JP3761079B2 - 全反射減衰を利用したセンサー - Google Patents

全反射減衰を利用したセンサー Download PDF

Info

Publication number
JP3761079B2
JP3761079B2 JP2001339512A JP2001339512A JP3761079B2 JP 3761079 B2 JP3761079 B2 JP 3761079B2 JP 2001339512 A JP2001339512 A JP 2001339512A JP 2001339512 A JP2001339512 A JP 2001339512A JP 3761079 B2 JP3761079 B2 JP 3761079B2
Authority
JP
Japan
Prior art keywords
light
total reflection
light beam
sensor
dielectric block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001339512A
Other languages
English (en)
Other versions
JP2003139691A (ja
Inventor
尚 大塚
充 沢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001339512A priority Critical patent/JP3761079B2/ja
Publication of JP2003139691A publication Critical patent/JP2003139691A/ja
Application granted granted Critical
Publication of JP3761079B2 publication Critical patent/JP3761079B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面プラズモンの発生を利用して試料中の物質を定量分析する表面プラズモンセンサー等の、全反射減衰を利用したセンサーに関し、特に詳細には、全反射減衰によって測定光に生じる暗線を光検出手段を用いて検出する全反射減衰を利用したセンサーに関するものである。
【0002】
【従来の技術】
金属中においては、自由電子が集団的に振動して、プラズマ波と呼ばれる粗密波が生じる。そして、金属表面に生じるこの粗密波を量子化したものは、表面プラズモンと呼ばれている。
【0003】
従来より、この表面プラズモンが光波によって励起される現象を利用して、試料中の物質を定量分析する表面プラズモンセンサーが種々提案されている。そして、それらの中で特に良く知られているものとして、 Kretschmann配置と称される系を用いるものが挙げられる(例えば特開平6−167443号参照)。
【0004】
上記の系を用いる表面プラズモンセンサーは基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されて試料に接触させられる金属膜と、光ビームを発生させる光源と、上記光ビームを誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られ、かつ表面プラズモン共鳴による全反射減衰が生じ得るように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態、つまり全反射減衰の状態を検出する光検出手段とを備えてなるものである。
【0005】
なお上述のように種々の入射角を得るためには、比較的細い光ビームを入射角を変えて上記界面に入射させてもよいし、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太い光ビームを上記界面に収束光状態であるいは発散光状態で入射させてもよい。前者の場合は、入射した光ビームの入射角の変化にしたがって反射角が変化する光ビームを、上記反射角の変化に同期して移動する小さな光検出器によって検出したり、反射角の変化方向に沿って延びるエリアセンサによって検出することができる。一方後者の場合は、種々の反射角で反射した各光ビームを全て受光できる方向に延びるエリアセンサによって検出することができる。
【0006】
上記構成の表面プラズモンセンサーにおいて、光ビームを金属膜に対して全反射角以上の特定入射角θSPで入射させると、該金属膜に接している試料中に電界分布をもつエバネッセント波が生じ、このエバネッセント波によって金属膜と試料との界面に表面プラズモンが励起される。エバネッセント光の波数ベクトルが表面プラズモンの波数と等しくて波数整合が成立しているとき、両者は共鳴状態となり、光のエネルギーが表面プラズモンに移行するので、誘電体ブロックと金属膜との界面で全反射した光の強度が鋭く低下する。この光強度の低下は、一般に上記光検出手段により暗線として検出される。
【0007】
なお上記の共鳴は、入射ビームがp偏光のときにだけ生じる。したがって、光ビームがp偏光で入射するように予め設定しておく必要がある。
【0008】
この全反射減衰(ATR)が生じる入射角θSPから表面プラズモンの波数が分かると、試料の誘電率が求められる。すなわち表面プラズモンの波数をKSP、表面プラズモンの角周波数をω、cを真空中の光速、εとεをそれぞれ金属、試料の誘電率とすると、以下の関係がある。
【0009】
【数1】
Figure 0003761079
試料の誘電率εが分かれば、所定の較正曲線等に基づいて試料中の特定物質の濃度が分かるので、結局、上記反射光強度が低下する入射角θSPを知ることにより、試料の誘電率つまりは屈折率に関連する特性を求めることができる。
【0010】
また、全反射減衰(ATR)を利用する類似のセンサーとして、例えば「分光研究」第47巻 第1号(1998)の第21〜23頁および第26〜27頁に記載がある漏洩モードセンサーも知られている。この漏洩モードセンサーは基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されたクラッド層と、このクラッド層の上に形成されて、試料に接触させられる光導波層と、光ビームを発生させる光源と、上記光ビームを上記誘電体ブロックに対して、該誘電体ブロックとクラッド層との界面で全反射条件が得られ、かつ光導波層での導波モードの励起による全反射減衰が生じ得るように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して導波モードの励起状態、つまり全反射減衰状態を検出する光検出手段とを備えてなるものである。
【0011】
上記構成の漏洩モードセンサーにおいて、光ビームを誘電体ブロックを通してクラッド層に対して全反射角以上の入射角で入射させると、このクラッド層を透過した後に光導波層においては、ある特定の波数を有する特定入射角の光のみが導波モードで伝搬するようになる。こうして導波モードが励起されると、入射光のほとんどが光導波層に取り込まれるので、上記界面で全反射する光の強度が鋭く低下する全反射減衰が生じる。そして導波光の波数は光導波層の上の試料の屈折率に依存するので、全反射減衰が生じる上記特定入射角を知ることによって、試料の屈折率や、それに関連する試料の特性を分析することができる。
【0012】
【発明が解決しようとする課題】
以上説明した従来の全反射減衰を利用したセンサーにおいては、プリズムと薄膜層との界面で反射した光ビームの強度を反射角毎に検出するために、前述したように光ビームの偏向に同期移動する光検出器や、広い受光面を有するCCDエリアセンサ等を用いていた。
【0013】
前者の場合は、全反射解消角の測定範囲に関して比較的大きなダイナミックレンジを確保できるが、その反面、機械的な駆動機構が必要になることから、試料分析を高速で行なうのは困難となっている。
【0014】
一方後者の場合は、高速分析が可能である反面、CCD等のエリアセンサの分解能、電荷蓄積のダイナミックレンジが低いことから、高い分析精度を確保するのは困難となっている。
【0015】
このような事情に鑑み、本出願人は先に、第1の反射角範囲と第2の反射角範囲にある反射光をそれぞれ2分割フォトダイオード等によって別個に検出し、それら各反射光の光強度検出信号を比較した結果に基づいて全反射解消角θSPを求める構成を提案した(特開平9−292334号公報参照)。
【0016】
この構成によれば、高感度で全反射解消角θSPを求めることができるが、この場合は、全反射解消角の変化範囲が2分割フォトダイオード等の受光範囲を超えて変化すると全反射解消角の測定は不可能になるので、ダイナミックレンジ(全反射解消角の測定範囲)はたかだか2〜3°程度とかなり小さい、という問題が認められる。
【0017】
そのため、本出願人はさらに、種々の角度の反射光を複数の受光素子によって別個に検出し、各受光素子が出力する光検出信号を、受光素子の並設方向に関して微分した結果に基づいて全反射解消角θSPを求める構成を提案した(特開平11−326194号公報参照)。
【0018】
上記構成の全反射減衰を利用したセンサーにおいて、誘電体ブロックと薄膜層との界面への光ビームの入射角θと、光検出手段の受光素子並設方向位置とは、一義的に対応している。一方、入射角θと上記界面からの反射光強度との関係は、前述した全反射解消角θSPにおいて反射光強度が極小値を取るような関係となる。この反射光強度が極小値を取る受光素子並設方向位置は、光検出手段の各受光素子が出力する光検出信号を、受光素子の並設方向に関して微分した微分値に基づいて求めることができる。すなわちこの微分値は、上記反射光強度が極小値を取る受光素子並設方向位置においてゼロとなる。したがって、上記微分値が最小値(信号強度変化開始付近)と最大値(信号強度変化終了付近)との間においてゼロとなる受光素子並設方向位置を求めることにより、その位置と一義的に対応している入射角θ、すなわち全反射解消角θSPを求めることができる。
【0019】
この構成によれば、各受光素子の並設方向は全反射解消角θSPの変化方向であるから、この全反射解消角θSPが大きく変化しても、受光素子の並設範囲(これは原理的にはいくらでも長くできる)内であればその角度θSPを検出することができるため、全反射解消角θSPを大きなダイナミックレンジで測定可能となる。
【0020】
ところで、一般に全反射減衰を利用したセンサーにおいては、誘電体ブロックと薄膜層との界面での反射角が大きい光ビーム程、反射光強度が低下する傾向にある。しかしながら、特開平11−326194号の構成の場合、光検出手段により検出された信号が全反射解消角θSPを軸に非対称である場合、上記微分値の最小値と最大値との間が非線形となるため、正確に全反射解消角θSPを求めることができない。
【0021】
本発明は上記問題に鑑みてなされたものであり、上記特開平11−326194号のような、複数の受光素子により検出された光検出信号を、受光素子の並設方向に関して微分した結果に基づいて全反射解消角θSPを求める構成の全反射減衰を利用したセンサーにおいて、全反射解消角θSPを精度良く測定することができる全反射減衰を利用したセンサーを提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明の第1の全反射減衰を利用したセンサーは、誘電体ブロックと、この誘電体ブロックの一面に形成されて、試料に接触させられる薄膜層と、光ビームを発生させる光源と、光ビームを誘電体ブロックに対して、誘電体ブロックと薄膜層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、複数の受光素子が所定方向に並設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設された光検出手段と、この光検出手段の各受光素子が出力する光検出信号を、受光素子の並設方向に関して微分する微分手段と、この微分手段による微分値に基づいて、前記界面での反射光強度が極小値を取る反射角を求める演算手段とを備えてなる全反射減衰を利用したセンサーにおいて、光検出手段により検出される光ビームに基づく非対称の信号の波形を略対称な波形に整形する信号波形整形手段を備えたことを特徴とするものである。
【0023】
また、本発明の第2の全反射減衰を利用したセンサーは、誘電体ブロックと、この誘電体ブロックの一面に形成されて、試料に接触させられる金属膜と、光ビームを発生させる光源と、光ビームを誘電体ブロックに対して、誘電体ブロックと金属膜との界面で全反射条件が得られるように種々の角度で入射させる光学系と、複数の受光素子が所定方向に並設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設された光検出手段と、この光検出手段の各受光素子が出力する光検出信号を、受光素子の並設方向に関して微分する微分手段と、この微分手段による微分値に基づいて、表面プラズモン共鳴に伴い前記界面での反射光強度が極小値を取る反射角を求める演算手段とを備えてなる全反射減衰を利用したセンサーにおいて、光検出手段により検出される光ビームに基づく非対称の信号の波形を略対称な波形に整形する信号波形整形手段を備えたことを特徴とするものである。
【0024】
さらに、本発明の第3の全反射減衰を利用したセンサーは、誘電体ブロックと、この誘電体ブロックの一面に形成されたクラッド層と、このクラッド層の上に形成されて、試料に接触させられる光導波層と、光ビームを発生させる光源と、光ビームを誘電体ブロックに対して、誘電体ブロックとクラッド層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、複数の受光素子が所定方向に並設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設された光検出手段と、この光検出手段の各受光素子が出力する光検出信号を、受光素子の並設方向に関して微分する微分手段と、この微分手段による微分値に基づいて、光導波層での導波モードの励起に伴い前記界面での反射光強度が極小値を取る反射角を求める演算手段とを備えてなる全反射減衰を利用したセンサーにおいて、光検出手段により検出される光ビームに基づく非対称の信号の波形を略対称な波形に整形する信号波形整形手段を備えたことを特徴とするものである。
【0025】
ここで、「略対称な波形に整形する。」とは、反射光強度が極小値となる位置を軸に略対称な波形に整形することを意味する。
【0026】
上記第1から第3の全反射減衰を利用したセンサーにおいて、信号波形整形手段は、誘電体ブロックと光検出手段との間に設けられた、光ビームの、強度の大きい側の角度に反射された光ビームの強度を低減させる光学部材としてもよい。
【0027】
この場合、光学部材は、強度の大きい側の角度に反射した光ビームに対する入射角を小さくした反射面を有する反射プリズム、もしくは強度の大きい側の角度に反射した光ビームに対する透過率を小さくした光学フィルタとすることが好ましい。なお、光学部材を反射プリズムとした場合は、反射面は平面に限らず、非球面としてもよい。
【0028】
また、上記のような光学部材を用いず、信号波形整形手段を、光検出手段により検出された光ビームに基づいた信号の波形に基づいて、信号波形を整形する整形処理手段を備えたものとしてもよい。
【0029】
この場合、整形処理手段は、各受光素子に接続された抵抗値の異なる抵抗としてもよいし、各受光素子に接続された増幅率の異なるアンプとしてもよいし、光検出手段により検出された光ビームに基づいた信号の波形に基づいて信号波形を整形する処理を行うソフトウェアとしてもよい。
【0030】
【発明の効果】
本発明の全反射減衰を利用したセンサーによれば、光検出手段により検出される光ビームに基づく非対称の信号の波形を反射光強度が極小値となる位置を軸に略対称な波形に整形する信号波形整形手段を設けたことにより、上記特開平11−326194号のような、複数の受光素子により検出された光検出信号を、受光素子の並設方向に関して微分した結果に基づいて全反射解消角θSPを求める構成の全反射減衰を利用したセンサーにおいて、上記微分値の最小値と最大値との間を略線形とすることができるため、全反射解消角θSPを精度良く測定することが可能となる。
【0031】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。本発明の第1の実施形態の全反射減衰を利用したセンサーは、表面プラズモン共鳴を利用した表面プラズモンセンサーであり、図1は表面プラズモンセンサーの側面形状を示すものである。
【0032】
この表面プラズモンセンサーは、例えば概略四角錐の一部が切り取られた形状とされた誘電体ブロック10と、この誘電体ブロック10の一面(図中の上面)に形成された、例えば金、銀、銅、アルミニウム等からなる金属膜12とを有している。
【0033】
誘電体ブロック10は例えば透明樹脂等からなり、金属膜12が形成された部分の周囲が嵩上げされた形とされ、この嵩上げされた部分10aは液体の試料11を貯える試料保持部として機能する。なお本例では、金属膜12の上にセンシング媒体30が固定されるが、このセンシング媒体30については後述する。
【0034】
誘電体ブロック10は金属膜12とともに、使い捨ての測定チップを構成しており、例えばターンテーブル31に複数設けられたチップ保持孔31aに1個ずつ嵌合固定される。誘電体ブロック10がこのようにターンテーブル31に固定された後、ターンテーブル31が一定角度ずつ間欠的に回動され、所定位置に停止した誘電体ブロック10に対して液体試料11が滴下され、該液体試料11が試料保持部10a内に保持される。その後さらにターンテーブル31が一定角度回動されると、誘電体ブロック10がこの図1に示した測定位置に送られ、そこで停止する。
【0035】
本実施形態の表面プラズモンセンサーは、上記誘電体ブロック10に加えてさらに、1本の光ビーム13を発生させる半導体レーザ等からなる光源14(以下、レーザ光源14という)と、上記光ビーム13を誘電体ブロック10に通し、該誘電体ブロック10と金属膜12との界面10bに対して、種々の入射角が得られるように入射させる光学系15と、上記界面10bで全反射した光ビーム13を平行光化するコリメーターレンズ16と、この平行光化された光ビーム13のうち、強度が高い部分を低減させる光学フィルタ50と、光学フィルタ50を透過した光ビーム13を検出する光検出手段17と、光検出手段17に接続された差動アンプアレイ18と、ドライバ19と、コンピュータシステム等からなる信号処理部20と、この信号処理部20に接続された表示手段21とを備えている。
【0036】
入射光学系15は、レーザ光源14から発散光状態で出射した光ビーム13を平行光化するコリメーターレンズ15aと、該平行光化された光ビーム13を上記界面10b上で収束させる集光レンズ15bとから構成されている。
【0037】
光ビーム13は、集光レンズ15bにより上述のように集光されるので、界面10bに対して種々の入射角θで入射する成分を含むことになる。なおこの入射角θは、全反射角以上の角度とされる。そこで、光ビーム13は界面10bで全反射し、この反射した光ビーム13には、種々の反射角で反射する成分が含まれることになる。なお、上記光学系15は、光ビーム13を界面10bにデフォーカス状態で入射させるように構成されてもよい。そのようにすれば、表面プラズモン共鳴の状態検出の誤差が平均化されて、測定精度が高められる。
【0038】
なお光ビーム13は、界面10bに対してp偏光で入射させる。そのようにするためには、予めレーザ光源14をその偏光方向が所定方向となるように配設すればよい。その他、波長板で光ビーム13の偏光の向きを制御してもよい。
【0039】
光学フィルタ50は、具体的には液晶やND(Neutral Density)フィルタ等の空間変調素子を用いる。一般に、界面10bで反射した光ビーム13のうち、反射角の小さい方は強度が高く、反射角の大きい方は強度が低いため、反射角の小さい方に対応する部分は透過率を低く、反射角の大きい方に対応する部分は透過率を高く設定することにより、光検出手段17により検出される光ビーム13に基づく信号の波形を反射光強度が極小となる位置を軸に略対称な反射光強度となるように調整する。
【0040】
ここで、光学フィルタ50の代わりに、図2に示すような反射プリズム51を用いても同様の効果を得ることができる。以下、理由を説明する。この反射プリズム51の反射面51aを、界面10bから小さい反射角で反射した光ビーム13に対しては入射角が小さく、界面10bから大きい反射角で反射した光ビーム13に対しては入射角が大きくなるように配置し、光検出手段17を、反射プリズム51の出射面に対向する位置に配置する。反射面51aでは、界面10bから小さい反射角で反射した光ビーム13に対しては透過成分が多く、界面10bから大きい反射角で反射した光ビーム13に対しては透過成分が少なくなるため、上記光学フィルタ50と同様の効果を得ることができる。なお、反射面51aは平面以外に、非球面状に形成してもよい。
【0041】
以下、上記構成の表面プラズモンセンサーによる試料分析について説明する。
【0042】
図1に示す通り、レーザ光源14から発散光状態で出射した光ビーム13は、光学系15の作用により、誘電体ブロック10と金属膜12との界面10b上で収束する。したがって光ビーム13は、界面10bに対して種々の入射角θで入射する成分を含むことになる。なおこの入射角θは、全反射角以上の角度とされる。そこで、光ビーム13は界面10bで全反射し、この反射した光ビーム13には、種々の反射角で反射する成分が含まれることになる。
【0043】
界面10bで全反射した後、コリメーターレンズ16によって平行光化された光ビーム13は、光学フィルタ50を透過した後、光検出手段17により検出される。本例における光検出手段17は、複数のフォトダイオード17a、17b、17c……が1列に並設されてなるフォトダイオードアレイであり、図1の図示面内において、平行光化された光ビーム13の進行方向に対してフォトダイオード並設方向がほぼ直角となる向きに配設されている。したがって、上記界面10bにおいて種々の反射角で全反射した光ビーム13の各成分を、それぞれ異なるフォトダイオード17a、17b、17c……が受光することになる。
【0044】
図3は、この表面プラズモンセンサーの電気的構成を示すブロック図である。図示の通り上記ドライバ19は、差動アンプアレイ18の各差動アンプ18a、18b、18c……の出力をサンプルホールドするサンプルホールド回路22a、22b、22c……、これらのサンプルホールド回路22a、22b、22c……の各出力が入力されるマルチプレクサ23、このマルチプレクサ23の出力をデジタル化して信号処理部20に入力するA/D変換器24、マルチプレクサ23とサンプルホールド回路22a、22b、22c……とを駆動する駆動回路25、および信号処理部20からの指示に基づいて駆動回路25の動作を制御するコントローラ26から構成されている。
【0045】
上記フォトダイオード17a、17b、17c……の各出力は、差動アンプアレイ18の各差動アンプ18a、18b、18c……に入力される。この際、互いに隣接する2つのフォトダイオードの出力が、共通の差動アンプに入力される。したがって各差動アンプ18a、18b、18c……の出力は、複数のフォトダイオード17a、17b、17c……が出力する光検出信号を、それらの並設方向に関して微分したものと考えることができる。
【0046】
各差動アンプ18a、18b、18c……の出力は、それぞれサンプルホールド回路22a、22b、22c……により所定のタイミングでサンプルホールドされ、マルチプレクサ23に入力される。マルチプレクサ23は、サンプルホールドされた各差動アンプ18a、18b、18c……の出力を、所定の順序に従ってA/D変換器24に入力する。A/D変換器24はこれらの出力をデジタル化して信号処理部20に入力する。
【0047】
図4は、界面10bで全反射した光ビーム13の入射角θ毎の光強度と、差動アンプ18a、18b、18c……の出力との関係を説明するものである。ここで、光ビーム13の界面10bへの入射角θと上記光強度Iとの関係は、同図(1)のグラフに示すようなものであるとする。
【0048】
界面10bにある特定の入射角θSPで入射した光は、金属膜12と液体試料11との界面に表面プラズモンを励起させるので、この光については反射光強度Iが鋭く低下する。つまりθSPが全反射解消角であり、この角度θSPにおいて反射光強度Iは最小値を取る。この反射光強度Iの低下は、図1にDで示すように、反射光中の暗線として観察される。
【0049】
また図4の(2)は、フォトダイオード17a、17b、17c……の並設方向を示しており、先に説明した通り、これらのフォトダイオード17a、17b、17c……の並設方向位置は上記入射角θと一義的に対応している。
【0050】
そしてフォトダイオード17a、17b、17c……の並設方向位置、つまりは入射角θと、差動アンプ18a、18b、18c……の出力I’(反射光強度Iの微分値)との関係は、同図(3)に示すようなものとなる。
【0051】
信号処理部20は、A/D変換器24から入力された微分値I’の値に基づいて、差動アンプ18a、18b、18c……の中から、全反射解消角θSPに対応する微分値I’=0に最も近い出力が得られているもの(図4の例では差動アンプ18dとなる)を選択し、それが出力する微分値I’に所定の補正処理を施してから、その値を表示手段21に表示させる。なお、場合によっては微分値I’=0を出力している差動アンプが存在することもあり、そのときは当然その差動アンプが選択される。
【0052】
以後、所定時間が経過する毎に上記選択された差動アンプ18dが出力する微分値I’が、所定の補正処理を受けてから表示手段21に表示される。この微分値I’は、測定チップの金属膜12に接している物質の誘電率つまりは屈折率が変化して、図4(1)に示す曲線が左右方向に移動する形で変化すると、それに応じて上下する。したがって、この微分値I’を時間の経過とともに測定し続けることにより、金属膜12に接している物質の屈折率変化、つまりは特性の変化を調べることができる。
【0053】
特に本実施形態では金属膜12に、液体試料11の中の特定物質と結合するセンシング媒体30を固定しており、それらの結合状態に応じてセンシング媒体30の屈折率が変化するので、上記微分値I’を測定し続けることにより、この結合状態の変化の様子を調べることができる。つまりこの場合は、液体試料11およびセンシング媒体30の双方が、分析対象の試料となる。そのような特定物質とセンシング媒体30との組合せとしては、例えば抗原と抗体等が挙げられる。
【0054】
以上の説明から明かなように本実施形態では、光検出手段17として複数のフォトダイオード17a、17b、17c……が1列に並設されてなるフォトダイオードアレイを用いているので、液体試料11に応じて図4(1)に示す曲線が左右方向に移動する形である程度大きく変化しても、暗線検出が可能である。つまり、このようなアレイ状の光検出手段17を用いることにより、測定のダイナミックレンジを大きく確保することができる。
【0055】
なお、複数の差動アンプ18a、18b、18c……からなる差動アンプアレイ18を用いる代わりに1つの差動アンプを設け、フォトダイオード17a、17b、17c……の各出力をマルチプレクサで切り替えて、それらのうちの隣接する2つの出力をこの1つの差動アンプに順次入力するようにしても構わない。
【0056】
なお、液体試料11の中の特定物質とセンシング媒体30との結合状態の変化の様子を時間経過とともに調べるためには、所定時間が経過する毎の微分値I’を求めて表示するほか、最初に計測した微分値I’(0)と所定時間経過時に計測した微分値I’(t)との差ΔI’を求めて表示してもよい。
【0057】
本実施の形態による表面プラズモンセンサーによれば、上記のような光学フィルタ50(もしくは反射プリズム51)を設けることにより、光検出手段17から出力される反射光強度に応じた信号が、反射光強度の極小値を軸に略対称となるため、受光素子の並設方向に関して微分した場合に、微分値の最小値(信号強度変化開始付近)と最大値(信号強度変化終了付近)との間が線形となるため、この間において微分値がゼロとなる点、すなわち暗線の位置を正確に求めることができる。
【0058】
次に、図5を参照して本発明の第2の実施の形態について説明する。なおこの図5において、図1中の要素と同等の要素には同番号を付してあり、それらについての説明は特に必要の無い限り省略する。
【0059】
本実施の形態の全反射減衰を利用したセンサーは、第1の実施の形態で説明した表面プラズモンセンサーにおいて、光学フィルタを用いて光ビームの強度を調整する代わりに、光検出手段により検出された光ビームに基づく信号の波形を整形する態様に変更したものである。
【0060】
本実施の形態の表面プラズモンセンサーは、誘電体ブロック10と、1本の光ビーム13を発生させる半導体レーザ等からなる光源14(以下、レーザ光源14という)と、上記光ビーム13を誘電体ブロック10に通し、該誘電体ブロック10と金属膜12との界面10bに対して、種々の入射角が得られるように入射させる光学系15と、上記界面10bで全反射した光ビーム13を平行光化するコリメーターレンズ16と、この平行光化された光ビーム13を検出する光検出手段17と、光検出手段17に接続された差動アンプアレイ18と、ドライバ19と、コンピュータシステム等からなる信号処理部20と、信号処理部20に接続されたコントローラ52と、信号処理部20に接続された表示手段21とを備えている。
【0061】
図6は、本実施の形態による表面プラズモンセンサーの電気的構成を示すブロック図である。本実施の形態による表面プラズモンセンサーにおいて、信号処理部20は、予め測定を行って得られた信号に基づいて、反射光強度が極小値となる位置を軸に略対称な波形となるように、反射光強度が極小値となる位置を軸にして等距離にある左右の波形を比較し、低い方の波形に対応する差動アンプの増幅率を高くするようにコントローラ53に対して指示を行う。ここで、高い方の波形に対応する差動アンプの増幅率を下げるように指示してもよい。コントローラ52は、信号処理部20からの指示に基づいて、差動アンプ18a、18b、18c……の増幅率を変更する。
【0062】
ここで、各差動アンプの増幅率を調整して信号波形を整形する代わりに、図7に示すように、可変抵抗を用いて波形を整形することも可能である。この場合は、光検出手段17と差動アンプアレイ18との間に可変抵抗アレイ53を設け、この可変抵抗アレイ53に、信号処理部20からの指示に基づいて可変抵抗アレイ53の動作を制御するコントローラ54を接続する。信号処理部20は、予め測定を行って得られた信号に基づいて、反射光強度が極小値となる位置を軸に略対称な波形となるように、反射光強度が極小値となる位置を軸にして等距離にある左右の波形を比較し、高い方の波形に対応する差動アンプに接続された可変抵抗の抵抗値を高くするようにコントローラ54に対して指示を行う。コントローラ54は、信号処理部20からの指示に基づいて、可変抵抗53a、53b、53c……の抵抗値を変更する。
【0063】
また、上記以外にも、信号処理部20内において、ソフトウェアにより反射光強度が極小値となる位置を軸に略対称な波形となるように整形処理を行ってもよい。
【0064】
本実施の形態による表面プラズモンセンサーによれば、上記のような差動アンプアレイ18を制御するコントローラ52(もしくは可変抵抗アレイ53およびこの可変抵抗アレイ53を制御するコントローラ54、またはソフトウェア)を設けて、光検出手段17により検出された反射光強度に応じた信号を、反射光強度の極小値を軸に略対称とすることにより、受光素子の並設方向に関して微分した場合に、微分値の最小値(信号強度変化開始付近)と最大値(信号強度変化終了付近)との間が線形となるため、この間において微分値がゼロとなる点、すなわち暗線の位置を正確に求めることができる。
【0065】
なお、上述の第1および第2の実施の形態の表面プラズモンセンサーにおいては、一部構成を変更することにより漏洩モードセンサーとすることができる。以下、図面を用いて説明する。
【0066】
図8は、漏洩モードセンサーの一例を示す図である。なおこの図8において、図1中の要素と同等の要素には同番号を付してあり、それらについての説明は特に必要の無い限り省略する。
【0067】
この漏洩モードセンサーは、第1の実施の形態で説明した表面プラズモンセンサーを漏洩モードセンサーに変更したものであり、本例でも測定チップ化された誘電体ブロック10を用いるように構成されている。この誘電体ブロック10の一面(図中の上面)にはクラッド層40が形成され、さらにその上には光導波層41が形成されている。
【0068】
誘電体ブロック10は、例えば合成樹脂やBK7等の光学ガラスを用いて形成されている。一方クラッド層40は、誘電体ブロック10よりも低屈折率の誘電体や、金等の金属を用いて薄膜状に形成されている。また光導波層41は、クラッド層40よりも高屈折率の誘電体、例えばPMMAを用いてこれも薄膜状に形成されている。クラッド層40の膜厚は、例えば金薄膜から形成する場合で36.5nm、光導波層41の膜厚は、例えばPMMAから形成する場合で700nm程度とされる。
【0069】
上記構成の漏洩モードセンサーにおいて、レーザ光源14から出射した光ビーム13を誘電体ブロック10を通してクラッド層40に対して全反射角以上の入射角で入射させると、該光ビーム13が誘電体ブロック10とクラッド層40との界面10bで全反射するが、クラッド層40を透過して光導波層41に特定入射角で入射した特定波数の光は、該光導波層41を導波モードで伝搬するようになる。こうして導波モードが励起されると、入射光のほとんどが光導波層41に取り込まれるので、上記界面10bで全反射する光の強度が鋭く低下する全反射減衰が生じる。
【0070】
光導波層41における導波光の波数は、該光導波層41の上の液体試料11の屈折率に依存するので、全反射減衰が生じる上記特定入射角を知ることによって、液体試料11の屈折率や、それに関連する液体試料11の特性を分析することができる。そして、上記特定入射角の近傍における反射光強度Iや、差動アンプアレイ18の各差動アンプが出力する微分値I’に基づいて液体試料11の特性を分析することもできる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による表面プラズモンセンサーの一例の側面図
【図2】本発明の第1の実施の形態による表面プラズモンセンサーの一例の側面図
【図3】上記表面プラズモンセンサーの電気的構成を示すブロック図
【図4】上記表面プラズモンセンサーにおける光ビーム入射角と検出光強度との関係、並びに光ビーム入射角と光強度検出信号の微分値との関係を示す概略図
【図5】本発明の第2の実施の形態による表面プラズモンセンサーの側面図
【図6】上記表面プラズモンセンサーの電気的構成の一例を示すブロック図
【図7】上記表面プラズモンセンサーの電気的構成の一例を示すブロック図
【図8】本発明の漏洩モードセンサーの一例を示す側面図
【符号の説明】
10 誘電体ブロック
10a 誘電体ブロックの試料保持部
10b 誘電体ブロックと金属膜との界面
11 試料
12 金属膜
13 光ビーム
14 半導体レーザ等
15 光学系
16 コリメーターレンズ
17 光検出手段(フォトダイオードアレイ)
17a、17b、17c…… フォトダイオード
18 差動アンプアレイ
18a、18b、18c…… 差動アンプ
19 ドライバ
20 信号処理部
21 表示手段
22a、22b、22c…… サンプルホールド回路
23 マルチプレクサ
24 A/D変換器
25 駆動回路
26 コントローラ
30 センシング媒体
31 ターンテーブル
40 クラッド層
41 光導波層
50 光学フィルタ
51 反射プリズム
52、54 コントローラ
53 可変抵抗アレイ
53a、53b、53c…… 可変抵抗

Claims (11)

  1. 誘電体ブロックと、
    この誘電体ブロックの一面に形成されて、試料に接触させられる薄膜層と、
    光ビームを発生させる光源と、
    前記光ビームを前記誘電体ブロックに対して、該誘電体ブロックと前記薄膜層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、
    複数の受光素子が所定方向に並設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設された光検出手段と、
    この光検出手段の各受光素子が出力する光検出信号を、該受光素子の並設方向に関して微分する微分手段と、
    この微分手段による微分値に基づいて、前記界面での反射光強度が極小値を取る反射角を求める演算手段とを備えてなる全反射減衰を利用したセンサーにおいて、
    前記光検出手段により検出される光ビームに基づく非対称の信号の波形を略対称な波形に整形する信号波形整形手段を備えたことを特徴とする全反射減衰を利用したセンサー。
  2. 誘電体ブロックと、
    この誘電体ブロックの一面に形成されて、試料に接触させられる金属膜と、
    光ビームを発生させる光源と、
    前記光ビームを前記誘電体ブロックに対して、該誘電体ブロックと前記金属膜との界面で全反射条件が得られるように種々の角度で入射させる光学系と、
    複数の受光素子が所定方向に並設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設された光検出手段と、
    この光検出手段の各受光素子が出力する光検出信号を、該受光素子の並設方向に関して微分する微分手段と、
    この微分手段による微分値に基づいて、表面プラズモン共鳴に伴い前記界面での反射光強度が極小値を取る反射角を求める演算手段とを備えてなる全反射減衰を利用したセンサーにおいて、
    前記光検出手段により検出される光ビームに基づく非対称の信号の波形を略対称な波形に整形する信号波形整形手段を備えたことを特徴とする全反射減衰を利用したセンサー。
  3. 誘電体ブロックと、
    この誘電体ブロックの一面に形成されたクラッド層と、
    このクラッド層の上に形成されて、試料に接触させられる光導波層と、
    光ビームを発生させる光源と、
    前記光ビームを前記誘電体ブロックに対して、該誘電体ブロックと前記クラッド層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、
    複数の受光素子が所定方向に並設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設された光検出手段と、
    この光検出手段の各受光素子が出力する光検出信号を、該受光素子の並設方向に関して微分する微分手段と、
    この微分手段による微分値に基づいて、前記光導波層での導波モードの励起に伴い前記界面での反射光強度が極小値を取る反射角を求める演算手段とを備えてなる全反射減衰を利用したセンサーにおいて、
    前記光検出手段により検出される光ビームに基づく非対称の信号の波形を略対称な波形に整形する信号波形整形手段を備えたことを特徴とする全反射減衰を利用したセンサー。
  4. 前記信号波形整形手段が、前記誘電体ブロックと前記光検出手段との間に設けられた、前記光ビームの、強度の大きい側の角度に反射された光ビームの強度を低減させる光学部材であることを特徴とする請求項1から3のいずれか1項記載の全反射減衰を利用したセンサー。
  5. 前記光学部材が、前記強度の大きい側の角度に反射した光ビームに対する入射角を小さくした反射面を有する反射プリズムであることを特徴とする請求項4記載の全反射減衰を利用したセンサー。
  6. 前記反射面が、非球面であることを特徴とする請求項5記載の全反射減衰を利用したセンサー。
  7. 前記光学部材が、前記強度の大きい側の角度に反射した光ビームに対する透過率を小さくした光学フィルタであることを特徴とする請求項4記載の全反射減衰を利用したセンサー。
  8. 前記信号波形整形手段が、前記光検出手段により検出された光ビームに基づいた信号の波形に基づいて、信号波形を整形する整形処理手段を備えたことを特徴とする請求項1から3のいずれか1項記載の全反射減衰を利用したセンサー。
  9. 前記整形処理手段が、前記各受光素子に接続された抵抗値の異なる抵抗であることを特徴とする請求項8記載の全反射減衰を利用したセンサー。
  10. 前記整形処理手段が、前記各受光素子に接続された増幅率の異なるアンプであることを特徴とする請求項8記載の全反射減衰を利用したセンサー。
  11. 前記整形処理手段が、前記光検出手段により検出された光ビームに基づいた信号の波形に基づいて信号波形を整形する処理を行うソフトウェアであることを特徴とする請求項8記載の全反射減衰を利用したセンサー。
JP2001339512A 2001-11-05 2001-11-05 全反射減衰を利用したセンサー Expired - Fee Related JP3761079B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339512A JP3761079B2 (ja) 2001-11-05 2001-11-05 全反射減衰を利用したセンサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339512A JP3761079B2 (ja) 2001-11-05 2001-11-05 全反射減衰を利用したセンサー

Publications (2)

Publication Number Publication Date
JP2003139691A JP2003139691A (ja) 2003-05-14
JP3761079B2 true JP3761079B2 (ja) 2006-03-29

Family

ID=19153850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339512A Expired - Fee Related JP3761079B2 (ja) 2001-11-05 2001-11-05 全反射減衰を利用したセンサー

Country Status (1)

Country Link
JP (1) JP3761079B2 (ja)

Also Published As

Publication number Publication date
JP2003139691A (ja) 2003-05-14

Similar Documents

Publication Publication Date Title
US6885454B2 (en) Measuring apparatus
US6678053B2 (en) Sensor utilizing attenuated total reflection
JP3783131B2 (ja) 全反射減衰を利用したセンサー
JP3761079B2 (ja) 全反射減衰を利用したセンサー
US6654123B2 (en) Sensor utilizing attenuated total reflection
JP2003185568A (ja) 全反射減衰を利用したセンサー
JP3761080B2 (ja) 全反射減衰を利用した測定方法および測定装置
JP4053236B2 (ja) 全反射減衰を利用したセンサー
JP4014805B2 (ja) 全反射減衰を利用したセンサー
JP2003075334A (ja) 全反射減衰を利用したセンサー
JP2005221274A (ja) 測定方法および測定装置
JP3776371B2 (ja) 測定装置
JP2003065946A (ja) 全反射減衰を利用したセンサー
JP3913589B2 (ja) 測定装置
JP2004085487A (ja) 全反射減衰を利用したセンサー
JP2002195943A (ja) 全反射減衰を利用したセンサー
JP3796660B2 (ja) 全反射減衰を利用した測定装置
JP2003177090A (ja) 全反射減衰を利用したセンサー
JP2002195942A (ja) 全反射減衰を利用したセンサー
JP2003227792A (ja) 全反射減衰を利用したセンサー
JP2004144477A (ja) 測定方法および測定装置
JP2005265693A (ja) 測定装置
JP2004125494A (ja) 測定装置
JP2003139692A (ja) 全反射減衰を利用したセンサー
JP2003149140A (ja) 全反射減衰を利用したセンサー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees