JP3763276B2 - 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法 - Google Patents

信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法 Download PDF

Info

Publication number
JP3763276B2
JP3763276B2 JP2001361528A JP2001361528A JP3763276B2 JP 3763276 B2 JP3763276 B2 JP 3763276B2 JP 2001361528 A JP2001361528 A JP 2001361528A JP 2001361528 A JP2001361528 A JP 2001361528A JP 3763276 B2 JP3763276 B2 JP 3763276B2
Authority
JP
Japan
Prior art keywords
quantization
dct
video signal
scale value
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361528A
Other languages
English (en)
Other versions
JP2003163891A (ja
Inventor
晃 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001361528A priority Critical patent/JP3763276B2/ja
Priority to US10/305,044 priority patent/US7260315B2/en
Publication of JP2003163891A publication Critical patent/JP2003163891A/ja
Application granted granted Critical
Publication of JP3763276B2 publication Critical patent/JP3763276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/112Selection of coding mode or of prediction mode according to a given display mode, e.g. for interlaced or progressive display mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/15Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/198Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including smoothing of a sequence of encoding parameters, e.g. by averaging, by choice of the maximum, minimum or median value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Television Signal Processing For Recording (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ディジタルビデオ信号をDCTおよび可変長符号を用いて圧縮符号化する信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法に関する。
【0002】
【従来の技術】
ディジタルVTR(Video Tape Recorder) に代表されるように、ディジタルビデオ信号およびディジタルオーディオ信号を記録媒体に記録し、また、記録媒体から再生するようなデータ記録再生装置が知られている。ディジタルビデオ信号は、データ容量が膨大となるため、所定の方式で圧縮符号化されて記録媒体に記録されるのが一般的である。近年では、MPEG2(Moving Picture Experts Group 2)方式が圧縮符号化の標準的な方式として知られている。
【0003】
MPEG2では、動き検出を用いた予測符号化とDCT(Discrete Cosine Transform)とで得られたデータを量子化して圧縮符号化を行い、さらに、可変長符号化を用いて圧縮効率を高めている。
【0004】
フレーム単位ではDCTを用いた圧縮符号化が行われる。例えば、入力されたディジタルビデオ信号が所定サイズのブロック単位に分割され、その分割されたブロックに対してDCT演算が行われ、DCT演算により得られた係数が量子化される。量子化された代表値は、可変長符号化されて圧縮符号化される。従来では、DCT演算における量子化の際に用いられる量子化丸め精度は、例えば4捨5入、5捨6入、切り捨てなどの、予め決められたものが固定的に用られていた。
【0005】
上述のように量子化の際の丸め精度を固定して量子化を行なう場合には、量子化が容易な画像と難しい画像の両方を効率良く圧縮符号化することが困難である。これに対し、量子化時の丸め精度を動的に変化させる方法としては、例えば特開平10−304362号公報に開示されるように、DCT係数の振幅の大きさに依存して量子化丸め精度を変化させる方法や、特開平10−304363号公報に開示されるように、DCT係数の周波数成分に依存して量子化丸め精度を変化させる方法が提案されている。しかし、このような方法によっても、一定の符号化ノイズによる画質劣化は免れない。
【0006】
この問題を解決するために、この発明の出願人により、量子化スケール(qauntizer_scale)の値に応じて量子化丸め精度を制御する方法が提案されている。この方法によれば、量子化スケールが小さく圧縮が容易な画像と、量子化スケールが大きく圧縮が難しい画像とでそれぞれ量子化丸め精度が設定され、画像の性質に応じて適応的に量子化を行うことができ、上述したような画像圧縮処理に伴う画像劣化を最小限に抑制することができる。
【0007】
【発明が解決しようとする課題】
ところで、近年では、ビデオ信号をディジタル化してディジタルビデオ信号として扱うことが一般的になってきている一方で、従来の、アナログ方式によるアナログビデオ信号も、依然として用いられている。この場合には、例えば、ディジタルVTRに対してアナログビデオ信号に対応したアナログインターフェイスが設けられる。アナログビデオ信号は、アナログインターフェイスに入力され、ディジタルビデオ信号に変換されて処理される。
【0008】
従来、量子化スケール値毎に設定可能な量子化丸め精度は、ディジタルインターフェイス環境およびアナログインターフェイス環境の何れにおいても、同一の量子化スケール値に対してその丸め精度は一定であった。
【0009】
しかしながら、アナログインターフェイスは、ノイズの影響や調整のばらつき、温度ドリフトと言った要因による、波形特性の乱れ、周波数特性のばらつき等、アナログ回路特有のさまざまな不安定要因を抱えている。そのため、アナログインターフェイスを用いた場合は、ノイズ成分が強調され、S/Nが悪化してしまうなどの問題を生じ、必ずしもアナログインターフェイス環境に最適な画質を得るための丸め精度とはなっていなかったという問題点があった。
【0010】
また、量子化丸め精度をアナログインターフェイスに合わせた設定とすると、安定系のディジタルインターフェイスを用いた場合に、量子化丸めがきつくかかりすぎ、微少振幅部の解像度が失われてしまうという問題点があった。
【0011】
したがって、この発明の目的は、ディジタルインターフェイスおよびアナログインターフェイスの何れを選択したときも、それぞれ最適な量子化丸めを行うような信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法を提供することにある。
【0012】
【課題を解決するための手段】
この発明は、上述した課題を解決するために、入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化する信号処理装置において、アナログ方式のビデオ信号が入力され、入力されたアナログ方式のビデオ信号をディジタル方式のビデオ信号に変換して出力するアナログインターフェイス手段と、ディジタル方式のビデオ信号が入力されるディジタルインターフェイス手段と、アナログインターフェイス手段およびディジタルインターフェイス手段のうち何れかを選択するインターフェイス選択手段と、アナログインターフェイス手段およびディジタルインターフェイス手段のうち、インターフェイス選択手段により選択された側から出力されたビデオ信号をブロックに分割し、ビデオ信号に対してブロック単位でDCT演算を行うDCT手段と、DCT手段によりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、量子化スケール値設定手段により設定された量子化スケール値と、インターフェイス選択手段によりアナログインターフェイス手段およびディジタルインターフェイス手段のうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、DCT手段によりDCT演算されて得られたDCT係数を、量子化スケール値設定手段により設定された量子化スケール値と、量子化丸め精度設定手段により設定された量子化丸め精度とに基づき量子化する量子化手段とを有することを特徴とする信号処理装置である。
【0013】
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化してビデオ信号を圧縮符号化する信号処理方法において、アナログインターフェイスおよびディジタルインターフェイスのち選択された側から出力されたビデオ信号に対してブロック単位でDCT演算を行うDCTのステップと、DCTのステップによりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、量子化スケール値設定のステップにより設定された量子化スケール値と、アナログインターフェイスおよびディジタルインターフェイスのうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、DCTのステップによりDCT演算されて得られたDCT係数を、量子化スケール値設定のステップにより設定された量子化スケール値と、量子化丸め精度設定のステップにより設定された量子化丸め精度とに基づき量子化する量子化のステップとを有することを特徴とする信号処理方法である。
【0014】
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化し記録媒体に記録する記録装置において、アナログ方式のビデオ信号が入力され、入力されたアナログ方式のビデオ信号をディジタル方式のビデオ信号に変換して出力するアナログインターフェイス手段と、ディジタル方式のビデオ信号が入力されるディジタルインターフェイス手段と、アナログインターフェイス手段およびディジタルインターフェイス手段のうち何れかを選択するインターフェイス選択手段と、アナログインターフェイス手段およびディジタルインターフェイス手段のうち、インターフェイス選択手段により選択された側から出力されたビデオ信号をブロックに分割し、ビデオ信号に対してブロック単位でDCT演算を行うDCT手段と、DCT手段によりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、量子化スケール値設定手段により設定された量子化スケール値と、インターフェイス選択手段によりアナログインターフェイス手段およびディジタルインターフェイス手段のうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、DCT手段によりDCT演算されて得られたDCT係数を、量子化スケール値設定手段により設定された量子化スケール値と、量子化丸め精度設定手段により設定された量子化丸め精度とに基づき量子化する量子化手段と、量子化手段で量子化されたDCT係数を記録媒体に記録する記録手段とを有することを特徴とする記録装置である。
【0015】
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化してビデオ信号を圧縮符号化し記録媒体に記録する記録方法において、アナログインターフェイスおよびディジタルインターフェイスのち選択された側から出力されたビデオ信号に対してブロック単位でDCT演算を行うDCTのステップと、DCTのステップによりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、量子化スケール値設定のステップにより設定された量子化スケール値と、アナログインターフェイスおよびディジタルインターフェイスのうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、DCTのステップによりDCT演算されて得られたDCT係数を、量子化スケール値設定のステップにより設定された量子化スケール値と、量子化丸め精度設定のステップにより設定された量子化丸め精度とに基づき量子化する量子化のステップと、量子化のステップで量子化されたDCT係数を記録媒体に記録する記録のステップとを有することを特徴とする記録方法である。
【0016】
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化し記録媒体に記録すると共に、圧縮符号化されて記録媒体に記録されたDCT係数を再生する記録再生装置において、アナログ方式のビデオ信号が入力され、入力されたアナログ方式のビデオ信号をディジタル方式のビデオ信号に変換して出力するアナログインターフェイス手段と、ディジタル方式のビデオ信号が入力されるディジタルインターフェイス手段と、アナログインターフェイス手段およびディジタルインターフェイス手段のうち何れかを選択するインターフェイス選択手段と、アナログインターフェイス手段およびディジタルインターフェイス手段のうち、インターフェイス選択手段により選択された側から出力されたビデオ信号をブロックに分割し、ビデオ信号に対してブロック単位でDCT演算を行うDCT手段と、DCT手段によりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、量子化スケール値設定手段により設定された量子化スケール値と、インターフェイス選択手段によりアナログインターフェイス手段およびディジタルインターフェイス手段のうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、DCT手段によりDCT演算されて得られたDCT係数を、量子化スケール値設定手段により設定された量子化スケール値と、量子化丸め精度設定手段により設定された量子化丸め精度とに基づき量子化する量子化手段と、量子化手段で量子化されたDCT係数を記録媒体に記録する記録手段と、記録手段により記録媒体に記録されたDCT係数を再生する再生手段とを有することを特徴とする記録再生装置である。
【0017】
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化し記録媒体に記録すると共に、圧縮符号化されて記録媒体に記録されたDCT係数を再生する記録再生方法において、アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号に対してブロック単位でDCT演算を行うDCTのステップと、DCTのステップによりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、量子化スケール値設定のステップにより設定された量子化スケール値と、アナログインターフェイスおよびディジタルインターフェイスのうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、DCTのステップによりDCT演算されて得られたDCT係数を、量子化スケール値設定のステップにより設定された量子化スケール値と、量子化丸め精度設定のステップにより設定された量子化丸め精度とに基づき量子化する量子化のステップと、量子化のステップで量子化されたDCT係数を記録媒体に記録する記録のステップと、記録のステップにより記録媒体に記録されたDCT係数を再生する再生のステップとを有することを特徴とする記録再生方法である。
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い、得られたDCT係数を量子化して圧縮符号化する信号処理装置において、アナログ方式のビデオ信号がディジタル方式のビデオ信号に変換された第1のビデオ信号と、ディジタル方式の第2のビデオ信号のうち何れかを選択するビデオ信号選択手段と、ビデオ信号選択手段により選択されたビデオ信号をブロックに分割し、ブロック単位でDCT演算を行うDCT手段と、DCT手段によりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、ビデオ信号選択手段により選択されたビデオ信号の種類がアナログ方式のビデオ信号かディジタル方式のビデオ信号かに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、DCT手段によりDCT演算されて得られたDCT係数を、量子化スケール値設定手段により設定された量子化スケール値と、量子化丸め精度設定手段により設定された量子化丸め精度とに基づき量子化する量子化手段とを有することを特徴とする信号処理装置である。
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い、得られたDCT係数を量子化して圧縮符号化する信号処理方法において、アナログ方式のビデオ信号がディジタル方式のビデオ信号に変換された第1のビデオ信号と、ディジタル方式の第2のビデオ信号のうち何れかを選択するビデオ信号選択のステップと、ビデオ信号選択のステップにより選択されたビデオ信号をブロックに分割し、ブロック単位でDCT演算を行うDCTのステップと、DCTのステップによりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、ビデオ信号選択のステップにより選択されたビデオ信号の種類がアナログ方式のビデオ信号かディジタル方式のビデオ信号かに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、DCTのステップによりDCT演算されて得られたDCT係数を、量子化スケール値設定のステップにより設定された量子化スケール値と、量子化丸め精度設定のステップにより設定された量子化丸め精度とに基づき量子化する量子化のステップとを有することを特徴とする信号処理方法である。
また、この発明は、入力されたビデオ信号に対してブロック単位でDCT演算を行い、得られたDCT係数を量子化して圧縮符号化する信号処理方法をコンピュータ装置に実行させる信号処理プログラムにおいて、信号処理方法は、アナログ方式のビデオ信号がディジタル方式のビデオ信号に変換された第1のビデオ信号と、ディジタル方式の第2のビデオ信号のうち何れかを選択するビデオ信号選択のステップと、ビデオ信号選択のステップにより選択されたビデオ信号をブロックに分割し、ブロック単位でDCT演算を行うDCTのステップと、DCTのステップによりビデオ信号をブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、ビデオ信号選択のステップにより選択されたビデオ信号の種類がアナログ方式のビデオ信号かディジタル方式のビデオ信号かに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、DCTのステップによりDCT演算されて得られたDCT係数を、量子化スケール値設定のステップにより設定された量子化スケール値と、量子化丸め精度設定のステップにより設定された量子化丸め精度とに基づき量子化する量子化のステップとを有することを特徴とする信号処理プログラムである。
【0018】
上述したように、請求項1および5に記載の発明は、アナログインターフェイスおよびディジタルインターフェイスのうち何れかが選択され、アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号をブロックに分割し、ビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数に対して行われる量子化が、量子化の際に用いられる量子化スケール値に基づき設定された量子化丸め精度と、アナログインターフェイスおよびディジタルインターフェイスのうち何れが選択されたかとに応じて設定された量子化丸め精度とに基づき行うようにしているため、アナログインターフェイスおよびディジタルインターフェイスの何れを選択した場合でも、最適な量子化丸め精度で量子化を行うことができる。
【0019】
また、請求項6および10に記載の発明は、アナログインターフェイスおよびディジタルインターフェイスのうち何れかが選択され、アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号をブロックに分割し、ビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数に対して行われる量子化が、量子化の際に用いられる量子化スケール値に基づき設定された量子化丸め精度と、アナログインターフェイスおよびディジタルインターフェイスのうち何れが選択されたかとに応じて設定された量子化丸め精度とに基づき行われ、量子化されたDCT係数が記録媒体に記録されるため、アナログインターフェイスおよびディジタルインターフェイスの何れを選択した場合でも、最適な量子化丸め精度で量子化されたDCT係数が記録媒体に記録される。
【0020】
また、請求項11および15に記載の発明は、アナログインターフェイスおよびディジタルインターフェイスのうち何れかが選択され、アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号をブロックに分割し、ビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数に対して行われる量子化が、量子化の際に用いられる量子化スケール値に基づき設定された量子化丸め精度と、アナログインターフェイスおよびディジタルインターフェイスのうち何れが選択されたかとに応じて設定された量子化丸め精度とに基づき行われ、量子化されたDCT係数が記録媒体に記録されると共に、記録媒体に記録されたDCT係数が再生可能とされているため、アナログインターフェイスおよびディジタルインターフェイスの何れを選択した場合でも、最適な量子化丸め精度で量子化されたDCT係数の記録媒体への記録が行われると共に、記録時にアナログインターフェイスおよびディジタルインターフェイスの何れを選択した場合でも、最適な量子化丸め精度で量子化され記録媒体に記録されたDCT係数が記録媒体から再生される。
【0021】
【発明の実施の形態】
以下、この発明の実施の一形態について説明する。この発明では、ビデオデータをブロック化してブロック毎にDCTを行い、DCTにより得られたDCT係数を量子化してビデオデータの圧縮符号化を行う際に、ビデオデータの入力インターフェイスとしてディジタルインターフェイスを選択した場合とアナログインターフェイスを選択した場合とで、量子化に用いる量子化スケール毎の量子化丸め精度を異ならせ、それぞれの場合で、最適な量子化丸めを行うことができるようにしている。
【0022】
なお、以下に説明する実施の一形態は、この発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、この発明の範囲は、以下の説明において、特に本発明を限定する旨の記載がない限り、これらの態様に限定されないものとする。
【0023】
次に、この発明の実施の一形態について説明する。図1は、この発明の実施の一形態が適用されたディジタルVTRのの一例の構成を示す。このディジタルVTRは、MPEG方式により圧縮符号化されたディジタルビデオ信号を記録媒体に直接的に記録することができるようにしたものである。
【0024】
先ず、このディジタルVTRにおける記録系の構成および処理動作について説明する。この記録系に外部より入力される信号は、SDI(Serial Data Interface)信号およびSDTI(Serial Data Transport Interface)信号の2種類のシリアルディジタルインターフェイス信号、アナログインターフェイス信号および制御信号である外部基準信号REFである。
【0025】
なお、SDIは、(4:2:2)コンポーネントビデオ信号とディジタルオーディオ信号と付加的データとを伝送するために、SMPTEによって規定されたインターフェイスである。また、SDTIは、ディジタルビデオ信号がMPEG方式で圧縮符号化されたストリームであるMPEGエレメンタリストリーム(以下、MPEG ESと称する)が伝送されるインターフェイスである。ESは、4:2:2のコンポーネントであり、また、上述したように、全てIピクチャのストリームであり、1GOP=1ピクチャの関係を有する。SDTI−CP(Content Package)のフォーマットでは、MPEG ESがアクセスユニットへ分離され、また、フレーム単位のパケットにパッキングされている。SDTI−CPでは、十分な伝送帯域(クロックレートで27MHzまたは36MHz、ストリームビットレートで270M bpsまたは360M bps)を使用しており、1フレーム期間で、バースト的にESを送ることが可能である。
【0026】
SDIにより伝送されるSDI信号は、SDI入力部101に入力される。また、アナログビデオ信号からなるアナログ入力信号がアナログ入力部120に入力される。アナログ入力部120では、入力されたアナログ入力信号をディジタル信号に変換し、例えば上述のSDIフォーマットにマッピングして出力する。アナログ入力信号が変換されSDIフォーマットにマッピングされたこのSDI信号は、SDI入力部101に供給される。
【0027】
SDI入力部101は、アナログ入力部120から供給されたSDI信号と、外部からSDI入力部101に対して直接的に供給されたSDI信号とを、入力セレクト信号に基づき選択する。詳細は後述するが、入力セレクト信号は、操作パネル122に対する操作に応じて、システムコントローラ117から供給される制御信号である。SDI入力部101では、入力セレクト信号に基づき選択されたSDI信号をシリアル信号からパラレル信号に変換して出力すると共に、SDI信号に含まれる入力の位相基準である入力同期信号を抽出し、タイミングジェネレータTG102に出力する。
【0028】
また、SDI入力部101は、変換したパラレル信号からビデオ信号とオーディオ信号とを分離する。分離されたビデオ入力信号とオーディオ入力信号は、それぞれMPEGエンコーダ103とディレイ回路104に出力される。
【0029】
タイミングジェネレータTG102は、入力された外部基準信号REFから基準同期信号を抽出する。タイミングジェネレータTGでは、この基準同期信号とSDI入力部101から供給された入力同期信号とのうち、所定に指定された基準信号に同期して、このディジタルVTRで必要なタイミング信号を生成し、タイミングパルスとして各ブロックに供給する。
【0030】
MPEGエンコーダ103は、入力されたビデオ入力信号を、DCT変換して係数データに変換し、係数データを量子化した後、可変長符号化する。MPEGエンコーダ103から出力される可変長符号化(VLC)データは、MPEG2に準拠したエレメンタリストリーム(ES)である。この出力は、記録側のマルチフォーマットコンバータ(以下、記録側MFCと称する)106の一方の入力端に供給される。
【0031】
なお、この実施の一形態では、MPEGエンコーダ103において、係数データを量子化スケールに基づいて量子化する際の丸め精度は、量子化スケール値に応じて適応的に設定される。また、詳細は後述するが、この丸め精度は、ビデオ信号の入力インターフェイスとしてディジタルインターフェイスを選択した場合と、アナログインターフェイスを選択した場合とで、異なった設定が用いられる。
【0032】
この量子化スケール値に応じた量子化丸め精度の設定値は、後述するテーブル222から読み出して用いられる。入力インターフェイスの選択に応じて後述するシスコン117から出力されるテーブル制御信号により、アナログインターフェイスおよびディジタルインターフェイスのうち入力インターフェイスとして選択された側に対応した設定値がテーブル222にロードされる。
【0033】
ディレイ回路104は、入力されたオーディオ入力信号を、非圧縮データのままで、MPEGエンコーダ103でのビデオ信号に対する処理のディレイに合わせるためのディレイラインの働きをするものである。このディレイ回路104で所定に遅延されたオーディオ信号は、ECCエンコーダ107に出力される。これは、この実施の一形態によるディジタルVTRにおいて、オーディオ信号が非圧縮信号として扱われるためである。
【0034】
外部からSDTIにより伝送され供給されたSDTI信号は、SDTI入力部105に入力される。SDTI信号は、SDTI入力部105で同期検出される。そして、バッファに一旦溜め込まれ、エレメンタリストリームが抜き出される。抜き出されたエレメンタリストリームは、記録側MFC106の他方の入力端に供給される。同期検出されて得られた同期信号は、上述したタイミングジェネレータTG102に供給される(図示しない)。
【0035】
なお、SDTI受信部10では、さらに、入力されたSDTI信号からディジタルオーディオ信号を抽出する。抽出されたディジタルオーディオ信号は、ECCエンコーダ107に供給される。
【0036】
このように、この実施の一形態によるディジタルVTRは、SDI入力部101から入力されるベースバンドのビデオ信号と独立して、MPEG ESを直接的に入力することができる。
【0037】
記録側MFC回路106は、ストリームコンバータとセレクタとを有し、SDI入力部101およびSDTI入力部105から供給されたMPEG ESのうち、何れかが選択され、選択されたMPEG ESのDCT係数を、1マクロブロックを構成する複数のDCTブロックを通して周波数成分毎にまとめ、まとめた周波数成分を低周波数成分から順に並び替える。MPEG ESの係数が並べ替えられたストリームを、以下、変換エレメンタリストリームと称する。このようにMPEG ESを再配置することにより、サーチ再生時にもなるべく多くのDC係数と低次のAC係数を拾い、サーチ画の品位向上に貢献している。変換エレメンタリストリームは、ECCエンコーダ107に供給される。
【0038】
ECCエンコーダ107は、大容量のメインメモリが接続され(図示しない)、パッキングおよびシャフリング部、オーディオ用外符号エンコーダ、ビデオ用外符号エンコーダ、内符号エンコーダ、オーディオ用シャフリング部およびビデオ用シャフリング部などを内蔵する。また、ECCエンコーダ10は、シンクブロック単位でIDを付加する回路や、同期信号を付加する回路を含む。なお、実施の第1の形態では、ビデオ信号およびオーディオ信号に対するエラー訂正符号としては、積符号が使用される。積符号は、ビデオ信号またはオーディオ信号の2次元配列の縦方向に外符号の符号化を行い、その横方向に内符号の符号化を行い、データシンボルを2重に符号化するものである。外符号および内符号としては、リードソロモンコード(Reed-Solomon code) を使用できる。
【0039】
ECCエンコーダ107には、MFC回路106から出力された変換エレメンタリストリームが供給されると共に、SDTI入力部105およびディレイ回路104から出力されたオーディオ信号が供給される。ECCエンコーダ107では、供給された変換エレメンタリストリーム及びオーディオ信号に対してシャフリング及びエラー訂正符号化を施し、シンクブロック毎にIDおよび同期信号を付加し記録データとして出力する。
【0040】
ECCエンコーダ107から出力された記録データは、記録アンプを含むイコライザEQ108で記録RF信号に変換される。記録RF信号は、回転ヘッドが所定に設けられた回転ドラム109に供給され、磁気テープ110上に記録される。回転ドラム109には、実際には、隣接するトラックを形成するヘッドのアジマスが互いに異なる複数の磁気ヘッドが取り付けられている。
【0041】
記録データに対して必要に応じてスクランブル処理を行っても良い。また、記録時にディジタル変調を行っても良く、さらに、パーシャル・レスポンスクラス4とビタビ符号を使用しても良い。なお、イコライザ108は、記録側の構成と再生側の構成とを共に含む。
【0042】
次に、このディジタルVTRにおける再生系の構成および処理動作について説明する。再生時には、磁気テープ110から回転ドラム109で再生された再生信号が再生アンプなどを含むイコライザ108の再生側の構成に供給される。イコライザ108では、再生信号に対して、等化や波形整形などがなされる。また、ディジタル変調の復調、ビタビ復号等が必要に応じてなされる。イコライザ108の出力は、ECCデコーダ111に供給される。
【0043】
ECCデコーダ111は、上述したECCエンコーダ107と逆の処理を行うもので、大容量のメインメモリと、内符号デコーダ、オーディオ用およびビデオ用それぞれのデシャフリング部ならびに外符号デコーダを含む。さらに、ECCデコーダ11は、ビデオ用として、デシャフリングおよびデパッキング部、データ補間部を含む。同様に、オーディオ用として、オーディオAUX分離部とデータ補間部を含む。
【0044】
ECCデコーダ111では、再生データに対して同期検出を行い、シンクブロックの先頭に付加されている同期信号を検出してシンクブロックを切り出す。再生データは、シンクブロック毎の内符号のエラー訂正がなされ、その後、シンクブロックに対してID補間処理がなされる。IDが補間された再生データは、ビデオデータとオーディオデータとに分離される。ビデオデータおよびオーディオデータは、それぞれデシャフリング処理され、記録時にシャフリングされたデータ順が元に戻される。デシャフリングされたデータは、それぞれ外符号のエラー訂正が行われる。
【0045】
ECCデコーダ111において、エラー訂正能力を超え、訂正できないエラーがあるデータに関しては、エラーフラグがセットされる。ここで、ビデオデータのエラーに関しては、エラーを含むデータを指し示す信号ERRが出力される。
【0046】
エラー訂正された再生オーディオデータは、SDTI出力部115に供給されると共に、ディレイ回路114で所定の遅延を与えられてSDI出力部116に供給される。ディレイ回路114は、後述するMPEGデコーダ11でのビデオデータの処理による遅延を吸収するために設けられる。
【0047】
一方、エラー訂正されたビデオデータは、再生変換エレメンタリストリームとして再生側MFC回路112に供給される。上述した信号ERRも、再生側MFC回路112に供給される。再生側MFC112は、上述した記録側MFC106と逆の処理を行うものであって、ストリームコンバータを含む。ストリームコンバータでは、記録側のストリームコンバータと逆の処理がなされる。すなわち、DCTブロックに跨がって周波数成分毎に並べられていたDCT係数を、DCTブロック毎に並び替える。これにより、再生信号がMPEG2に準拠したエレメンタリストリームに変換される。このとき、ECCデコーダ111から信号ERRが供給された場合は、対応するデータをMPEG2に完全に準拠する信号に置き換えて出力する。
【0048】
再生側MFC回路112から出力されたMPEG ESは、MPEGデコーダ113およびSDTI出力部115に供給される。MPEGデコーダ113は、供給されたMPEG ESを復号し、非圧縮の元のビデオ信号に戻す。すなわち、MPEGデコーダ11は、供給されたMPEG ESに対して逆量子化処理と、逆DCT処理とを施す。復号されたビデオ信号は、SDI出力部116に供給される。
【0049】
上述したように、SDI出力部116には、ECCデコーダ111でビデオデータと分離されたオーディオデータがディレイ114を介して供給されている。SDI出力部116では、供給されたビデオデータとオーディオデータとを、SDIのフォーマットにマッピングし、SDIフォーマットのデータ構造を有するSDI信号へ変換される。このSDI信号が外部に出力される。
【0050】
一方、SDTI出力部115には、上述したように、ECCデコーダ111でビデオデータと分離されたオーディオデータが供給されている。SDTI出力部115では、供給された、エレメンタリストリームとしてのビデオデータと、オーディオデータとをSDTIのフォーマットにマッピングし、SDTIフォーマットのデータ構造を有するSDTI信号へ変換されるこのSDTI信号が外部に出力される。
【0051】
なお、システムコントローラ117(以下、シスコン117と略称する)は、例えばマイクロコンピュータからなり、信号SY_IOにより各ブロックと通信を行うことにより、このディジタルVTRの全体の動作を制御する。また、操作パネル122に設けられたスイッチ類が操作されると、操作に応じた制御信号がシスコン117に供給される。この制御信号に基づき、この記録再生装置での記録、再生などの動作がシスコン117により制御される。上述したSDI入力部101におけるアナログインターフェイスおよびディジタルインターフェイスの選択も、この操作パネル122に対する所定の操作により制御される。
【0052】
サーボ118は、信号SY_SVによりシスコン117と互いに通信を行いながら、信号SV_IOにより、磁気テープ110の走行制御や回転ドラム109の駆動制御などを行う。
【0053】
図2は、図1のディジタルVTRにおけるMPEGエンコーダ103の一例の構成を概略的に示す。このMPEGエンコーダ103の主な機能としては、
(1)イントラフレーム符号化
(2)磁気テープに記録するための1フレームでの固定長符号化
(3)ダビング時の画質維持のためのバックサーチ
がある。これらのうち、(2)の「磁気テープに記録するための1フレームでの固定長符号化」と、(3)の「ダビング時の画質維持のためのバックサーチ」は、この発明と直接的な関係がないため、説明は省略する。
【0054】
図2に示すように、MPEGエンコーダ103は、概略的には、ブロック化回路300、ディレイ回路301、DCTモード選択回路302、DCT回路303、量子化回路304および可変長符号化(VLC)回路305とを有する。
【0055】
MPEGエンコーダ103に供給されたディジタルビデオ信号は、ブロック化回路300でラスタブロックに変換され、DCTを行うためのDCTブロック単位に分割されて出力される。なお、DCTブロックは、例えば8画素×8画素のマトリクス状に構成され、1つのDC成分と63のAC係数で構成されている。
【0056】
ブロック化回路300からDCTブロック単位で出力されたデータは、ディレイ回路301で所定の遅延を与えられ、DCT回路303に供給されると共に、DCTモード選択回路302に供給される。DCTモード選択回路302は、DCT回路303におけるDCTを、フィールド単位で行うか、フレーム単位で行うかを切り換える。DCTモード選択回路302から出力されたモード選択信号がDCT回路303に供給される。
【0057】
DCT回路303では、DCTモード選択回路302によって選択されたDCTモードに基づき、ディレイ回路301から出力されたDCTブロック単位のデータに対してDCTを行い、DCT係数を生成する。生成されたDCT係数は、量子化回路304に供給される。
【0058】
DCT回路303から出力されたDCT係数は、量子化回路304で量子化される。この量子化回路304は、量子化スケール値(quantizer_scale)が格納された量子化スケール値レジスタを有し(図示しない)、量子化スケール値レジスタに格納された量子化スケール値を用いてDCT係数の量子化を行う。このとき、量子化演算の際の量子化丸めの精度が量子化スケール値に応じて変更され、画像の性質に応じた量子化が行われる。
【0059】
量子化回路304の出力は、VLC回路305に供給され、可変長符号化され、MPEG ESとされ出力される。
【0060】
量子化回路304における処理を、より具体的に説明する。量子化回路304における基本的な処理は、上述した8画素×8画素からなるDCTブロックを構成する各係数に、予め設定されている重み付け係数(Intra_Quantiser_Matrix)を用いて重み付けをした後、その係数に量子化スケール値(quantizer_scale)に基づく除算を行なう。そして、その除算結果に対して後述のような丸め処理を行ない、代表値を選択する。
【0061】
この丸め処理で用いる丸め精度には、例えば4捨5入、5捨6入、6捨7入といったものを用いることができる。図3は、quantiser_scale =10で丸め精度が4捨5入である場合の丸め処理を示す。横軸に示す10個毎に区切られた数値の中から、それぞれ6番目の値が代表値として選択される。例えば、5以上14以下の数値の代表値が10とされる。図4は、quantiser_scale =10で丸め精度が5捨6入である場合の丸め処理を示す。横軸に示す10個毎に区切られた数値の中から、それぞれ5番目の値が代表値として選択される。例えば、6以上15以下の数値の代表値が10とされる。図5は、quantiser_scale =10で丸め精度が5捨6入である場合の丸め処理を示している。横軸に示す10個毎に区切られた数値の中から、それぞれ4番目の値が代表値として選択される。例えば、7以上16以下の数値の代表値が10とされる。
【0062】
量子化回路304では、上述した量子化スケール値に応じて丸め精度を変更して量子化が行われる。これにより、画像の性質に応じて最適な量子化を行ない、画像圧縮による画質の劣化が最小限に抑制される。すなわち、量子化スケール値は、圧縮が容易な画像では小さい値となり、圧縮が難しい画像では大きい値となる。そこで、この量子化スケール値に基づき、最適な丸め精度で量子化を行なう。
【0063】
次に、上述した量子化スケール値に応じて丸め精度を変更する処理の一例の演算について説明する。この演算は、DCT演算されたDCT係数のAC係数F(v,u)に対し、下記の式(1)および式(2)に示す演算式を用いて量子化し、量子化されたDCT係数QF(v,u)を求めるものである。
【0064】
wF(v,u)=16×F(v,u)/W(v,u) ・・・(1)
QF(v,u) =[wF(v,u)+{sign(wF(v,u))× (M×quantizer_scale)}div 32]div quantizer_scale ・・・(2)
【0065】
なお、ここで(v,u)は、DCTブロック内の各係数の座標を表しており、W(v,u)は、図6に示すような、各係数に対する重み付け係数(Intra_Quantizser_Matrix)を表している。この重み付け係数は、MPEG2において初期値として用意されたものである。演算子「div」は、小数部切り捨て除算演算を示す。式(1)および(2)における数値〔16〕および〔32〕は、上述した演算に用いる各数値のビットシフト(桁合わせ)のために、便宜的に用いたものである。
【0066】
演算子「sign」は、以下のような場合分けを行なうことを示す。なお、ここでは、記載上の利便のために、コンピュータなどのプログラミング言語であるC言語的な表現を用いている。
if (x > 0) sign(x) = 1;
else if (x == 0) sign(x) = 0;
else if (x < 0) sign(x) = -1;
すなわち、wF(v,u)が0より大きい場合は、sign(wF(v,u))を1とし、wF(v,u)が0の場合は、sign(wF(v,u)を0とし、wF(v,u)が0より小さい場合は、sign(wF(v,u)を−1として計算される。
【0067】
また、式(2)における値Mは、量子化スケール(quantizer_scale)値毎に設定可能なパラメータを表しており、例えば入力インターフェイスとしてディジタルインターフェイスを選択した場合、次のように設定される。なお、ここでは、記載上の利便のために、コンピュータなどのプログラミング言語であるC言語的な表現を用いている。
if (quantizer_scale == 1) M=16;
else if (quantizer_scale == 2) M=15;
else if (quantizer_scale == 3) M=14;
else if (quantizer_scale == 4) M=13;
else if (quantizer_scale == 5) M=12;
else if (quantizer_scale == 6) M=11;
else M=10;
【0068】
これによれば、quantiser_scaleの値が〔1〕の場合は、値Mが〔16〕、quantizer_scaleの値が〔2〕の場合は、値Mが〔15〕、quantizer_scaleの値が〔3〕の場合は、値Mが〔14〕、・・・(以下同様)・・・、とされ、quantizer_scaleの値が〔7〕以上では、値Mが〔10〕とされる。このようなパラメータMの変更により、quantizer_scaleに対応して丸め精度を変更する演算が実現される。すなわち、quantizer_scale(量子化スケール)の値が小さいほど丸め精度が高くされ細かい、量子化スケール値が大きくなると丸め精度が低くされ、より粗く量子化が行われることになる。このように、値Mにより丸め精度が設定される。
【0069】
以上のような演算によってDCT係数F(v,u)を量子化し、量子化後のDCT係数QF(v,u)を求める。このような量子化では、DCT係数の振幅を増大させないように量子化することが可能となる。この結果、符号化ノイズを押さえ、特に画像編集等の画素シフト処理を考慮したダビング時に有効である。
【0070】
さらに、量子化スケール(quantiser_scale)値に応じて量子化丸めの精度が制御されるので、圧縮が容易な画像、すなわちquantiser_scale値が小さい場合と、圧縮が難しい画像、すなわちquantiser_scale値が大きい場合とで、別々に量子化丸めの精度が設定される。そのため、画像の性質に応じて最適な量子化を行なうことができ、画像圧縮処理に伴う画像劣化を最小限に抑制することができる。
【0071】
ここで、入力セレクト信号により上述の図1におけるアナログ入力部120が選択され、ビデオ信号の入力インターフェイスとしてアナログインターフェイスが用いられる場合について考える。ビデオ信号の入力インターフェイスとしてアナログインターフェイスを用いる場合、従来技術で既に説明したように、上述のようなディジタルインターフェイスを用いた場合と同じ条件で量子化スケールを設定し量子化を行うと、アナログ回路特有の不安定要因により、ノイズ成分が強調されS/Nが悪化してしまうことになる。
【0072】
そこで、この発明の実施の一形態では、MPEGにおける量子化過程における小数部の丸めを行う際に、量子化丸め精度を量子化スケール(quantizer_scale)の値毎に設定可能とし、さらに、ディジタルインターフェイス環境とアナログインターフェイス環境とでそれぞれ別々の量子化丸め精度を設定する。これにより、ディジタルインターフェイスおよびアナログインターフェイスの両インターフェイスにおける量子化丸め精度の最適化が実現される。
【0073】
一例として、上述した式(2)における値Mを、以下のように設定する。なお、ここでは、記載上の利便のために、コンピュータなどのプログラミング言語であるC言語的な表現を用いている。
Figure 0003763276
【0074】
すなわち、SDI入力部101が選択され、ビデオ信号の入力インターフェイスとしてディジタルインターフェイスが用いられる場合には、上述の例と同様に、quantiser_scaleの値が〔1〕の場合は、値Mが〔16〕、quantizer_scaleの値が〔2〕の場合は、値Mが〔15〕、quantizer_scaleの値が〔3〕の場合は、値Mが〔14〕、・・・(以下同様)・・・、とされ、quantizer_scaleの値が〔7〕以上では、値Mが〔10〕とされる。
【0075】
一方、アナログ入力部120が選択され、ビデオ信号の入力インターフェイスとしてアナログインターフェイスが用いられる場合には、ディジタルインターフェイスにおける各quantizer_scale値に対応する値Mが1ずつ小さくされる。すなわち、quantiser_scaleの値が〔1〕の場合は、値Mが〔15〕、quantizer_scaleの値が〔2〕の場合は、値Mが〔14〕、quantizer_scaleの値が〔3〕の場合は、値Mが〔13〕、・・・(以下同様)・・・、とされ、quantizer_scaleの値が〔7〕以上では、値Mが〔9〕とされる。
【0076】
このように、この実施の一形態では、ビデオ信号の入力インターフェイスとしてアナログインターフェイスが選択された場合に、quantiser_scale値毎に設定可能な量子化丸め精度を、ディジタルインターフェイスにおける設定値より小さくし、より切り捨てが行われる方向にシフトされるように設定する。これにより、DCT係数は、その振幅をさらに増大させないように量子化される。そのため、符号化ノイズと共に、アナログインターフェイス特有のノイズなども抑える事が可能となり、画質を最適化できる。
【0077】
図7は、上述したMPEGエンコーダ103の一例の構成を、より具体的に示す。MPEGエンコーダ103は、入力フィールドアクティビティ平均化処理部103A、プリエンコード処理部103Bおよびエンコード部103Cからなる。入力フィールドアクティビティ平均化処理部103Aでは、入力されたビデオデータのアクティビティ(重み付け係数)の平均値が求められてプリエンコード処理部103Bに渡される。プリエンコード処理部103Bでは、このアクティビティの平均値を用いて入力ビデオデータの量子化による発生符号量が見積もられる。この見積もり結果に基づき、エンコード部103Cにおいて、符号量制御しながら入力ビデオデータに対する実際の量子化が行われ、量子化されたビデオデータに対しさらに可変長符号化がなされ、MPEG ESとされて出力される。
【0078】
なお、タイミングジェネレータTG220は、例えば図1のタイミングジェネレータTG103から供給された水平同期信号HD、垂直同期信号VDおよびフィールド同期信号FLDに基づき、MPEGエンコーダ103内で必要とされるタイミング信号を生成し出力する。また、CPU I/Fブロック221は、図1のシスコン117とのインターフェイスであり、CPU I/Fブロック221を介してやりとりされた制御信号やデータにより、MPEGエンコーダ103における動作が制御される。
【0079】
先ず、入力フィールドアクティビティ平均化処理部103Aの処理について説明する。SDI入力部101において、操作パネル122の操作に応じてシスコン117から出力される入力セレクト信号に基づき、ビデオ信号の入力インターフェイスとして、アナログ入力部120を介して入力されるアナログインターフェイスおよびSDI入力部101に直接的に入力されるディジタルインターフェイスの何方を用いるかが選択される。
【0080】
SDI入力部101から出力されMPEGエンコーダ103に入力されたビデオデータは、入力部201に供給され、メインメモリ203に格納するのに適したインターフェイスに変換されると共に、パリティチェックがなされる。入力部201から出力されたビデオデータは、ヘッダ作成部202に供給され、垂直ブランキング区間などを利用してMPEGにおける、sequence_header 、 quantizer_matrix、 gop_header などの各ヘッダが抽出される。抽出された各ヘッダは、メインメモリ203に格納される。これらのヘッダは、主に、CPU I/Fブロック221から指定される。また、ヘッダ作成部202において、垂直ブランキング区間以外では、入力部201から供給されたビデオデータがメインメモリ203に格納される。
【0081】
メインメモリ203は、画像のフレームメモリであり、ビデオデータの再配列やシステムディレイの吸収などが行われる。ビデオデータの再配列は、例えば図示されないアドレスコントローラによりメインメモリ203からの読み出しアドレスを制御されることによりなされる。なお、図中、メインメモリ203のブロック中に記載される8ライン、0.5フレームおよび1フレームは、ディレイ値であり、メインメモリ203からのリードタイミングが示される。これらは、タイミングジェネレータTG220の指令に基づき適切に制御される。
【0082】
ラスタスキャン/ブロックスキャン変換部204は、ライン毎にメインメモリ203に格納されたビデオデータを、MPEGで扱うマクロブロック毎に切り出して後段のアクティビティ部205に送る。
【0083】
MPEGで扱うマクロブロックは、16画素×16ラインのマトリクスである。一方、このMPEGエンコーダ103では、第1フィールドだけによるアクティビティを求める処理を行う。そのため、第1フィールドの8ラインまでがメインメモリ203に格納された時点で処理を開始することができる。なお、実際には、タイミングジェネレータTG220からの指令にて処理が適切に開始される。
【0084】
アクティビティ部205は、マクロブロック毎のアクティビティを計算する。このMPEGエンコーダ103においては、第1フィールドだけからアクティビティが計算され、その計算結果がフィールドアクティビティ信号field_actとして出力される。信号field_actは、平均化部206に供給され、1フィールド分が積算され、その平均値avg_actが求められる。平均値avg_actは、後述するプリエンコード処理部103Bのアクティビティ部209に供給される。アクティビティ部209では、この平均値avg_actを用いてプリエンコード処理が行われる。
【0085】
したがって、第1フィールドにおけるアクティビティの平均値が判明した後、その平均値を用いて、適応量子化を考慮したプリエンコード処理を行うことが可能となる。
【0086】
次に、プリエンコード処理部103Bについて説明する。ラスタスキャン/ブロックスキャン変換部207Aは、上述したラスタスキャン/ブロックスキャン変換部204と基本的には同様の処理を行う。但し、このラスタスキャン/ブロックスキャン変換部207Aは、符号量の見積もりを行うプリエンコード処理のために行われるため、第1フィールドおよび第2フィールドのビデオデータが共に必要とされる。そのため、ラスタスキャン/ブロックスキャン変換部207Aでは、第2フィールドの8ラインまでがメインメモリ203に格納された時点で、MPEGで扱う16画素×16ラインのサイズのマクロブロックを構成することが可能となり、この時点で処理を開始することができる。なお、実際には、タイミングジェネレータTG220からの指令によって、処理が適切に開始される。
【0087】
ラスタスキャン/ブロックスキャン変換部207Aから出力されたビデオデータは、DCTモード部208に供給される。DCTモード部208は、フィールドDCT符号化モードか、またはフレームDCT符号化モードかの何れを用いて符号化するかを決める。
【0088】
ここでは、実際に符号化するのではなく、垂直方向に隣接した画素間差分値の絶対値和をフィールドDCT符号化モードで計算したものと、フレームDCT符号化モードで計算したものとが比較され、その値が小さい符号化モードが選択される。選択結果は、DCTモードタイプデータdct_typとしてストリーム中に一時的にフラグとして挿入され、後段に伝えられる。
【0089】
アクティビティ部209は、上述したアクティビティ部部205と、基本的には同様の処理を行う。ただし、このアクティビティ部209では、上述のように、プリエンコード処理を行うためのもので、第1フィールドおよび第2フィールドのデータが共に用いられて、マクロブロック毎のアクティビティが計算される。アクティビティを求めた後に、上述した平均化部206から得られるフィールドアクティビティの平均値avg_actを用いて、正規化アクティビティNactが求められる。正規化アクティビティNactは、正規化アクティビティデータnorm_actとしてストリーム中に一時的にフラグとして挿入され、後段に伝えられる。
【0090】
アクティビティ部209の出力は、DCT部210Aに供給される。DCT部210Aでは、供給されたマクロブロックを8画素×8画素からなるDCTブロックに分割し、DCTブロックに対して2次元DCTが行われ、DCT係数が生成される。DCT係数は、量子化テーブル部211Aに供給される。
【0091】
量子化テーブル部211Aでは、DCT部210Aで変換されたDCT係数に対して量子化マトリクス(quantizer_matrix)による量子化が行われる。量子化テーブル部211Aの出力は、複数のQ_n(量子化)部212、212、・・・、VLC部213、213、・・・、積算部Σ214、214、・・・、ならびに、積算部Σ215、215、・・・とからなる多段階の量子化部に供給される。量子化テーブル部211Aで量子化されたDCT係数は、この多段階ステップの量子化部で多段階に量子化される。
【0092】
DCT係数は、Q_n部212、212、・・・において、それぞれ異なった量子化スケール(quantizer_scale)Qを用いて量子化される。なお、量子化スケールQの値は、例えばMPEG2の規格によって予め決められており、Q_n部212、212、・・・は、この規格に基づき、例えば31個の量子化器で構成される。このとき、n=31であって、Q_n部212、212、・・・は、Q_1部、Q_2部、・・・、Q_31部である。そして、各量子化器がそれぞれに割り振られた量子化スケールQnを用いて、DCT係数の量子化が合計で31ステップ、行われる。以下では、Q_n部212、212、・・・のそれぞれに対応する量子化スケール値を量子化スケールQn値とする。
【0093】
Q_n部212、212、・・・において、上述した式(1)および式(2)を用いて、DCT係数の量子化がなされる。このとき、上述したように、丸め精度を設定する値である値Mが各量子化スケールQnの値に応じてQ_n部212、212、・・・に対してそれぞれ設定される。さらに、この実施の一形態では、ビデオ信号の入力インターフェイスとしてアナログインターフェイスおよびディジタルインターフェイスの何れが選択されたかにより、Q_n部212、212、・・・のそれぞれに設定される値Mが切り換えられる。
【0094】
例えば、Q_n部212、212、・・・のそれぞれには、アナログインターフェイスに対応した値M(値Maとする)およびディジタルインターフェイスに対応した値M(値Mdとする)が、割り当てられた量子化スケールQnに応じて予め格納される。操作パネル122に対する操作に応じてシスコン117から入力セレクト信号が出力され、SDI入力部101においてアナログインターフェイスおよびディジタルインターフェイスのうち何れかが選択される。それと共に、シスコン117から、丸め設定信号が出力される。この丸め設定信号は、CPU I/F221を介してQ_n部212、212、・・・にそれぞれ供給される。この丸め設定信号により、Q_n部212、212、・・・において、値Maおよび値Mdが切り換えられる。
【0095】
なお、この丸め設定信号は、後述するテーブル222に対する、量子化スケール値Qnと値Mとの組み合わせの、アナログインターフェイスおよびディジタルインターフェイスそれぞれに対応したセットのシスコン117からのロードを制御する、テーブル制御信号としても用いることができる。
【0096】
Q_n部212、212、・・・において、入力インターフェイスに応じた値Mに基づく丸め精度でそれぞれ量子化された、量子化スケールQn毎のDCT係数は、VLC部213、213、・・・にそれぞれ供給される。量子化スケールQn毎のDCT係数は、VLC部213、213、・・・において、ジグザグスキャンなどのスキャニングが施され、2次元ハフマンコードなどに基づくVLCテーブルが参照されてそれぞれ可変長符号化される。
【0097】
VLC部213、213、・・・で可変長符号化されたデータは、それぞれ対応する積算部Σ214、214、・・・に供給され、それぞれマクロブロック毎に発生符号量が積算される。マクロブロック毎の発生符号量は、各量子化スケールQn毎にメインメモリ203に供給され、ストリーム中に一時的にフラグとして挿入され、後段に伝えられる。上述のように31種類の量子化器を用いる場合には、それぞれに対応する31種類の発生符号量がマクロブロック毎に得られることになる。
【0098】
また、積算部Σ214、214、・・・から出力されたマクロブロック毎の発生符号量は、それぞれ積算部Σ215、215、・・・に供給される。積算部Σ215、215、・・・は、アクティビティ部209で求めた正規化アクティビティデータnorm_actを用いて、mquant = Q_n×norm_actとして求めた、視覚特性を考慮したquantizer_scale(=mquant)で量子化した場合のマクロブロック毎の発生符号量に対応する符号量を、積算部Σ214で求めたマクロブロック毎の発生符号量の中から選択し、それをフレーム分積算する。
【0099】
積算部Σ215、215、・・・で量子化スケールQn毎にそれぞれフレーム分積算された値は、そのフレームにおける発生符号量(フレームデータレート)とされて、後述するレートコントロール部217に供給される。なお、上述のように31種類の量子化器を用いる場合には、それぞれに対応する31種類の発生符号量がフレーム毎に得られることになる。
【0100】
次に、エンコード処理部103Cについて説明する。エンコード処理部103Cでは、最終的なエンコード処理が行われる。上述したように、プリエンコード処理部103Bにおいて、様々な量子化を行った場合の1フレーム分の発生符号量が見積もられる。エンコード処理部103Cでは、この1フレーム分で見積もられた発生符号量に基づき、予め設定された目標発生符号量を絶対に超えないように、エンコードが行われ、MPEG ESが出力される。
【0101】
エンコード処理部103Cで用いられるデータは、既にメインメモリ203に格納されているが、上述したように、プリエンコード処理部103Bにより様々な量子化を行った場合の1フレームにおける発生符号量が見積もられた時点で処理を開始することができる。エンコード処理部103Cの各部における処理は、上述と同様に、タイミングジェネレータTG220からの指令に基づき適切に開始される。
【0102】
メインメモリ203から読み出されたビデオデータは、ラスタスキャン/ブロックスキャン変換部207Bにおいて、上述のラスタスキャン/ブロックスキャン変換部207Aと同様の処理をされて16画素×16ラインのマクロブロックが切り出される。切り出されたマクロブロックは、DCTモード部216に供給される。
【0103】
DCTモード部216では、、上述のDCTモード部208と同様に、フィールドDCT符号化モードおよびフレームDCT符号化モードの内何れを用いて符号化するかが決められる。このとき、既にDCTモード部208において符号化モードが決められ、その結果がDCTタイプデータdct_typとしてストリーム中に一時的に挿入されている。DCTモード部216では、ストリーム中に挿入されたこのDCTタイプデータdct_typを検出し、検出されたDCTタイプデータdct_typに基づきフィールド符号化モードおよびフレーム符号化モードを切り換える。
【0104】
DCTモード部216から出力されたマクロブロックは、DCT部210Bに供給され、上述のDCT部210Aと全く同様にして8画素×8画素のDCTブロック単位で2次元DCTされる。
【0105】
量子化テーブル部211Bは、上述の量子化テーブル部211Aと全く同様にして、DCT部210Bで変換されたDCT係数に対して量子化マトリクスによる量子化が行われる。量子化テーブル部211Bで量子化されたDCT係数は、レートコントロール部217に供給される。
【0106】
レートコントロール部217では、上述したプリエンコード処理部103Bにおいて積算部Σ215、215、・・・で得られた、各量子化スケールQn毎のフレームデータレートの中から、所定に設定される1フレーム当たりの最大発生符号量を超えないもので、且つ、最も設定値に近いものが選択される。そして、選択されたフレームデータレートに対応する量子化器において用いられたマクロブロック毎の量子化スケール(mquant)が、ストリーム中に挿入された正規化アクティビティデータnorm_actから再度求められ、量子化部218に供給される。
【0107】
なお、1フレーム当たりの最大発生符号量は、例えばシスコン117により設定され、CPU I/F221を介してレートコントロール部217に伝えられる。
【0108】
また、この際、シスコン117で設定されCPU I/F221を介して伝えられる、1フレームあたりの最大発生符号量との差分を超えない範囲で、マクロブロック毎に量子化スケール(mquant)の値を1サイズ小さくするようにできる。これにより、シスコン117で設定されCPU I/F221を介して伝えられる1フレーム当たりの最大発生符号量に近付け、高画質を実現することが可能である。
【0109】
量子化部218では、レートコントロール部217により上述のようにして指定される量子化スケール(quantizer_scale)により、量子化テーブル部211Bで量子化されたDCT係数の量子化が行われる。このとき、レートコントロール部217から与えられる量子化スケールは、正規化アクティビティデータnorm_actから求められた量子化スケール(mquant)の値であるため、視覚特性が考慮された適正量子化が行われることになる。
【0110】
量子化部218では、上述した式(1)および式(2)を用いてDCT係数の量子化がなされる。このとき、上述したように、丸め精度を設定する値である値Mが、用いられる量子化スケールQnの値に応じて設定される。さらに、この実施の一形態では、ビデオ信号の入力インターフェイスとしてアナログインターフェイスおよびディジタルインターフェイスの何れが選択されたかにより、値Mが切り換えられる。
【0111】
量子化部218には、量子化スケールQn値のそれぞれに対する値Mの、アナログインターフェイスに対応したセットまたはディジタルインターフェイスに対応したセットがシスコン117によりCPU I/F221を介してロードされ格納されるテーブル222が接続される。
【0112】
すなわち、このテーブル222には、既に説明した、アナログインターフェイスに対応するものとしては、量子化スケール値=1に対しては値M=15、量子化スケール値=2に対しては値M=14、量子化スケール値=3に対しては値M=13、量子化スケール値=4に対しては値M=12、量子化スケール値=5に対しては値M=11、量子化スケール値=6に対しては値M=10、量子化スケール値≧7に対しては値M=9のセットと、ディジタルインターフェイスに対応するものとしては、量子化スケール値=1に対しては値M=16、量子化スケール値=2に対しては値M=15、量子化スケール値=3に対しては値M=14、量子化スケール値=4に対しては値M=13、量子化スケール値=5に対しては値M=12、量子化スケール値=6に対しては値M=11、量子化スケール値≧7に対しては値M=10のセットとが、入力セレクト信号によりアナログインターフェイスおよびディジタルインターフェイスのうち何方が選択されたかに応じて、シスコン117からCPU I/F221を介してロードされ格納される。
【0113】
なお、これは一例であって、量子化スケール値と値Mとの組み合わせは、この例に限定されない。また、アナログインターフェイスおよびディジタルインターフェイスにそれぞれ対応する量子化スケールQn値と値Mとのセットを、予めテーブル222に格納しておくこともできる。この場合には、例えば選択された入力インターフェイスに対応するセットを、丸め設定信号に基づきテーブル222から読み出すように制御される。
【0114】
量子化部218に対して、アナログインターフェイスおよびディジタルインターフェイスの選択に伴いシスコン117から出力される、丸め設定信号がCPUI/F221を介して供給される。この丸め設定信号に基づき、テーブル222に対して、上述の量子化スケールQn値のそれぞれに対する値Mの、アナログインターフェイスに対応したセットと、ディジタルインターフェイスに対応したセットとのうち、入力セレクト信号による選択に対応したセットがロードされる。例えば、アナログインターフェイスが選択された場合には、アナログインターフェイスに対応したセットがテーブル222にロードされ、ロードされたセットに基づき、量子化部218における量子化の際の丸め精度が量子化スケールQn値毎に設定される。
【0115】
このようにして、アナログインターフェイスおよびディジタルインターフェイスの選択に応じて丸め精度が設定され、量子化部218で量子化されたDCT係数は、VLC部219に供給される。量子化されVLC部219に供給されたDCT係数は、ジグザグスキャンなどのスキャンニングが施され、2次元ハフマンコードに基づくVLCテーブルが参照されてそれぞれ可変長符号化される。さらに、可変長符号に対して、バイト単位で整列するようにビットシフトが施され、MPEG ESとされて出力される。
【0116】
なお、上述では、MPEGエンコーダ103における処理がハードウェアにより行われるように説明したが、これはこの例に限定されない。MPEGエンコーダ103の処理は、ソフトウェアによっても同様に実現可能なものである。例えば、コンピュータ装置にビデオ信号のアナログおよびディジタルの入力インターフェイスを設け、コンピュータ上に搭載されたソフトウェアによりCPUおよびメモリなどを利用して実行することができる。また、上述のディジタルVTRの構成において、MPEGエンコーダ103をCPUおよびメモリに置き換えたような構成としてもよい。
【0117】
図8〜図10は、MPEGエンコーダ103の処理をソフトウェアで行う場合の一例のフローチャートである。これら図8〜図10のフローチャートによる処理は、上述したハードウェアによる処理と同様なものであるので、以下では、ハードウェアにおける処理と対応させながら、概略的に説明する。なお、図8〜図10において、符号AおよびBは、それぞれ対応する符号に処理が移行することを示す。
【0118】
図8に示されるステップS1〜S7は、上述の入力フィールドアクティビティ平均化処理部103Aによる処理に対応する。図9に示されるステップS11〜S21は、上述のプリエンコード処理部103Bに対応する。また、図10に示されるステップS31〜S38は、上述のエンコード処理部103Cに対応する。
【0119】
処理の開始に先んじて、ビデオ信号の入力インターフェイスとしてアナログインターフェイスおよびディジタルインターフェイスのうち何れを用いるかが選択される。選択結果は、例えばメモリに一旦格納される。
【0120】
図8において、最初のステップS1で、アナログインターフェイスおよびディジタルインターフェイスのうち選択された入力インターフェイスを介してビデオデータが取り込まれる。次のステップS2で、取り込まれたビデオデータから、垂直ブランキング区間でMPEGにおける各ヘッダが抽出されメモリに格納される。垂直ブランキング区間以外では、取り込まれたビデオデータがメモリに格納される。
【0121】
ステップS3では、ビデオデータがラスタスキャンからブロックスキャンへと変換され、マクロブロックが切り出される。これは、例えばメモリに格納されたビデオデータを読み出す際の読み出しアドレスを制御することでなされる。ステップS4で、マクロブロックに切り出されたビデオデータに対して第1フィールドによるアクティビティ計算がなされ、計算結果のアクティビティActibity(act)がステップS5で積算され、積算値sumとしてメモリに格納される。これらステップS3〜S5までの処理は、ステップS6において第1フィールドの最終マクロブロックの処理が終了したと判断されるまで繰り返される。すなわち、積算値sumは、1フィールド分のマクロブロックのアクティビティの合計となる。
【0122】
ステップS6において1フィールドの最終マクロブロックまで処理が終了したと判断されたら、ステップS7で、メモリに格納された積算値sumが1フィールド分のマクロブロック数で除され、1フィールド分のアクティビティが平均化されたフィールドアクティビティの平均値Actibity(avg_act)が求められ、メモリに格納される。
【0123】
フィールドアクティビティの平均値Actibity(avg_act)が求められると、処理は図9のステップS11に移行する。ステップS11では、上述のステップS3と同様に、メモリに格納されたビデオデータがラスタスキャンからブロックスキャンへと変換され、マクロブロックが切り出される。
【0124】
次のステップS12で、DCTをフィールドDCT符号化モードおよびフレームDCT符号化モードの何れで行うかが選択され、選択結果がDCTモードタイプデータdct_typとしてメモリに格納される。ステップS13では、第1および第2フィールドが共に用いられて、マクロブロック毎のアクティビティが計算され、上述のステップS7で求められメモリに格納されたフィールドアクティビティの平均値Actibity(avg_act)を用いて正規化アクティビティActibity(norm_act)が求められる。求められた正規化アクティビティActibity(norm_act)は、メモリに格納される。
【0125】
次のステップS14で、上述のステップS11でビデオデータから切り出されたマクロブロックが8画素×8画素からなるDCTブロックに分割され、このDCTブロックに対して2次元DCTが行われる。2次元DCTによりDCTブロックが変換されたDCT係数は、ステップS15で量子化テーブル(quantizer_table)による量子化がなされ、処理はステップS16に移行される。
【0126】
ステップS16〜S20の処理を、量子化スケール(quantizer_scale)Qn値それぞれについて行うように繰り返すことで、上述のQ_n部212、212、・・・、VLC部213、213、・・・、積算部Σ214、214、・・・、ならびに、積算部Σ215、215、・・・に相当する処理が行われる。すなわち、ステップS16で、上述した式(1)および式(2)に基づき、DCT係数に対して量子化スケールQ=1での量子化が行われ、ステップS17で、VLCテーブルが参照されて量子化されたDCT係数が可変長符号化される。そして、ステップS18で可変長符号化によるマクロブロックにおける発生符号量が計算され、ステップS19で、ステップS18で求められたマクロブロック毎の発生符号量が1フレーム分、積算される。ステップS20で次の量子化スケールQnがあるか否かが判断され、次の量子化スケールQnがあると判断されたら、処理はステップS16に戻され、次の量子化スケールQnに基づく処理が行われる。量子化スケールQn毎の1フレーム分の発生符号量は、それぞれメモリに格納される。
【0127】
なお、ステップS16の処理において、量子化の際の丸め精度を設定する値である値Mが各量子化スケールQnの値に応じてそれぞれ設定される。さらに、ビデオ信号の入力インターフェイスとしてアナログインターフェイスおよびディジタルインターフェイスの何れが選択されたかにより、上述したようにして値Mが切り換えられる。これら、アナログインターフェイスおよびディジタルインターフェイスのそれぞれに対応した各量子化スケールQnの値は、例えばC言語的な表現を用いて上述したようにプログラム的に発生させてもよいし、予めメモリなどの記憶媒体に格納しておいたものを用いることもできる。
【0128】
ステップS20で、全ての量子化スケールQnの値についてフレームにおける発生符号量の積算値が求められたとされれば、ステップS21で、1フレームの最終マクロブロック(MB)まで処理が終了したかどうかが判断され、最終マクロブロックまでの処理が終了していなければ、処理がステップS11に戻される。最終マクロブロックまでの処理が終了され1フレーム分の発生符号量が見積もられれば、処理は図10のステップS31に移行され、実際のエンコード処理が行われる。
【0129】
ステップS31では、上述のステップS11と同様に、メモリに格納されたビデオデータがラスタスキャンからブロックスキャンへと変換され、マクロブロックが切り出される。次のステップS32では、上述のステップS12でメモリに格納されたDCTモードタイプデータdct_typに基づきDCT符号化モードが設定される。
【0130】
ステップS33では、ステップS31でビデオデータから切り出されたマクロブロックが8画素×8画素からなるDCTブロックに分割され、このDCTブロックに対して次元DCTが行われる。2次元DCTによりDCTブロックが変換されたDCT係数は、ステップS34で量子化テーブル(quantizer_table)による量子化がなされ、処理はステップS35に移行される。
【0131】
ステップS35では、上述したステップS11〜S21において見積もられた、量子化スケールQn毎の1フレーム分の発生符号量に基づき、実際のエンコード処理において発生される符号量の制御を行うために、後述するステップS36で用いられる量子化スケールQnがマクロブロック毎に設定される。
【0132】
そして、処理はステップS36に移行され、ステップS35で設定された量子化スケールQnを用いて、ステップS34で量子化テーブルを用いて量子化されたDCT係数の量子化が行われる。なお、このステップS36では、量子化に用いられる量子化スケールQnの値と、ビデオデータの入力インターフェイスとしてアナログおよびディジタルの何れが選択されたかの選択結果とに基づき、量子化の際の丸め精度を設定する値Mがマクロブロック毎に設定される。そして、値Mにより設定された丸め精度で以て、マクロブロックの量子化がなされる。
【0133】
ステップS36で量子化されたDCT係数は、次のステップS37でVLCテーブルが参照され可変長符号化される。そして、ステップS38で1フレームの最終マクロブロックまで処理が行われたか否かが判断され、1フレームの最終マクロブロックまで処理されていないと判断されれば、処理がステップS31に戻され、次のマクロブロックに対する量子化処理および可変長符号化処理が行われる。一方、ステップS37で、1フレームの最終マクロブロックまで処理が行われたと判断されれば、1フレーム分のエンコード処理が終了したとされる。
【0134】
なお、上述では、ステップS11〜S21までのプリエンコード処理と、ステップS31〜S38までのエンコード処理とを別々の処理として説明したが、これはこの例に限定されない。例えば、ステップS11〜S21において発生符号量の見積もりにより得られたデータをメモリに格納し、そこから実際のエンコード処理により得られるデータを選択して取り出すようにする。これにより、ステップS31〜S38の処理をステップS11〜S21による処理に含まれるループとして組み込むことができる。
【0135】
【発明の効果】
以上説明したように、この発明は、量子化の際の丸め精度を設定する値を量子化スケール値に応じて用意していると共に、ビデオ信号の入力インターフェイスとしてアナログインターフェイスおよびディジタルインターフェイスのうちの何れが選択されたかにより、量子化スケール毎の丸め精度を異ならせている。そのため、安定系のデジタルインターフェースを選択した場合には、微少振幅部の解像度を残しつつ画質が最適化され、且つ、不安定要因の存在するアナログインターフェースが選択された場合には、量子化スケール(quantizer_scale)値毎に設定可能な量子化丸め精度をディジタルインターフェースにおける設定値より切り捨て傾向に設定することで、アナログインターフェース特有のノイズなどを強調する事なく画質を最適化できる効果がある。
【0136】
すなわち、この発明を用いることで、デジタルインターフェースおよびアナログインターフェースのそれぞれにおいて、最適な画質設定を施すことが可能となる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の一形態が適用されたディジタルVTRのの一例の構成を示すブロック図である。
【図2】実施の一形態によるディジタルVTRにおけるMPEGエンコーダの一例の構成を概略的に示すブロック図である。
【図3】 quantiser_scale =10で丸め精度が4捨5入である場合の丸め処理を示す略線図である。
【図4】 quantiser_scale =10で丸め精度が5捨6入である場合の丸め処理を示す略線図である。
【図5】 quantiser_scale =10で丸め精度が6捨7入である場合の丸め処理を示す略線図である。
【図6】DCT係数の各係数に対する一例の重み付け係数(Intra_Quantizser_Matrix)を示す略線図である。
【図7】MPEGエンコーダの一例の構成をより具体的に示すブロック図である。
【図8】MPEGエンコーダの処理をソフトウェアで行う場合の一例のフローチャートである。
【図9】MPEGエンコーダの処理をソフトウェアで行う場合の一例のフローチャートである。
【図10】MPEGエンコーダの処理をソフトウェアで行う場合の一例のフローチャートである。
【符号の説明】
101・・・SDI入力部、103・・・MPEGエンコーダ、106・・・MFC部、120・・・アナログ入力部、122・・・操作パネル、203・・・メインメモリ、205・・・アクティビティ部、206・・・平均化部、207A,207B・・・ラスタスキャン/ブロックスキャン変換部、209・・・アクティビティ部、210A,210B・・・DCT部、211A,211B・・・量子化テーブル部、212・・・Q_n(量子化)部、213・・・VLC部、214,215・・・積算部Σ、217・・・レートコントロール部、218・・・量子化部、222・・・テーブル

Claims (22)

  1. 入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化する信号処理装置において、
    アナログ方式のビデオ信号が入力され、入力された該アナログ方式のビデオ信号をディジタル方式のビデオ信号に変換して出力するアナログインターフェイス手段と、
    ディジタル方式のビデオ信号が入力されるディジタルインターフェイス手段と、
    上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち何れかを選択するインターフェイス選択手段と、
    上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち、上記インターフェイス選択手段により選択された側から出力されたビデオ信号をブロックに分割し、上記ビデオ信号に対して上記ブロック単位でDCT演算を行うDCT手段と、
    上記DCT手段により上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、
    上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記インターフェイス選択手段により上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、
    上記DCT手段により上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記量子化丸め精度設定手段により設定された上記量子化丸め精度とに基づき量子化する量子化手段と
    を有することを特徴とする信号処理装置。
  2. 請求項1に記載の信号処理装置において、
    上記量子化丸め精度設定手段は、上記アナログインターフェイス手段に対応する上記量子化丸め精度を、上記ディジタルインターフェイス手段に対応する上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定することを特徴とする信号処理装置。
  3. 請求項1に記載の信号処理装置において、
    上記量子化丸め精度設定手段は、上記量子化スケール値が大きい場合に対応する上記量子化丸め精度を、上記量子化スケール値が小さい場合に対応する場合の上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定することを特徴とする信号処理装置。
  4. 請求項1に記載の信号処理装置において、
    上記量子化手段により上記量子化された上記DCT係数を可変長符号化する可変長符号化手段をさらに有することを特徴とする信号処理装置。
  5. 入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化してビデオ信号を圧縮符号化する信号処理方法において、
    アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号に対してブロック単位でDCT演算を行うDCTのステップと、
    上記DCTのステップにより上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、
    上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記アナログインターフェイスおよび上記ディジタルインターフェイスのうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、
    上記DCTのステップにより上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記量子化丸め精度設定のステップにより設定された上記量子化丸め精度とに基づき量子化する量子化のステップと
    を有することを特徴とする信号処理方法。
  6. 入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化し記録媒体に記録する記録装置において、
    アナログ方式のビデオ信号が入力され、入力された該アナログ方式のビデオ信号をディジタル方式のビデオ信号に変換して出力するアナログインターフェイス手段と、
    ディジタル方式のビデオ信号が入力されるディジタルインターフェイス手段と、
    上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち何れかを選択するインターフェイス選択手段と、
    上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち、上記インターフェイス選択手段により選択された側から出力されたビデオ信号をブロックに分割し、上記ビデオ信号に対して上記ブロック単位でDCT演算を行うDCT手段と、
    上記DCT手段により上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、
    上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記インターフェイス選択手段により上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、
    上記DCT手段により上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記量子化丸め精度設定手段により設定された上記量子化丸め精度とに基づき量子化する量子化手段と、
    上記量子化手段で量子化された上記DCT係数を記録媒体に記録する記録手段と
    を有することを特徴とする記録装置。
  7. 請求項6に記載の記録装置において、
    上記量子化丸め精度設定手段は、上記アナログインターフェイス手段に対応する上記量子化丸め精度を、上記ディジタルインターフェイス手段に対応する上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定することを特徴とする記録装置。
  8. 請求項6に記載の記録装置において、
    上記量子化丸め精度設定手段は、上記量子化スケール値が大きい場合に対応する上記量子化丸め精度を、上記量子化スケール値が小さい場合に対応する場合の上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定することを特徴とする記録装置。
  9. 請求項6に記載の記録装置において、
    上記量子化手段により上記量子化された上記DCT係数を可変長符号化する可変長符号化手段をさらに有し、
    上記記録手段は、上記可変長符号化手段で上記可変長符号化された上記DCT係数を上記記録媒体に記録することを特徴とする記録装置。
  10. 入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化してビデオ信号を圧縮符号化し記録媒体に記録する記録方法において、
    アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号に対してブロック単位でDCT演算を行うDCTのステップと、
    上記DCTのステップにより上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、
    上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記アナログインターフェイスおよび上記ディジタルインターフェイスのうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、
    上記DCTのステップにより上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記量子化丸め精度設定のステップにより設定された上記量子化丸め精度とに基づき量子化する量子化のステップと、
    上記量子化のステップで量子化された上記DCT係数を記録媒体に記録する記録のステップと
    を有することを特徴とする記録方法。
  11. 入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化し記録媒体に記録すると共に、圧縮符号化されて記録媒体に記録されたDCT係数を再生する記録再生装置において、
    アナログ方式のビデオ信号が入力され、入力された該アナログ方式のビデオ信号をディジタル方式のビデオ信号に変換して出力するアナログインターフェイス手段と、
    ディジタル方式のビデオ信号が入力されるディジタルインターフェイス手段と、
    上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち何れかを選択するインターフェイス選択手段と、
    上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち、上記インターフェイス選択手段により選択された側から出力されたビデオ信号をブロックに分割し、上記ビデオ信号に対して上記ブロック単位でDCT演算を行うDCT手段と、
    上記DCT手段により上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、
    上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記インターフェイス選択手段により上記アナログインターフェイス手段および上記ディジタルインターフェイス手段のうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、
    上記DCT手段により上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記量子化丸め精度設定手段により設定された上記量子化丸め精度とに基づき量子化する量子化手段と、
    上記量子化手段で量子化された上記DCT係数を記録媒体に記録する記録手段と、
    上記記録手段により上記記録媒体に記録された上記DCT係数を再生する再生手段と
    を有することを特徴とする記録再生装置。
  12. 請求項11に記載の記録再生装置において、
    上記量子化丸め精度設定手段は、上記アナログインターフェイス手段に対応する上記量子化丸め精度を、上記ディジタルインターフェイス手段に対応する上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定することを特徴とする記録再生装置。
  13. 請求項11に記載の記録再生装置において、
    上記量子化丸め精度設定手段は、上記量子化スケール値が大きい場合に対応する上記量子化丸め精度を、上記量子化スケール値が小さい場合に対応する場合の上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定することを特徴とする記録再生装置。
  14. 請求項11に記載の記録再生装置において、
    上記量子化手段により上記量子化された上記DCT係数を可変長符号化する可変長符号化手段をさらに有し、
    上記記録手段は、上記可変長符号化手段で上記可変長符号化された上記DCT係数を上記記録媒体に記録することを特徴とする記録再生装置。
  15. 入力されたビデオ信号に対してブロック単位でDCT演算を行い得られたDCT係数を量子化して圧縮符号化し記録媒体に記録すると共に、圧縮符号化されて記録媒体に記録されたDCT係数を再生する記録再生方法において、
    アナログインターフェイスおよびディジタルインターフェイスのうち選択された側から出力されたビデオ信号に対してブロック単位でDCT演算を行うDCTのステップと、
    上記DCTのステップにより上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、
    上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記アナログインターフェイスおよび上記ディジタルインターフェイスのうち何れが選択されたかとに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、
    上記DCTのステップにより上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記量子化丸め精度設定のステップにより設定された上記量子化丸め精度とに基づき量子化する量子化のステップと、
    上記量子化のステップで量子化された上記DCT係数を記録媒体に記録する記録のステップと、
    上記記録のステップにより上記記録媒体に記録された上記DCT係数を再生する再生のステップと
    を有することを特徴とする記録再生方法。
  16. 入力されたビデオ信号に対してブロック単位でDCT演算を行い、得られたDCT係数を量子化して圧縮符号化する信号処理装置において、
    アナログ方式のビデオ信号がディジタル方式のビデオ信号に変換された第1のビデオ信号と、ディジタル方式の第2のビデオ信号のうち何れかを選択するビデオ信号選択手段と、
    上記ビデオ信号選択手段により選択されたビデオ信号をブロックに分割し、上記ブロック単位でDCT演算を行うDCT手段と、
    上記DCT手段により上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定手段と、
    上記ビデオ信号選択手段により選択されたビデオ信号の種類が上記アナログ方式のビデオ信号か上記ディジタル方式のビデオ信号かに応じて量子化丸め精度を設定する量子化丸め精度設定手段と、
    上記DCT手段により上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定手段により設定された上記量子化スケール値と、上記量子化丸め精度設定手段により設定された上記量子化丸め精度とに基づき量子化する量子化手段と
    を有することを特徴とする信号処理装置。
  17. 請求項16に記載の信号処理装置において、
    上記量子化丸め精度設定手段は、上記第1のビデオ信号に対応する上記量子化丸め精度を、上記第2のビデオ信号に対応する上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定する
    ことを特徴とする信号処理装置。
  18. 請求項16に記載の信号処理装置において、
    上記量子化丸め精度設定手段は、上記量子化スケール値が大きい場合に対応する上記量子化丸め精度を、上記量子化スケール値が小さい場合に対応する場合の上記量子化丸め精度よりも、より切り捨てる方向にシフトするように設定する
    ことを特徴とする信号処理装置。
  19. 請求項16に記載の信号処理装置において、
    上記量子化手段により上記量子化された上記DCT係数を可変長符号化する可変長符号化手段をさらに有する
    ことを特徴とする信号処理装置。
  20. 請求項16に記載の信号処理装置において、
    上記量子化丸め精度設定手段は、上記量子化スケール値設定手段により設定された上記量子化スケール値毎に上記量子化丸め精度を設定する
    ことを特徴とする信号処理装置。
  21. 入力されたビデオ信号に対してブロック単位でDCT演算を行い、得られたDCT係数を量子化して圧縮符号化する信号処理方法において、
    アナログ方式のビデオ信号がディジタル方式のビデオ信号に変換された第1のビデオ信号と、ディジタル方式の第2のビデオ信号のうち何れかを選択するビデオ信号選択のステップと、
    上記ビデオ信号選択のステップにより選択されたビデオ信号をブロックに分割し、上記ブロック単位でDCT演算を行うDCTのステップと、
    上記DCTのステップにより上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、
    上記ビデオ信号選択のステップにより選択されたビデオ信号の種類が上記アナログ方式のビデオ信号か上記ディジタル方式のビデオ信号かに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、
    上記DCTのステップにより上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記量子化丸め精度設定のステップにより設定された上記量子化丸め精度とに基づき量子化する量子化のステップと
    を有することを特徴とする信号処理方法。
  22. 入力されたビデオ信号に対してブロック単位でDCT演算を行い、得られたDCT係数を量子化して圧縮符号化する信号処理方法をコンピュータ装置に実行させる信号処理プログラムにおいて、
    上記信号処理方法は、
    アナログ方式のビデオ信号がディジタル方式のビデオ信号に変換された第1のビデオ信号と、ディジタル方式の第2のビデオ信号のうち何れかを選択するビデオ信号選択のステップと、
    上記ビデオ信号選択のステップにより選択されたビデオ信号をブロックに分割し、上記ブロック単位でDCT演算を行うDCTのステップと、
    上記DCTのステップにより上記ビデオ信号を上記ブロック単位でDCT演算して得られたDCT係数を量子化するための量子化スケール値を設定する量子化スケール値設定のステップと、
    上記ビデオ信号選択のステップにより選択されたビデオ信号の種類が上記アナログ方式のビデオ信号か上記ディジタル方式のビデオ信号かに応じて量子化丸め精度を設定する量子化丸め精度設定のステップと、
    上記DCTのステップにより上記DCT演算されて得られた上記DCT係数を、上記量子化スケール値設定のステップにより設定された上記量子化スケール値と、上記量子化丸め精度設定のステップにより設定された上記量子化丸め精度とに基づき量子化する量子化のステップと
    を有することを特徴とする信号処理プログラム。
JP2001361528A 2001-11-27 2001-11-27 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法 Expired - Fee Related JP3763276B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001361528A JP3763276B2 (ja) 2001-11-27 2001-11-27 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法
US10/305,044 US7260315B2 (en) 2001-11-27 2002-11-26 Signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361528A JP3763276B2 (ja) 2001-11-27 2001-11-27 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法

Publications (2)

Publication Number Publication Date
JP2003163891A JP2003163891A (ja) 2003-06-06
JP3763276B2 true JP3763276B2 (ja) 2006-04-05

Family

ID=19172170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361528A Expired - Fee Related JP3763276B2 (ja) 2001-11-27 2001-11-27 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法

Country Status (2)

Country Link
US (1) US7260315B2 (ja)
JP (1) JP3763276B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320260B1 (ko) * 2004-06-18 2013-10-23 톰슨 라이센싱 비디오 신호 데이터를 인코딩 및 디코딩하기 위한 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009487A1 (en) * 1993-09-28 1995-04-06 Sony Corporation High efficiency encoding/decoding device
US5832085A (en) * 1997-03-25 1998-11-03 Sony Corporation Method and apparatus storing multiple protocol, compressed audio video data
JPH10304363A (ja) 1997-05-01 1998-11-13 Canon Inc 画像信号処理装置及び方法
JPH10304362A (ja) 1997-05-01 1998-11-13 Canon Inc 画像信号処理装置及び方法
JP3803843B2 (ja) * 1997-09-09 2006-08-02 株式会社日立製作所 ディジタル信号記録装置及び記録再生装置及び受信記録再生装置

Also Published As

Publication number Publication date
US7260315B2 (en) 2007-08-21
JP2003163891A (ja) 2003-06-06
US20030123536A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US6516034B2 (en) Stream processing apparatus and method
US8411741B2 (en) Picture processing apparatus, picture processing method, picture processing program and recording medium
JP2002359853A (ja) 画像処理装置、画像処理方法、画像処理プログラムおよび記録媒体
JPWO2002080573A1 (ja) 量子化装置、量子化方法、量子化プログラムおよび記録媒体
JP3900155B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム、ならびに、量子化制御装置、量子化制御方法および量子化制御プログラム
US7289676B2 (en) Image processing apparatus, image processing method, image processing program, and recording medium
JP3763276B2 (ja) 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法
JP4135427B2 (ja) 画像処理装置および方法、ならびに、画像処理プログラム
CA2267830C (en) Data conversion method and apparatus and signal recording and reproduction apparatus utilizing same
JP3223715B2 (ja) デジタルビデオ信号の記録方法及び記録装置
JP3273601B2 (ja) 符号化装置および方法、データ記録再生装置および方法、並びに記録媒体
JP2003169330A (ja) 信号処理装置および方法、記録装置および方法、ならびに、記録再生装置および方法
JP2002290914A (ja) 記録再生装置及びそのバックサーチ方法
JP3152730B2 (ja) 帯域圧縮処理装置
JPH09135418A (ja) 画像記録装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees