JP3767193B2 - Hardening heat treatment method for titanium alloy member - Google Patents

Hardening heat treatment method for titanium alloy member Download PDF

Info

Publication number
JP3767193B2
JP3767193B2 JP24846798A JP24846798A JP3767193B2 JP 3767193 B2 JP3767193 B2 JP 3767193B2 JP 24846798 A JP24846798 A JP 24846798A JP 24846798 A JP24846798 A JP 24846798A JP 3767193 B2 JP3767193 B2 JP 3767193B2
Authority
JP
Japan
Prior art keywords
treatment
aging
titanium alloy
temperature
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24846798A
Other languages
Japanese (ja)
Other versions
JP2000080458A (en
Inventor
英明 深井
浩志 飯泉
和秀 高橋
彰 加藤
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24846798A priority Critical patent/JP3767193B2/en
Publication of JP2000080458A publication Critical patent/JP2000080458A/en
Application granted granted Critical
Publication of JP3767193B2 publication Critical patent/JP3767193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高周波加熱を用いた熱処理によるチタン合金部材の硬化熱処理方法に関する。
【0002】
【従来の技術】
チタン材は、最も広く使用されている構造用材料であるステンレス鋼を含めた鋼材に比較して、高耐食性で軽量且つ高強度であるため、厳しい腐食環境下において耐久性を要求される場合や、回転・反復運動をするような部材での慣性力によるエネルギーロスを最小限に抑制することが望まれる場合、構造用材料として使用されている。しかしながら、高耐食性とはいってもエロージョンコロージョンが支配的な環境下では表面硬化処理などの対策が必要であり、また擦過する部分ではチタン材はもともと活性な金属であって焼き付きを起こし易くやはり表面硬化処理が必要となる。
【0003】
このような環境下において、ステンレス鋼を含めた鋼材では硬質Crメッキや無電解Niメッキをはじめとするメッキや、またはステライトなどの肉盛りが可能であって、このような表面処理方法によって耐磨耗性や耐エロージョン性などの対策を採ってきている。ところがチタン材においては、チタンが貴な金属であるためメッキをすることが困難であり、またFe、Ni、CoやCrなどを基とする合金とは脆弱な金属間化合物を形成し易く、これらの金属を肉盛りした場合には接合界面に金属間化合物が形成され、処理した部材の使用中にその硬化層が剥離したりするおそれがある。
【0004】
このため、該環境下におけるチタン材の使用に際しては、Moなどの溶射やTiNなどの硬質層のイオンプレーティングが行われている。これらは真空やアルゴンガスなどの不活性雰囲気下において、チタンと脆弱な金属間化合物を形成しない金属を溶融しながら吹き付けたり、硬質の被膜を蒸着させる方法である。
【0005】
また時効硬化能があるチタン合金では、溶体化処理とその後の時効処理といった熱処理によって、高硬度化を達成することが可能である。例えば、代表的なβ型チタン合金であるTi−15V−3Al−3Cr−3Sn合金では、800℃×1hr→水冷の溶体化処理後の480〜540℃×10〜20hr→空冷の時効処理によって、ビッカース硬度でHV=420〜430程度、また代表的なα+β型チタン合金であるTi−6Al−4V合金では、950℃×1hr→水冷の溶体化処理後の480〜510℃×1〜6hr→空冷の時効処理によって、HV=400程度の高硬度を達成可能である。またこの方法を応用したもので、高周波加熱コイルを用いて溶体化処理を行い、その後は従来通り熱処理炉に挿入して時効処理を施す方法も行われている。
【0006】
さらに、チタン材同士の溶接は可能であるため、時効硬化能を有するチタン合金を肉盛り溶接したり、MIGやTIGといった溶接方法にて接合することは可能である。時効硬化能を有するチタン材を部材に溶接後、時効処理を施すことによって、その部分を硬化させることが可能となり、この方法によって耐磨耗性や耐エロージョン性を達成することも、試みられている。また、溶体化−時効処理によって硬化させたチタン材を、MIGやTIGなどによって溶接する方法も行われている。
【0007】
【発明が解決しようとする課題】
しかしながら、耐磨耗性や耐エロージョン性を達成するために不活性雰囲気下での処理が必須となる溶射やイオンプレーティングなどの表面処理方法を採用する場合、不活性雰囲気とするためのチャンバーなどの隔離された部屋に被処理物を挿入しなければならず、被処理物が大型となった場合には現実的には不可能な処理方法である。
【0008】
また、時効硬化能を有するチタン合金を部材の素材として用い、溶体化−時効処理によって硬化させる場合には、部材全体が硬化されてしまう。擦過される部分やエロージョンを受ける部分は部材の一部分であることが殆どで、また部材としては耐磨耗性や耐エロージョン性の他に延性や靭性などの特性も要求されるため、部材全体を硬化してしまった場合には、耐磨耗性や耐エロージョン性の観点では対応をとることが可能であっても、部材本体に要求される延靭性などの特性を満足させることが不可能となる。さらに、溶体化処理時には水冷などの急速冷却をするため、部材に熱歪みが発生し、その歪みを矯正する付加的な工程も必要となり、作業効率や製造コストの面においても不都合が生じる。またさらに、通常時効処理では短くて1hr、長い場合には10〜20hrの時効処理時間が必要であり、処理に長時間を要するという不都合もある。
【0009】
さらに、肉盛りやその他の溶接による時効処理によって高硬度化するチタン材或いは高硬度化したチタン材を張り付ける場合には、その接合部近傍の本体では熱影響によって組織変化が生じ、やはり延性の劣化という問題が生じる。
【0010】
以上のように、表面処理、従来の溶体化−時効処理或いは溶接・溶着といったこれまでの耐磨耗性や耐エロージョン性を改善する方法においては、現実性、製造効率、部材の特性面において、数々の課題を有している。
【0011】
本発明の目的は、上記の問題点を解決するために、耐磨耗性や耐エロージョン性を改善するため、製造効率よくチタン合金部材を部分的に硬化処理させることが可能なチタン合金部材の硬化熱処理方法を提供することにある。
【0012】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
本発明の方法は、少なくとも質量%で、Al:4〜5%と、V:2.5〜3.5%と、Mo:1.8〜2.2%と、Fe:1.7〜2.3%と、O:0.15%以下とを含有し、残部がTiであるチタン合金からなる部材の部分的な硬化処理において、
前記チタン合金部材に対し、高周波加熱を用いた溶体化処理を施す工程と、
溶体化処理を施されたチタン合金部材に対し、高周波加熱を用いた時効処理を施す工程とを備え、
前記溶体化処理工程の溶体化処理の温度は(Tβ−100)℃〜(Tβ−10)℃であり、且つ前記時効処理工程の昇温温度は5℃/秒以上として時効処理温度は400〜600℃で、時効処理時間は1〜10分であり、少なくとも硬さがビッカース硬度で380HV以上であることを特徴とする、チタン合金部材の硬化熱処理方法である。
【0014】
【発明の実施の形態】
本発明は、前記課題を解決するためになされたもので、耐磨耗性や耐エロージョン性など部分的な硬化処理が必要とされる場合の処理方法について詳細な検討を行った結果、チタン合金部材に対し、部分的に高周波加熱を用いた溶体化処理及び時効処理を行うことが有効であるという知見を得た。
【0015】
この知見に基づき本発明者らは、化学成分を特定したチタン合金部材に対して部分的に施す、高周波加熱を用いた溶体化処理条件及び時効処理条件を一定範囲内に制御するようにして、耐磨耗性や耐エロージョン性を改善するため、製造効率よくチタン合金部材を部分的に硬化処理させることが可能なチタン合金部材の硬化熱処理方法を見出し、本発明を完成させた。
以下に本発明の実施の形態について説明する。
【0016】
本発明は、チタン合金からなる部材の部分的な硬化処理において、高周波加熱を用いた急速加熱の溶体化処理及び時効処理を行うことを特徴とするチタン合金の硬化処理方法である。硬化させたい部分の形状に合致させた高周波加熱コイル等を用いることにより、必要な部分のみを該硬化処理することが可能となる。これまでに、高周波加熱コイルを用いた熱処理は行われているが、これは溶体化処理のみを高周波加熱コイルを用いた急速加熱処理し、その後は従来通り熱処理炉に挿入して長時間の熱処理をするものであった。本発明においては、溶体化処理に引き続き行われる時効処理においても、高周波加熱を用いた急速加熱処理を行う。これによって時効時の昇温過程での析出を制御することが可能となり、極めて短時間の時効処理にて高硬度を達成することが可能となる。
【0017】
その際の溶体化処理条件として、溶体化処理の温度は(Tβ(β変態点)−100)℃〜(Tβ(β変態点)−10)℃である。これによって、その後の時効処理にて高硬度を達成するために析出物を再固溶させ、かつ過飽和の状態を達成することができる。また溶体化処理時の最高到達温度をβ変態点以下とするため、高硬度達成の観点では少々不利になるが、硬さがビッカース硬度で380HV以上が得られ、また2相組織を維持できるため、硬化された部分での延性も充分に確保できる特徴がある。さらにその後の時効処理条件として、熱処理時の昇温速度は5℃/秒以上であり、且つ時効処理の温度は400〜600℃で、かつ時効処理の時間は1〜10分である。昇温速度を5℃/秒以上とすることによって、時効時の昇温過程での析出を抑制することが可能となり、かつ短時間で高硬度を達成することが可能となる。また、時効温度が400℃未満や時効時間が1分未満では充分な時効が達成されず高硬度が得られず、逆に時効温度が600℃より高温では時効析出物が粗大となりやはり高硬度が得られず、また時効時間が10分より長時間では高周波加熱を用いた熱処理であるので単品での処理となるため、作業効率の面で不都合が生じる。
【0018】
さらに、硬化されるチタン合金として、その化学組成が少なくとも重量%にてAlを4〜5%、Vを2.5〜3.5%、Moを1.8〜2.2%、Feを1.7〜2.3%、Oを0.15%以下含有しているチタン合金である。当組成とすることで、急速加熱による極短時間での溶体化−時効処理による高硬度化を一層容易に達成することが可能となる。
【0019】
チタン合金において、Al及びOはα相を安定化させるのに必須の元素であり、またAlが4%未満では強度への充分な寄与がなく、逆にAlが5%越え、Oが0.15%越えでは延靭性が劣化するので望ましくない。またV、Mo及びFeはβ相を安定化させる元素であり、Vが2.5%未満では充分にβ相が安定せず、3.5%越えではβ相が安定しすぎて溶体化−極短時間の時効処理にて充分な高硬度化が達成できない。Mo及びFeはそれぞれ1.8%、1.7%未満では充分にβ相が安定せず、それぞれ2.2%、2.3%越えではβ相が安定しすぎて溶体化−極短時間の時効処理にて充分な高硬度化が達成できない。このため、高周波加熱による急速加熱の溶体化−時効処理において、その素材を少なくとも重量%にてAlを4〜5%、Vを2.5〜3.5%、Moを1.8〜2.2%、Feを1.7〜2.3%、Oを0.15%以下含有しているチタン合金である。
以下に、本発明の実施例を挙げ、本発明の効果を立証する。
【0020】
【実施例】
(実施例1)
図1に示すφ8mm×100mm長の形状を有する部材を硬化処理するため、高周波加熱を用いた急速加熱による溶体化及び時効処理による硬化処理を施した。その際、溶体化処理後の冷却はHeガスによるもので、冷却速度は20℃/秒程度であった。表1にはその際の条件と合わせて、図1に示す硬化処理後の部材の特性を示す(A02,A04,A05,A07,A08:本発明例、A01,A03,A06,A09:比較例)。なお本実施例においては、チタン合金部材の素材として2相のα+β型Ti合金であるAMS4899(公称組成:Ti−4.5%Al−3%V−2%Mo−2%Fe合金、β変態点:900℃)を用いた。
【0021】
表1より明らかなように、高周波加熱を用いた溶体化及び時効処理において、本発明の範囲内である溶体化処理温度が(Tβ−100)℃の800℃以上(Tβ−10)℃の890℃以下であれば、その後時効処理によりHV=380以上の高硬度が達成可能である。また、前記溶体化処理に引き続いた時効処理において、本発明の範囲内である時効処理時の昇温速度が5℃/秒以上、時効温度が400〜600℃、時効時間が1〜10分であれば、HV=380以上の高硬度が達成可能である。さらに溶体化時の熱処理温度がβ変態点以下であるため、2相組織を維持できるので、高硬度化された部分から採取した引張試験片による引張試験での伸びが5%以上あり、本発明(本発明例A02,A04,A05,A07,A08)によれば高硬度を達成し且つ歪みの矯正などに耐え得る加工性も保持することが可能となる。
【0022】
しかしながら、溶体処理温度が本発明範囲外の800℃未満(比較例A09)では、析出物を再固溶させることができずに過飽和の状態にすることが不可能なため、次工程での時効によって高硬度を達成することができなかった。また、溶体化処理温度が本発明範囲外の900℃(比較例A06)では高硬度は達成可能であるが、過度に硬化されるため硬化部分における延性が低下した。さらに時効処理時の昇温速度が本発明範囲外の5℃/秒未満(比較例A01)では時効温度に昇温中の析出を抑制することができず、短時間時効にて高硬度を達成できず、時効温度が400℃未満(比較例A01)や時効時間が1分未満(比較例A03)では時効が充分に進まず、時効処理によって高硬度が達成できなかった。時効温度が600℃より高温(比較例A09)では時効が進みすぎ、極めて短時間で過時効の状態になり、高硬度を達成できなかった。
【0023】
【表1】

Figure 0003767193
【0024】
(実施例2)
実施例1と同様に図1に示すφ8mm×100mm長の形状を有する部材(各種チタン合金)を硬化処理するため、高周波加熱を用いた急速加熱による溶体化及び時効処理による硬化処理を施した。
【0025】
図2に、各種チタン合金の短時間側からの時効曲線を示す。チタン合金の化学組成が本発明の範囲内であるTi−4.5%Al−3%V−2%Mo−2%Fe合金では、極短時間での時効処理による高硬度化(380HV以上)が可能であった。
【0026】
一方、チタン合金の化学組成が本発明の範囲外であるTi−6%Al−4%V合金及びTi−15%V−3%Al−3%Cr−3%Sn合金では、いずれも極短時間での時効処理による高硬度化が達成されていない。
【0027】
(実施例3)
図3に示す8mm厚×200mm幅×1000mm長の形状を有する部材において、長さ方向中央部の20mm幅×20mm長の部分を硬化処理するため、高周波加熱を用いた急速加熱による極短時間の溶体化及び時効処理による硬化処理を施した。溶体化処理の条件は、本発明範囲内の10℃/秒の昇温速度にて850℃まで昇温しファン冷却後、10℃/秒の昇温速度にて昇温し500℃×5分→空冷の時効処理を施した。なお本実施例においては、チタン合金部材の素材として2相のα+β型Ti合金であるAMS4899(公称組成:Ti−4.5%Al−3%V−2%Mo−2%Fe合金、β変態点:900℃)を用いた。また図3に示す部材の位置Aの部分は硬化処理が必要な部分であり、位置Bの部分は硬化処理が必要ではない部分である。また、ファン冷却時の冷却速度は、周囲の非熱処理部への抜熱があるため、水冷並の30℃/秒であったが、周囲の非熱処理部からの拘束を受けるため熱歪は生じなかった。
【0028】
当実施例に示す高周波加熱を用いた急速加熱による極短時間の溶体化及び時効処理による部分硬化処理においては、位置Aの部分は処理前の素材に比較して大きく硬度が上昇しており、充分に溶体化−時効処理による硬化処理の効果が得られている。また硬化処理が必要とされない位置Bにおいては硬度上昇がほとんどなく、延性も保持されている。また時効処理の時間も短く、作業効率面でも良好である。さらに熱処理を受ける部分が硬化処理が必要な部分のみであり、且つ熱処理も短時間であるため、熱処理後の部材の表面手入れについても省略ないし著しい簡略化が可能であった。
【0029】
以上のような実施例により、チタン合金からなる部材の部分的な硬化処理において、高周波加熱を用いた急速加熱による極短時間の溶体化処理及び時効処理を行うことによって、効率よくチタン合金の硬化処理が可能となるとともに、母材部分の材料特性を劣化させず、さらに硬化処理が施された部分においても矯正などに耐え得る加工性を保持することが達成可能となる。また、その高周波加熱を用いたチタン合金の部分硬化処理の条件としては、溶体化処理のための熱処理温度を(Tβ−100)℃〜(Tβ−10)℃とし、且つ時効処理のための熱処理時の昇温速度を5℃/秒以上として時効処理の温度を400〜600℃で、時効処理の時間を1〜10分とし、少なくとも硬さがビッカース硬度で380HV以上であることが望ましい。さらに、高硬度化されるチタン合金部材を形成するチタン材の化学組成としては、重量%にてAlを4〜5%、Vを2.5〜3.5%、Moを1.8〜2.2%、Feを1.7〜2.3%、Oを0.15%以下含有していることが望ましい。
【0030】
【発明の効果】
以上説明したように本発明によれば、熱処理条件及びチタン合金組成を特定することにより、効率よくチタン合金の硬化処理が達成可能となり、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】実施例1及び2に係る被硬化物と熱処理の状況を示す図。
【図2】実施例2に係るチタン合金の時効曲線を示す図。
【図3】実施例3に係る被硬化物と熱処理の状況を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for hardening heat treatment of a titanium alloy member by heat treatment using high frequency heating.
[0002]
[Prior art]
Titanium materials have high corrosion resistance, light weight, and high strength compared to steel materials including stainless steel, which is the most widely used structural material. It is used as a structural material when it is desired to minimize energy loss due to inertial force in a member that rotates and repetitively moves. However, even though it has high corrosion resistance, it is necessary to take measures such as surface hardening treatment in an environment where erosion corrosion is dominant, and in the rubbing part, the titanium material is originally an active metal and tends to cause seizure. Processing is required.
[0003]
Under such circumstances, steel materials including stainless steel can be plated with hard Cr plating, electroless Ni plating, or stellite. Measures such as wear and erosion resistance have been taken. However, titanium materials are difficult to plate because titanium is a noble metal, and easily form brittle intermetallic compounds with alloys based on Fe, Ni, Co, Cr, etc. In the case of depositing the metal, an intermetallic compound is formed at the bonding interface, and the cured layer may be peeled off during use of the treated member.
[0004]
For this reason, when using the titanium material in the environment, thermal spraying of Mo or the like or ion plating of a hard layer such as TiN is performed. These are methods in which a metal that does not form a brittle intermetallic compound with titanium is sprayed while being melted or a hard coating is deposited in an inert atmosphere such as vacuum or argon gas.
[0005]
In addition, a titanium alloy having age-hardening ability can achieve high hardness by heat treatment such as solution treatment and subsequent aging treatment. For example, in a typical β-type titanium alloy Ti-15V-3Al-3Cr-3Sn alloy, 800 ° C. × 1 hr → 480 ° C. to 540 ° C. × 10-20 hr after water cooling solution treatment → air cooling aging treatment, With a Vickers hardness of about HV = 420 to 430, and Ti-6Al-4V alloy, which is a typical α + β type titanium alloy, 480 ° C. to 510 ° C. × 1 to 6 hr after solution treatment of 950 ° C. × 1 hr → water cooling → air cooling With this aging treatment, a high hardness of about HV = 400 can be achieved. In addition, this method is applied, and a solution treatment is performed using a high-frequency heating coil, and thereafter, an aging treatment is performed by inserting the solution into a heat treatment furnace as usual.
[0006]
Furthermore, since titanium materials can be welded together, it is possible to build up a titanium alloy having age hardening ability or to join them by a welding method such as MIG or TIG. It is possible to cure the part by welding the titanium material having age-hardening ability to the member, and then applying aging treatment. It is also attempted to achieve wear resistance and erosion resistance by this method. Yes. In addition, a method of welding a titanium material hardened by solution-aging treatment with MIG or TIG is also performed.
[0007]
[Problems to be solved by the invention]
However, when a surface treatment method such as thermal spraying or ion plating that requires treatment in an inert atmosphere to achieve wear resistance and erosion resistance, a chamber for creating an inert atmosphere, etc. This is a processing method that is practically impossible when the object to be processed has to be inserted into the isolated room, and the object to be processed becomes large.
[0008]
Further, when a titanium alloy having age-hardening ability is used as a material for a member and cured by solution-aging treatment, the entire member is cured. The part to be scratched or subjected to erosion is almost a part of the member, and the member is required to have characteristics such as ductility and toughness in addition to wear resistance and erosion resistance. When it has hardened, it is impossible to satisfy the properties such as ductility required for the body of the member, even though it is possible to take measures in terms of wear resistance and erosion resistance. Become. Further, since rapid cooling such as water cooling is performed at the time of the solution treatment, thermal distortion occurs in the member, and an additional process for correcting the distortion is necessary, which causes inconvenience in terms of work efficiency and manufacturing cost. Furthermore, the normal aging treatment requires a short aging treatment time of 1 hr, and a long aging treatment time of 10 to 20 hr, and there is a disadvantage that a long time is required for the treatment.
[0009]
In addition, when a titanium material that is hardened or is hardened by aging treatment by overlaying or other welding, a structural change occurs due to thermal effects in the body in the vicinity of the joint, which is also ductile. The problem of deterioration arises.
[0010]
As described above, in the methods of improving the conventional wear resistance and erosion resistance such as surface treatment, conventional solution treatment-aging treatment or welding / welding, in terms of reality, manufacturing efficiency, and member characteristics, Has a number of challenges.
[0011]
An object of the present invention is to solve the above-mentioned problems, and to improve wear resistance and erosion resistance, in order to improve the wear resistance and erosion resistance, a titanium alloy member capable of partially hardening a titanium alloy member with high production efficiency. It is to provide a curing heat treatment method.
[0012]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention uses the following means.
The method of the present invention is at least % by mass , Al: 4-5%, V: 2.5-3.5%, Mo: 1.8-2.2%, Fe: 1.7-2 In a partial hardening treatment of a member made of a titanium alloy containing 0.3% and O: 0.15% or less, and the balance being Ti ,
Applying a solution treatment using high frequency heating to the titanium alloy member;
A titanium alloy member that has undergone solution treatment, and a step of performing aging treatment using high-frequency heating,
The solution treatment temperature in the solution treatment step is (Tβ-100) ° C. to (Tβ-10) ° C., and the temperature raising temperature in the aging treatment step is 5 ° C./second or more, and the aging treatment temperature is 400 to 400 ° C. It is a hardening heat treatment method for a titanium alloy member, characterized in that the aging treatment time is 1 to 10 minutes at 600 ° C., and the hardness is at least 380 HV in terms of Vickers hardness.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has been made in order to solve the above-mentioned problems, and as a result of conducting a detailed study on a treatment method in the case where a partial hardening treatment such as wear resistance and erosion resistance is required, a titanium alloy is obtained. It has been found that it is effective to perform solution treatment and aging treatment using high-frequency heating partially on the member.
[0015]
Based on this knowledge, the present inventors partially applied to the titanium alloy member that specified the chemical component, so as to control the solution treatment conditions and aging treatment conditions using high-frequency heating within a certain range, In order to improve wear resistance and erosion resistance, the inventors have found a titanium alloy member hardening heat treatment method capable of partially hardening a titanium alloy member with high production efficiency, and completed the present invention.
Embodiments of the present invention will be described below.
[0016]
The present invention is a titanium alloy hardening method characterized by performing rapid heating solution treatment and aging treatment using high-frequency heating in partial hardening treatment of a member made of a titanium alloy. By using a high-frequency heating coil or the like that matches the shape of the portion to be cured, only the necessary portion can be cured. Until now, heat treatment using a high-frequency heating coil has been carried out, but this is a rapid heat treatment using only a solution heat treatment using a high-frequency heating coil, and then inserted into a heat treatment furnace as before, for a long time. It was something to do. In the present invention, a rapid heat treatment using high-frequency heating is also performed in an aging treatment performed subsequent to the solution treatment. As a result, it is possible to control the precipitation during the temperature rising process during aging, and it is possible to achieve high hardness with an extremely short aging treatment.
[0017]
As the solution treatment conditions at that time, the temperature of the solution treatment is (Tβ (β transformation point) −100) ° C. to (Tβ (β transformation point) −10) ° C. Thereby, in order to achieve high hardness in the subsequent aging treatment, the precipitate can be re-dissolved and a supersaturated state can be achieved. In addition, since the maximum temperature achieved during the solution treatment is set to the β transformation point or less, it is slightly disadvantageous from the viewpoint of achieving high hardness, but the hardness is obtained as Vickers hardness of 380 HV or more and the two-phase structure can be maintained. Further, there is a feature that the ductility in the cured portion can be sufficiently secured. Further, as the subsequent aging treatment conditions, the temperature rising rate during the heat treatment is 5 ° C./second or more, the temperature of the aging treatment is 400 to 600 ° C., and the time of the aging treatment is 1 to 10 minutes. By setting the rate of temperature increase to 5 ° C./second or more, it becomes possible to suppress precipitation during the temperature increasing process during aging, and to achieve high hardness in a short time. Also, if the aging temperature is less than 400 ° C. or the aging time is less than 1 minute, sufficient aging is not achieved and high hardness cannot be obtained. Conversely, if the aging temperature is higher than 600 ° C., the aging precipitates become coarse and the high hardness is still high. If the aging time is longer than 10 minutes, it is a heat treatment using high-frequency heating, so that the treatment becomes a single product, resulting in inconvenience in terms of work efficiency.
[0018]
Furthermore, as a titanium alloy to be hardened, the chemical composition is at least 4% by weight, Al 4-5%, V 2.5-3.5%, Mo 1.8-2.2%, Fe 1 It is a titanium alloy containing 0.7 to 2.3% and 0.15% or less of O. By adopting this composition, it is possible to more easily achieve a high hardness by solution-aging in an extremely short time by rapid heating and aging treatment.
[0019]
In the titanium alloy, Al and O are essential elements for stabilizing the α phase, and when Al is less than 4%, there is no sufficient contribution to the strength. On the contrary, Al exceeds 5% and O is 0. If it exceeds 15%, ductility deteriorates, which is not desirable. V, Mo, and Fe are elements that stabilize the β phase. If V is less than 2.5%, the β phase is not sufficiently stabilized, and if it exceeds 3.5%, the β phase is too stable and solution- Sufficient hardness cannot be achieved by aging treatment for an extremely short time. Mo and Fe are less than 1.8% and 1.7%, respectively, and the β phase is not sufficiently stable. If each of them exceeds 2.2% and 2.3%, the β phase is too stable, so that solution is formed. In this aging treatment, sufficient hardness cannot be achieved. For this reason, in the rapid heating solution-aging treatment by high-frequency heating, the material is at least wt%, Al is 4 to 5%, V is 2.5 to 3.5%, Mo is 1.8 to 2. It is a titanium alloy containing 2%, Fe 1.7 to 2.3%, and O 0.15% or less.
Examples of the present invention will be given below to prove the effects of the present invention.
[0020]
【Example】
Example 1
In order to cure the member having the shape of φ8 mm × 100 mm shown in FIG. 1, solution treatment by rapid heating using high-frequency heating and curing treatment by aging treatment were performed. At that time, the cooling after the solution treatment was by He gas, and the cooling rate was about 20 ° C./second. Table 1 shows the characteristics of the members after the curing treatment shown in FIG. 1 together with the conditions at that time (A02, A04, A05, A07, A08: invention example, A01, A03, A06, A09: comparative example) ). In this example, as a material of the titanium alloy member, AMS4899 (nominal composition: Ti-4.5% Al-3% V-2% Mo-2% Fe alloy, β transformation) Point: 900 ° C.).
[0021]
As is apparent from Table 1, in the solution treatment and aging treatment using high-frequency heating, the solution treatment temperature within the scope of the present invention is (Tβ-100) ° C. of 800 ° C. or higher and (Tβ-10) ° C. of 890 ° C. If it is below ℃, high hardness of HV = 380 or more can be achieved by subsequent aging treatment. Further, in the aging treatment subsequent to the solution treatment, the heating rate during the aging treatment that is within the scope of the present invention is 5 ° C./second or more, the aging temperature is 400 to 600 ° C., and the aging time is 1 to 10 minutes. If so, a high hardness of HV = 380 or higher can be achieved. Furthermore, since the heat treatment temperature at the time of solution treatment is lower than the β transformation point, a two-phase structure can be maintained, so that the elongation in a tensile test using a tensile specimen taken from a hardened portion is 5% or more, and the present invention According to (Invention Examples A02, A04, A05, A07, A08), it is possible to achieve high hardness and maintain workability that can withstand distortion correction.
[0022]
However, when the solution treatment temperature is less than 800 ° C. outside the scope of the present invention (Comparative Example A09), the precipitate cannot be re-dissolved and cannot be brought into a supersaturated state. High hardness could not be achieved. Further, when the solution treatment temperature is 900 ° C. (Comparative Example A06) outside the range of the present invention, high hardness can be achieved, but since it is hardened excessively, the ductility at the hardened portion is lowered. Furthermore, if the temperature increase rate during the aging treatment is less than 5 ° C./second outside the scope of the present invention (Comparative Example A01), precipitation during the temperature increase cannot be suppressed at the aging temperature, and high hardness is achieved by short-term aging. When the aging temperature was less than 400 ° C. (Comparative Example A01) and the aging time was less than 1 minute (Comparative Example A03), the aging did not proceed sufficiently, and high hardness could not be achieved by the aging treatment. When the aging temperature was higher than 600 ° C. (Comparative Example A09), aging progressed too much, and the aging temperature was overaged in a very short time, and high hardness could not be achieved.
[0023]
[Table 1]
Figure 0003767193
[0024]
(Example 2)
In the same manner as in Example 1, in order to cure the member (various titanium alloys) having a shape of φ8 mm × 100 mm shown in FIG. 1, solution treatment by rapid heating using high-frequency heating and curing treatment by aging treatment were performed.
[0025]
In FIG. 2, the aging curve from the short time side of various titanium alloys is shown. In Ti-4.5% Al-3% V-2% Mo-2% Fe alloy whose chemical composition is within the range of the present invention, the hardness is increased by aging treatment in an extremely short time (380 HV or more). Was possible.
[0026]
On the other hand, the Ti-6% Al-4% V alloy and the Ti-15% V-3% Al-3% Cr-3% Sn alloy whose chemical composition is outside the scope of the present invention are both extremely short. Hardening due to aging treatment over time has not been achieved.
[0027]
Example 3
In the member having the shape of 8 mm thickness × 200 mm width × 1000 mm length shown in FIG. 3, in order to cure the 20 mm width × 20 mm length portion of the central portion in the length direction, an extremely short time by rapid heating using high frequency heating is used. Curing treatment was performed by solution treatment and aging treatment. The solution treatment conditions were as follows: the temperature was increased to 850 ° C. at a temperature increase rate of 10 ° C./second within the range of the present invention, and after cooling with a fan, the temperature was increased at a temperature increase rate of 10 ° C./second and 500 ° C. × 5 minutes. → Air-cooled aging treatment was applied. In this example, as a material of the titanium alloy member, AMS4899 (nominal composition: Ti-4.5% Al-3% V-2% Mo-2% Fe alloy, β transformation) Point: 900 ° C.). Further, the portion at position A of the member shown in FIG. 3 is a portion that requires curing, and the portion at position B is a portion that does not require curing. In addition, the cooling rate at the time of cooling the fan was 30 ° C / second, which is equivalent to water cooling, because heat is extracted to the surrounding non-heat treated part, but thermal distortion occurs because it is constrained by the surrounding non-heat treated part. There was no.
[0028]
In the partial hardening treatment by the solution treatment and the aging treatment by the rapid heating using the high-frequency heating shown in the present embodiment, the portion A at the position A has greatly increased hardness compared to the material before the treatment, The effect of the hardening process by the solution-aging process is fully obtained. Further, at the position B where no curing treatment is required, there is almost no increase in hardness and ductility is maintained. In addition, the aging treatment time is short and the working efficiency is good. Furthermore, since the part subjected to the heat treatment is only the part requiring the curing treatment and the heat treatment is also short, the surface treatment of the member after the heat treatment can be omitted or significantly simplified.
[0029]
According to the embodiment as described above, in the partial curing treatment of the member made of titanium alloy, the titanium alloy is efficiently cured by performing the solution treatment and the aging treatment by the rapid heating using the high frequency heating. In addition to being able to perform processing, it is possible to achieve the workability that can withstand correction and the like even in a portion that has been subjected to curing processing without deteriorating the material properties of the base material portion. Moreover, as conditions for the partial hardening treatment of the titanium alloy using the high-frequency heating, the heat treatment temperature for the solution treatment is (Tβ-100) ° C. to (Tβ-10) ° C., and the heat treatment for the aging treatment. It is desirable that the temperature rising rate is 5 ° C./second or more, the aging treatment temperature is 400 to 600 ° C., the aging treatment time is 1 to 10 minutes, and at least the hardness is 380 HV or more in terms of Vickers hardness. Furthermore, as a chemical composition of the titanium material forming the titanium alloy member to be hardened, Al is 4 to 5% by weight, V is 2.5 to 3.5%, Mo is 1.8 to 2 It is desirable to contain 0.2%, 1.7 to 2.3% of Fe, and 0.15% or less of O.
[0030]
【The invention's effect】
As described above, according to the present invention, by specifying the heat treatment conditions and the titanium alloy composition, it is possible to efficiently achieve the hardening treatment of the titanium alloy, which brings about an industrially useful effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state of a cured product and heat treatment according to Examples 1 and 2. FIG.
2 is a graph showing an aging curve of a titanium alloy according to Example 2. FIG.
FIG. 3 is a diagram showing a state of a material to be cured and heat treatment according to Example 3.

Claims (1)

少なくとも質量%で、Al:4〜5%と、V:2.5〜3.5%と、Mo:1.8〜2.2%と、Fe:1.7〜2.3%と、O:0.15%以下とを含有し、残部がTiであるチタン合金からなる部材の部分的な硬化処理において、
前記チタン合金部材に対し、高周波加熱を用いた溶体化処理を施す工程と、
溶体化処理を施されたチタン合金部材に対し、高周波加熱を用いた時効処理を施す工程とを備え、
前記溶体化処理工程の溶体化処理の温度は(Tβ−100)℃〜(Tβ−10)℃であり、且つ前記時効処理工程の昇温温度は5℃/秒以上として時効処理温度は400〜600℃で、時効処理時間は1〜10分であり、少なくとも硬さがビッカース硬度で380HV以上であることを特徴とする、チタン合金部材の硬化熱処理方法。
At least by mass% , Al: 4 to 5%, V: 2.5 to 3.5%, Mo: 1.8 to 2.2%, Fe: 1.7 to 2.3%, O In a partial curing treatment of a member made of a titanium alloy containing 0.15% or less and the balance being Ti ,
Applying a solution treatment using high frequency heating to the titanium alloy member;
A titanium alloy member that has undergone solution treatment, and a step of performing aging treatment using high-frequency heating,
The solution treatment temperature in the solution treatment step is (Tβ-100) ° C. to (Tβ-10) ° C., and the temperature raising temperature in the aging treatment step is 5 ° C./second or more, and the aging treatment temperature is 400 to 400 ° C. A method for hardening heat treatment of a titanium alloy member, characterized in that the aging treatment time is 1 to 10 minutes at 600 ° C. and at least the hardness is 380 HV or more in terms of Vickers hardness.
JP24846798A 1998-09-02 1998-09-02 Hardening heat treatment method for titanium alloy member Expired - Fee Related JP3767193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24846798A JP3767193B2 (en) 1998-09-02 1998-09-02 Hardening heat treatment method for titanium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24846798A JP3767193B2 (en) 1998-09-02 1998-09-02 Hardening heat treatment method for titanium alloy member

Publications (2)

Publication Number Publication Date
JP2000080458A JP2000080458A (en) 2000-03-21
JP3767193B2 true JP3767193B2 (en) 2006-04-19

Family

ID=17178586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24846798A Expired - Fee Related JP3767193B2 (en) 1998-09-02 1998-09-02 Hardening heat treatment method for titanium alloy member

Country Status (1)

Country Link
JP (1) JP3767193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623979C2 (en) * 2015-10-08 2017-06-29 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of chemical-thermal induction treatment of small-sized products from alpha-titanium alloys

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041774B2 (en) 2003-06-05 2008-01-30 住友金属工業株式会社 Method for producing β-type titanium alloy material
EP4067526A4 (en) * 2019-11-28 2022-12-21 Hitachi Metals, Ltd. Manufacturing method for nickel-base alloy product or titanium-base alloy product
JP7068673B2 (en) * 2019-11-28 2022-05-17 日立金属株式会社 How to manufacture nickel-based alloy products or titanium-based alloy products
CN114934247B (en) * 2022-03-30 2023-06-30 贵州大学 Surface high-frequency induction treatment hardening method suitable for regular profile TC4 titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623979C2 (en) * 2015-10-08 2017-06-29 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of chemical-thermal induction treatment of small-sized products from alpha-titanium alloys

Also Published As

Publication number Publication date
JP2000080458A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
JP2003055749A (en) BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND ITS MANUFACTURING METHOD
JP3767193B2 (en) Hardening heat treatment method for titanium alloy member
JPH0457734B2 (en)
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
JP3736135B2 (en) Hardening heat treatment method for titanium alloy member
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JP4202626B2 (en) Titanium alloy for eyeglass frames with excellent cold workability and fatigue strength after brazing
JP2608689B2 (en) High strength and high ductility Ti alloy
JPH08144034A (en) Production of titanium-aluminium intermetallic compound-base alloy
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
TWI585212B (en) Nickel-based alloy and method of producing thereof
JPH06240428A (en) Production of ti-al intermetallic compound base alloy
JP2021031717A5 (en)
KR102544467B1 (en) Chromium-added titanium alloy having stress corrosion cracking and manufacturing method thereof
JP5533352B2 (en) β-type titanium alloy
JPH08120371A (en) Near-beta type high strength ti alloy material excellent in fatigue crack propagation property
JPH03120350A (en) Heat treating at corrosion-and oxidation-resistant coating of ni-based super heat resisting alloy
JPH0565572A (en) Structural member having oxidation resistance at high temperature
JP2001140028A (en) High strength titanium alloy and method for producing same alloy material
JPH08104932A (en) Tial-base alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees