JP3766975B1 - パラメトリックな時間引き延ばしパルス生成装置 - Google Patents

パラメトリックな時間引き延ばしパルス生成装置 Download PDF

Info

Publication number
JP3766975B1
JP3766975B1 JP2005170080A JP2005170080A JP3766975B1 JP 3766975 B1 JP3766975 B1 JP 3766975B1 JP 2005170080 A JP2005170080 A JP 2005170080A JP 2005170080 A JP2005170080 A JP 2005170080A JP 3766975 B1 JP3766975 B1 JP 3766975B1
Authority
JP
Japan
Prior art keywords
tsp
time
frequency
measurement
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005170080A
Other languages
English (en)
Other versions
JP2006145515A (ja
Inventor
辰哉 加藤
Original Assignee
辰哉 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辰哉 加藤 filed Critical 辰哉 加藤
Priority to JP2005170080A priority Critical patent/JP3766975B1/ja
Application granted granted Critical
Publication of JP3766975B1 publication Critical patent/JP3766975B1/ja
Publication of JP2006145515A publication Critical patent/JP2006145515A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】
従来のTSPを用いたインパルス応答の測定では、特に暗騒音が多く、歪み成分と本来のTSP入力に対する応答成分が時間的に接近する低周波において、十分なS/N比を達成することが困難だった。また測定媒体の周波数特性を逆補正する再にもS/N比の低下を許していた。
【解決手段】
このため掃出線のグラフを任意に設計可能なTSP波形を測定に用い、畳み込みにより逆フィルタを施すことで、測定環境及び測定媒体の特性を考慮でき、より一層のS/N比向上が期待できる。
本発明ではこのTSP波形の生成手段を開発した。
【選択図】図1

Description

本発明は、系の未知の動特性、例えば音楽ホールの各場所に於ける音響特性を測定するために行われるインパルス応答の測定方法に係り、特に高精度のインパルス応答を測定するために用いる測定用入力波形とその逆フィルタの生成に関する。
インパルス応答のディジタルによる測定方法として特許文献1で示された標本化周波数の2分の1(ナイキスト周波数)付近において位相特性が滑らかに実数となるように最適化された時間引き延ばしパルス(OATSP)を測定用入力信号として用い、被測定系からの出力を、該入力信号の逆フィルタにより直線畳み込み、あるいは巡回畳み込みを行うことでインパルス応答を復元する方法が提唱されている。
また、時間引き延ばしパルスの掃出線(群遅延特性)を変更する試みとして、非特許文献1などが考案されている。
また、OATSPを用いた測定では、しばしば入力波形を連続で再生し、位相が完全に一致する周期で被測定系からの出力を平均化することで、暗騒音に対して差別的に入力波形に関連した被測定系からの出力を高める同期加算という手法が平行して用いられる。
また、インパルス応答は通常ラウドスピーカーとマイクを介して測定されるため、例えば音楽ホールのインパルス応答を測定するのに従来のTSPによる測定方法を単独で用いる場合、係るスピーカとマイク固有の周波数特性までもが同時に畳み込まれた結果としてのインパルス応答が得られるのみであり、音楽ホールの純粋なインパルス応答は得られない。この問題を回避あるいは軽減する措置として、予め無響室などで同じスピーカとマイク自体のインパルス応答を求めておき、この逆特性を持つフィルタにて、測定後のインパルス応答を畳み込むことで、係るスピーカとマイクの周波数特性を相殺する方法が用いられている。
特許2725838 日本音響学会講演論文集(1999年9月−10月,433−434)
OATSPの掃出線は周波数が時間に対して直線的に変化する正弦波のようなものなので、被測定系においてしばしば重要な意味を持ち、より高精度な測定が求められる低周波の占める時間的割合は小さい。
例えば人間が音色や音程を判断するのに使う周波数帯域は、概ね5KHz程度迄であり、それよりも高い周波数帯域は、高音質感を得るために必要であるが、知覚される音声の中身としての意味が薄い帯域である。
しかし、従来のOATSPでは、例えばサンプリング周波数を44.1KHzとした場合、有効周波数帯域の上限であるナイキスト周波数は22.05KHzとなるため、5KHzから下の帯域が占める時間割合はおよそ4分の1程度でしかない。
人間の感覚として重要度の低い高周波に、多くの時間(言い換えればエネルギー)を使ってしまうため、人間の感覚としてより重要と言える低周波は、相対的にノイズの影響を受け易くなってしまう。
また、自然環境では発音源に対してあらゆる物体、空気自体もが低域濾過器として働く傾向を持つため暗騒音のスペクトラムも通常は低周波が優勢である。よって時間割合が小さい低周波は、一層ノイズの影響を受け易くなる。
さらに被測定系は、通常好ましくない非線形効果(歪み)を含んでおり、該歪みによって生じるノイズ(歪み成分)のスペクトラムは、特定時刻において正弦波と見立てたTSP波形の整数倍の周波数に集中する傾向にある。該歪み成分は、TSPの入力に伴って発生するため、同期加算を用いても影響を軽減することは適わない。
このため例えば余韻時間が非常に長い音楽ホールの測定では、図2に示すように該歪み成分の余韻が、本来のインパルス応答の成分に混入してしまう。
この現象自体は不可避であり、しかも特に低周波において、本来のインパルス応答の成分と該歪み成分とが時間的に接近してしまうため、より多くの成分が混入してしまう。
さらに、測定環境に於ける暗騒音のスペクトラムは、騒音源の種類や共鳴の具合により測定環境毎に変化するのが普通である。
また、前記したTSPと測定媒体の逆フィルタを組み合た測定方法では、測定媒体の、特に再生周波数域限界付近のパワーの落ち込みを補う際、相対的な増幅率が大きくなるため、係る帯域に存在する騒音も同時に増幅されてしまい、S/N比が顕著に低下してしまう。また、TSPの入力からインパルス応答を復元するための畳み込みと、測定媒体の逆フィルタによる畳み込みの2回の畳み込みが必要となるため、計算量のロスが大きくなってしまう。
線形時間不変な連続時間の被測定系に対する非インパルスの任意波形入力信号と該入力信号の逆フィルタとを用いて上記被測定系の離散的インパルス応答を測定する方法において、振幅特性、群遅延特性、位相特性を数値積分、及び数値微分により関連付けることで、包絡線の直線性を維持しつつ、任意のパワースペクトラムを有しながらもその逆フィルタにより畳み込みを実施することでインパルス応答を厳密に再現できる時間引き延ばしパルス(TSP)とその逆フィルタの波形を生成する装置。
及び上記測定方法において、初期時刻に周波数0を通り、単調増加し、連続な任意の時刻をパラメータとした周波数の関数によって表現される時刻−周波数グラフを掃出線として持つ時間引き延ばしパルス(TSP)を入力信号として用いながらも、同時に生成される逆フィルタの波形により畳み込みを実施することでインパルス応答を厳密に再現できる該入力信号及び、逆フィルタの波形の生成装置。
及び上記測定方法において、該測定時とは別の時点で用意されたインパルス応答Bに基づいて群遅延特性及び振幅特性が補正されたTSP信号を被測定系の入力信号として用いながらも、同時に生成されるフィルタ信号により被測定系からの出力信号を畳み込みすることにより、被測定系からBの周波数特性を取り除いたインパルス応答を復元可能な、該入力信号、及び畳み込みに用いる信号の生成装置。
及び上記のTSP生成処理において、任意設計された複数の群遅延特性を振幅特性レベルの乗算により合成する装置。
及び上記TSP生成処理において、TSPのパワースペクトラムを、該測定場所にて事前に測定した暗騒音のパワースペクトラムに基づき、同等の特性となるように変更する装置。
時間に対して周波数が直線的に変化していたOATSPの掃出線に比べ、掃出線の変化グラフを自由に設計できる本発明に於けるTSPは、被測定系の好まざる特性を考慮した測定用入力波形とその逆フィルタの波形を生成し、これを測定に用いることにより、一層的確なインパルス応答の測定が可能となる。例えば歪みを有する被測定系において、図3に示すように、低周波帯域において、歪み成分の混入を最小限に抑えることができ、インパルス応答の厳密な復元能も維持される。
さらに測定媒体を含む被測定系のインパルス応答の復元後に、測定媒体の逆フィルタを畳み込む場合に比べ、TSPのパワースペクトラムの変更により周波数帯域毎の補正量が平均化されるため、特定の帯域に於けるS/N比の低下を抑えることができる。
また測定媒体の逆フィルタ特性がTSPからインパルスを復元するフィルタに組み込まれるため、測定後の畳み込み回数を2回から1回に減らすことができる。
さらに任意設計されたTSPの群遅延特性及び振幅特性と上記逆フィルタ特性とを合成することにより、暗騒音や歪みの影響を考慮したTSPの設計手法と併用できる。
さらに事前に測定した暗騒音に基づきTSPのパワースペクトラムを同等の特性となるように変更することにより、暗騒音に対して最適なTSPの設計が可能となる。
従来のTSP(時間引き延ばしパルス)はインパルスを構成する各スペクトルの位相を周波数の2乗に比例して変化させることで、インパルスのエネルギーを時間軸上に分散する技術である。その逆フィルタはTSP自身を時間軸で逆転したものとなる。
位相を周波数の2乗に比例して変化させる理由は、群遅延特性が位相特性の周波数微分として定義されているためで、実際には群遅延特性を周波数に対して直線的に変化させているものとなる。
ここで包絡線の直線性を維持しつつもパワースペクトラムが平坦ではない時間引き延ばしパルスの定義を考える。
ある帯域が他の帯域に比べ大きなパワーを持つとすると、群遅延グラフを直線とするままでは係る帯域の包絡線は高くなってしまい、直線性を維持できなるなる。
このため、相対的に大きなパワーを持つ帯域では、より長い時間幅にパワーを分散するため、群遅延グラフの傾きを大きく取る(つまり単位周波数当たりの遅延量を大きくする)必要がある。
パワーは振幅の2乗で表され、また群遅延特性は直感的にパワースペクトラムの周波数積分であることが分かる。
また、群遅延特性は位相特性の周波数微分として定義されたものであるから、ここで定義しようとしている時間引き延ばしパルスの周波数領域での設計式H()を、振幅特性を表す関数A()を起点にして、以下のような式に表すことができる。
数1
F(k)=Σ(A(k)^2) (0≦k≦1)
※Σ(シグマ)は積分を表す ※^はべき乗を表す
数2
S(k)=ΣF(k) (0≦k≦1)
数3
h(k)=exp(−S(k)Q) (0≦k≦1)
※exp(x)=cos(x)−jsin(x)
H(k)=h(k)A(k) (0≦k≦1)
H(k)=C(h(2−k))A(2−k) (1≦k<2)
※C()は複素共役を表す ※Qは正規化のための定数
F()は周波数に対する群遅延量を表す関数、S()は位相回転量を表す関数である。
kは周波数を表すパラメータで、k=0の時0Hz、k=1の時ナイキスト周波数を表す。従来のOATSPの正式な定義ではTSPの掃出線は高い周波数から始まり低い周波数へ下降する直線であるため、これを入力波形に用いると被測定系が歪みを有する場合、図2に示す通り歪み成分がインパルス応答の主成分の側に現れてしまう。そこで、本発明の於ける入力波形用のTSPは、位相の符号を反転し、TSPの掃出線が上昇カーブを描くようにする。
h()は位相回転の結果であり、これに振幅特性A()を乗じてH()を求める。
A()の値に0が含まれる場合は、逆フィルタを求めることができない。このため少なくとも(0≦k≦1)の範囲でA(k)>0とすると、F()のグラフは単調増加し、F(1)の時に最大の群遅延量となる。
H()は、逆フーリエ変換し実時間領域へ展開した際、全てのエネルギーを実数へと変換するため、H(1)が実数であり、H(k)とH(2−k)が複素共役となる条件を満たす必要がある。
定数Qを用意しS(1)Qがπの整数倍となるようにすることで、h(1)を実数にでき、実数値の振幅を乗じたH(1)も実数となる。
数4
Q=πN/S(1)
※Nは任意の自然数
しかし、直流からナイキスト周波数にかけての群遅延量、つまりTSPの全長を表すF(1)は、当然A()の形状に従って変化することから、F(1)についても正規化を行う必要が生じる。よってQの定義を以下のように修正する。
数5
Q=π・Int(n・S(1)/F(1))/S(1)
※Intは小数部切捨てを表す
※nは任意の実数を表す
n=0の時TSPはインパルス様の波形となり、n=1の時、TSPのナイキスト周波数の成分と直流成分が時間的に回り込んで重なってしまうため、nは通常(0<n<1)の範囲から決まる。
H()を逆フーリエ変換することで目的とするTSP波形が得られる。
逆フィルタの設計式は位相の符号を反転し、振幅特性の逆数を取れば良い。
数6
hi(k)=exp(S(k)Q) (0≦k≦1)
Hi(k)=hi(k)/A(k) (0≦k≦1)
Hi(k)=C(hi(2−k))/A(2−k) (1≦k<2)
Hi()を逆フーリエ変換することで目的とするTSPの逆フィルタ波形(以下、逆TSPと呼ぶ)が得られる。
上記の設計式は、F()を起点に書き換えることもできる。
数7
A(k)=sqrt(F’(k))
※’(アポストロフィ)は微分を表す
※sqrt()は平方根を表す
以降の式はA()を起点とする場合と変わらないため省略する。
A(k)>0の制約によりF()は狭義の単調増加(傾きが常に0を超える)関数でなくてはならない。
TSPの設計方針として、パワースペクトラムに基づく設計を行う場合はA()を起点にとり、掃出線(周波数−群遅延グラフ)の形状に基づいた設計を行う場合はF()を起点にとることで設計が容易となる。
ここで、掃出線(周波数−群遅延グラフ)の形状に基づいたTSP設計手段について具体的に述べる。
まず周波数に対する時刻の関数f(t)を定義する。f(t)は、TSPの掃出線の設計を容易にするため、時刻tをパラメータとして、周波数kを出力とする関数である。
tの変化域を0≦t≦1とし、この範囲内において、0Hzからナイキスト周波数まで周波数が変化するものとする。即ちt=1に於けるkの値をナイキスト周波数とする。
数8
k=f(t)
TSPの掃出線は周波数0Hzから、ナイキスト周波数までを変化域とするため、f(t)は、0Hzを通る必要がある。
また、該掃出線は各周波数に対する群遅延グラフの結果であるため、1周期分のTSP波形内において同一周波数が別時刻には存在し得ない。このためf(t)は単調に増加する必要がある。
また、TSPは全ての周波数を含む必要があるため、f(t)は連続していなければならない。
次に関数のパラメータを周波数とするため、f(t)の逆関数F(k)を求める。またf(1)の値がナイキスト周波数(k=1)と対応するように正規化する。ここでtとkの変化域が逆転し、0≦k≦1となる。
数9
t=F(k) 但し、F(x)=Inv(f(x)/f(1))
※Inv()は逆関数を求める操作を表す
f(t)は単調増加するため、その逆関数であるF(k)も単調増加する。以降は、数式7で示した変換を行うことにより振幅特性A(k)を、数式2、数式3、数式5、数式6で示した変換を行うことによりTSP及び逆TSPの周波数領域での設計式を求めることができる。
しかし、f(k)が急騰な増分変化を持つ場合(例えばf(t)が任意の線分を組み合わせた関数などである場合)逆関数F(k)も同様な増分変化を持つため、F(k)の微分関数に相当する振幅特性A(k)に滑らかでない点が生じ、時間領域へ展開した場合、増分が変化している周波数付近において発振様のスペクトルとして現れてしまう。(図4)被測定系が例えばコンピュータのソフトウェア内部で完結する場合は、逆フィルタによって該発振様スペクトルを相殺することが可能であるが、通常の被測定系は、例えばスピーカやマイク、その他電気的素子を介し、少なからず歪みを有するものである。しかし、該発振様スペクトルは歪みを有する測定系では混変調や定常波をもたらし脆弱である。
このため、必要に応じて低域濾過器を表す関数L()を用意し、F(k)を以下のように定義する。
数10
t=F(k) 但し、F(x)=L(Inv(f(x)/f(1)))
通常のTSP設計では低周波に対してより長い測定時間を与えたいことから、f(t)はtの高次式や指数関数とすることが多い。
しかし、これらの式は、0Hz付近にて傾きが0になるか、0に近い値を持つ。このためf(t)の逆関数の微分であるA(k)は0Hz付近にて極を持つこととなり、包絡線に乱れが生じてしまう。この問題に対する一つの解決策としては、f(t)に小さな係数を持つtの1次項を設けて、傾きが0になることを防ぐ方法が考えられる。
数11
f(t)=fo(t)+αt
※fo()は単調増加であるが傾き0の点を有する任意関数
※αは小さな値の定数
またf(t)がtの指数関数となる場合、低周波の回り込みを許さなければ十分なTSP長を得られない場合がある。このため必要に応じ任意のロールオフ関数R(k)を用意し、回り込みが起こる帯域の振幅を抑制する。
数12
A(k)=sqrt(F’(k))R(k)
以上までが掃出線の形状に基づいたTSP設計手段についての説明である。
次にTSPのパワースペクトラムに基づいた設計手段について述べる。スピーカとマイクを使い音楽ホールのインパルス応答を測定するといった一般的なTSPの使用方法に際し、パワースペクトラムの面で得に注意しなければならないのは、スピーカやマイクの周波数特性(いわゆる音のクセ)と、暗騒音のパワースペクトラムである。まず前者について説明する。
数式1から数式7で示したTSP、及び逆TSPの周波数領域での設計式の定義に対して、TSP信号を逆TSPで畳み込んだ時、純粋なインパルス信号ではなく、任意信号の逆フィルタとしての特性を持つインパルス応答が復元されるような変形を試みる。
なお以下より係る畳み込みによる逆フィルタ復元の対象となる任意信号を補正信号と呼ぶ。
まず、補正信号をフーリエ変換し、振幅特性と位相特性を求める。
数13
Aa(k)=sqrt(Ra(k).Re^2+Ra(k).Im^2)
(0≦k≦1)
数14
Pa(k)=atan(Ra(k).Im/Ra(k).Re)
(0≦k≦1)
※atan()は逆正接を表す
Raは補正信号のフーリエ変換後の複素信号であり、Reは実部、Imは虚部の実数を表す。
Aa()は補正信号の振幅特性、Pa()は位相特性である。kは、周波数を表すパラメータであり、0の時に直流、2の時にサンプリング周波数を表す。TSPの加工に用いるkの範囲は、直流からナイキスト周波数までとする。
TSPの群遅延特性は、Aa()を元に加工される。しかし通常スピーカやマイクのインパルス応答は、振幅特性に鋭い起伏を持ち、また再生限界域付近では振幅の平均値が全体的に減衰する傾向を持つ。
TSPの振幅特性が鋭い起伏を持つ場合、発振様のスペクトルが発生し、測定時に発生する歪みに対し脆弱となる。また、再生限界域付近の減衰が著しい場合、TSP信号の全長の内、係る帯域に多くの時間が割り当てられることから、逆に中心となる再生域でのS/N比の低下を招く。
この問題を避けるため、Aa()の振幅の最小値を制限し、また振幅を平均化する。
数15
Ea(k)=Avg(Lmin(Aa(k))) (0≦k≦1)
※Lmin()は最小値を制限する操作を表す
※Avg()は移動平均値を求める操作を表す
移動平均値を求める操作は、より滑らかな曲線を得るため窓関数による重み付き移動平均を用いる。
次にEa(k)の逆数を取り、TSP補正用の振幅特性A1()を得る。
数16
A1(k)=1/Ea(k) (0≦k≦1)
また、数式7において振幅特性は制限及び平均化されてしまっているため、Aa()とEa()との違いを逆TSPの振幅特性へと盛り込む必要がある。以下の式によりその値Fa()を求める。
数17
Fa(k)=Aa(k)/Ea(k) (0≦k≦1)
逆TSPにおいてもS/N比の周波数帯域による偏りや発振様スペクトルといった問題が発生するため、Aa()と同様の操作を行い、逆TSP補正用の振幅特性A2()を得る。
数18
A2(k)=1/Avg2(Lmin2(Fa(k))) (0≦k≦1)
※Lmin2()は最小値を制限する操作を表す
※Avg2()は移動平均値を求める操作を表す
次に、TSPの振幅特性を表すAp()、及び逆TSPの振幅特性を表すAn()を以下のように求める。
数19
Ap(k)=A1(k)A(k) (0≦k≦1)
数20
An(k)=A2(k)/A(k) (0≦k≦1)
そしてTSP及び逆TSPの群遅延特性を表すS()を以下のように変形し、S2()とする。
数21
S2(k)=Σ(Σ(F’(k)Ad’(k))) (0≦k≦1)
但し、Ad(k)=Σ(A1(k)^2)
数式21は、夫々周波数に対する群遅延特性を表す関数であるF()とAd()を微分した値同士を掛け合わせ、その結果を2回積分する操作を表す。
結局のところ2つのパワースペクトラム同士を乗算した結果である。
数22
S2(k)=Σ(Σ(Ap(k)^2)) (0≦k≦1)
最後にこれまで求めた式を統合してここでのTSP及び逆TSPの周波数領域に於ける設計式を得る。
数23
h(k)=exp(−S2(k)Q) (0≦k≦1)
H(k)=h(k)Ap(k) (0≦k≦1)
H(k)=C(h(2−k))Ap(2−k) (1≦k<2)
Q=π・Int(n・S2(1)/S2’(1))/S2(1)
数24
hi(k)=exp(S2(k)Q−Pa(k) (0≦k≦1)
Hi(k)=hi(k)An(k) (0≦k≦1)
Hi(k)=C(hi(2−k))An(2−k) (1≦k<2)
数式23はTSP、数式24は逆TSPの周波数領域での設計式であり、これらを逆フーリエ変換することにより夫々実時間信号へ展開される。
数式24においては補正信号の位相特性Pa()を差し引くことで、位相を揃えるためのフィルタ特性を盛り込む。
ところで、通常スピーカやマイク等の測定媒体の周波数特性は、各々の距離や角度、設置する床の材質、温度や湿度といった様々な条件により、大きく変動するため、厳密かつ環境を選ばずに使える逆フィルタ特性は仮定できないことが多い。
そこで、逆TSP側に補正信号の逆フィルタ特性を盛り込まず、逆フィルタはインパルス応答の測定後にケースバイケースの対応として施すこともできる。
この場合、数式24は次式のように定義し直される。
数25
hi(k)=exp(S2(k)Q) (0≦k≦1)
Hi(k)=hi (k)/Ap(k) (0≦k≦1)
Hi(k)=C(hi(2−k))/Ap(2−k) (1≦k<2)
次に、暗騒音のパワースペクトラムに基づくTSPの設計手段について説明する。
測定環境にて比較的騒音の少ないタイミングで一定時間サンプリングした結果を切り出し、任意の時間窓を施した後、フーリエ変換すれば暗騒音の周波数特性が得られる。ここから振幅特性を求めて数式1のA()とすれば暗騒音と同じパワースペクトラムを持つTSP及び逆TSPを設計できるものと思われる。
しかし、自然環境の暗騒音は低周波帯域に集中する傾向にあり、一般的な測定環境において直流付近とナイキスト周波数付近の平均的な振幅の差は1000倍(60dB)を超えることも珍しくはない。
仮にこれと同じパワースペクトラムを持つようなTSPを生成した場合、直流付近とナイキスト周波数付近の測定時間比は100万倍を超え、直流に近い成分が大半の測定時間を占め、より高い周波数成分の測定時間は非常に短く、インパルス様の波形となってしまう。低周波帯域でのS/N比向上は重要な課題ではあるが、これほど極端な違いとなってしまうと測定時の非線形性の影響を受け易く、却って測定誤差が増加してしまうであろう。
そこで、暗騒音から求めた振幅特性の最大値を制限する操作を行い、次式を得る。
数26
Am(k)=Lmax(Ab(k)) (0≦k≦1)
※Ab()は暗騒音の振幅特性を表す
※Lmax()は最大値を制限する操作を表す
ここでAm()には、Ab()に急騰な変化が元々含まれていたり、最大値を制限する操作によって急騰な変化が生じることから、このままTSPに変換すると、発振様のスペクトルが発生してしまう。そこで、Am()を平均化し、Ac()とする。
数27
Ac(k)=Avg3(Am(k)) (0≦k≦1)
※Avg3()は移動平均値を求める操作を表す
ここでAc()に数式19で示したように他の振幅補正を乗じることもできる。
数28
AC(k)=Ac(k)Ax(k)
※Ax()は任意の振幅特性
以降は、数式1、数式2、数式3、数式5、数式6で示した変換を行うことによりTSP及び逆TSPの周波数領域での設計式を求めることができる。
図1に本発明に於けるTSP及び逆TSP生成フローのブロック図を示す。
なお、本発明は、コンピュータシステムにおいて実現されるため、上記の数式で示した変換手順をアルゴリズムにより再現する必要がある。
まず、数式9に示した逆関数への変換であるが、これは二分法を用いて0≦t≦1においてt−f(t)が0となるtを逐一求め、これをメモリに格納することで実現される。f(t)は原点0を通り、単調増加するため、二分法に於ける開始値Aは、一つ前に求めたt若しくは0とし、終了値Bは、開始値Aから始まり現在値に対して必ず大きくなる任意の演算を繰り返すことにより求まる。
積分や微分は任意の数値積分及び数値微分のアルゴリズムを利用できる。簡単な例として積分は各々の関数において、一つ前にまでに求めていた値の総和であり。微分は一つ前の値との差分として求まる。
またexp()は実数用と虚数用のメモリバッファを各々設け、組み込み関数のsin()とcos()を用い、定義に従って計算し格納する。
本発明に於けるTSP及び逆TSPの生成フローを示した図である。 OATSPを用いた場合に歪み成分がインパルス応答の主成分に混入する様子を示した図である。 本発明に於けるTSPを用いた場合に歪み成分がインパルス応答の主成分に混入する現象が如何に軽減されるかを示した図である。 f(t)の増分が急騰に変化した際に生じる、発振様スペクトラムの様子を示した図である。

Claims (5)

  1. 時間引き延ばしパルス(TSP)を用いて線形時間不変な連続時間の被測定系の離散的インパルス応答を測定する装置において、時間引き延ばしパルスの周波数領域での設計式を、振幅特性、又は群遅延特性を起点とした数値的(非解析的)算法により生成することを特徴とする、時間引き延ばしパルスとその逆フィルタの波形を生成する装置。
  2. 請求項1のTSP生成処理において、初期時刻に周波数Oを通り、単調増加し、連続な任意の時刻をパラメータとした周波数の関数によって表現される時刻一周波数グラフを掃出線として持つ時間引き延ばしパルスを入力信号として用いることを特徴とする、時間引き延ばしパルスとその逆フィルタの波形を生成する装置。
  3. 請求項1のTSP生成処理において、測定時とは別個のインパルス応答に基づいて群遅延特性及び振幅特性を補正したTSP信号を被測定系の入力信号として用いて、被測定系から該別個のインパルス応答の周波数特性を取り除いたインパルス応答を復元することを特徴とする、時間引き延ばしパルスとその逆フィルタの波形を生成する装置。
  4. 請求項1のTSP生成処理において、任意設計された複数の群遅延特性を振幅特性レベルの乗算により合成する装置。
  5. 請求項1のTSP生成処理において、TSPのパワースペクトラムを、該測定場所にて事前に測定した暗騒音のパワースペクトラムに基づき、同等の特性となるように変更する装置。
JP2005170080A 2004-08-25 2005-04-23 パラメトリックな時間引き延ばしパルス生成装置 Expired - Fee Related JP3766975B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170080A JP3766975B1 (ja) 2004-08-25 2005-04-23 パラメトリックな時間引き延ばしパルス生成装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004276149 2004-08-25
JP2004355984 2004-10-24
JP2005170080A JP3766975B1 (ja) 2004-08-25 2005-04-23 パラメトリックな時間引き延ばしパルス生成装置

Publications (2)

Publication Number Publication Date
JP3766975B1 true JP3766975B1 (ja) 2006-04-19
JP2006145515A JP2006145515A (ja) 2006-06-08

Family

ID=36383707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170080A Expired - Fee Related JP3766975B1 (ja) 2004-08-25 2005-04-23 パラメトリックな時間引き延ばしパルス生成装置

Country Status (1)

Country Link
JP (1) JP3766975B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007706A1 (ja) 2009-07-17 2011-01-20 エタニ電機株式会社 インパルス応答測定方法およびインパルス応答測定装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900012B2 (ja) * 2007-04-16 2012-03-21 ヤマハ株式会社 音響特性補正システム
JP5205526B1 (ja) * 2012-02-29 2013-06-05 株式会社東芝 測定装置および測定方法
JP2014085439A (ja) * 2012-10-22 2014-05-12 Nippon Hoso Kyokai <Nhk> インパルス応答測定システム及びインパルス応答測定方法
JP5714039B2 (ja) * 2013-02-15 2015-05-07 株式会社東芝 測定装置および測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007706A1 (ja) 2009-07-17 2011-01-20 エタニ電機株式会社 インパルス応答測定方法およびインパルス応答測定装置

Also Published As

Publication number Publication date
JP2006145515A (ja) 2006-06-08

Similar Documents

Publication Publication Date Title
US8116480B2 (en) Filter coefficient calculation device, filter coefficient calculation method, control program, computer-readable storage medium, and audio signal processing apparatus
JP5269785B2 (ja) 音声変換器の線形及び非線形歪みを補償するためのニューラル・ネットワーク・フィルタリング技術
US7359519B2 (en) Method and apparatus for compensating for nonlinear distortion of speaker system
JP5409377B2 (ja) 高域補間装置および高域補間方法
JP5598536B2 (ja) 帯域拡張装置および帯域拡張方法
JP2007011341A (ja) 高調波信号の周波数拡張
JP3766975B1 (ja) パラメトリックな時間引き延ばしパルス生成装置
Välimäki et al. Perceptually informed synthesis of bandlimited classical waveforms using integrated polynomial interpolation
JPWO2006011356A1 (ja) インパルス応答測定方法及び装置
JPWO2003003345A1 (ja) 信号の周波数成分を補間するための装置および方法
US20160042746A1 (en) Noise suppressing device, noise suppressing method, and a non-transitory computer-readable recording medium storing noise suppressing program
US11568884B2 (en) Analysis filter bank and computing procedure thereof, audio frequency shifting system, and audio frequency shifting procedure
JP5104553B2 (ja) インパルス応答加工装置、残響付与装置およびプログラム
JP3785629B2 (ja) 信号補正装置、信号補正方法、信号補正装置の係数調整装置および係数調整方法
JP6151619B2 (ja) 音場測定装置、音場測定方法および音場測定プログラム
US8306242B2 (en) Heyser spiral low frequency correction of FIR filters
WO2017183405A1 (ja) 音響処理装置および音響処理方法
CN110225433B (zh) 一种扬声器系统的非线性测量与音质调谐方法
CN110213708B (zh) 一种扬声器系统的非线性测量与音质调谐系统
JPH05118906A (ja) 音響測定方法およびその装置
JP4034853B2 (ja) 歪み除去装置、マルチプロセッサ及びアンプ
JP2012028874A (ja) 再生周波数分析装置及びそのプログラム
US8022289B2 (en) Harmonic sound generator and a method for producing harmonic sound
JP2012128370A (ja) 補正フィルタ処理装置、及びその方法
JP4974713B2 (ja) カラオケ装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees