JP3755621B2 - Acrylic fiber with excellent adhesion - Google Patents
Acrylic fiber with excellent adhesion Download PDFInfo
- Publication number
- JP3755621B2 JP3755621B2 JP9484497A JP9484497A JP3755621B2 JP 3755621 B2 JP3755621 B2 JP 3755621B2 JP 9484497 A JP9484497 A JP 9484497A JP 9484497 A JP9484497 A JP 9484497A JP 3755621 B2 JP3755621 B2 JP 3755621B2
- Authority
- JP
- Japan
- Prior art keywords
- polyoxyethylene alkyl
- fiber
- acrylic fiber
- alkyl ester
- alkyl ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Artificial Filaments (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はアクリル繊維に関するものであり、さらに詳しくは補強材として使用する際にマトリクス、特にゴム系マトリクスとの接着性に優れたアクリル繊維に関するものである。
【0002】
【従来の技術】
繊維とゴムの接着性を改善する方法としては、例えば特開平7−304879号、特公平6−37612号あるいは特開平6−263888号公報に開示されているが如き、もっぱら繊維とゴム間の接着剤の組成や接着剤を用いた処理方法に関するものであり、繊維素材自体を改質した例は繊維表面をプラズマ処理あるいは電解酸化処理し反応性官能基を導入する方法が、主として炭素繊維について報告されているにすぎない。
【0003】
アクリル繊維についてはこれまで補強材として使用された例が少ないこともあり、マトリクスとの接着性について報告された例は見あたらない。
【0004】
【発明が解決しようとする課題】
ここにおいて、本発明が解決しようとする課題は、アクリル繊維を有機系マトリクスの補強材として使用するときに補強効果を十分に発現させるための繊維−マトリクス間の接着性を向上させることであり、本発明の目的は特にゴム系マトリクスに対して優れた接着性を有し、特殊な処理を要せず通常の接着剤処理でその補強効果を著しいものとできるアクリル繊維を提供することにある。
【0005】
【課題を解決するための手段】
本発明のかかる目的は、95重量%以上のアクリロニトリルを結合含有する重合体からなるアクリル繊維に、ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルを主成分とする処理剤が付与され、さらにレゾルシン/ホルマリン樹脂とラテックスでなる接着剤処理が施されてなりゴム接着性が引き抜き法による初期接着強度で20kg/cm以上であることを特徴とする接着性に優れたアクリル繊維により達成できる。さらに、当該ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルのオキシエチレン繰り返し数が8以上16以下であり、かつ処理剤中のポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルの含有率が処理剤総量の50重量%以上である場合に好適に達成できる。更に、本発明の目的は処理剤の繊維付着量が0.1重量%以上、2重量%以下である場合によりよく達成できる。
【0006】
【発明の実施の形態】
以下、本発明を詳述する。
まず、本発明の優れたゴム系マトリクスとの接着性を有するアクリル繊維は、アクリロニトリル単独またはアクリロニトリルを少なくとも95重量%以上好ましくは97重量%以上含有するものであって、必要に応じて他のエチレン系不飽和化合物1種以上を共重合して作成されるポリアクリロニトリル系重合体を湿式、乾式あるいは乾湿式紡糸法などの公知の製造方法で作られるが、補強材としての使用から見て例えば特公平4−15287号公報に開示されているような高強力が得られる製造方法が好ましい。すなわち通常のアクリル繊維原料のポリアクリロニトリル系重合体に比し高分子量の重合体を使用し、減圧脱泡しつつ該ポリマーの溶剤に溶解し、得られた紡糸原液を紡出、凝固させた後、後工程になるほど高温度の条件下で多段延伸し、ついで130℃以下の温度で緊張下に乾燥する方法である。なお、アクリロニトリルが95重量%未満の場合は最終製品である繊維複合材料の硬化、成型課程で必要とされる耐熱性、耐薬品性が不十分となり発明が達成されない。
【0007】
なお、共重合されてもよいその他のエチレン系不飽和化合物としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、イタコン酸、マレイン酸、メサコン酸、シトラコン酸およびこれらの水溶性塩(アルカリ金属塩、アンモニウム塩)、アリルアルコール、メタアリルアルコール、オキシプロピオンアクリロニトリル、メタアクリロニトリル、α−メチレングルタロニトリル、イソプロペニルアセテート、アクリルアミド、ジメチルアミノエチルメタアクリレート、ビニルピリジン、ビニルピロリドン、アクリル酸メチル、メタアクリル酸メチル、酢酸ビニル、アリルクロライド、メタアリルスルホン酸ソーダ、p−スチレンスルホン酸カリウム等の周知のエチレン系不飽和化合物を挙げることができる。また、当該アクリロニトリル系重合体は例えば水系懸濁重合法、エマルジョン重合法等一般的重合法により製造されるものであり、その製造技術に限定はない。
【0008】
本発明のアクリル繊維は特にその機械的性質に制限はないが、一般的にセメント、モルタルの如き無機系マトリクス、エポキシ、ポリエステル等の樹脂系マトリクス、あるいは天然ゴム、SBRのようなゴム系マトリクスに繊維強化材として使用する場合には高強度であることが望ましい。この意味で、本発明の原料となるアクリル繊維は好ましくは引張強度10g/d以上かつ乾熱収縮率5%以下であるのが良い。引張強度が10g/dよりも低い場合にはゴム系マトリクスの補強材として期待される効果を十分には発現することができない場合もあり、また乾熱収縮率が5%よりも高いとマトリクスであるゴム系組成物に添加した後の混練、加硫時に収縮し強度低下を生じる場合もある。ここでいう乾熱収縮率とは一定長さ(L)の繊維束を無緊張下に150℃の温度下で30分間処理したときの繊維長の変化率をいう。すなわち、
乾熱収縮率=(L−L’)/L × 100 (%)
ここでL’は熱処理後の繊維束の長さである。なお、繊維束の長さの測定時には繊維束に対し0.1g/dの荷重を付与した。さらに、本発明の原料であるアクリル繊維としては、180℃で6時間乾熱処理した後の強度が、熱処理前のアクリル繊維の強度の95%以上であるのが望ましい。熱処理によって強度低下を生じるアクリル繊維をゴム系マトリクスの補強材として使用すると、ゴム組成物の混練、加硫、成型時に収縮し製品の強度低下を生じて本発明の目的を十分に達成できない場合があるからである。
【0009】
かかるアクリル繊維は先に述べたアクリル系重合体をジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の有機系溶剤やロダン塩、塩化亜鉛、硝酸等の無機系溶剤に溶解して紡糸原液を作成し、湿式、乾式、あるいは乾湿式紡糸法で製造しうるが、湿式紡糸および乾湿式紡糸の場合においては凝固液中に押しだし、凝固させた後水洗、延伸、乾燥させることによって得られる。引張強度の高い原料繊維を作成するという点から、前述の多段延伸に加えて、凝固ゲル糸が均質となり、ひいては強度が増大しやすい利点で紡糸溶剤としては特にロダン塩を選択するのが好ましい。
【0010】
高強度を得るためには、どの程度まで繊維を構成する分子鎖全体を繊維軸方向に配向させるが重要であり、紡糸原液中では分子鎖が十分にほぐれたものとすることが肝要である。一般に分子量が高いほど高強力繊維が得られやすいとされているが、あまりにも分子量を高くすると溶剤への溶解性が低下して紡糸原液の作成が困難になったり、紡糸時の操業性に悪影響を与えるきらいがあり工業的見地から見たバランスの調整が必要であるが、重量分子量20万程度のアクリロニトリル系重合体を用いて、原液中のポリマー濃度はおおむね5〜15%に設定することが望ましい。また、紡糸原液中に気泡が存在すると繊維中で欠陥となり高強力を得る妨げとなるのでポリマーの溶解中あるいは溶解後に減圧脱泡等の手段により気泡を除去しておく必要がある。
【0011】
分子鎖を繊維軸方向に配向させるには紡糸工程の中で延伸を付与する必要があり、しかも一般的アクリル繊維の場合に比べて過酷な延伸を必要とする。これに耐えるためには、均質な凝固ゲル糸を作ることが望ましく、このため緩慢な凝固が起こるように凝固条件を設定することが重要であり、特に無機系溶剤を使用すると共に、室温以下の低温凝固条件が推奨される。また、凝固ゲル糸の太さもゲル糸の均質性に影響し、糸切れを生じない限り細いほど好ましいく、概ね50〜300ミクロンの太さに制御することが好ましい。
【0012】
次に、分子鎖の配向に最も大きな影響を与える延伸付与について述べる。延伸手段としては後の工程ほど高温度の条件下で多段延伸を施すことが必須であり、かかる多段延伸の好適な態様として、残留溶剤を含んだゲル糸での延伸、熱水中での延伸、乾燥後の乾熱延伸、更に必要により蒸気中または沸点が100℃以上の高沸点溶媒中での延伸を順次実施する手段を挙げることができる。これらの手段を適宜組み合わせることにより、本発明の原料繊維として適した、好ましくは引張強度10g/d以上のアクリル繊維が製造できる。
【0013】
乾燥工程は、熱弛緩を起こすと強度低下を引き起こすため緊張下で行うことが必要である。また、前述した乾熱収縮率を好ましくは5%以下に保つためには乾熱収縮率測定温度すなわち150℃以上の温度で熱セットを施すことが必要である。熱セット温度は乾燥温度あるいは延伸温度以上で行わないと十分なセット効果が得られないため、例えば150〜200℃で乾熱延伸を施した場合においては熱セット温度は200℃以上で行うことが必要である。但し、熱セット温度は高温であれば良いというものではなく、得られる繊維の強度レベル、乾熱収縮率等を勘案して最適温度で実施するのが好ましい。一般的には工程中での最高温度、すなわち乾熱延伸を採用した場合にはその乾熱延伸温度よりも10℃程度高い温度とすることが望ましい。また、熱セット効果はセット工程に於ける温度のみならず処理時間にも大きな影響を受けるため、十分な滞留時間を確保することが必須である。本発明のアクリル繊維においては熱セット工程での滞留時間は5秒以上望ましくは8秒以上の場合に乾熱収縮率5%以下が実現できる。
【0014】
本発明の接着性に優れたアクリル繊維は、その製造工程において特定の成分すなわちポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルを主成分とする処理剤を、原料である前記したアクリル繊維表面に付与することによって得られ、その付与方法は特に限定されないが脱溶剤後のゲル糸に付与した後、乾燥工程を経させるのが好ましい。乾燥後の繊維に付与した場合にも良好なゴム系マトリクスとの接着性は得られるが、ゲル糸に付与した場合により高度な接着性が得られるのである。付与方法は被処理物である繊維束を処理剤を含む槽に浸漬する方法、タッチローラーを用いる方法、繊維束に処理剤をスプレーする方法等が適用できるが、いずれの方法を採用するにしても繊維束内部まで均一に処理剤を浸透させることが重要である。
【0015】
好ましい当該処理剤としてはポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルを主成分とし、当該ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルのオキシエチレン繰り返し数が8以上16以下のものであり、かつ処理剤中のポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルの合計の含有率が処理剤総量の50重量%以上であるものが推奨される。これら成分のオキシエチレン繰り返し数が8未満の場合には付与後の乾燥工程において揮散が著しく原単位を悪化させたり、一旦揮散した成分が凝縮したタール状物質が繊維表面に再付着して繊維品質を低下させる等の問題が生じる。一方、オキシエチレン繰り返し数が16を越えると、繊維に付与する際の水分散液の作成時に極めて分散し難くなり、多量の分散剤の使用を余儀なくして主成分たるこれら成分の含有率を50重量%以上とする事が困難になる。また、これら成分の合計の含有量が50重量%未満の場合にはポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテル以外の成分の繊維表面に於ける付着量が増加し、同じく接着性向上効果が減少する。繊維表面への付着量としては0.1重量%以上、2重量%以下の範囲であるのが望ましい。付着量が0.1重量%に満たない場合には十分な接着力を発揮し難いことがあり、逆に2重量%を越えた場合には過剰の処理剤成分がマトリクスと繊維表面の接着を阻害する恐れが出てくる。処理剤に含まれるポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテル以外の成分については特に限定はないが、乾燥工程での操業性の点から静電気防止効果を有する一般的繊維油剤を用いるのが良い。乾燥機中での揮散、熱分解などを考慮して選択すべきなのは一般的アクリル繊維製造の場合と同様である。
【0016】
本発明でいうポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルとはポリオキシエチレンにアルキルエステル及びアルキルエーテルを付加せしめた化合物をいう。また、本発明で言う「アルキル」は炭素数8から20のものをいう。炭素数が8未満では、付与した繊維の乾燥時に揮散が著しくなり、タールの発生などの不都合を惹起する。一方、炭素数が20を越えると乳化分散性が悪化し、処理液の作成が困難になる。
【0017】
本発明では、これらポリオキシエチレンアルキルエステルとポリオキシエチレンアルキルエーテルを併用するのであるが、その存在比率は重量比で90/10から10/90の範囲内であるのが望ましく、さらに好ましくは80/20から20/80の範囲内であるのがよい。併用することによる効果の理由は定かでないが、一方のみ使用した場合には、本発明の目的とする引き抜き法による初期接着強度20kg/cmが達成できない。
【0018】
このようなポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテル成分を繊維表面に付与したアクリル繊維を特にゴム系マトリクスの補強材として使用した場合に、優れた補強効果が得られる。その機構は必ずしも明らかでないが、繊維とマトリクスの界面に存在するこれら成分が繊維とマトリクスの接着性を強固にする役割を果たし、また、マトリクス中での繊維の分散を容易にし、その結果、該アクリル繊維の強度を有効に発揮させているものと推察される。
【0019】
かくの如き、本発明に推奨する技術手段を一体的に結合採択することにより、高強力かつマトリクス特にゴム系マトリクスに対し優れた接着性を有するアクリル繊維を得ることができるのである。
【0020】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。なお、特に断りのない限り「%」および「部」は重量基準で用いる。
【0021】
実施例 1
アクリロニトリル97部と酢酸ビニル3部からなる単量体混合物を過硫酸アンモニウムを開始剤として水系懸濁重合し、重量平均分子量20万のポリアクリロニトリル系重合体を作成し、得られた重合体をロダン酸ナトリウムを溶剤として溶解し、重合体濃度8%の紡糸原液を作成した。この紡糸原液を濾過した後、孔径0.15mm、孔数3000のノズルを用いて乾湿式紡糸した。この時のノズル面と凝固液面の間隔は4mmである。紡糸時の原液温度は78℃に維持し、凝固液はロダン酸ナトリウム濃度17%、温度0℃に調節した。凝固液を出たゲル糸は、脱イオン水で洗浄しつつ2倍の延伸を施し、次に85℃の熱水中で1.5倍、沸騰水中で2.5倍の延伸を施した。次に表1に挙げる各種の油剤をタッチローラーを用いて付与した。油剤を付与した繊維は次に表面温度100℃から140℃に段階的に温度設定した加熱ローラー上を走行せしめて乾燥させた。乾燥した繊維を更に170℃に表面温度を設定した加熱ローラーを通して加熱し、2.3倍の乾熱延伸を施した後、表面温度220℃に設定した加熱ローラーに8秒間接触させ、巻き取った。かくして得られたアクリル繊維の引っ張り強度は11.8g/d、乾熱収縮率は3.2%であった。また、抽出法で測定した油剤付着量を表2に示した。ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテル成分の付着量は油剤付着量と油剤中の含有率から算出し
た。
【0022】
【表1】
【0023】
このアクリル繊維をシングルコードディッピングマシーンを用いて、ブタジエン/スチレン/ビニルピリジン共重合体ラテックスとレゾルシン/ホルマリン樹脂からなる処理液で浸漬処理を行った。このコードを天然ゴム100部に対し、SRFカーボン20部、REFカーボン20部、バインヌール5部、スチレン化フェノール2部、ステアリン酸2.5部、亜鉛華5部、N−シクロヘキシル−2−ベンゾチアジル−スルフェンアミド1部、及び硫黄3部を配合したゴム化合物ではさみ、140℃で30分間プレス加硫し、引き抜き法であるJIS L1017−1995記載のTテスト(A法)に従って初期接着強度を測定した結果を表2に併記した。
【0024】
【表2】
【0025】
表2の結果から、ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルを含まない場合(油剤E、F、G)に比べて、本発明にかかる油剤(A、B)の場合には優れた初期接着強度を示すことが理解できる。また、ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテルのオキシエチレン繰り返し数が8以下の場合(D)には、油剤E、F、Gに比較して高い初期接着強度を与えるものの本発明の目的とする20kg/cmを達成することができない。更に、油剤中のポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテル成分の含有率が50%に満たない場合にも同様に本発明の目標レベルに達しないことも分かる。油剤成分が本発明にかかる場合(A、B)にも繊維に対する付着量が0.1%から2%の範囲から逸脱した場合には本発明の目的である20kg/cmが得られないことも容易に理解できる。また、ポリオキシエチレンアルキルエステル及びポリオキシエチレンアルキルエーテル成分が併用されない場合(H、I)にも本発明の目的である20kg/cmが得られないことも理解できる。
【0026】
【発明の効果】
かくのごとき本発明により、アクリル繊維を有機系マトリクスの補強材として使用するときに、補強効果を十分に発現させるための繊維−マトリクス間の接着性を向上させる技術が明らかになった。特にゴム系マトリクスに対して優れた接着性を有し、接着処理時に特別な処方を用いることなく通常の接着剤処理でその補強効果を著しいものとできる高強力アクリル繊維を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acrylic fiber, and more particularly to an acrylic fiber excellent in adhesiveness to a matrix, particularly a rubber matrix, when used as a reinforcing material.
[0002]
[Prior art]
As a method for improving the adhesion between fiber and rubber, for example, as disclosed in JP-A-7-304879, JP-B-6-37612 or JP-A-6-263888, the adhesion between the fiber and rubber is exclusively used. This is related to the composition of the agent and the treatment method using the adhesive. The example of modifying the fiber material itself is the method of introducing reactive functional groups by plasma treatment or electrolytic oxidation treatment of the fiber surface, mainly reported for carbon fibers. It has only been done.
[0003]
There have been few examples of acrylic fibers that have been used as a reinforcing material so far, and there have been no reports of adhesiveness to a matrix.
[0004]
[Problems to be solved by the invention]
Here, the problem to be solved by the present invention is to improve the adhesion between the fiber and the matrix for sufficiently expressing the reinforcing effect when the acrylic fiber is used as a reinforcing material for the organic matrix, An object of the present invention is to provide an acrylic fiber that has excellent adhesion particularly to a rubber-based matrix and does not require a special treatment and can have a remarkable reinforcing effect by ordinary adhesive treatment.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide a treating agent mainly composed of polyoxyethylene alkyl ester and polyoxyethylene alkyl ether to acrylic fibers made of a polymer containing 95% by weight or more of acrylonitrile and further containing resorcin / It can be achieved by an acrylic fiber excellent in adhesiveness, characterized in that it is treated with an adhesive composed of a formalin resin and latex and has a rubber adhesiveness of 20 kg / cm or more as an initial adhesive strength by a drawing method. Further, the polyoxyethylene alkyl ester and the polyoxyethylene alkyl ether have an oxyethylene repeating number of 8 or more and 16 or less, and the content of the polyoxyethylene alkyl ester and the polyoxyethylene alkyl ether in the processing agent is the total amount of the processing agent. This can be suitably achieved when the content is 50% by weight or more. Furthermore, the object of the present invention can be more satisfactorily achieved when the fiber adhesion amount of the treatment agent is 0.1 wt% or more and 2 wt% or less.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, the acrylic fiber having adhesiveness with the excellent rubber matrix of the present invention contains acrylonitrile alone or acrylonitrile at least 95 wt% or more, preferably 97 wt% or more. A polyacrylonitrile polymer prepared by copolymerizing one or more unsaturated compounds is produced by a known production method such as a wet, dry or dry-wet spinning method. A production method capable of obtaining high strength as disclosed in JP-B-4-15287 is preferred. That is, after using a polymer having a high molecular weight as compared with a polyacrylonitrile polymer as a normal acrylic fiber raw material, dissolving in the solvent of the polymer while degassing under reduced pressure, and spinning and coagulating the obtained spinning dope In this method, the film is stretched in multiple stages under higher temperature conditions as it goes to the subsequent process, and then dried under tension at a temperature of 130 ° C. or lower. When acrylonitrile is less than 95% by weight, the heat and chemical resistance required in the curing and molding process of the final fiber composite material is insufficient, and the invention is not achieved.
[0007]
Other ethylenically unsaturated compounds that may be copolymerized include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, itaconic acid, maleic acid, mesaconic acid, citraconic acid, and water-soluble salts thereof (alkali metals). Salt, ammonium salt), allyl alcohol, methallyl alcohol, oxypropion acrylonitrile, methacrylonitrile, α-methylene glutaronitrile, isopropenyl acetate, acrylamide, dimethylaminoethyl methacrylate, vinyl pyridine, vinyl pyrrolidone, methyl acrylate, meta Well-known ethylenically unsaturated compounds such as methyl acrylate, vinyl acetate, allyl chloride, sodium methallyl sulfonate, and potassium p-styrene sulfonate can be exemplified. The acrylonitrile-based polymer is produced by a general polymerization method such as an aqueous suspension polymerization method or an emulsion polymerization method, and the production technique is not limited.
[0008]
The acrylic fiber of the present invention is not particularly limited in its mechanical properties, but is generally applied to an inorganic matrix such as cement and mortar, a resin matrix such as epoxy and polyester, or a rubber matrix such as natural rubber and SBR. When used as a fiber reinforcement, high strength is desirable. In this sense, the acrylic fiber as the raw material of the present invention preferably has a tensile strength of 10 g / d or more and a dry heat shrinkage of 5% or less. When the tensile strength is lower than 10 g / d, the effect expected as a reinforcing material for the rubber-based matrix may not be sufficiently exhibited, and when the dry heat shrinkage rate is higher than 5%, In some cases, it may shrink during kneading and vulcanization after being added to a rubber composition, resulting in a decrease in strength. The dry heat shrinkage referred to here is the rate of change in fiber length when a fiber bundle of a certain length (L) is treated for 30 minutes at 150 ° C. without tension. That is,
Dry heat shrinkage = (L−L ′) / L × 100 (%)
Here, L ′ is the length of the fiber bundle after the heat treatment. When measuring the length of the fiber bundle, a load of 0.1 g / d was applied to the fiber bundle. Furthermore, it is desirable that the acrylic fiber as the raw material of the present invention has a strength after dry heat treatment at 180 ° C. for 6 hours is 95% or more of the strength of the acrylic fiber before the heat treatment. When acrylic fibers that cause a decrease in strength due to heat treatment are used as a reinforcing material for the rubber matrix, there is a case where the object of the present invention cannot be sufficiently achieved due to shrinkage during the kneading, vulcanization, and molding of the rubber composition, resulting in a decrease in strength of the product. Because there is.
[0009]
Such an acrylic fiber is prepared by dissolving the acrylic polymer described above in an organic solvent such as dimethylformamide, dimethylacetamide, or dimethyl sulfoxide, or an inorganic solvent such as rhodan salt, zinc chloride, or nitric acid to prepare a spinning dope. However, in the case of wet spinning and dry / wet spinning, it can be obtained by extruding into a coagulating liquid, coagulating, washing with water, stretching and drying. From the viewpoint of producing raw material fibers having high tensile strength, it is particularly preferable to select rhodan salt as a spinning solvent because of the advantage that the coagulated gel yarn becomes homogeneous and the strength tends to increase in addition to the above-mentioned multistage drawing.
[0010]
In order to obtain high strength, it is important that the entire molecular chain constituting the fiber is oriented in the direction of the fiber axis, and it is important that the molecular chain is sufficiently loosened in the spinning dope. In general, it is said that high-strength fibers are easily obtained as the molecular weight increases. However, if the molecular weight is too high, the solubility in a solvent decreases, making it difficult to create a stock solution for spinning, and adversely affecting the operability during spinning. However, it is necessary to adjust the balance from an industrial point of view, but using an acrylonitrile polymer having a weight molecular weight of about 200,000, the polymer concentration in the stock solution may be set to about 5 to 15%. desirable. In addition, if bubbles exist in the spinning dope, defects in the fibers become an obstacle to obtaining high strength, and therefore it is necessary to remove the bubbles by means such as vacuum degassing during or after dissolution of the polymer.
[0011]
In order to orient the molecular chains in the direction of the fiber axis, it is necessary to impart stretching in the spinning process, and more severe stretching is required than in the case of general acrylic fibers. In order to withstand this, it is desirable to make a homogenous coagulated gel yarn. Therefore, it is important to set the coagulation conditions so that slow coagulation occurs, especially with the use of inorganic solvents and at room temperature or below. Low temperature solidification conditions are recommended. Further, the thickness of the coagulated gel yarn also affects the homogeneity of the gel yarn, and it is preferably as thin as possible as long as no yarn breakage occurs, and is preferably controlled to a thickness of about 50 to 300 microns.
[0012]
Next, a description will be given of stretching imparting that has the greatest influence on the orientation of molecular chains. As the stretching means, it is essential to perform multi-stage stretching under higher temperature conditions as the later process. As a preferred embodiment of such multi-stage stretching, stretching with a gel yarn containing a residual solvent, stretching in hot water. There can be mentioned means for sequentially carrying out dry heat stretching after drying, and further stretching in a high boiling solvent having a boiling point of 100 ° C. or higher, if necessary. By appropriately combining these means, it is possible to produce an acrylic fiber suitable as a raw material fiber of the present invention, preferably having a tensile strength of 10 g / d or more.
[0013]
The drying process needs to be performed under tension because thermal relaxation causes a decrease in strength. Further, in order to keep the above-described dry heat shrinkage rate preferably at 5% or less, it is necessary to perform heat setting at a dry heat shrinkage measurement temperature, that is, a temperature of 150 ° C. or higher. Since a sufficient setting effect cannot be obtained unless the heat setting temperature is higher than the drying temperature or the stretching temperature, the heat setting temperature should be 200 ° C. or higher when dry heat stretching is performed at 150 to 200 ° C., for example. is necessary. However, the heat setting temperature is not limited as long as it is high, and it is preferable to carry out at the optimum temperature in consideration of the strength level of the fiber to be obtained, the dry heat shrinkage rate, and the like. Generally, when the maximum temperature in the process, that is, when dry heat stretching is employed, it is desirable that the temperature be higher by about 10 ° C. than the dry heat stretching temperature. Further, since the heat setting effect is greatly influenced not only by the temperature in the setting process but also by the processing time, it is essential to ensure a sufficient residence time. In the acrylic fiber of the present invention, when the residence time in the heat setting step is 5 seconds or longer, preferably 8 seconds or longer, a dry heat shrinkage of 5% or less can be realized.
[0014]
The acrylic fiber excellent in adhesiveness of the present invention is provided with a specific component, that is, a treatment mainly composed of polyoxyethylene alkyl ester and polyoxyethylene alkyl ether, on the surface of the acrylic fiber as a raw material. The application method is not particularly limited, but it is preferable to pass the drying step after applying the gel yarn after the solvent removal. Even when applied to the dried fiber, good adhesion to the rubber matrix can be obtained, but higher adhesion can be obtained when applied to the gel yarn. The application method can be applied by immersing the fiber bundle as the object to be treated in a tank containing the treatment agent, using the touch roller, spraying the treatment agent on the fiber bundle, etc. It is important that the treatment agent penetrates evenly into the fiber bundle.
[0015]
As the preferable treating agent, polyoxyethylene alkyl ester and polyoxyethylene alkyl ether are the main components, and the polyoxyethylene alkyl ester and polyoxyethylene alkyl ether have an oxyethylene repeating number of 8 to 16, and It is recommended that the total content of polyoxyethylene alkyl ester and polyoxyethylene alkyl ether in the treating agent is 50% by weight or more of the total amount of the treating agent. When the number of oxyethylene repeats of these components is less than 8, volatilization is significantly worsened in the drying process after application, or the tar-like substance once condensed of the volatilized components is reattached to the fiber surface and the fiber quality This causes problems such as lowering. On the other hand, when the number of oxyethylene repeats exceeds 16, it becomes very difficult to disperse when preparing an aqueous dispersion when applied to the fiber, and a large amount of dispersant must be used, so that the content of these components as the main component is 50%. It becomes difficult to make it more than wt%. In addition, when the total content of these components is less than 50% by weight, the adhesion amount on the fiber surface of components other than polyoxyethylene alkyl ester and polyoxyethylene alkyl ether increases, and the effect of improving adhesion is also exhibited. Decrease. The amount of adhesion to the fiber surface is desirably in the range of 0.1% by weight to 2% by weight. When the adhesion amount is less than 0.1% by weight, it may be difficult to exert a sufficient adhesive force. On the other hand, when it exceeds 2% by weight, the excessive treating agent component causes adhesion between the matrix and the fiber surface. There is a fear of obstruction. Components other than the polyoxyethylene alkyl ester and polyoxyethylene alkyl ether contained in the treatment agent are not particularly limited, but a general fiber oil agent having an antistatic effect may be used from the viewpoint of operability in the drying process. . It should be selected in consideration of volatilization in the dryer, thermal decomposition, etc., as in the case of general acrylic fiber production.
[0016]
The term “polyoxyethylene alkyl ester” and “polyoxyethylene alkyl ether” as used in the present invention refers to a compound obtained by adding an alkyl ester and an alkyl ether to polyoxyethylene. In the present invention, “alkyl” refers to those having 8 to 20 carbon atoms. When the number of carbon atoms is less than 8, volatilization becomes significant when the applied fibers are dried, causing inconveniences such as the generation of tar. On the other hand, when the number of carbon atoms exceeds 20, the emulsification dispersibility is deteriorated and it becomes difficult to prepare a treatment liquid.
[0017]
In the present invention, these polyoxyethylene alkyl ester and polyoxyethylene alkyl ether are used in combination, and the abundance ratio is desirably in the range of 90/10 to 10/90, more preferably 80%. It should be in the range of / 20 to 20/80. The reason for the effect of the combined use is not clear, but when only one of them is used, the initial adhesive strength of 20 kg / cm by the drawing method as the object of the present invention cannot be achieved.
[0018]
An excellent reinforcing effect can be obtained when acrylic fibers provided with such polyoxyethylene alkyl ester and polyoxyethylene alkyl ether components on the fiber surface are used as a reinforcing material for the rubber matrix. Although the mechanism is not necessarily clear, these components present at the fiber-matrix interface play a role in strengthening the adhesion between the fiber and the matrix, and facilitate the dispersion of the fiber in the matrix. It is assumed that the strength of the acrylic fiber is effectively exhibited.
[0019]
Thus, by integrally bonding and adopting the technical means recommended for the present invention, it is possible to obtain acrylic fibers having high strength and excellent adhesion to a matrix, particularly a rubber matrix.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Unless otherwise specified, “%” and “part” are used on a weight basis.
[0021]
Example 1
A monomer mixture composed of 97 parts of acrylonitrile and 3 parts of vinyl acetate was subjected to aqueous suspension polymerization using ammonium persulfate as an initiator to prepare a polyacrylonitrile-based polymer having a weight average molecular weight of 200,000, and the resulting polymer was loaded with rhodanic acid. Sodium was dissolved as a solvent to prepare a spinning dope with a polymer concentration of 8%. After this spinning dope was filtered, dry and wet spinning was performed using a nozzle having a pore diameter of 0.15 mm and a pore number of 3000. At this time, the distance between the nozzle surface and the coagulation liquid surface is 4 mm. The stock solution temperature during spinning was maintained at 78 ° C., and the coagulation solution was adjusted to a sodium rhodanate concentration of 17% and a temperature of 0 ° C. The gel yarn from the coagulating liquid was stretched twice while being washed with deionized water, and then stretched 1.5 times in hot water at 85 ° C. and 2.5 times in boiling water. Next, various oil agents listed in Table 1 were applied using a touch roller. The fiber to which the oil was applied was then dried by running on a heating roller whose surface temperature was set stepwise from 100 ° C to 140 ° C. The dried fiber was further heated through a heating roller having a surface temperature set to 170 ° C., subjected to 2.3 times dry heat drawing, and then contacted with a heating roller set to a surface temperature of 220 ° C. for 8 seconds and wound up. . The acrylic fiber thus obtained had a tensile strength of 11.8 g / d and a dry heat shrinkage of 3.2%. In addition, Table 2 shows the oil agent adhesion amount measured by the extraction method. The adhesion amount of the polyoxyethylene alkyl ester and the polyoxyethylene alkyl ether component was calculated from the oil agent adhesion amount and the content in the oil agent.
[0022]
[Table 1]
[0023]
This acrylic fiber was subjected to an immersion treatment with a treatment liquid comprising a butadiene / styrene / vinyl pyridine copolymer latex and a resorcin / formalin resin using a single cord dipping machine. This cord is made up of 100 parts of natural rubber, 20 parts of SRF carbon, 20 parts of REF carbon, 5 parts of vannur, 2 parts of styrenated phenol, 2.5 parts of stearic acid, 5 parts of zinc white, N-cyclohexyl-2-benzothiazyl- Sandwiched with a rubber compound containing 1 part of sulfenamide and 3 parts of sulfur, press vulcanized at 140 ° C for 30 minutes, and measured initial bond strength according to the T test (Method A) described in JIS L1017-1995, which is a drawing method The results are also shown in Table 2.
[0024]
[Table 2]
[0025]
From the results of Table 2, the initial stage is excellent in the case of the oil agent (A, B) according to the present invention as compared with the case where the polyoxyethylene alkyl ester and polyoxyethylene alkyl ether are not included (oil agents E, F, G). It can be understood that the adhesive strength is exhibited. Further, when the polyoxyethylene alkyl ester and the polyoxyethylene alkyl ether have an oxyethylene repeating number of 8 or less (D), the initial adhesive strength is higher than that of the oils E, F and G, but the object of the present invention 20 kg / cm cannot be achieved. It can also be seen that the target level of the present invention is not reached when the content of the polyoxyethylene alkyl ester and polyoxyethylene alkyl ether components in the oil is less than 50%. Even when the oil component is in accordance with the present invention (A, B), if the adhesion amount to the fiber deviates from the range of 0.1% to 2%, the object of the present invention, 20 kg / cm, may not be obtained. Easy to understand. It can also be understood that 20 kg / cm which is the object of the present invention cannot be obtained even when the polyoxyethylene alkyl ester and the polyoxyethylene alkyl ether component are not used in combination (H, I).
[0026]
【The invention's effect】
As described above, the present invention has clarified a technique for improving the adhesion between the fiber and the matrix for sufficiently exhibiting the reinforcing effect when the acrylic fiber is used as a reinforcing material for the organic matrix. In particular, it is possible to provide a high-strength acrylic fiber having excellent adhesion to a rubber matrix and capable of making the reinforcing effect remarkable by a normal adhesive treatment without using a special formulation at the time of the adhesion treatment.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9484497A JP3755621B2 (en) | 1997-03-27 | 1997-03-27 | Acrylic fiber with excellent adhesion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9484497A JP3755621B2 (en) | 1997-03-27 | 1997-03-27 | Acrylic fiber with excellent adhesion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10273820A JPH10273820A (en) | 1998-10-13 |
JP3755621B2 true JP3755621B2 (en) | 2006-03-15 |
Family
ID=14121356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9484497A Expired - Fee Related JP3755621B2 (en) | 1997-03-27 | 1997-03-27 | Acrylic fiber with excellent adhesion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3755621B2 (en) |
-
1997
- 1997-03-27 JP JP9484497A patent/JP3755621B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10273820A (en) | 1998-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR870000360B1 (en) | High strength polyacrylonitril fiber and it's producing method | |
JP2008308776A (en) | Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber | |
JP5109936B2 (en) | Carbon fiber precursor fiber and method for producing carbon fiber | |
JP2022507178A (en) | Method for producing polyacrylonitrile-based polymer with high conversion rate | |
JP6477546B2 (en) | Method for producing carbon fiber precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle | |
JP3755621B2 (en) | Acrylic fiber with excellent adhesion | |
KR101091415B1 (en) | Polyacrylonitrile Based Precursor For Carbon Fiber And Its Preparation Method | |
JP4507908B2 (en) | Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle | |
JP5504678B2 (en) | Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber | |
JPH0583642B2 (en) | ||
JP2002161114A (en) | Acrylonitrile-based polymer and its producing method | |
KR20100073760A (en) | Method for preparing carbon fiber precursor | |
JPH10273819A (en) | Acrylic fiber excellent in adhesion | |
JP7420608B2 (en) | Method for producing carbon fiber precursor fiber | |
JP2004091943A (en) | Method for producing acrylic fiber | |
EP0201908B1 (en) | Acrylonitrile spinning solution and process for producing fibers therewith | |
JP2003020516A (en) | Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same | |
JPH09249747A (en) | Silicone rubber, silicone rubber particle, precursor for carbon fiber, and carbon fiber | |
JP2001288613A (en) | Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber | |
JP2023163084A (en) | Manufacturing method of polyacrylonitrile fiber and carbon fiber | |
JP2022098766A (en) | Polyacrylonitrile fiber and method of producing the same | |
JP2015183165A (en) | Acrylonitrile-based copolymer, polyacrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber | |
JPH01104820A (en) | Production of high-strength acrylic fiber | |
JP2022090764A (en) | Carbon fiber precursor fiber and method for producing the same | |
JPH04245913A (en) | Production of fiber for reinforcing cement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140106 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |