば、プライミング放電は、表示セルでない第2と第3の電極間の第3のセルT1で行われるため、遮光体を設けて遮光することが可能であり、表示コントラストを向上させることができる。また、表示セルでない第3のセルT1でプライミング放電が行われるため、放電の規模を小さくすることも可能であり、消費電力を低減できる。
【0024】
更に、第2と第3の電極との隙間である第3のスリットに、遮光体を設ける。更に、維持放電期間中に、第1電極選択駆動手段は第1の電極に第1の維持放電パルスを印加し、第2電極駆動手段と第3電極駆動手段の一方は、第1の維持放電パルスとは逆位相の維持放電パルスを印加し、他方は所定の一定電圧を印加するか対応する電極をハイインピーダンスとする。そのため、放電を行わないスリット(セル)の電圧は最小放電維持電圧未満となるため、誤放電を起こすことは無い。
【0025】
更に、所定の一定電圧は、第1の維持放電パルスの略半分の電圧であり、放電しないセルの電圧を最も小さくできる。
更に、第1と第2の電極の隙間である第1のスリットと、第1と第3の電極の隙間である第2のスリットとは等間隔に配置される。
更に、第2と第3の電極との隙間である第3のスリットを、隣接する第1の電極の中間に形成する。
【0026】
更に、第1から第3の電極は、透明電極と金属のバス電極とから形成されている。
更に、第1の電極の透明電極は前記バス電極より幅が広く、バス電極は透明電極の中央に形成されている。
更に、第1と第2の電極の透明電極はバス電極より幅が広く、バス電極は第3のスリット側に形成されている。
【0027】
更に、第1の電極のバス電極の幅が、第2の電極のバス電極の第1のスリット側の端から、隣接する行の第3の電極のバス電極の第2のスリット側の端までの寸法と同じになるように設定する。これにより、第1の表示セルと第2の表示セルがバランス良く形成される。
更に、第1の電極のバス電極の厚みは、第2と第3の電極のバス電極の厚みのほぼ半分に設定する。
【0028】
更に、第1から第3の電極の抵抗値が同じであるように設定する。これにより、電極抵抗による電圧ドロップによって生じる輝度低下が表示の左右で同等になる。
更に、第1の電極上の表面側に遮光体を形成する。第3のセルにおけるプライミング放電の発光を遮断し、無効発光を低減できる。
【0029】
更に、第1の電極上の遮光体の幅を、第2の電極のバス電極の第1のスリット側の端から、隣接する行の第3の電極のバス電極の第2のスリット側の端までの寸法と同じになるように設定する。これにより、セル配置のバランスが良くなる。
更に、第3のスリットの幅が第1と第2のスリットの幅より狭くなるように設定する。これにより、第1と第2の表示セルおよび第3のセルを形成する電極間に同じ電圧を印加した場合であっても第3のセルにのみ放電を発生させる事が可能である。
【0030】
更に、第1の電極の中央に第4のスリットを形成する。これにより、放電の過剰な広がりを防止でき発光形状が均一になり維持放電が安定する。
更に、第1の電極の中央の第4のスリットに遮光体を形成する。これにより、反射光を防止しコントラストを向上できる。
更に、リセット工程において、第2の電極と第3の電極間に電圧を印加して第3のセルにおいてプライミング放電を行うため、安全に且つ確実にアドレス放電を行うことができる。
【0031】
更に、リセット工程において、第2の電極と第3の電極間に電圧を印加する時の第1の電極の電圧は、第2の電極と第3の電極間の電圧の略中間の電圧を印加するため、プライミング放電の際に、第1および第2のセルにおいて放電を併発することが無い。
更に、リセット工程における第1の電極の電圧は、維持放電パルスの電圧と同じである。
【0032】
更に、第1の表示セルで発光表示を行う時と、第2の表示セルで発光表示を行う時は、それぞれプライミング放電を発生される電圧印加の極性を変えることにより、効率よく放電を起こすことができる。
更に、プライミング放電では、直前の維持放電工程の最後の維持放電パルスと逆極性の電圧を印加するため、その前に消去放電を行わなくてもプライミング放電を行うことが可能である。
更に、第1の電極の電位を直前の維持放電工程の最後の維持放電時の電圧とし、第2もしくは第3の電極に逆極性の電圧を印加するため、効率よく放電を起こすことができる。
【0033】
更に、第3のセルに放電を開始させ、パルスの除去後に再度放電を行うような電圧のパルスを印加してプライミング放電を行う。また、パルスの除去後は、全電極の電位差が無いように設定するため、自己消去放電となり均一に壁電荷の消去が行える。
更に、直前の維持放電工程の最後の維持放電時の電圧とは逆極性の電圧を印加して放電を行いパルスの除去時に再度放電を起こすとともに、直前に維持放電を行っていた第1もしくは第2の表示セルにおいても、同時に放電を併発させるため、第1および第2の表示セルの維持放電を行っていたセルに対して消去となる放電を併発させることができる。
【0034】
更に、第1の表示セルでの表示から第2の表示セルでの表示に移行する直前および、第2の表示セルでの表示から第1の表示セルでの表示に移行する直前は、それぞれ、全てのセルで放電を発生させるよう電圧パルスを印加する。また、第1の表示セルでの表示から、第2の表示セルでの表示に移行する直前は、第2の表示セルと第3のセルに、また、第2の表示セルでの表示から、第1の表示セルでの表示に移行する直前は、第1の表示セルと第3のセルにそれぞれ放電を発生させるよう電圧パルスを印加し放電を行うため、新たに発光表示を行うセルの活性化が行える。
【0035】
更に、放電維持工程の最後に、第1の電極と第2の電極もしくは第3の電極の間に消去パルスを印加する。
【0036】
【発明の実施の形態】
本発明の、第1実施例のプラズマディスプレイ装置の構成を図13に示す。なお、図4で示した制御部などは省略してある。
本装置のプラズマディスプレイパネルの断面構造を図14に示す。本パネルの電極は、幅の広いY電極51とそれを取り囲むXo電極52oおよびXe電極52e、さらにアドレス電極53より構成される。Y電極51は、透明電極51aと金属のバス電極51bで、Xo電極52oは透明電極52aoと金属のバス電極52boで、Xe電極52eは透明電極52aeと金属のバス電極52beで構成されている。金属のバス電極は、電圧低下を防ぐために使用される。図示のように、透明電極はバス電極より幅が広い。Y電極51では、バス電極51bは透明電極51aの中央に形成されており、Xo電極52oおよびXe電極52eでは、バス電極52boと52beは透明電極52aoと52aeの端の、隣接する行のX電極と向き合う側に設けられている。なお、ここでは、Y電極51のバス電極51bの幅が、バス電極52boと52beと、隣接する行のX電極間に設けられた遮光体58の幅の合計に等しい。また、Y電極51のバス電極51bの厚みは、バス電極52boと52beの厚みのおよそ半分であることが望ましい。これにより、各バス電極の抵抗値が同じになる。
【0037】
Xo電極52oとY電極51の間に第1のスリット71が形成され、この第1のスリット71の部分に奇数フィールドにおいて表示を行う第1のセル(oddセル)55が形成される。また、Xe電極52eとY電極51の間に第2のスリット72が形成され、この第2のスリット72の部分に偶数フィールドにおいて表示を行う第2のセル(evevセル)56が形成される。さらに、Xo電極52oとXe電極52eの間に第3のスリット73が形成され、この部分にプライミング用の第3のセル57が形成される。さらに、第3のスリット73には遮光体58を設けプライミング放電による発光が外に漏れることを防いでいる。
【0038】
Y電極は選択手段であるスキャンドライバ62に接続され、さらにまとめて放電維持のための信号を印加するYサスティン回路63に接続される。スキャンドライバ62はスキャンパルスを生成し、Yサスティン回路63は、維持放電パルスを生成して、Y電極51に印加する。一方、Xo電極52oとXe電極52eはそれぞれまとめて放電維持のための信号を印加する奇数Xサスティン回路61oと偶数Xサスティン回路61eに接続される。また、アドレス電極の駆動回路は、従来例と同様であるため省略してある。
【0039】
図15は、奇数Xサスティン回路61oと偶数Xサスティン回路61eの詳細を示す図である。電圧Vsは維持放電パルスの電圧であり、Vmは放電維持期間中に放電を行わない電極に印加する電圧であり、Vsの約半分である。
図16は、本装置の動作を示す、各電極の駆動波形図であり、奇数フィールドにおける、1サブフィールドのタイミングを示している。まず初めに、Xo電極52oに電圧Vw(約300V)からなるパルスが印加される。このパルスによって、Xo電極52oとXe電極52e間の第3のセル57に放電が発生する。一方、Y電極51には電圧Vsが印加されているため、第1および第2のセル55と57においては放電は発生しない。この放電によって、Xo電極52oとXe電極52e上の誘電体層の表面には壁電荷が蓄積される。パルスは約10μsで取り除かれ、全電極が0Vになったタイミングで、壁電荷自身の電圧により再度放電が発生する。この放電は、電極間の電位差が0Vであるため壁電荷の蓄積は行われず、空間電荷の中和によって終了する。しかしながら、多少の空間電荷は中和されず空間に漂うため、アドレス放電の際に、種火(プライミング)として有効に作用する。
【0040】
アドレス期間は、Y電極51にスキャンパルス(−150V)が順次印加され、点灯させるべきセルに対応するアドレス電極53に選択的にアドレスパルス(50V)が印加される。これによって、アドレス電極とY電極間の放電が行われる。このとき、奇数フィールドでは、Xe52e電極が0Vであるのに対し、Xo電極52oにはVX(50V)が印加されているため、アドレス電極53とY電極51の放電をトリガにXo電極52oとY電極51間、つまり第1のセル55での放電に移行する。この放電によって、維持放電期間において維持放電が行えるような壁電荷が形成される。以上の動作を順次繰り返し、全画面の表示データの書き込みが完了する。
【0041】
維持放電期間は、Y電極51および、Xo電極52oに交互に維持放電パルスが印加され書き込みが行われたセルにおいて維持放電が繰り返される。この時、Xe電極52eには、維持放電パルスの中間電圧(Vm)が印加されるため、第2のセル56で誤放電を起こすことはない。最後に、Y電極51に細幅消去パルスが印加され壁電荷の消去が行われる。
【0042】
図17は、偶数フィールドの駆動波形図である。リセット時のパルスは、Xe電極52eに印加される。また、アドレス時は第2のセル56に壁電荷を形成するように、Xe電極52eにVXが印加される。また、維持放電期間は、Xo電極52eにVm電圧が印加され第1のセル55での誤放電を防止している。
図18は本発明の第2実施例のパネル構造である。装置構成および駆動方法は第1実施例と同じである。本パネルは、Y電極側51に、遮光体59を設けている。その幅は、Xe電極52eとXo電極52oのバス電極52boと52beと遮光体58を含めた幅と同じであり、第1のセル55と第2のセル56の発光の形状が、第1および第2のスリットの中心からみた場合、同じ間隔となりバランスが良くなる。
【0043】
図19は本発明の第3実施例のパネル構造である。装置構成および駆動方法は第1実施例と同じである。本パネルは、Y電極側51のバス電極51bの幅を、隣接する行のXe電極とXo電極のバス電極52boと52beと遮光体58を含めた幅と同じ値としている。そのため、第2実施例と同様に、第1のセルと第2のセルの発光の形状が、第1および第2のスリットの中心からみた場合、同じ間隔となりバランスが良くなる。
【0044】
図20は、本発明の第4実施例のパネル構造である。装置構成および駆動方法は第1実施例と同じである。本パネルは、Y電極51側の中心に第4のスリットを設けている。このスリットにより、放電がY電極側にのみ広がることを防止でき、第1のセルと第2のセルの発光の形状が、第1および第2のスリットの中心からみた場合、同じ間隔となりバランスが良くなる。また、放電の安定化も図ることができる。
【0045】
図21は、本発明の第5実施例の駆動波形を示す図であり、駆動波形が異なる点を除けば第5実施例の装置は第1実施例のものと同じである。図21は奇数フィールドにおける、1サブフィールドのタイミングを示している。本実施例においては、最後の維持放電パルスをY電極に印加して維持放電工程を終了している。このため、点灯セルにおいては、Y電極側にマイナスの壁電荷が形成され、Xo電極側にはプラスの壁電荷が形成される。リセット工程に入り、Xo電極に電圧Vwからなるパルスが印加される。第3のセルにおいて放電が開始されるが、直前に維持放電を行い壁電荷を保有しているセルのY電極のマイナス荷電荷はこの放電による空間電荷の飛来により壁電荷の中和が行われる。パルスの除去後には、第1実施例と同様に第3のセルにおいて自己消去放電が行われる。
【0046】
図22は、本発明の第6実施例の駆動波形を示す図であり、奇数フィールドにおける、1サブフィールドのタイミングを示している。本実施例において適用するパネルは、第3のスリットの幅を前者の実施例のパネルに対して約半分の値としている。本実施例においては、最後の維持放電パルスをY電極に印加して維持放電工程を終了している。点灯セルにおいては、Y電極側にマイナスの壁電荷が形成され、Xo電極側にはプラスの壁電荷が形成される。リセット工程に入り、Xo電極に電圧Vwからなるパルスが印加される。この電圧は、前者の実施例のVwの値より低い値に設定される。低い電圧であっても第3のスリットの幅が狭いため、十分に放電を開始すことが可能である。第3のセルにおいて放電が開始し、壁電荷が蓄積されパルスの除去時に自己消去放電が行われる。直前に維持放電を行いY電極にマイナス壁電荷電荷を蓄積しているセルは、自己消去放電を併発して消去が行われる。
【0047】
なお、第1実施例のパネルにおいても、フィールドの切り替わり時に、電圧の高い本パルスを印加することで、表示用セルのリセット動作が行える。
【0048】
【発明の効果】
以上説明したように、本発明によれば、駆動回路が簡素化され低コストであり、無効発光を低減しコントラストの高いインタレース表示を行うプラズマディスプレイ装置を実現できる。
【図面の簡単な説明】
【図1】従来の3電極・面放電・AC型PDPの概略平面図である。
【図2】従来の3電極・面放電・AC型PDPの概略断面図である。
【図3】従来の3電極・面放電・AC型PDPの概略断面図である。
【図4】従来のインタレース表示のPDP装置の概略ブロック図である。
【図5】従来の駆動方式による波形図である。
【図6】階調表示のシーケンスを示す図である。
【図7】Y電極とX電極に平行な隔壁を除去した従来のインタレース表示装置のパネルおよび駆動回路の構成図である。
【図8】図7の従来例のパネル断面図である。
【図9】図7の従来例の装置の駆動波形図である。
【図10】コントラスト向上のための遮光体を設けた従来例の構成を示す図である。
【図11】インタレース表示用プラズマディスプレイ装置の別の従来例の構成を示す図である。
【図12】本発明による発光位置を示す図である。
【図13】本発明の第1実施例のプラズマディスプレイパネルおよび駆動回路の構成図である。
【図14】第1実施例のパネル構造と発光位置を示す図である。
【図15】第1実施例のXサスティン回路の構成を示す図である。
【図16】第1実施例の駆動波形図(奇数フィールド)である。
【図17】第1実施例の駆動波形図(偶数フィールド)である。
【図18】本発明の第2実施例のパネル構造図である。
【図19】本発明の第3実施例のパネル構造図である。
【図20】本発明の第4実施例のパネル構造図である。
【図21】本発明の第5実施例の駆動波形図である。
【図22】本発明の第6実施例の駆動波形図である。
【符号の説明】
51…第1の電極(Y電極)
52o…第2の電極(奇数X電極)
52e…第3の電極(偶数X電極)
53…アドレス電極
54…隔壁
55…第1の表示セル
56…第2の表示セル
57…第3のセル
61o…第2電極駆動手段(奇数Xサスティン回路)
61e…第3電極駆動手段(偶数Xサスティン回路)
62…第1電極駆動手段(スキャンドライバ)
63…第1電極駆動手段(Yサスティン回路)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology for driving a display panel constituted by a set of cells, which are display elements having a memory function, and in particular, interlaced display in an AC (alternating current) type plasma display panel (PDP). The present invention relates to an apparatus to be performed and a driving method thereof.
[0002]
The AC type PDP performs discharge display by alternately applying a voltage waveform to two sustain electrodes to perform light emission display. One discharge is completed in 1 μs to several μs immediately after the pulse application. Ions that are positive charges generated by the discharge are accumulated on the surface of the insulating layer on the electrode to which a negative voltage is applied. Similarly, electrons that are negative charges are on the electrode to which a positive voltage is applied. Accumulated on the surface of the insulating layer.
[0003]
Therefore, after first generating a wall charge by discharging with a high voltage (write voltage) pulse (write pulse), then a pulse (sustain pulse or sustain discharge) with a lower voltage (sustain voltage or sustain discharge voltage) than the previous one with a different polarity. When the pulse) is applied, the wall charges accumulated previously are superimposed, and the voltage with respect to the discharge space becomes large, and discharge is started exceeding the threshold of the discharge voltage. That is, a cell that has once written discharge and generated wall charges has a feature that the discharge is continued by alternately applying a sustain pulse with a reverse polarity. This is called a memory effect or memory function. In general, the AC type PDP performs display using this memory effect.
[0004]
[Prior art]
In an AC type PDP that performs full color display, a three-electrode structure using surface discharge is generally used. Further, even in this three-electrode type, there are cases where the third electrode is formed on the substrate on which the first and second electrodes for sustaining discharge are disposed, and on the other substrate facing each other. Even when the above three types of electrodes are formed on the same substrate, there are cases where the third electrode is disposed on the two electrodes that perform the sustain discharge and the third electrode is disposed below the third electrode. is there. Furthermore, there are cases where visible light emitted from a phosphor is viewed through the phosphor (transmission type) and reflections from the phosphor (reflection type). In addition, a cell that discharges is disconnected from a spatial connection with an adjacent cell by a barrier (rib, barrier). This barrier is provided in all directions so as to surround the discharge cell and is completely sealed, or is provided only in one direction, and the other is disconnected by optimizing the gap (distance) between the electrodes. There are cases.
[0005]
In this specification, a panel in which the third electrode is formed on an opposite substrate different from the substrate of the electrode that performs the sustain discharge, the barrier is in the vertical direction (that is, perpendicular to the first electrode and the second electrode, A description will be given based on a reflection type example in which a part of the sustain electrode is formed of a transparent electrode.
As the above-mentioned three-electrode / surface-discharge type PDP, one having a schematic plan view shown in FIG. 1 is known. FIG. 2 is a schematic cross-sectional view of these panels, and FIG. 3 is a schematic cross-sectional view in the horizontal direction as well.
[0006]
The panel is composed of two glass substrates 21 and 28. The first substrate 21 includes first and second electrodes (X electrode, Y electrode) 11 and 12 which are parallel sustain electrodes, and these electrodes are transparent electrodes 22a and 22b and bus electrodes 23a, 23b. The transparent electrode transmits the reflected light from the phosphor, and the bus electrode is made of metal for the purpose of preventing voltage drop due to electrode resistance. Further, they are covered with a dielectric layer 24, and an MgO (magnesium oxide) film 25 is formed as a protective film on the discharge surface. A third electrode (address electrode) 13 is formed on the second substrate 28 facing the first glass substrate 21 so as to be orthogonal to the sustain electrodes 11 and 12. In addition, a barrier 14 is formed between the address electrodes 13, and a phosphor 27 having red, green, and blue emission characteristics is formed between the barrier electrodes so as to cover the address electrode 13. Two glass substrates are assembled so that the barrier ridge 14 and the MgO surface 25 are in close contact with each other.
[0007]
FIG. 4 is a schematic block diagram showing a peripheral circuit for interlaced display of the PDP shown in FIG. 1, FIG. 2, and FIG. Each address electrode 13 is connected to an address driver 105, and an address pulse at the time of address discharge is applied by the address driver. The Y electrodes 11 are individually connected to the scan driver 102. The scan driver 102 is divided into blocks for driving the odd-numbered Y electrodes and for driving the even-numbered Y electrodes, and the Y common driver that generates the sustain discharge pulse and applies it to the Y electrodes is also the first and second Y-common drivers 103a. 103b. A scan pulse at the time of address discharge is generated from the scan driver 102, and sustain pulses and the like are generated by the Y side common drivers 103a and 103b and applied to the Y electrode 11 via the scan driver 102. The X electrode 12 is connected in common over all display lines of the panel. The X side common driver 104 generates a write pulse, a sustain pulse, and the like. These driver circuits are controlled by a control circuit 106, and the control circuit is controlled by synchronization signals CLOCK, VSYNC, HSYNC and a display data signal DATA input from the outside of the apparatus.
[0008]
FIG. 5 is a waveform diagram showing a conventional driving method when the PDP shown in FIGS. 1 to 3 performs interlaced display by the circuit shown in FIG. 1 sub-field period. In this example, one subfield is separated into a reset period, an address period, and a sustain discharge period. In the reset period, first, all the Y electrodes are set to 0 V level, and at the same time, a full-surface write pulse composed of a voltage Vs + Vw (about 300 V) is applied to the X electrodes. Further, the sustain discharge is performed and the erase discharge is performed by the erase pulse. This reset period has the effect of making all cells the same regardless of the lighting state of the previous subfield, and the next address (writing) discharge can be stably performed.
[0009]
Next, in the address period, address discharge is performed line-sequentially in order to turn on / off the cells according to the display data. First, a scan pulse is applied to the Y electrode, and an address pulse of voltage Va (about 50 V) is selectively applied to the address electrode corresponding to the cell in the address electrode that causes sustain discharge, that is, the cell to be lit. Discharge occurs between the address electrode and the Y electrode of the cell to be activated. Next, this is regarded as priming (seeding), and the process immediately shifts to discharge between the X electrode and the Y electrode. As a result, an amount of wall charge capable of sustaining discharge accumulates on the MgO surface on the X electrode and Y electrode of the selected cell of the selected line.
[0010]
Thereafter, the same operation is sequentially performed for the other display lines, and new display data is written in all the display lines.
Thereafter, during the sustain discharge period, a sustain pulse having a voltage of Vs (about 180 V) is alternately applied to the Y electrode and the X electrode to perform a sustain discharge, and an image display of one subfield is performed. Since the display is interlaced, the Y electrode corresponding to the display line that does not discharge is set in a high impedance state to reduce power consumption.
[0011]
In the “address / sustain discharge separation type / write address system”, the luminance is determined by the length of the sustain discharge period, that is, the number of sustain pulses.
Specifically, as an example of multi-gradation display, a driving method in the case of performing 256 gradation display is illustrated in FIG. In this example, one field is divided into eight subfields: SF1, SF2, SF3, SF4, SF5, SF6, SF7, and SF8. In one field, one of odd lines or even lines is displayed, and in the following field, the other display line is displayed.
[0012]
In these subfields SF1 to SF8, the reset period and the address period have the same length. The length of the sustain discharge period is a ratio of 1: 2: 4: 8: 16: 32: 64: 128. Therefore, by selecting a subfield to be lit, a 256-level luminance difference from 0 to 255 can be displayed.
[0013]
The present applicant has disclosed a plasma display device for performing interlaced display in Japanese Patent Application No. 8-194320. 7 to 11 are diagrams showing the configuration and driving waveforms of a plasma display apparatus for performing interlaced driving disclosed in Japanese Patent Application No. 8-194320.
FIG. 7 is a diagram showing an outline of an interlaced display panel and circuit configuration using slits on both sides of the Y electrode as discharge slits. FIG. 8 shows the cross-sectional structure. FIG. 9 is an electrode drive waveform diagram showing the drive method. The feature of this driving method is whether the discharge generated between the address electrode and the Y electrode is triggered by selecting the voltage applied to the X electrode at the time of addressing, and which slit on both sides of the Y electrode causes the discharge. Selected. As a result, wall charges can be formed in the cells of the slit on the side where sustain discharge is desired. In addition, the electrodes adjacent to the slits that do not perform discharge are applied with sustain pulses having the same phase to prevent erroneous discharge. Therefore, the Y sustain circuit and the X sustain circuit, which are means for maintaining the discharge, are separated into an odd Y sustain circuit 124, an even Y sustain circuit 125, an odd X sustain circuit 126, and an even X sustain circuit 127, respectively. Pulses for address operation and sustain operation can be applied independently.
[0014]
In the plasma display device shown here, the display rows of the odd field and the even field do not affect each other, so it is not necessary to provide a partition for defining the vertical display cell between the Y electrode and the X electrode. It is possible to increase the definition of the plasma display panel.
Further, Japanese Patent Application No. 8-194320 discloses that a light-shielding body is provided in a slit portion not related to display in order to prevent a decrease in display contrast due to discharge not related to display. FIG. 10 is a diagram showing a configuration provided with a light blocking body disclosed in Japanese Patent Application No. 8-194320. The plasma display panel shown in FIG. 10 is a conventional display panel having a display slit 131 between a pair of Y electrodes and X electrodes as shown in FIGS. 1 and 2, and the Y electrodes in different rows that are not display slits. A light shielding body 132 is provided in the slit between the X electrodes. Thereby, the reflected light from the slit which is not for display is reduced.
[0015]
Further, in the plasma display device, discharge called priming discharge is performed so that address discharge and sustain discharge are performed smoothly. In the conventional example, for example, a reset discharge performed during the reset period plays the role of this priming discharge. Such a priming discharge is not related to the display image and reduces the display contrast. For example, when the priming discharge is performed between the Y1 electrode and the X2 electrode, if the light shielding body 132 as described above is provided, unnecessary light not related to the display is blocked.
[0016]
As described above, the use of the configuration shown in FIG. 7 eliminates the need to provide the partition wall in parallel with the Y electrode and the X electrode, so that the plasma display panel can be made high definition. There is a problem that the connection between the scan driver as the electrode selection means and the Y sustain circuit as the discharge maintaining means or the Y common driver becomes complicated. In the conventional example of FIGS. 4 and 7, the Y electrode is connected to the sustain circuit in an odd number and an even number. In general, a scan driver is constituted by, for example, an integrated circuit in which one chip has a 64-bit output. Therefore, wiring is complicated when connected to a different sustain circuit for each bit. Further, when all outputs of one chip are for odd electrodes or even electrodes, the connection between the sustain circuit and the scan driver is simplified, but the connection between the scan driver and the panel electrodes becomes complicated. In either case, the device was complicated and increased costs. In addition, performance and reliability have been reduced due to increase in scale and complexity of wiring. Japanese Patent Application No. 8-194320 discloses a plasma display device capable of solving such problems.
[0017]
FIG. 11 is a diagram showing another configuration example of the plasma display device disclosed in Japanese Patent Application No. 8-194320. In this plasma display device, as shown in FIG. 11, two X electrodes are provided on both sides of each Y electrode, such as an X1 electrode and an X2 electrode on both sides of the Y1 electrode, an X3 electrode and an X4 electrode on both sides of the Y2 electrode. Is provided. In the odd field, a voltage is applied between each Y electrode and the odd-numbered X electrode for discharging, and in the even field, a voltage is applied between each Y electrode and the even-numbered X electrode for discharging. By doing so, interlaced display is performed. The even-numbered X electrode and the odd-numbered X electrode are completely non-displayed rows. However, since there is no partition, it is possible to achieve high definition, and it is not necessary to separate the Y electrodes into two systems. Connection between the driver and the Y sustain circuit and connection between the scan driver and the panel are simplified.
[0018]
[Problems to be solved by the invention]
In the plasma display device disclosed in Japanese Patent Application No. Hei 8-194320, when a large voltage is applied between the Y electrode and the X electrode during the reset period as in the prior art, the entire address is written and the discharge is set as the priming discharge. The priming discharge is performed at the same portion as the display cell. As described above, since the priming discharge is not related to the display image and lowers the display contrast, it is desirable to shield the light. However, in the device disclosed in Japanese Patent Application No. 8-194320, the priming discharge is a part of the display cell. Therefore, the light shielding body as shown in FIG. 10 cannot be provided in this portion. Therefore, the conventional apparatus disclosed in Japanese Patent Application No. 8-194320 has a problem that the display contrast cannot be sufficiently increased.
[0019]
As described above, when using the driving method of FIG. 9 using the entire writing discharge and the entire self-erasing discharge as the reset discharge, or the driving method of FIG. Since reset discharge (priming discharge) is performed even in slits that are not performed, the contrast is lowered. Further, in these examples, since the priming discharge is performed in the display cell, there is a problem that the scale of the discharge is as large as the sustain discharge and consumes a large amount of power.
[0020]
It is an object of the present invention to realize a plasma display device and a driving method thereof that can prevent a decrease in display contrast due to such priming discharge and reduce power consumption.
[0021]
[Means for Solving the Problems]
In the plasma display device of the present invention, the first, second, and third electrodes are alternately disposed in parallel on the first substrate, and the fourth electrode is disposed on the first substrate or the second substrate. A plasma display panel arranged orthogonal to the electrodes; first electrode selection driving means for selectively driving the first electrode; second electrode driving means for driving the second electrode; and driving the third electrode. And a third electrode driving means, wherein a first display cell is formed at an intersection of the fourth electrode including the first electrode and the second electrode, and includes the first electrode and the third electrode. In the plasma display device in which the second display cell is formed at the intersection with the electrodes of the first electrode and the interlaced display in which the light emission display is alternately repeated in the first display cell and the second display cell is performed, during the reset period, The two-electrode driving means and the third electrode driving means are A voltage is applied between the second electrode and the third electrode to cause a priming discharge in the third cell, and a third cell for priming is formed by the second electrode and the third electrode. To do.
[0022]
The plasma display device driving method of the present invention is a plasma display device driving method that performs interlaced display as described above, and performs a reset process for uniformizing the state of display cells and writing of display data. In the driving method of repeatedly performing the addressing step and the sustain discharge step of maintaining discharge in the cell to be lit, the sustain pulse applied to the first electrode is opposite to the sustain pulse in the sustain discharge step of maintaining discharge in the first display cell. In the sustain discharge step of applying the sustain discharge pulse of the phase to the second electrode, setting the potential of the third electrode to a predetermined value lower than the voltage of the sustain discharge pulse, and maintaining the discharge in the second display cell, A sustain discharge pulse having a phase opposite to that of the sustain pulse applied to the first electrode is applied to the third electrode, and the potential of the second electrode is maintained and discharged. In the reset process, priming discharge is performed by applying a voltage between the second and third electrodes, and the second and third electrodes cause a priming third to be applied. A cell is formed.
[0023]
FIG. 12 is a diagram showing a light emission position in the present invention. 12, Y1, Y2,... Indicate Y electrodes, Xo indicates a second electrode, Xe indicates a third electrode, T1 in (1) indicates a third cell, and T2 indicates a first display cell. (Odd-row display cells: odd display cells) and T3 indicate second display cells (even-row display cells: even cells). According to the present invention, since the priming discharge is performed in the third cell T1 between the second and third electrodes that are not display cells, it is possible to provide a light shield and shield the light, thereby improving display contrast. be able to. Further, since the priming discharge is performed in the third cell T1 which is not a display cell, the scale of the discharge can be reduced, and the power consumption can be reduced.
[0024]
Further, a light shielding body is provided in a third slit that is a gap between the second and third electrodes. Further, during the sustain discharge period, the first electrode selective driving means applies the first sustain discharge pulse to the first electrode, and one of the second electrode driving means and the third electrode driving means is connected to the first sustain discharge. A sustain discharge pulse having a phase opposite to that of the pulse is applied, and the other is applied with a predetermined constant voltage or the corresponding electrode is set to high impedance. Therefore, the voltage of the slit (cell) that does not discharge is less than the minimum discharge sustaining voltage, so that no erroneous discharge occurs.
[0025]
Furthermore, the predetermined constant voltage is approximately half the voltage of the first sustain discharge pulse, and the voltage of the cells that are not discharged can be minimized.
Further, the first slit that is the gap between the first and second electrodes and the second slit that is the gap between the first and third electrodes are arranged at equal intervals.
Further, a third slit, which is a gap between the second and third electrodes, is formed between the adjacent first electrodes.
[0026]
Further, the first to third electrodes are formed of a transparent electrode and a metal bus electrode.
Further, the transparent electrode of the first electrode is wider than the bus electrode, and the bus electrode is formed at the center of the transparent electrode.
Further, the transparent electrodes of the first and second electrodes are wider than the bus electrode, and the bus electrode is formed on the third slit side.
[0027]
Further, the width of the bus electrode of the first electrode is from the end on the first slit side of the bus electrode of the second electrode to the end on the second slit side of the bus electrode of the third electrode in the adjacent row. Set to be the same size as. Thereby, the first display cell and the second display cell are formed with good balance.
Further, the thickness of the bus electrode of the first electrode is set to approximately half of the thickness of the bus electrode of the second and third electrodes.
[0028]
Further, the first to third electrodes are set to have the same resistance value. As a result, the luminance drop caused by the voltage drop due to the electrode resistance becomes equal on the left and right of the display.
Further, a light shielding body is formed on the surface side of the first electrode. The light emission of the priming discharge in the third cell can be blocked, and the ineffective light emission can be reduced.
[0029]
Furthermore, the width of the light-shielding body on the first electrode is changed from the end on the first slit side of the bus electrode of the second electrode to the end on the second slit side of the bus electrode of the third electrode in the adjacent row. Set to be the same as the previous dimensions. This improves the balance of cell placement.
Further, the width of the third slit is set to be narrower than the width of the first and second slits. Thereby, even when the same voltage is applied between the electrodes forming the first and second display cells and the third cell, it is possible to generate a discharge only in the third cell.
[0030]
Further, a fourth slit is formed in the center of the first electrode. As a result, excessive spread of the discharge can be prevented, the light emission shape becomes uniform, and the sustain discharge is stabilized.
Further, a light shield is formed in the fourth slit in the center of the first electrode. Thereby, reflected light can be prevented and contrast can be improved.
Furthermore, in the reset process, a voltage is applied between the second electrode and the third electrode to perform priming discharge in the third cell, so that address discharge can be performed safely and reliably.
[0031]
Furthermore, in the resetting process, when the voltage is applied between the second electrode and the third electrode, the voltage of the first electrode is a voltage approximately in the middle of the voltage between the second electrode and the third electrode. Therefore, the discharge is not generated in the first and second cells during the priming discharge.
Further, the voltage of the first electrode in the reset process is the same as the voltage of the sustain discharge pulse.
[0032]
Furthermore, when light emission display is performed in the first display cell and light emission display is performed in the second display cell, discharge is efficiently generated by changing the polarity of voltage application that generates priming discharge. Can do.
Further, in the priming discharge, a voltage having a polarity opposite to that of the last sustaining discharge pulse in the immediately preceding sustaining discharge process is applied, so that it is possible to perform the priming discharge without performing the erasing discharge before that.
Furthermore, since the potential of the first electrode is set to the voltage at the last sustain discharge in the immediately preceding sustain discharge step, and a reverse polarity voltage is applied to the second or third electrode, discharge can be efficiently generated.
[0033]
Further, discharge is started in the third cell, and priming discharge is performed by applying a pulse of a voltage that discharges again after removing the pulse. In addition, after the pulse is removed, since it is set so that there is no potential difference between all the electrodes, self-erasing discharge is performed, and wall charges can be erased uniformly.
Further, the first or second sustain discharge was performed while applying a voltage having a polarity opposite to that of the last sustain discharge in the immediately preceding sustain discharge step to perform discharge and causing discharge again at the time of removing the pulse. Also in the second display cell, since discharges are simultaneously generated, it is possible to simultaneously generate an erasing discharge for the cells in which the sustain discharge of the first and second display cells has been performed.
[0034]
Further, immediately before the transition from the display in the first display cell to the display in the second display cell and immediately before the transition from the display in the second display cell to the display in the first display cell, A voltage pulse is applied to generate a discharge in all cells. Also, immediately before shifting from the display in the first display cell to the display in the second display cell, the display in the second display cell and the third cell, and from the display in the second display cell, Immediately before shifting to the display in the first display cell, a voltage pulse is applied so as to generate a discharge in each of the first display cell and the third cell. Can be made.
[0035]
Further, at the end of the discharge maintaining step, an erasing pulse is applied between the first electrode and the second electrode or the third electrode.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 13 shows the configuration of the plasma display device according to the first embodiment of the present invention. The control unit shown in FIG. 4 is omitted.
FIG. 14 shows a cross-sectional structure of the plasma display panel of this apparatus. The electrodes of this panel are composed of a wide Y electrode 51, an Xo electrode 52 o and an Xe electrode 52 e surrounding it, and an address electrode 53. The Y electrode 51 is composed of a transparent electrode 51a and a metal bus electrode 51b, the Xo electrode 52o is composed of a transparent electrode 52ao and a metal bus electrode 52bo, and the Xe electrode 52e is composed of a transparent electrode 52ae and a metal bus electrode 52be. Metal bus electrodes are used to prevent voltage drops. As illustrated, the transparent electrode is wider than the bus electrode. In the Y electrode 51, the bus electrode 51b is formed at the center of the transparent electrode 51a. In the Xo electrode 52o and the Xe electrode 52e, the bus electrodes 52bo and 52be are the X electrodes in adjacent rows at the ends of the transparent electrodes 52ao and 52ae. It is provided on the opposite side. Here, the width of the bus electrode 51b of the Y electrode 51 is equal to the sum of the widths of the light shields 58 provided between the bus electrodes 52bo and 52be and the X electrodes in adjacent rows. The thickness of the bus electrode 51b of the Y electrode 51 is desirably about half of the thickness of the bus electrodes 52bo and 52be. Thereby, the resistance value of each bus electrode becomes the same.
[0037]
A first slit 71 is formed between the Xo electrode 52o and the Y electrode 51, and a first cell (odd cell) 55 that performs display in an odd field is formed in the portion of the first slit 71. A second slit 72 is formed between the Xe electrode 52e and the Y electrode 51, and a second cell (eve cell) 56 for performing display in an even field is formed in the portion of the second slit 72. Further, a third slit 73 is formed between the Xo electrode 52o and the Xe electrode 52e, and a priming third cell 57 is formed in this portion. Further, the third slit 73 is provided with a light shield 58 to prevent light emitted by priming discharge from leaking outside.
[0038]
The Y electrode is connected to a scan driver 62 as selection means, and further connected to a Y sustain circuit 63 that collectively applies a signal for maintaining discharge. The scan driver 62 generates a scan pulse, and the Y sustain circuit 63 generates a sustain discharge pulse and applies it to the Y electrode 51. On the other hand, the Xo electrode 52o and the Xe electrode 52e are respectively connected to an odd-numbered X sustain circuit 61o and an even-numbered X sustain circuit 61e that collectively apply a signal for maintaining discharge. The address electrode drive circuit is omitted because it is the same as the conventional example.
[0039]
FIG. 15 is a diagram showing details of the odd X sustain circuit 61o and the even X sustain circuit 61e. The voltage Vs is the voltage of the sustain discharge pulse, and Vm is the voltage applied to the electrode that does not discharge during the discharge sustain period, and is about half of Vs.
FIG. 16 is a drive waveform diagram of each electrode showing the operation of this apparatus, and shows the timing of one subfield in the odd field. First, a pulse having a voltage Vw (about 300 V) is applied to the Xo electrode 52o. This pulse generates a discharge in the third cell 57 between the Xo electrode 52o and the Xe electrode 52e. On the other hand, since the voltage Vs is applied to the Y electrode 51, no discharge occurs in the first and second cells 55 and 57. By this discharge, wall charges are accumulated on the surface of the dielectric layer on the Xo electrode 52o and the Xe electrode 52e. The pulse is removed in about 10 μs, and discharge is generated again by the voltage of the wall charges at the timing when all the electrodes become 0V. Since the potential difference between the electrodes is 0 V, the wall charges are not accumulated and this discharge is terminated by neutralizing the space charges. However, since some space charges are not neutralized and drift in the space, they effectively act as priming during address discharge.
[0040]
During the address period, a scan pulse (-150V) is sequentially applied to the Y electrode 51, and an address pulse (50V) is selectively applied to the address electrode 53 corresponding to the cell to be lit. As a result, discharge between the address electrode and the Y electrode is performed. At this time, in the odd field, the Xe 52e electrode is 0V, whereas VX (50V) is applied to the Xo electrode 52o. Therefore, the discharge of the address electrode 53 and the Y electrode 51 is used as a trigger, and the Xo electrode 52o and Y Transition is made to discharge between the electrodes 51, that is, in the first cell 55. By this discharge, wall charges are formed so that the sustain discharge can be performed in the sustain discharge period. The above operations are sequentially repeated to complete the writing of display data for the entire screen.
[0041]
In the sustain discharge period, the sustain discharge is repeated in the cells in which the sustain discharge pulses are alternately applied to the Y electrode 51 and the Xo electrode 52o and writing is performed. At this time, since the intermediate voltage (Vm) of the sustain discharge pulse is applied to the Xe electrode 52e, no erroneous discharge occurs in the second cell 56. Finally, a narrow erase pulse is applied to the Y electrode 51 to erase the wall charges.
[0042]
FIG. 17 is a drive waveform diagram of an even field. The reset pulse is applied to the Xe electrode 52e. At the time of addressing, VX is applied to the Xe electrode 52e so as to form wall charges in the second cell 56. Further, during the sustain discharge period, a Vm voltage is applied to the Xo electrode 52e to prevent erroneous discharge in the first cell 55.
FIG. 18 shows a panel structure according to the second embodiment of the present invention. The apparatus configuration and driving method are the same as those in the first embodiment. In the present panel, a light shield 59 is provided on the Y electrode side 51. The width is the same as the width of the Xe electrode 52e and the Xo electrode 52o including the bus electrodes 52bo and 52be and the light shield 58, and the light emission shapes of the first cell 55 and the second cell 56 are the first and second When viewed from the center of the second slit, the distance is the same and the balance is improved.
[0043]
FIG. 19 shows a panel structure according to the third embodiment of the present invention. The apparatus configuration and driving method are the same as those in the first embodiment. In this panel, the width of the bus electrode 51b on the Y electrode side 51 is set to the same value as the width including the Xe electrode, Xo electrode bus electrodes 52bo and 52be, and the light shield 58 in the adjacent rows. Therefore, as in the second embodiment, when the light emission shapes of the first cell and the second cell are viewed from the centers of the first and second slits, the distance is the same and the balance is improved.
[0044]
FIG. 20 shows a panel structure according to the fourth embodiment of the present invention. The apparatus configuration and driving method are the same as those in the first embodiment. This panel is provided with a fourth slit at the center on the Y electrode 51 side. This slit can prevent the discharge from spreading only to the Y electrode side, and the light emission shapes of the first cell and the second cell are the same interval and balanced when viewed from the center of the first and second slits. Get better. In addition, the discharge can be stabilized.
[0045]
FIG. 21 is a diagram showing the drive waveforms of the fifth embodiment of the present invention, and the apparatus of the fifth embodiment is the same as that of the first embodiment except that the drive waveforms are different. FIG. 21 shows the timing of one subfield in the odd field. In the present embodiment, the last sustain discharge pulse is applied to the Y electrode to complete the sustain discharge process. For this reason, in the lighting cell, a negative wall charge is formed on the Y electrode side, and a positive wall charge is formed on the Xo electrode side. In the reset process, a pulse composed of the voltage Vw is applied to the Xo electrode. The discharge starts in the third cell, but the negative charge on the Y electrode of the cell that has been subjected to the sustain discharge immediately before and retains the wall charge is neutralized by the arrival of the space charge due to this discharge. . After the pulse is removed, self-erasing discharge is performed in the third cell as in the first embodiment.
[0046]
FIG. 22 is a diagram showing drive waveforms according to the sixth embodiment of the present invention, and shows the timing of one subfield in an odd field. In the panel applied in this embodiment, the width of the third slit is about half that of the panel of the former embodiment. In the present embodiment, the last sustain discharge pulse is applied to the Y electrode to complete the sustain discharge process. In the lighting cell, a negative wall charge is formed on the Y electrode side, and a positive wall charge is formed on the Xo electrode side. In the reset process, a pulse composed of the voltage Vw is applied to the Xo electrode. This voltage is set to a value lower than the value of Vw in the former embodiment. Even at a low voltage, the width of the third slit is narrow, so that the discharge can be sufficiently started. Discharge starts in the third cell, wall charges are accumulated, and self-erasing discharge is performed when the pulse is removed. A cell that has been subjected to a sustain discharge immediately before and has accumulated negative wall charge on the Y electrode is erased simultaneously with a self-erase discharge.
[0047]
Even in the panel of the first embodiment, the display cell can be reset by applying this high voltage pulse when the field is switched.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a plasma display device that simplifies a drive circuit and is low-cost, reduces invalid light emission, and performs interlaced display with high contrast.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a conventional three-electrode, surface discharge, AC type PDP.
FIG. 2 is a schematic cross-sectional view of a conventional three-electrode, surface discharge, AC type PDP.
FIG. 3 is a schematic cross-sectional view of a conventional three-electrode / surface discharge / AC type PDP.
FIG. 4 is a schematic block diagram of a conventional interlaced display PDP apparatus.
FIG. 5 is a waveform diagram according to a conventional driving method.
FIG. 6 is a diagram illustrating a gradation display sequence.
FIG. 7 is a configuration diagram of a panel and a driving circuit of a conventional interlaced display device in which a partition parallel to a Y electrode and an X electrode is removed.
8 is a panel cross-sectional view of the conventional example of FIG.
9 is a drive waveform diagram of the conventional apparatus of FIG.
FIG. 10 is a diagram showing a configuration of a conventional example provided with a light shielding body for improving contrast.
FIG. 11 is a diagram showing the configuration of another conventional example of a plasma display device for interlaced display.
FIG. 12 is a diagram showing a light emission position according to the present invention.
FIG. 13 is a configuration diagram of a plasma display panel and a driving circuit according to the first embodiment of the present invention.
FIG. 14 is a diagram showing a panel structure and a light emission position of the first embodiment.
FIG. 15 is a diagram illustrating a configuration of an X sustain circuit according to the first embodiment;
FIG. 16 is a drive waveform diagram (odd field) in the first embodiment;
FIG. 17 is a drive waveform diagram (even field) of the first embodiment;
FIG. 18 is a panel structural view of a second embodiment of the present invention.
FIG. 19 is a structural view of a panel according to a third embodiment of the present invention.
FIG. 20 is a structural diagram of a panel according to a fourth embodiment of the present invention.
FIG. 21 is a drive waveform diagram according to the fifth embodiment of the present invention.
FIG. 22 is a drive waveform diagram according to the sixth embodiment of the present invention.
[Explanation of symbols]
51 ... 1st electrode (Y electrode)
52o ... 2nd electrode (odd number X electrode)
52e ... third electrode (even X electrode)
53 ... Address electrode
54 ... Bulkhead
55. First display cell
56 ... second display cell
57 ... third cell
61o ... second electrode driving means (odd X sustain circuit)
61e ... third electrode driving means (even X sustain circuit)
62 ... 1st electrode drive means (scan driver)
63... First electrode driving means (Y sustain circuit)

Claims (15)

第1の基板に第1、第2および第3の電極を交互に平行に配置するとともに、第1の基板もしくは第2の基板に第4の電極を第1の電極と直交するように配置したプラズマディスプレイパネルと、
前記第1の電極を選択駆動する第1電極選択駆動手段と、
前記第2の電極を駆動する第2電極駆動手段と、
前記第3の電極を駆動する第3電極駆動手段とを備え、
前記第1の電極と前記第2の電極を含み前記第4の電極との交点に第1の表示セルが形成され、前記第1の電極と前記第3の電極を含み前記第4の電極との交点に第2の表示セルが形成され、
前記第1の表示セルと前記第2の表示セルで発光表示を交互に繰り返すインタレース表示が行われ、
リセット期間中に、前記第2電極駆動手段と前記第3電極駆動手段は、前記第2と第3の電極間に電圧を印加して、前記第2の電極と前記第3の電極によって形成される第3のセルにおいてプライミング放電を行わせることを特徴とするプラズマディスプレイ装置。
The first, second, and third electrodes are alternately arranged in parallel on the first substrate, and the fourth electrode is arranged on the first substrate or the second substrate so as to be orthogonal to the first electrode. A plasma display panel;
First electrode selection driving means for selectively driving the first electrode;
Second electrode driving means for driving the second electrode;
A third electrode driving means for driving the third electrode;
A first display cell is formed at an intersection between the first electrode and the second electrode and the fourth electrode, and includes the first electrode and the third electrode. A second display cell is formed at the intersection of
Interlaced display is performed in which light emission display is alternately repeated in the first display cell and the second display cell,
During the reset period, the second electrode driving unit and the third electrode driving unit apply a voltage between the second and third electrodes, and are formed by the second electrode and the third electrode. A plasma display device characterized in that priming discharge is performed in the third cell.
請求項1に記載のプラズマディスプレイ装置であって、前記第2と第3の電極との隙間である第3のスリットに、遮光体を設けたプラズマディスプレイ装置。  The plasma display device according to claim 1, wherein a light-shielding body is provided in a third slit which is a gap between the second and third electrodes. 請求項2に記載のプラズマディスプレイ装置であって、維持放電期間中に、前記第1電極選択駆動手段は前記第1の電極に第1の維持放電パルスを印加し、前記第2電極駆動手段と前記第3電極駆動手段の一方は、前記第1の維持放電パルスとは逆位相の維持放電パルスを印加し、他方は所定の一定電圧を印加するか対応する電極をハイインピーダンスとするプラズマディスプレイ装置。  3. The plasma display device according to claim 2, wherein, during the sustain discharge period, the first electrode selection driving unit applies a first sustain discharge pulse to the first electrode, and the second electrode driving unit One of the third electrode driving means applies a sustain discharge pulse having a phase opposite to that of the first sustain discharge pulse, and the other applies a predetermined constant voltage or a corresponding electrode has a high impedance. . 請求項2又は3のいずれか1項に記載のプラズマディスプレイ装置であって、前記第1と第2の電極の隙間である第1のスリットと、前記第1と第3の電極の隙間である第2のスリットとを等間隔に配置したプラズマディスプレイ装置。A plasma display device according to any one of claims 2 or 3, a first slit which is a gap of said first and second electrodes is the clearance of the first and the third electrode A plasma display device in which the second slits are arranged at equal intervals. 請求項に記載のプラズマディスプレイ装置であって、前記第3のスリットを隣接する前記第1の電極の中間に形成したプラズマディスプレイ装置。5. The plasma display device according to claim 4 , wherein the third slit is formed between the adjacent first electrodes. 請求項に記載のプラズマディスプレイ装置であって、前記第1の電極のバス電極の幅が、前記第2の電極のバス電極の前記第1のスリット側の端から、隣接する行の前記第3の電極のバス電極の前記第2のスリット側の端までの寸法と同じであるプラズマディスプレイ装置。5. The plasma display device according to claim 4 , wherein the width of the bus electrode of the first electrode is equal to the width of the first electrode in an adjacent row from the end of the bus electrode of the second electrode on the first slit side. 3. The plasma display device having the same dimensions as the bus electrode of the third electrode up to the end on the second slit side. 請求項に記載のプラズマディスプレイ装置であって、前記第1の電極上に遮光体が形成されているプラズマディスプレイ装置。6. The plasma display device according to claim 5 , wherein a light shielding body is formed on the first electrode. 請求項に記載のプラズマディスプレイ装置であって、前記第1の電極上の遮光体の幅を、前記第2の電極のバス電極の前記第1のスリット側の端から、隣接する行の前記第3の電極のバス電極の前記第2のスリット側の端までの寸法と同じであるプラズマディスプレイ装置。8. The plasma display device according to claim 7 , wherein the width of the light-shielding body on the first electrode is set such that the width of the light-shielding body on the first electrode from the end on the first slit side of the bus electrode of the second electrode is 8. The plasma display device having the same size as the bus electrode of the third electrode up to the end on the second slit side. 第1の基板に第1、第2および第3の電極を交互に平行に配置するとともに、第1の基板もしくは第2の基板に第4の電極を第1の電極と直交するように配置したプラズマディスプレイパネルを備え、前記第1の電極と前記第2の電極を含み前記第4の電極との交点に第1の表示セルが形成され、前記第1の電極と前記第3の電極を含み前記第4の電極との交点に第2の表示セルが形成され、前記第1のセルと前記第2のセルで発光表示を交互に繰り返すインタレース表示を行うプラズマディスプレイ装置の駆動方法であって、
表示セルの状態を均一にするリセット工程と、表示データの書き込みを行うアドレス工程と、点灯させるセルにおいて放電を維持する維持放電工程とを繰り返し行う駆動方法において、
前記第1の表示セルで放電維持を行う維持放電工程において、前記第1の電極に印加する維持放電パルスとは逆位相の維持放電パルスを前記第2の電極に印加するとともに、前記第3の電極の電位を前記維持放電パルスの電圧より低い所定の値とし、
前記第2の表示セルで放電維持を行う維持放電工程において、前記第1の電極に印加する維持放電パルスとは逆位相の維持放電パルスを前記第3の電極に印加するとともに、前記第2の電極の電位を維持放電パルスの電圧より低い所定の電圧値とし、
前記リセット工程において、前記第2と第3の電極間に電圧を印加することによりプライミング放電が行われ、前記第2と第3の電極によってプライミング用の第3のセルが形成されることを特徴とするプラズマディスプレイ装置の駆動方法。
The first, second, and third electrodes are alternately arranged in parallel on the first substrate, and the fourth electrode is arranged on the first substrate or the second substrate so as to be orthogonal to the first electrode. A plasma display panel is provided, a first display cell is formed at an intersection of the first electrode and the second electrode and the fourth electrode, and includes the first electrode and the third electrode. A driving method of a plasma display device, wherein a second display cell is formed at an intersection with the fourth electrode, and interlaced display is performed in which light emission display is alternately repeated in the first cell and the second cell. ,
In a driving method of repeatedly performing a reset process for uniformizing the state of the display cells, an address process for writing display data, and a sustain discharge process for maintaining discharge in the cells to be lit.
In the sustain discharge step of maintaining discharge in the first display cell, a sustain discharge pulse having an opposite phase to the sustain discharge pulse applied to the first electrode is applied to the second electrode, and the third electrode The electrode potential is a predetermined value lower than the voltage of the sustain discharge pulse,
In the sustain discharge step of maintaining discharge in the second display cell, a sustain discharge pulse having a phase opposite to that of the sustain discharge pulse applied to the first electrode is applied to the third electrode, and the second electrode The electrode potential is set to a predetermined voltage value lower than the sustain discharge pulse voltage,
In the reset step, a priming discharge is performed by applying a voltage between the second and third electrodes, and a third cell for priming is formed by the second and third electrodes. A method for driving a plasma display device.
請求項に記載のプラズマディスプレイ装置の駆動方法であって、前記第2と第3の電極との隙間である第3のスリットからの光を遮光するプラズマディスプレイ装置の駆動方法。The method for driving a plasma display device according to claim 9 , wherein the light from a third slit that is a gap between the second and third electrodes is shielded. 請求項10に記載のプラズマディスプレイ装置の駆動方法であって、前記第1の表示セルで発光表示を行う時と、前記第2の表示セルで発光表示を行う時では、前記プライミング放電を発生させるために前記第2と第3の電極に印加する電圧の極性を変えるプラズマディスプレイ装置の駆動方法。11. The driving method of the plasma display device according to claim 10 , wherein the priming discharge is generated when light emission display is performed in the first display cell and when light emission display is performed in the second display cell. Therefore, a driving method of the plasma display apparatus for changing the polarity of the voltage applied to the second and third electrodes. 請求項10又は11に記載のプラズマディスプレイ装置の駆動方法であって、前記プライミング放電を発生させる時には、前記第3のセルにパルスを印加して放電を開始させ、該パルスの除去後に再度放電を行うような電圧のパルスを印加してプライミング放電を発生させるプラズマディスプレイ装置の駆動方法。12. The method of driving a plasma display device according to claim 10 , wherein when the priming discharge is generated, a pulse is applied to the third cell to start the discharge, and after the pulse is removed, the discharge is performed again. A method of driving a plasma display device, wherein a priming discharge is generated by applying a voltage pulse to be performed. 請求項10又は11に記載のプラズマディスプレイ装置の駆動方法であって、直前の維持放電工程の最後の維持放電時の電圧とは逆極性のパルスを印加して前記プライミング放電を発生させ、該パルスの除去時に再度放電を起こすとともに、直前に放電維持を行っていた前記第1又は第2の表示セルにおいても、同時に放電を併発させるよう電圧パルスを印加するプラズマディスプレイ装置の駆動方法。12. The method of driving a plasma display device according to claim 10 , wherein a pulse having a polarity opposite to a voltage at the last sustain discharge in the last sustain discharge step is applied to generate the priming discharge, A method of driving a plasma display apparatus, in which a discharge is caused again at the time of removal and a voltage pulse is applied so that the discharge is simultaneously generated also in the first or second display cell which has been maintaining the discharge immediately before. 請求項10から13のいずれか1項に記載のプラズマディスプレイ装置の駆動方法であって、前記第1の表示セルでの表示から前記第2の表示セルでの表示に移行する直前および、前記第2の表示セルでの表示から前記第1の表示セルでの表示に移行する直前には、それぞれ、全てのセルで放電を発生させるよう電圧パルスを印加するプラズマディスプレイ装置の駆動方法。14. The driving method of the plasma display device according to claim 10 , wherein the display immediately before the transition from the display in the first display cell to the display in the second display cell is performed. A method for driving a plasma display apparatus, wherein a voltage pulse is applied so as to generate a discharge in all the cells immediately before shifting from display in two display cells to display in the first display cell. 請求項10から13のいずれか1項に記載のプラズマディスプレイ装置の駆動方法であって、前記維持放電工程の最後に、前記第1の電極と前記第2の電極又は前記第3の電極の間に消去パルスを印加するプラズマディスプレイ装置の駆動方法。14. The driving method of the plasma display device according to claim 10 , wherein the first electrode and the second electrode or the third electrode are provided at the end of the sustain discharge step. Driving method of plasma display apparatus, wherein erase pulse is applied.
JP00840097A 1997-01-21 1997-01-21 Plasma display apparatus and driving method thereof Expired - Fee Related JP3767644B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00840097A JP3767644B2 (en) 1997-01-21 1997-01-21 Plasma display apparatus and driving method thereof
US08/887,371 US6288692B1 (en) 1997-01-21 1997-07-02 Plasma display for high-contrast interlacing display and driving method therefor
FR9709407A FR2758641B1 (en) 1997-01-21 1997-07-24 PLASMA DISPLAY DEVICE AND ITS DRIVING METHOD
KR1019970034820A KR100322788B1 (en) 1997-01-21 1997-07-25 Plasma display for high-contrast interlacing display and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00840097A JP3767644B2 (en) 1997-01-21 1997-01-21 Plasma display apparatus and driving method thereof

Publications (2)

Publication Number Publication Date
JPH10207420A JPH10207420A (en) 1998-08-07
JP3767644B2 true JP3767644B2 (en) 2006-04-19

Family

ID=11692142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00840097A Expired - Fee Related JP3767644B2 (en) 1997-01-21 1997-01-21 Plasma display apparatus and driving method thereof

Country Status (4)

Country Link
US (1) US6288692B1 (en)
JP (1) JP3767644B2 (en)
KR (1) KR100322788B1 (en)
FR (1) FR2758641B1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640527B2 (en) * 1998-05-19 2005-04-20 富士通株式会社 Plasma display device
JP4123599B2 (en) * 1998-10-09 2008-07-23 ソニー株式会社 Flat-type plasma discharge display device and driving method
JP2000357462A (en) * 1998-10-23 2000-12-26 Sony Corp Plane plasma discharge display device and its driving method
US6376995B1 (en) * 1998-12-25 2002-04-23 Matsushita Electric Industrial Co., Ltd. Plasma display panel, display apparatus using the same and driving method thereof
KR100319095B1 (en) * 1999-03-02 2002-01-04 김순택 A plasma display panel having subsidiary electrodes and a driving method therefor
NO311317B1 (en) * 1999-04-30 2001-11-12 Thin Film Electronics Asa Apparatus comprising electronic and / or optoelectronic circuits and method of realizing and / or integrating circuits of this kind in the apparatus
WO2001004867A2 (en) * 1999-07-10 2001-01-18 Koninklijke Philips Electronics N.V. A progressive sustain method of driving a plasma display panel
US6825606B2 (en) * 1999-08-17 2004-11-30 Lg Electronics Inc. Flat plasma display panel with independent trigger and controlled sustaining electrodes
TW473761B (en) * 1999-10-27 2002-01-21 Matsushita Electric Ind Co Ltd AC plasma display panel
US7227513B2 (en) * 1999-11-15 2007-06-05 Lg Electronics Inc Plasma display and driving method thereof
GB0000290D0 (en) * 2000-01-07 2000-03-01 Koninkl Philips Electronics Nv Active matrix electroluminescent display device
US7006060B2 (en) * 2000-06-22 2006-02-28 Fujitsu Hitachi Plasma Display Limited Plasma display panel and method of driving the same capable of providing high definition and high aperture ratio
JP2002082650A (en) * 2000-06-30 2002-03-22 Nec Corp Plasma display panel and drive method therefor
KR100377401B1 (en) * 2000-11-14 2003-03-26 삼성에스디아이 주식회사 Method for driving plasma display panel which comprising AND-logic and line duplication methods
KR100378623B1 (en) * 2001-02-26 2003-04-03 엘지전자 주식회사 Plasma Display Panel and Method for Driving the same
FR2826166B1 (en) * 2001-06-13 2003-08-29 Thomson Plasma METHOD FOR CONTROLLING A PLASMA PANEL WITH CO-PLANAR MAINTENANCE DISCHARGES BETWEEN TRIADED ELECTRODES
JP5031952B2 (en) 2001-06-27 2012-09-26 株式会社日立製作所 Plasma display
JP2003233346A (en) * 2002-02-13 2003-08-22 Fujitsu Hitachi Plasma Display Ltd Method for driving plasma display panel, and plasma display device
KR100433233B1 (en) * 2002-02-25 2004-05-27 엘지전자 주식회사 Method And Apparatus Of Driving Plasma Display Panel
EP1361594A3 (en) * 2002-05-09 2005-08-31 Lg Electronics Inc. Plasma display panel
KR100482331B1 (en) * 2002-08-14 2005-04-13 엘지전자 주식회사 Plasma Display Panel And Method Of Driving The Same
KR100487809B1 (en) * 2003-01-16 2005-05-06 엘지전자 주식회사 Plasma Display Panel and Driving Method thereof
KR100488463B1 (en) * 2003-07-24 2005-05-11 엘지전자 주식회사 Apparatus and Method of Driving Plasma Display Panel
KR100522699B1 (en) 2003-10-08 2005-10-19 삼성에스디아이 주식회사 Panel driving method for sustain period and display panel
KR100570679B1 (en) 2003-10-29 2006-04-12 삼성에스디아이 주식회사 Method for driving plasma display panel
US7333100B2 (en) 2004-06-08 2008-02-19 Au Optronics Corporation Apparatus, method, and system for driving flat panel display devices
CN100369089C (en) * 2004-11-26 2008-02-13 友达光电股份有限公司 Plasma displaying panel and driving method for plasma displaying panel
KR100749470B1 (en) 2004-11-30 2007-08-14 삼성에스디아이 주식회사 A plasma display device
KR100740112B1 (en) * 2005-11-02 2007-07-16 삼성에스디아이 주식회사 Plasma display, and driving device and method thereof
KR20090023037A (en) * 2007-08-28 2009-03-04 가부시키가이샤 히타치세이사쿠쇼 Plasma display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611295B1 (en) * 1987-02-20 1989-04-07 Thomson Csf PLASMA PANEL WITH FOUR ELECTRODES BY ELEMENTARY IMAGE POINT AND METHOD FOR CONTROLLING SUCH A PLASMA PANEL
JPH02291597A (en) 1989-05-02 1990-12-03 Fujitsu Ltd Driving system for gas discharge panel
KR950003132B1 (en) 1992-03-26 1995-04-01 삼성전관 주식회사 Structure for plasma display panel and driving method thereof
JP3276406B2 (en) * 1992-07-24 2002-04-22 富士通株式会社 Driving method of plasma display
JPH0726169A (en) 1993-07-08 1995-01-27 Mitsubishi Motors Corp Highly water-repellent coating material
JP2772753B2 (en) 1993-12-10 1998-07-09 富士通株式会社 Plasma display panel, driving method and driving circuit thereof
JP3644712B2 (en) * 1994-02-01 2005-05-11 富士通株式会社 Flat panel display
JP3442852B2 (en) 1994-04-18 2003-09-02 パイオニア株式会社 Driving method of plasma display panel
JP2655500B2 (en) 1994-12-06 1997-09-17 日本電気株式会社 Plasma display panel and driving method thereof
JPH08335440A (en) * 1995-06-08 1996-12-17 Matsushita Electron Corp Gas discharge type display device and its manufacture
US6373452B1 (en) 1995-08-03 2002-04-16 Fujiitsu Limited Plasma display panel, method of driving same and plasma display apparatus
JP3704813B2 (en) * 1996-06-18 2005-10-12 三菱電機株式会社 Method for driving plasma display panel and plasma display
JP3348610B2 (en) * 1996-11-12 2002-11-20 富士通株式会社 Method and apparatus for driving plasma display panel

Also Published As

Publication number Publication date
KR19980069853A (en) 1998-10-26
US6288692B1 (en) 2001-09-11
KR100322788B1 (en) 2002-03-08
FR2758641A1 (en) 1998-07-24
JPH10207420A (en) 1998-08-07
FR2758641B1 (en) 1999-04-16

Similar Documents

Publication Publication Date Title
JP3767644B2 (en) Plasma display apparatus and driving method thereof
JP3565650B2 (en) Driving method and display device for AC type PDP
JP3573968B2 (en) Driving method and driving device for plasma display
KR100769787B1 (en) Plasma display apparatus
KR100350942B1 (en) Plasma display panel having dedicated priming electrodes outside display area and driving method for same panel
KR100467692B1 (en) Method of driving plasma display panel wherein width of display sustain pulse varies
JPH10274955A (en) Drive method for ac discharge memory type plasma display panel
JP4349501B2 (en) Driving method of plasma display panel
KR19990087877A (en) Method for driving plasma display panel and apparatus for driving the same
US7129912B2 (en) Display device, and display panel driving method
JP3463869B2 (en) Driving method of plasma display panel
JP3638106B2 (en) Driving method of plasma display panel
JPH0997570A (en) Plasma display panel, its drive method, and plasma display device
JP4337306B2 (en) Driving method of plasma display
KR19980046358A (en) Plasma Display Panel Structure and Its Driving Method
JP3272396B2 (en) Plasma display device
JP2002132216A (en) Method for driving plasma display panel
KR100502341B1 (en) Method for driving plasma display panel
KR100490529B1 (en) Method for driving plasma display panel
KR100592306B1 (en) Plasma Display Panel Driving Method
JP3578035B2 (en) Driving method of AC discharge type plasma display panel
JP3259713B2 (en) Driving method and driving apparatus for plasma display panel
JP2004302480A (en) Method and apparatus for driving plasma display

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050720

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees