JP3754426B2 - アレーアンテナの設計方法、可変リアクタンス回路及び電子回路 - Google Patents

アレーアンテナの設計方法、可変リアクタンス回路及び電子回路 Download PDF

Info

Publication number
JP3754426B2
JP3754426B2 JP2003122253A JP2003122253A JP3754426B2 JP 3754426 B2 JP3754426 B2 JP 3754426B2 JP 2003122253 A JP2003122253 A JP 2003122253A JP 2003122253 A JP2003122253 A JP 2003122253A JP 3754426 B2 JP3754426 B2 JP 3754426B2
Authority
JP
Japan
Prior art keywords
variable reactance
circuit
variable
array antenna
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003122253A
Other languages
English (en)
Other versions
JP2004320682A (ja
Inventor
青 韓
惠三 稲垣
孝 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2003122253A priority Critical patent/JP3754426B2/ja
Publication of JP2004320682A publication Critical patent/JP2004320682A/ja
Application granted granted Critical
Publication of JP3754426B2 publication Critical patent/JP3754426B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のアンテナ素子からなるアレーアンテナ装置の指向特性を変化させることができるアレーアンテナ装置の設計方法に関し、特に、電子制御導波器アレーアンテナ装置(Electronically Steerable Passive Array Radiator Antenna)の設計方法に関する。また、上記電子制御導波器アレーアンテナ装置において用いることができる可変リアクタンス回路及び電子回路に関する。
【0002】
【従来の技術】
従来技術の電子制御導波器アレーアンテナ装置の基本構成は、例えば、特許文献1や非特許文献1において提案されている。この電子制御導波器アレーアンテナ装置は、無線信号が給電される励振素子と、この励振素子から所定の間隔だけ離れて設けられ、無線信号が給電されない少なくとも1個の非励振素子と、この非励振素子に接続された可変リアクタンス素子とから成るアレーアンテナを備え、上記可変リアクタンス素子のリアクタンス値を変化させることにより、上記アレーアンテナの指向特性を変化させることができる。
【0003】
この電子制御導波器アレーアンテナ装置を用いるとき、高周波送信機又は受信機は、素子数に関わらず常に単一の給電線を有するので、アンテナの構造は、デジタルビーム形成(DBF)アンテナよりも大幅に簡単化されており、少ない直流電力を消費する。このことは様々な可能性を開き、適応型アンテナを有する無線コンピュータネットワークにおけるコンシューマ端末を生成する道を開くものである。
【0004】
図11は、例えば、特許文献2において開示された、適応制御型コントローラ20を備えたことを特徴とする従来例のアレーアンテナの制御装置の構成を示すブロック図である。このアレーアンテナの制御装置は、図11に示すように、1つの励振素子A0と、6個の非励振素子A1乃至A6と、接地導体11とを備えてなる従来技術の電子制御導波器アレーアンテナ装置で構成されたアレーアンテナ装置100と、適応制御型コントローラ20と、学習シーケンス信号発生器21と、高周波受信部22と、復調器23とを備えて構成される。この図11の例では、各非励振素子A1乃至A6はモノポール型にてなるが、図12に示すように、1対のアンテナ素子13a,13bの間に可変リアクタンス素子12が挿入されてなる、いわゆる平衡型非励振素子と呼ばれるダイポール型非励振素子A10であってもよく、また、各可変リアクタンス素子12は図13に示す可変容量ダイオード14にてなる。なお、各素子A0乃至A6は例えばλ/4(ただし、λは波長である。)の長さを有するモノポール型アンテナ素子である。
【0005】
ここで、適応制御型コントローラ20は、例えばコンピュータなどのディジタル計算機で構成され、復調器23による無線通信を開始する前に、相手先の送信機から送信される無線信号に含まれる学習シーケンス信号を上記アレーアンテナ装置100の励振素子A0により受信したときの受信信号y(t)と、上記学習シーケンス信号と同一であり学習シーケンス信号発生器21で発生された学習シーケンス信号r(t)とに基づいて、所定の適応制御処理を実行することにより上記アレーアンテナ装置100の主ビームを所望波の方向に向けかつ干渉波の方向にヌルを向けるための各可変リアクタンス素子A1乃至A6のリアクタンス値x(m=1,2,…,6)を計算して設定する。
【0006】
図11において、相手先の送信機から送信された無線信号は、アレーアンテナ装置100で受信され、その励振素子A0から出力される信号は、低雑音増幅、中間周波又はベースバンドへの周波数変換などの処理を行う高周波受信部22を介して、受信信号y(t)として適応制御型コントローラ20及び復調器23に伝送される。上記適応制御型コントローラ20は、上述の適応制御処理を実行してアレーアンテナの制御装置100の主ビームを所望波の方向に向けかつ干渉波の方向にヌルを向けるように適応制御した後、復調器23による無線通信が開始される。ここで、復調器23は、受信された受信信号y(t)に対して、復調などの処理を実行して復調信号を得て出力する。
【0007】
図11のアレーアンテナ装置100においては、励振素子A0と、6本の非励振素子A1乃至A6とがそれぞれ、各素子A0乃至A6の長さに対して十分に大きい広さを有する導体板にてなる接地導体11から電気的に絶縁され、かつ励振素子A0を中心とする例えば半径d=λ/4の円形形状の位置に互いに同一の60度の間隔で非励振素子A1乃至A6が配置されるように設けられる。ここで、アレーアンテナ装置100は、可逆回路であって、送信アンテナとして用いるときは、励振素子A0のみに無線信号が給電される一方、受信アンテナとして用いるときは、相手先の送信機からの無線信号が励振素子A0により受信信号y(t)として受信される。
【0008】
図11の従来技術の電子制御導波器アレーアンテナ装置を、例えば1W以上の比較的大きな送信電力で用いる場合において以下のような問題点があった。すなわち、非励振素子A1乃至A6に装荷する可変リアクタンス素子12として1個の可変容量ダイオード14を用いているが、可変容量ダイオード14は両端に印加される直流バイアス電圧により接合容量が変化するとともに、同様に両端に印加される無線信号の高周波電圧によっても可変容量ダイオード14の接合容量が変化してしまう。この場合における非励振素子A1乃至A6に流れる高周波電流iについて演算すると以下のようになる。
【0009】
いま、可変容量ダイオード14の接合容量Cを、その両端に印加される高周波電圧V=a・cosωtを用いて次式で表す。
【数1】
C=C+C
【0010】
ここで、C及びCは印加電圧対接合容量特性で決定される定数である。このとき、可変容量ダイオード14に流れる高周波電流iは次式で表される。
【0011】
【数2】
Figure 0003754426
【数3】
Figure 0003754426
【0012】
上記数3の最終式の右辺の第2項に示すように、第2高調波歪などの非線形歪が生じるという問題点があった。
【0013】
以上の問題点を解決し、第2高調波歪などの非線形歪を抑圧し、大きな信号電力でも動作させることができる電子制御導波器アレーアンテナ装置を提供するために、本発明者らは、特許文献3において、「無線信号を送受信するための励振素子と、上記励振素子から所定の間隔だけ離れて設けられた複数の平衡型非励振素子と、上記複数の平衡型非励振素子にそれぞれ接続された複数の可変リアクタンス回路とを備え、上記各可変リアクタンス回路のリアクタンス値を変化させることにより、上記複数の平衡型非励振素子をそれぞれ導波器又は反射器として動作させ、アレーアンテナの指向特性を変化させるアレーアンテナ装置において、上記各可変リアクタンス回路は、互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えたアレーアンテナ装置」を提案している。
【0014】
【特許文献1】
特開2001−024431号公報。
【特許文献2】
特開2002−118414号公報。
【特許文献3】
特開2002−299952号公報。
【非特許文献1】
T. Ohira et al., "Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming", 2000 IEEE International Conference on Phased Array System & Technology pp. 101-104, Dana point, California, May 21-25, 2000。
【非特許文献2】
S. M. Sze, "Physics of semiconductor devices", New York: Wiley, 1981。
【非特許文献3】
韓青ほか,“小型暗箱の開発検討:その2−暗箱の設計と試作結果−”,電子情報通信学会技術研究報告,電子情報通信学会発行,AP2001−26,39−46ページ,2001年5月。
【非特許文献4】
電気通信振興会発行,“電波法令集”,903−904ページ,2001年発行。
【0015】
【発明が解決しようとする課題】
しかしながら、提案されたアレーアンテナ装置においては、各可変リアクタンス素子の印加電圧に対する接合容量特性を考慮しておらず、第3高調波歪などの非線形歪を抑圧することができなかった。
【0016】
本発明の目的は以上の問題点を解決し、電子制御導波器アレーアンテナ装置において、各可変リアクタンス素子の印加電圧に対する接合容量特性を考慮し、従来技術に比較して第3高調波歪などの非線形歪を大幅に抑圧することができるアレーアンテナの設計方法を提供することにある。
【0017】
また、本発明の別の目的は、電子制御導波器アレーアンテナ装置などの電子回路において用いることができる可変リアクタンス回路であって、従来技術に比較して第3高調波歪などの非線形歪を大幅に抑圧することができる可変リアクタンス回路及びそれを用いた電子回路を提供することにある。
【0018】
【課題を解決するための手段】
本発明に係るアレーアンテナの設計方法は、無線信号を送受信するための励振素子と、上記励振素子から所定の間隔だけ離れて設けられた複数の平衡型非励振素子と、上記複数の平衡型非励振素子にそれぞれ接続された複数の可変リアクタンス回路とを備え、上記各可変リアクタンス回路のリアクタンス値を変化させることにより、上記複数の平衡型非励振素子をそれぞれ導波器又は反射器として動作させ、アレーアンテナの指向特性を変化させるアレーアンテナの設計方法であって、
上記各可変リアクタンス回路は、互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えて構成され、
印加電圧vに対して少なくとも2次の関数であって、
C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、
(3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記各可変リアクタンス回路の可変リアクタンス素子として選択することを特徴とする。
【0019】
上記アレーアンテナの設計方法において、好ましくは、上記互いに逆方向で接続された少なくとも1対の可変リアクタンス素子は、互いに実質的に同一の接合容量Cの特性を有することを特徴とする。
【0020】
また、上記アレーアンテナの設計方法において、上記各可変リアクタンス回路は、好ましくは、各回路群が複数の可変リアクタンス素子を並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする。
【0021】
さらに、上記アレーアンテナの設計方法において、上記各可変リアクタンス回路は、好ましくは、各回路群が複数の可変リアクタンス素子を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする。
【0022】
また、上記アレーアンテナの設計方法において、好ましくは、上記励振素子の周囲に誘電体フィルムを設け、上記誘電体フィルム上に上記複数の平衡型非励振素子を形成したことを特徴とする。
【0023】
さらに、上記アレーアンテナの設計方法において、上記選択すべき可変リアクタンス素子は、好ましくは、所定の定数から印加電圧vを減算した値の平方根に逆比例する上記印加電圧vに対する接合容量Cの特性を有することを特徴とする。
【0024】
またさらに、上記アレーアンテナの設計方法において、上記選択すべき可変リアクタンス素子は、好ましくは、実質的に階段型p−n接合を有することを特徴とする。
【0025】
また、本発明に係る可変リアクタンス回路は、互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えた可変リアクタンス回路であって、
印加電圧vに対して少なくとも2次の関数であって、
C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、
(3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記可変リアクタンス回路の可変リアクタンス素子として選択して用いたことを特徴とする。
【0026】
上記可変リアクタンス回路において、上記互いに逆方向で接続された少なくとも1対の可変リアクタンス素子は、好ましくは、互いに実質的に同一の接合容量Cの特性を有することを特徴とする。
【0027】
また、上記可変リアクタンス回路は、好ましくは、各回路群が複数の可変リアクタンス素子を並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする。
【0028】
さらに、上記可変リアクタンス回路は、好ましくは、各回路群が複数の可変リアクタンス素子を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする。
【0029】
また、上記可変リアクタンス回路において、上記選択すべき可変リアクタンス素子は、好ましくは、所定の定数から印加電圧vを減算した値の平方根に逆比例する上記印加電圧vに対する接合容量Cの特性を有することを特徴とする。
【0030】
さらに、上記可変リアクタンス回路において、上記選択すべき可変リアクタンス素子は、実質的に階段型p−n接合を有することを特徴とする。
【0031】
さらに、本発明に係る電子回路は、上記可変リアクタンス回路を備えたことを特徴とする。ここで、上記電子回路は、好ましくは、電圧制御型発振器、電圧制御型移相器、又は電圧制御型フィルタであることを特徴とする。
【0032】
【発明の実施の形態】
以下、図面を参照して本発明に係る実施形態について説明する。
【0033】
<第1の実施形態>
図1は、本発明に係る第1の実施形態であり、例えば図11のアレーアンテナ装置100で用いる、いわゆる平衡型非励振素子と呼ばれるダイポール型非励振素子A11の構成を示す回路図である。この実施形態においては、図11の各非励振素子A1乃至A6に用いる各可変リアクタンス素子12は、各可変容量ダイオード14a,14bが、好ましくは実質的に同一の印加電圧対可変容量特性を有し、互いに逆方向で接続された1対の可変容量ダイオード14a,14bを備えたことを特徴としている。
【0034】
図1のダイポール型非励振素子A11においては、例えばλ/4の長さを有するアンテナ素子13aの一端は可変容量ダイオード14aのカソードに接続されるとともに、抵抗15aを介してコントローラ20の直流バイアス印加端子Vc+に接続される。また、可変容量ダイオード14aのアノードは抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続される。一方、他方のアンテナ素子13bの一端(アンテナ素子13a側に位置する)は可変容量ダイオード14bのカソードに接続されるとともに、抵抗15bを介してコントローラ20の直流バイアス印加端子Vc+に接続される。また、可変容量ダイオード14bのアノードは抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続される。ここで、コントローラ20の直流バイアス印加端子Vc+,Vc−は、図11のリアクタンス値信号を出力する端子である。
【0035】
なお、図11のアレーアンテナ装置100におけるすべての非励振素子A1乃至A6として図1のダイポール型非励振素子A11を用いるとき、接地導体11は不要であって、励振素子A0はモノポール型励振素子であってもよいし、ダイポール型励振素子であってもよい。また、各非励振素子A1乃至A6の可変容量ダイオード14a,14bはそれぞれ、実質的に同一の印加電圧対接合容量特性を有し、以下に説明される方法によって決定される特性を有するものとする。
【0036】
なお、本発明に係る実施形態では、図13のように単一の可変容量ダイオード14にてなる図11の可変リアクタンス素子12−1乃至12−6の回路を「単一バラクタ」(SV型)と呼び、図1乃至図3のように逆方向で接続された1対の可変容量ダイオード又は1対の回路群にてなる可変リアクタンス回路を「逆直列バラクタ対」(ASVP型)と呼ぶ。
【0037】
以下、本発明の実施形態に係るアレーアンテナの設計方法を定式化するために、図11の従来技術に係る可変リアクタンス素子の回路(SV型)と、図1の可変リアクタンス回路(ASVP型)とを解析する。問題を簡単化するために、電源インピーダンスについては考慮しない。以下では、図11での励振周波数からの高調波発生について説明し、ASVP型の可変リアクタンス回路を備えた電子制御導波器アレーアンテナ装置が、SV型の可変リアクタンス素子を備えた電子制御導波器アレーアンテナ装置よりも非線形歪をより良く抑圧することを定量的に示す。非線形問題は、一般にシミュレーションにより数値的に解かれるが、シミュレーション法の使用によって問題を物理的に見極めることは困難である。解析的な方法は問題のより良い理解を与えることができるが、明らかに簡単な非線形回路であっても、その解析的な複雑性は完全な解を得ることを困難にする。ゆえに、本実施形態では、逆方向で直列に接続された1対の可変容量ダイオードを含む非線形回路を解析するために摂動法を用いる。
【0038】
図13の可変容量ダイオード14において、バイアス電圧vの高周波励振によって当該可変容量ダイオード14を流れる電流(isv)は、次式によって決定可能である。
【0039】
【数4】
Figure 0003754426
【0040】
ここで、Cは可変容量ダイオード14の接合容量(すなわち、可変容量)であって、所定の印加電圧対接合容量特性を有する。数4における接合容量Cは、次式のように、印加される印加電圧vに対して、少なくとも2次の関数である非線形性を有する量として定義される。
【0041】
【数5】
C=C+δCv+δ
【0042】
ここで、係数C(i=0,1,2)は、可変容量ダイオード14の印加電圧対接合容量特性で決定される実数の定数であり、δはバイアス電圧の摂動指数を示す。本実施形態では、接合容量Cの定義式において保持する項をO(δ)(すなわち、δに比例するオーダー)までとし、高次の項は無視できるほど十分に小さいと仮定している。バイアス印加電圧vを、次式のような形態の励振であるものとする。
【0043】
【数6】
v=vcosωt
【0044】
ここで、vは高周波励振信号の電圧の振幅であり、ωはその周波数である。数6を数5に代入し、かつ余弦の2乗や積に対して公知の三角関数の倍角公式を適用することによって、次式が得られる。
【0045】
【数7】
Figure 0003754426
【0046】
数7より、従来技術の単一の可変容量ダイオード14のときの3次高調波の振幅を、次式のように表す。
【0047】
【数8】
Figure 0003754426
【0048】
数7から、図13のような単一の可変容量ダイオード14を用いた場合には、基本波(ω)、2次高調波(2ω)及び3次高調波(3ω)が存在することが分かる。従って、従来技術の可変リアクタンス素子では、2次高調波歪や3次高調波歪のような非線形歪が生じるという問題点があった。
【0049】
一方、図1において、可変容量ダイオード14aの容量をCとし、可変容量ダイオード14bの容量をCとする。逆方向で直列に接続された1対の可変容量ダイオード14a,14bの全体の回路に振幅v及び周波数ωの電圧を印加するとき、図1の構成によれば、明らかに下記のような関係式を得ることができる。
【0050】
【数9】
Figure 0003754426
【数10】
−v=v=vcosωt
【0051】
ここで、iASVPは逆方向で直列に接続された可変容量ダイオード14a,14bを流れる高周波電流であり、vとvはそれぞれ可変容量ダイオード14a及び14bに印加される電圧である。
【0052】
図1のように逆方向で直列に接続された可変容量ダイオード14a及び14bの場合、容量C及びCの印加電圧対接合容量特性は、印加電圧の摂動指数δを用いて、次式のように定義される。
【0053】
【数11】
=C+δC+δ
【数12】
=C+δC+δ
【0054】
数学的に、数10、11及び12を数9に代入することによって、次式を得る。
【0055】
【数13】
Figure 0003754426
【0056】
ここで、電圧vは次式で定義され、すなわち、非摂動成分va0と摂動成分δva1,va2との和と定義される。
【数14】
=va0+δva1+δa2
【0057】
数14を数13に代入し、この等式を摂動指数δで展開すると、摂動指数δを含まない項について数15を得て、1次の摂動指数δを含む項について数16を得る。
【0058】
【数15】
Figure 0003754426
【数16】
Figure 0003754426
【0059】
明らかに、数15の解は次式になる。
【0060】
【数17】
Figure 0003754426
【0061】
この結果は、摂動がないとき、逆方向で直列に接続された各可変容量ダイオード14a,14bが、逆方向で直列に接続された各可変容量ダイオード14a,14bの全体の回路に印加される高周波電圧のちょうど半分を印加されるということを意味している。数16は、数17を数16に代入することによって解かれ、次式が得られる。
【0062】
【数18】
Figure 0003754426
【0063】
同様に、dva2/dt=0及びva2=D(定数)が求められる。最後に、これら及び数17及び数18を数9に代入して、高周波電流iASVPを得る。
【0064】
【数19】
Figure 0003754426
【0065】
明らかに、数19は基本波(ω)と、2次高調波(2ω)と、3次高調波(3ω)を含む。しかしながら、2次高調波(2ω)はδに比例して、基本波や3次高調波よりも十分に小さいことがわかる。これは、互いに逆方向で直列に接続された1対の可変容量ダイオード14a,14bの配置を用いる限り、2次高調波歪は、逆相となることによって常に相殺されることを意味している。数19によれば、3次高調波歪は次式の大きさを有する。
【0066】
【数20】
Figure 0003754426
【0067】
当該電子制御導波器アレーアンテナ装置を製造するときに用意された多数の可変容量ダイオードから、可変リアクタンス回路のための可変容量ダイオード14a,14bを選択するとき、3次高調波歪の大きさを最小化するために、上記数20で表された規範関数が実質的に最小となるような可変容量ダイオードを選択して用いることが好ましい。なお、具体的には、上記多数の可変容量ダイオードについて、コントローラによりそれぞれ制御される、バイアス電圧を各可変容量ダイオードに印加する直流電圧源と、キャパシタンス測定器を接続し、バイアス電圧を変化してキャパシタンスの測定を行って印加電圧対接合容量特性を測定した後、δ=0の数5を用いて例えば最小二乗法を用いて、パーソナルコンピュータなどのデジタル計算機により各可変容量ダイオードの定数C,C,Cを計算してかつ上記数20のうちの規範関数の値(3C /2C−C)を計算してメモリに格納し、この値が最小である可変容量ダイオードを選択して用いる。ここで、選択して用いる可変容量ダイオードは好ましくは互いに実質的に同一の印加電圧対接合容量特性を有することが好ましい。さらに、最も好ましくは、数20をゼロに設定することにより、3次高調波歪をゼロにすることができ、そのときの条件は次式の通りであり、数21を満たす可変容量ダイオードを選択することが好ましい。
【0068】
【数21】
3C =2C
【0069】
以上説明したように、本実施形態によれば、各非励振素子A1乃至A6に用いる各可変リアクタンス素子12として、各可変容量ダイオード14a,14bが、好ましくは実質的に同一の印加電圧対可変容量特性を有し、互いに逆方向で接続された1対の可変容量ダイオード14a,14bを用い、印加電圧vに対して少なくとも2次の関数であって、C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、(3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記各可変リアクタンス回路の可変リアクタンス素子14a,14bとして選択することにより、2次高調波歪を含む偶数次高調波歪や、3次高調波歪などの非線形歪を、従来技術に比較して大幅に抑圧することができる。
【0070】
なお、1対の可変容量ダイオード14a,14bの印加電圧対可変容量特性が互いに異なるときは、各特性の係数定数C,C,Cのそれぞれの平均値を計算し、それらの計算値に基づいて、上記規範関数が実質的に最小となるような可変リアクタンス素子14a,14bを選択してもよい。
【0071】
<第2の実施形態>
図2は、本発明に係る第2の実施形態であり、電子制御導波器アレーアンテナ装置で用いる、いわゆる平衡型非励振素子と呼ばれるダイポール型非励振素子A12の構成を示す回路図である。この実施形態においては、図11の各非励振素子A1乃至A6に用いる可変リアクタンス素子12として、各回路群61,62が2つの可変容量ダイオード14a,14c又は14b,14dを並列に接続された回路にてなる少なくとも1対の回路群61,62が互いに逆方向で接続されて構成されたことを特徴としている。なお、各可変容量ダイオード14a,14b,14c,14dは、好ましくは、実質的に同一の印加電圧対接合容量特性を有する。
【0072】
図2のダイポール型非励振素子A12においては、アンテナ素子13aの一端は2つの可変容量ダイオード14a,14cの各カソードに接続されるとともに、抵抗15aを介してコントローラ20の直流バイアス印加端子Vc+に接続される。また、2つの可変容量ダイオード14a,14cの各アノードは抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続される。これら2つの可変容量ダイオード14a,14cにより回路群61を構成している。一方、他方のアンテナ素子13bの一端(アンテナ素子13a側に位置する)は2つの可変容量ダイオード14b,14dの各カソードに接続されるとともに、抵抗15bを介してコントローラ20の直流バイアス印加端子Vc+に接続される。また、2つの可変容量ダイオード14b,14dの各アノードは抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続される。これら2つの可変容量ダイオード14b,14dにより回路群62を構成している。
【0073】
当該電子制御導波器アレーアンテナ装置を製造するときに用意された多数の可変容量ダイオードから、可変リアクタンス回路の回路群61,62のための可変容量ダイオード14a,14b,14c,14dを選択するとき、3次高調波歪の大きさを最小化するために、上記数20で表された規範関数が実質的に最小となるような可変容量ダイオードを選択して用いることが好ましい。また、最も好ましくは、数20をゼロに設定することにより、3次高調波歪をゼロにすることができ、そのときの条件は上記数21の通りである。なお、複数の可変容量ダイオード14a,14b,14c,14dの印加電圧対可変容量特性が互いに異なるときは、各特性の係数定数C,C,Cのそれぞれの平均値を計算し、それらの計算値に基づいて、上記規範関数が実質的に最小となるような可変リアクタンス素子14a,14b,14c,14dを選択してもよい。
【0074】
第2の実施形態においては、図1の可変容量ダイオード14aに図2の回路群61が対応し、可変容量ダイオード14bに回路群62が対応しているので、数20の3次高調波歪の大きさHD3;ASVPにおいて、定数C、C及びCの代わりに定数2C、2C及び2Cを代入することによって、図2の可変リアクタンス素子の3次高調波歪の大きさHD3;ASVPを計算することができる。この3次高調波歪の大きさHD3;ASVPを、従来技術の3次高調波歪の大きさHD3;SV(数8)で除算することによって、図2の実施形態の、3次高調波歪の抑圧における従来技術に対する改善を、次式のごとく示すことができる。
【0075】
【数22】
Figure 0003754426
【0076】
なお、数22において、C=0のとき、改善は約−12dB(=20・log(1/4))となる。
【0077】
以上説明したように、本実施形態によれば、図11の各非励振素子A1乃至A6に用いる可変リアクタンス素子12として、各回路群61,62が2つの可変容量ダイオード14a,14c又は14b,14dを並列に接続された回路にてなる少なくとも1対の回路群61,62が互いに逆方向で接続されて構成されたので、第1の実施形態と同様に、2次高調波歪や3次高調波歪などの非線形歪を抑圧することができる。また、各回路群61,62で可変容量ダイオードが並列に接続されているので、大きな電流に対して耐えられる大電力用の電子制御導波器アレーアンテナ装置を提供できる。
【0078】
以上の実施形態においては、各可変容量ダイオード14a,14b,14c,14dの各アノードは互いに接続されているが、本発明はこれに限らず、少なくとも、可変容量ダイオード14aのアノードと、可変容量ダイオード14bのアノードとを接続して、その接続点を抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続する一方、可変容量ダイオード14bのアノードと、可変容量ダイオード14dのアノードとを接続して、その接続点を別の抵抗15d(図示せず。)を介してコントローラ20の直流バイアス印加端子Vc−に接続するようにしてもよい。
【0079】
<第3の実施形態>
図3は、本発明に係る第3の実施形態であり、電子制御導波器アレーアンテナ装置で用いる、いわゆる平衡型非励振素子と呼ばれるダイポール型非励振素子A13の構成を示す回路図である。この実施形態では、図11の各非励振素子A1乃至A6に用いる可変リアクタンス素子12として、各回路群71,72が4個の可変容量ダイオード31乃至34又は41乃至44を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群71,72が互いに逆方向で接続されて構成されたことを特徴としている。なお、各可変容量ダイオード31乃至34及び41乃至44は、好ましくは、実質的に同一の印加電圧対接合容量特性を有する。
【0080】
図3のダイポール型非励振素子A13においては、各2つの可変容量ダイオード(31,32)、(33,34)、(41,42)及び(43,44)が互いに同一方向で直列に接続されている。すなわち、可変容量ダイオード31のアノードが可変容量ダイオード32のカソードに接続され、可変容量ダイオード33のアノードが可変容量ダイオード34のカソードに接続されるとともに、可変容量ダイオード41のアノードが可変容量ダイオード42のカソードに接続され、可変容量ダイオード43のアノードが可変容量ダイオード44のカソードに接続される。ここで、アンテナ素子13aの一端は2つの可変容量ダイオード31,33の各カソードに接続されるとともに、抵抗15aを介してコントローラ20の直流バイアス印加端子Vc+に接続される。また、2つの可変容量ダイオード41,43の各アノードは抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続される。そして、4つの可変容量ダイオード31乃至34により回路群71を構成している。一方、他方のアンテナ素子13bの一端(アンテナ素子13a側に位置する)は2つの可変容量ダイオード41,43の各カソードに接続されるとともに、抵抗15bを介してコントローラ20の直流バイアス印加端子Vc+に接続される。また、2つの可変容量ダイオード42,44の各アノードは抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続される。そして、4つの可変容量ダイオード41乃至44により回路群72を構成している。
【0081】
当該電子制御導波器アレーアンテナ装置を製造するときに用意された多数の可変容量ダイオードから、可変リアクタンス回路の回路群71,72のための可変容量ダイオード31乃至34及び41乃至44を選択するとき、3次高調波歪の大きさを最小化するために、上記数20で表された規範関数が実質的に最小となるような可変容量ダイオードを選択して用いることが好ましい。また、最も好ましくは、数20をゼロに設定することにより、3次高調波歪をゼロにすることができ、そのときの条件は上記数21の通りである。なお、複数の可変容量ダイオード31乃至34及び41乃至44の印加電圧対可変容量特性が互いに異なるときは、各特性の係数定数C,C,Cのそれぞれの平均値を計算し、それらの計算値に基づいて、上記規範関数が実質的に最小となるような可変リアクタンス素子31乃至34及び41乃至44を選択してもよい。
【0082】
以上説明したように、本実施形態によれば、図11の各非励振素子A1乃至A6に用いる可変リアクタンス素子12として、各回路群71,72が4個の可変容量ダイオード31乃至34又は41乃至44を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群71,72が互いに逆方向で接続されて構成されているので、第1及び第2の実施形態と同様に、2次高調波歪や3次高調波歪などの非線形歪を抑圧することができる。また、各回路群71,72で可変容量ダイオードが直列にかつ並列に接続されているので、大きな電流及び高い電圧に対して耐えられる大電力用の電子制御導波器アレーアンテナ装置を提供できる。
【0083】
以上の実施形態においては、各可変容量ダイオード32,34,42,44の各アノードは互いに接続されているが、本発明はこれに限らず、少なくとも、可変容量ダイオード32のアノードと、可変容量ダイオード42のアノードとを接続して、その接続点を抵抗15cを介してコントローラ20の直流バイアス印加端子Vc−に接続する一方、可変容量ダイオード34のアノードと、可変容量ダイオード44のアノードとを接続して、その接続点を別の抵抗15d(図示せず。)を介してコントローラ20の直流バイアス印加端子Vc−に接続するようにしてもよい。
【0084】
また、可変容量ダイオード31と可変容量ダイオード32との接続点51と、可変容量ダイオード33と可変容量ダイオード34との接続点51とを互いに接続し、かつ可変容量ダイオード41と可変容量ダイオード42との接続点53と、可変容量ダイオード43と可変容量ダイオード44との接続点54とを互いに接続してもよい。
【0085】
第3の実施形態においては、各回路群71又は72で、4つの可変容量ダイオードを用いているが、本発明はこれに限らず、4つの以上の複数の可変容量ダイオードを備えて、下側の回路群71と、上側の回路群72の各回路が互いに同一の回路構成となるように構成してもよい。
【0086】
<第4の実施形態>
図4は、本発明に係る第4の実施形態であるアレーアンテナ装置100aの構成を示す斜視図、及びそれに用いる可変リアクタンス回路の構成を示す回路図であって、図4(a)は従来例に係る単一バラクタ型(SV)の可変リアクタンス回路を示す回路図であり、図4(b)は実施例に係る逆直列型バラクタ型(ASVP)の可変リアクタンス回路を示す回路図である。
【0087】
この実施形態に係るアレーアンテナ装置100aは、電子制御導波器アレーアンテナ装置であって、励振素子A10としてスリーブアンテナを用い、その励振素子A10を等間隔で囲むように、例えば可撓性のポリイミド又はテフロン(登録商標)にてなる円筒形状の誘電体フィルム80が設けられ(すなわち励振素子A0は円筒の軸上に位置する。)、その誘電体フィルム80の外周上に、各非励振素子のアンテナ素子13a,13bが互いに上記円筒軸を中心として60度の角度の位置に、かつアンテナ素子13a,13bの長手方向が上記円筒軸と平行となるように、プリント配線の印刷方法により形成されている。なお、誘電体フィルム80の外側の表面を、保護用の透明なプラスチックカバー(図示せず。)で被覆している。また、アレーアンテナ装置100aからの電磁エネルギーの放射に影響を与えないようにするため、プラスチックカバーの、各アンテナ素子13a,13b上に位置する部分に矩形の穴を設けている。このように誘電体フィルム80上にプリントされた各非励振素子を備えるアレーアンテナ装置100aの構成によって、軽量なアンテナ装置を製造することができ、また、そのようなアンテナ装置の大量生産が容易になる。
【0088】
さらに、各非励振素子のアンテナ素子13a,13bが互いに近接する、各励振素子の中央部において、可変リアクタンス回路が誘電体フィルム80上に設けられる。図4(a)の従来例では、1つの可変容量ダイオード14を備えた単一バラクタ型(SV)の可変リアクタンス回路が設けられる。ここで、アンテナ素子13aの一端は可変容量ダイオード14のカソードに接続されるともに、抵抗17aを介してバイアス電圧Vcontを有する直流バイアス電源(図示せず。)に接続される。バイアス電圧Vcontで制御される各可変容量ダイオード14は、アレーアンテナの指向性ビームを360゜の方位角でステアリングして、アンテナ性能を変化させる。さらに、抵抗17aの、バイアス電圧Vcontに接続された側の端子は、1pF等の小さな容量を有するキャパシタ18を介して接地され、フィードバック制御応答の性能低下を回避することを可能にする。また、アンテナ素子13bの一端は可変容量ダイオード14のアノードに接続されるともに、抵抗17bを介して接地される。
【0089】
一方、図4(b)の実施例では、4つの可変容量ダイオード14a,14b,14c,14dを備えた逆直列バラクタ型(ASVP)の可変リアクタンス回路が設けられる。ここで、アンテナ素子13aの一端は可変容量ダイオード14a,14bの各アノードに接続されるともに、抵抗17cを介して接地される。一方、アンテナ素子13bの一端は可変容量ダイオード14c,14dの各アノードに接続されるとともに、抵抗17bを介して接地される。さらに、可変容量ダイオード14a,14b,14c,14dの各カソードはともに接続されて、各可変容量ダイオード14上の高周波電流が適応制御型コントローラ20へ漏れて戻ることを防止するための抵抗17aを介して、バイアス電圧Vcontを有する直流バイアス電源(図示せず。)に接続される。抵抗17aは、直流と無線周波信号との効果的な減結合のために十分な高いRC時定数を有する必要がある。逆バイアス電圧を印加された可変容量ダイオード14では直流の電流消費量がゼロであることから、抵抗17aには、10kΩ等の高い抵抗を利用することが可能である。バイアス電圧Vcontで制御される各可変容量ダイオード14は、アレーアンテナの指向性ビームを360゜の方位角でステアリングして、アンテナ性能を変化させる。さらに、抵抗17aの、バイアス電圧Vcontに接続された側の端子は、1pF等の小さな容量を有するキャパシタ18を介して接地され、フィードバック制御応答の性能低下を回避することを可能にする。ゆえに、高いRC時定数は高周波電磁解析をバイアス回路から分離するので、各非励振素子の設計に際しては可変容量ダイオードのみが考慮される必要がある。
【0090】
ASVP型の可変リアクタンス素子はSV型と同じ接合容量を有するが、1個の可変容量ダイオード当たりの高周波電流及び高周波電圧は、SV型のそれの半分である(図4参照)。ゆえに、可変容量ダイオードに印加される高周波電流が同じであるときは、ASVP型のダイポール型非励振素子への高周波電流はSV型の場合の2倍になる。このことは、解析的に、ASVP型が、SV型に比べて、高周波電力における12dBの歪に耐えなければならないことを意味する。さらに、理想的には、ダイポール型非励振素子の上部及び下部の構成要素が同じ振幅で逆の位相にあるために、偶数次の高調波歪は相殺されることが期待される。
【0091】
<第5の実施形態>
本実施形態では、図1乃至図3のダイポール型非励振素子A11,A12及びA13と、図4のアレーアンテナ装置100において用いられる各可変容量ダイオードとして、半導体製造装置で製造された複数の可変容量ダイオードから最適なものを選択してアレーアンテナを設計するための別の方法を示す。本実施形態では、第1の実施形態において説明された、可変容量ダイオードから発生する3次高調波歪を抑圧するための条件式(数21)をさらに変形する。
【0092】
印加電圧対接合容量特性が非線形である可変容量ダイオードのキャパシタの小信号電流は、電荷qの時間による導関数である。従って、当該可変容量ダイオードの印加電圧vに対する電荷量qの特性を表す関数をf(v)とおくと、次式を得ることができる。
【0093】
【数23】
Figure 0003754426
【0094】
ここで、印加電圧vの向きは可変容量ダイオードのpn接合の順方向になるように取っている。すなわち、順方向の印加電圧vは正の電圧となり、逆方向の印加電圧vは負の電圧となる。また、vは、可変容量ダイオードに印加されるある所定のバイアス電圧値を表し、さらに次の表記を用いた。
【0095】
【数24】
Figure 0003754426
【数25】
Figure 0003754426
【数26】
Figure 0003754426
【0096】
数24乃至数26を数21に代入することによって、次のような微分方程式を得ることができる。
【0097】
【数27】
Figure 0003754426
【0098】
さらに、数27を解くことによって、次式を得る。
【0099】
【数28】
Figure 0003754426
【0100】
ここで、A及びBは所定の定数であって、A>0,(B−v)>0を満たす。数28の容量C(v)及び電圧vは、容量C(v)が電圧(B−v)の−1/2乗に比例しているという関係を示しているので、このことは、非特許文献2で定義された可変容量ダイオードの感度s(v)が1/2であるということを意味する。ここで、可変容量ダイオードの感度s(v)は、バイアス電圧に対する容量の変動を示すものであり、次式で定義される(非特許文献2の115頁参照)。
【0101】
【数29】
Figure 0003754426
【0102】
上記数29から明らかなように、感度sが大きくなるにつれて、バイアス印加電圧vに対する容量の変化は大きくなる。ここで、感度s(v)が1/2であるとき、可変容量ダイオードのドーピングプロファイルは階段型p−n接合である。従って、ASVP型の可変リアクタンス回路に用いられている可変容量ダイオードが、実質的に理想的な階段型p−n接合を備えているかぎり、3次高調波歪は完全に除去されると結論づけることができる。
【0103】
以上説明したように、数5の印加電圧vに対する接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、数28のように、所定の定数Cから印加電圧vを減算した値の平方根に逆比例する、印加電圧vに対する接合容量Cの特性を有する可変リアクタンス素子を上記各可変リアクタンス回路の可変リアクタンス素子として選択することにより、3次高調波歪のような非線形歪を実質的に完全に除去し、又は少なくとも従来技術に比較して大幅に抑圧することができる。
【0104】
【実施例】
従来技術の項で上述したように、電子制御導波器アレーアンテナ装置を実用化する上で解決すべき課題の1つに可変容量ダイオードの高周波非線形性がある。電子制御導波器アレーアンテナ装置を高出力の送信アンテナとして用いる場合には可変容量ダイオードの高周波非線形性に起因して高調波歪が発生する可能性がある。ここでは、被測定アンテナ装置として、第4の実施形態に係るフィルム型アレーアンテナ装置100aを用いてその高周波非線形歪の測定及びその結果について以下に説明する。なお、アンテナの送信波測定は遠方界測定ではなく、小型電波暗箱90による極近傍界(リアクティブ界)測定により測定コストと時間を大幅に節減したことを特徴としている。
【0105】
この実験で用いる、第4の実施形態における可変容量ダイオード14,14a,14b,14c,14dは、株式会社東芝製1SV287型可変容量ダイオードであり、零バイアス時に8pFの容量を有し、0.5Vのバイアス電圧で9pFの容量を有し、20.0Vの逆バイアス電圧で0.7pFの容量を有する。また、可変容量ダイオードが耐えうる最大の逆電圧は30.0Vであり、その直列抵抗は1.9Ωである。可変容量ダイオードの接合容量は、逆バイアス電圧20.0V乃至順バイアス電圧0.5Vの直流電圧によって制御される。このときのリアクタンス値は、当該可変容量ダイオードの仕様書によると、6.9Ωから91.5Ωまでほぼ線形に変化する。
【0106】
この実験では、図4(a)及び(b)に示す単一バラクタ型(SV)と逆直列バラクタ型(ASVP)の可変リアクタンス回路を備えたアレーアンテナ装置100aを被測定アンテナ装置として用い、以下、前者をSV型のアレーアンテナ装置100aといい、後者をASVP型のアレーアンテナ装置100aという。ASVP型はSV型と同じく1個分の可変容量ダイオードの接合容量を有するが、可変容量ダイオード1個に生じる高周波電流と高周波電圧はともにSV型の半分である。従って、可変容量ダイオードに流れる高周波電流を同じとした場合、各非励振素子のダイポールに流れる高周波電流はASVP型はSV型の2倍になる。すなわち、ASVP型はSV型に比べ高周波電力で12dBの耐歪能力が期待される。また、各ダイポール型非励振素子の上の偶数次歪成分は、理想的にはダイポール型非励振素子の上側と下側の部分の振幅が同じで位相が逆のため、2次高調波歪が互いに打ち消す効果も期待できる。
【0107】
図5は、本発明に係る実験の実施例で用いる、アレーアンテナ装置100aを収容した小型電波暗箱90を示す縦断面図である。図5に示すように、小型電波暗箱90は630mm×630mm×630mmの寸法を有し、その6つの内面において電波吸収体91が装着され、この電波吸収体91は、先鋭な先端部を有するピラミッド形状を繰り返してなる形状を有し、その材料はポリウレタンフォームにカーボンを含浸させたものである。この小型電波暗箱90の中央部に、アレーアンテナ装置100aが位置するように支持部材93により支持される。さらに、日本電気真空硝子(株)製CP−2S型の低擾乱多層基板型磁界プローブ92を用いて、その検出先端を非励振素子の中央部(アンテナ素子13a,13bが互いに近接する部分であって、可変リアクタンス回路が形成された部分)に接触しないように所定の近接距離d=0.05mmで近接配置させ、アンテナの極近傍界(磁界)を測定し、その測定出力信号を図6に示すスペクトラムアナライザ107に入力する。従って、アンテナの極近傍界(磁界)は可変リアクタンス回路付近で流れる高周波電流に実質的に比例した値を示し、当該磁界の測定出力信号の周波数スペクトラムを観測することで高周波電流の基本波や高調波成分の電力レベルを測定できる。この実施例では、低擾乱探針磁界プローブ92と、小型電波暗箱90による極近傍界測定技術により実験コストの大幅削減を図っている。
【0108】
本発明人らによって開発され、第4の実施形態の実施例において用いられた小電波暗箱(例えば、非特許文献3などを参照。)は、大型の電波暗室で得られるものと同様の正確な測定値を得ることが証明されているので、図5では、従来の大型の電波暗室ではなく小型電波暗箱90において低干渉の磁界プローブ92を使用してアレーアンテナ装置100aの極近傍界が測定される。極近傍界測定システムの優位点の1つは、通常は電波暗室の内部に設置されるポジショナ等の測定計器からの反射がほとんどないことにある。さらにわれわれは、従来のフレネセン(Frenesen)領域の近傍界測定とは大幅に異なる極近傍界測定技術に基づいて小型電波暗箱90を開発した。測定用アンテナを使用する代わりに、素子の極近傍界の電流を検出する磁界プローブ92を使用する。従って、磁界プローブ92と被測定アンテナとの距離は極めて近い。実際に、本実施形態のために行った測定では、磁界プローブ92は、アンテナ装置に対して、磁界プローブ92の先端から可変リアクタンス素子までの距離が0.05mmの場所で配置されている。上述の優位点に加えて、小型電波暗箱90は、従来の測定計器と同様に効果的に使用することができる。すなわち、移動が容易で机上での使用に便利である。この極近傍界測定技術は、実験にかかる時間と費用を大幅に低減させる。
【0109】
図6は高調波歪の測定を行う測定回路のブロック図である。
【0110】
図6の測定回路において、高周波信号発生器101から送信した高周波信号を、高周波電力増幅器(増幅度20dB,1dB利得圧縮点+28dBm)102を用いて増幅した後、2つのアイソレータ103,105と2つの帯域通過フィルタ104,106を通過させてアレーアンテナ装置100aの励振素子A10の給電点(高周波端子)に入力する。ここで、アイソレータ103,105を挿入する目的は回路上の定在波及び高調波などのスプリアスを除去するためである。高周波電力増幅器102の非線形性で生じる高調波を抑えるために、2つのバンドパスフィルタ(中心周波数:2.450GHz,バンド幅:150MHz)104,106を用いた。さらに、図5で示した磁界プローブ92を用いて検出したアレーアンテナ装置100aの極近傍界からアンテナの基本波、2次高調波及び3次高調波の信号電力レベルをスペクトラムアナライザ107で観察する。この実施例において用いるアレーアンテナ装置100aの非励振素子はすべて同一であるため、その中の任意の1個を代表として測定する。表1に高調波歪を測定するときのパラメータを示す。
【0111】
【表1】
Figure 0003754426
【0112】
表1は、高調波歪の測定に使用されるパラメータを示す。測定されるアレーアンテナ装置100aの可変リアクタンス素子の構成は、SV型とASVP型であり、その動作周波数は2.484GHzである。6つの各可変リアクタンス素子には、−0.5V,0V,5V,10V,15V及び20Vのバイアス電圧が等しく印加される。
【0113】
図7及び図8は図6の測定回路による測定結果の一例であって、図7は、バイアス電圧Vcont=−0.5Vを印加したときの、アンテナ入力電力Pinの変化に対する、SV及びASVP型両方のアレーアンテナ装置の基本波(f=2.484GHz)、2次高調波(2f=4.968GHz)、及び3次高調波(3f=7.452GHz)の相対出力電力を示すグラフであり、図8は、バイアス電圧Vcont=20Vを印加したときの、アンテナ入力電力Pinの変化に対する、基本波、2次高調波、及び3次高調波の相対出力電力を示すグラフである。
【0114】
図7及び図8から、基本波の出力電力のレベルはSV型もASVP型も実質上同じであるが、ASVP型の2次及び3次高調波の出力電力のレベルは、バイアス電圧の違いに関わらず、SV型のそれより低いということは明らかである。これらの結果は、2次及び3次高調波の相対出力電力を示す曲線の傾きがそれぞれ、SV型及びASVP型共に基本波の場合のほぼ正確に2倍及び3倍であることから、かなり信頼度が高いものと考えられる。
【0115】
図9及び図10は図6の測定回路による測定結果であって、図9は、バイアス電圧Vcont=−0.5Vを印加したときの、アンテナ入力電力Pinの変化に対する、基本波に対する2次及び3次高調波の相対出力電力を示すグラフであり、図10は、バイアス電圧Vcont=20Vを印加したときの、アンテナ入力電力Pinの変化に対する、基本波に対する2次及び3次高調波の相対出力電力を示すグラフである。図9及び図10は、図7及び図8に対応する2つの異なるバイアス電圧(−0.5V及び20V)での、SV型及びASVP型の2次及び3次高調波の出力レベルから基本波の出力レベルを減算することによって取得される出力レベルの差を示す。
【0116】
また、図9及び図10には、解析的な結果を測定結果と比較するために、SVのときの3次高調波の相対出力電力に対する12dBの改善を示す曲線を描き込んでいる。図9は、SV型であっても無線LANの基準のスプリアス条件(@Pout<1Wのとき、−16dBm以下)を満たすために十分であることを示している(例えば、非特許文献4を参照。)。ASVP型では、+25dBmの入力電力Pin(316mW)において、2次及び3次高調波レベルは−80dBc未満に抑圧されている。ASVPの設計を利用することによって、−0.5Vと20Vのバイアス電圧で、2次及び3次高調波歪の約20dBと12dBの非線形な抑圧をそれぞれ取得することができる。ASVP型の2次高調波は、前述された理論上の結果のようにゼロではないが、ASVP型を実際に使用することは十分に満足できるものである。他のバイアス電圧の場合も測定され、その結果は表2にまとめられている。先の2つのバイアス電圧の例と同様に、他の異なるバイアス電圧によっても2次及び3次高調波歪に対して約20dBと12dBの改善が達成された。従って、ASVP型は、こうした非線形歪を効果的に抑圧することができるので、より低い非線形歪が要求される場合には優秀な候補になると結論できる。
【0117】
【表2】
Figure 0003754426
【0118】
以上説明したように、本発明に係る実施形態のアレーアンテナの設計方法によれば、可変容量ダイオードに印加するバイアス電圧を変化させることによって指向特性を制御する電子制御導波器アレーアンテナ装置において、可変容量ダイオードの非線形性に起因して発生する2次高調波歪、3次高調波歪などの非線形歪を、従来技術に比較して大幅に抑圧することができる。本実施形態では、最近開発された軽量のフィルム型アレーアンテナ装置100aにおける可変容量ダイオード回路の高周波非線形性から生じる高調波歪について実験的に調査した。実験にかかる時間と費用を大幅に低減するため、小型電波暗箱90内部で低干渉プローブ92を使用する極近傍界測定技術を利用した。歪を抑圧するものとして、ASVP型を用いて設計された、新規な可変容量ダイオード回路が提案された。ASVP型のアレーアンテナ装置100aは、SV型の場合よりも非常に小さい非線形歪を生成した。特に、2次及び3次高調波は、SV型のアレーアンテナ装置のレベルに対してそれぞれ約20dB及び12dBより大きく低減された。−0.5Vのバイアス電圧では、ASVP型の2次及び3次高調波出力レベルは、+25dBm(316mW)の高い入力電力Pinのときに、−80dBcよりも良好であった。
【0119】
<変形例>
なお、以上の実施形態で用いられるアレーアンテナ装置は、送信用に用いてもよいし、受信用に用いてもよい。
【0120】
また、3次高調波歪の大きさ(数20)及び3次高調波歪を抑圧するための条件式(数21)を導出したのと同様の方法を用いて、3次相互変調歪(IM3)の表現式を得ることもでき、さらに、3次相互変調歪を抑圧するための条件式を導出することもできる。
【0121】
図1乃至図4を参照して説明した可変リアクタンス回路は、電子制御導波器アレーアンテナ装置のために用いているが、本発明はこれに限らず、以下のような電子回路に用いてもよい。
(1)入力される電圧に応じて上記可変リアクタンス回路の容量値を変化することにより発振周波数を変化させる電圧制御型発振器。
(2)入力される電圧に応じて上記可変リアクタンス回路の容量値を変化することにより通過する信号の移相量を変化させる電圧制御型移相器。
(3)入力される電圧に応じて上記可変リアクタンス回路の容量値を変化することにより通過する信号の通過帯域を変化させる電圧制御型フィルタ。
【0122】
所定の電子回路を製造するときに用意された多数の可変容量ダイオードから、可変リアクタンス回路のための可変容量ダイオード14a,14bを選択するとき、3次高調波歪の大きさを最小化するために、上記数20で表された規範関数が実質的に最小となるような可変容量ダイオードを選択して用いることが好ましい。なお、具体的には、上記多数の可変容量ダイオードについて、コントローラによりそれぞれ制御される、バイアス電圧を各可変容量ダイオードに印加する直流電圧源と、キャパシタンス測定器を接続し、バイアス電圧を変化してキャパシタンスの測定を行って印加電圧対接合容量特性を測定した後、δ=0の数5を用いて例えば最小二乗法を用いて、パーソナルコンピュータなどのデジタル計算機により各可変容量ダイオードの定数C,C,Cを計算してかつ上記数20のうちの規範関数の値(3C /2C−C)を計算してメモリに格納し、この値が最小である可変容量ダイオードを選択して用いる。ここで、選択して用いる可変容量ダイオードは好ましくは互いに実質的に同一の印加電圧対接合容量特性を有することが好ましい。さらに、最も好ましくは、上記数20をゼロに設定することにより、3次高調波歪をゼロにすることができ、そのときの条件は上記数21の通りであり、当該数21を満たす可変容量ダイオードを選択することが好ましい。
【0123】
すなわち、例えば上記数21を満たす可変容量ダイオードを用いて可変リアクタンス回路を構成し、これを用いて上記の電子回路を形成することにより、2次高調波歪を含む偶数次高調波歪や、3次高調波歪などの非線形歪を、従来技術に比較して大幅に抑圧することができる可変リアクタンス回路又はそれを用いた電子回路を構成できる。例えば、電子回路として電圧制御型発振器を構成したときは、2次高調波歪を含む偶数次高調波歪や、3次高調波歪などの非線形歪を大幅に抑圧した発振信号を得ることができる。また、例えば、電子回路として電圧制御型移相器を構成したときは、2次高調波歪を含む偶数次高調波歪や、3次高調波歪などの非線形歪を大幅に抑圧した、所定の移相量で移相した後の通過信号を得ることができる。さらに、例えば、電子回路として電圧制御型フィルタを構成したときは、2次高調波歪を含む偶数次高調波歪や、3次高調波歪などの非線形歪を大幅に抑圧した、所定の帯域通過ろ波後の通過信号を得ることができる。
【0124】
【発明の効果】
以上詳述したように本発明に係るアレーアンテナの設計方法によれば、電子制御導波器アレーアンテナ装置において、各可変リアクタンス回路は、互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えて構成され、印加電圧vに対して少なくとも2次の関数であって、C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、(3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記各可変リアクタンス回路の可変リアクタンス素子として選択する。ここで、上記互いに逆方向で接続された少なくとも1対の可変リアクタンス素子は、印加電圧vに対する接合容量Cの特性が互いに実質的に同一である。従って、各可変リアクタンス素子の印加電圧に対する接合容量特性を考慮し、従来技術に比較して、第2高調波歪及び第3高調波歪などの非線形歪を大幅に抑圧することができる。
【0125】
また、上記アレーアンテナ装置において、上記各可変リアクタンス回路は、好ましくは、各回路群が複数の可変リアクタンス素子を並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成され、もしくは、各回路群が複数の可変リアクタンス素子を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成される。従って、2次高調波歪や3次高調波歪などの非線形歪を抑圧することができる。また、各回路群で可変容量ダイオードが並列で、もしくは直列にかつ並列に接続されているので、大きな電流及び/又は高い電圧に対して耐えられる大電力用のアレーアンテナ装置を提供できる。
【0126】
さらに、上記アレーアンテナ装置において、上記アレーアンテナの設計方法において、上記選択すべき可変リアクタンス素子は、好ましくは、所定の定数から印加電圧vを減算した値の平方根に逆比例する上記印加電圧vに対する接合容量Cの特性を有する。具体的には、上記選択すべき可変リアクタンス素子は、好ましくは、実質的に階段型p−n接合を有する。従って、各可変リアクタンス素子の印加電圧に対する接合容量特性を考慮し、従来技術に比較して、第2高調波歪及び第3高調波歪などの非線形歪を大幅に抑圧することができる。
【0127】
また、本発明に係る可変リアクタンス回路又はそれを用いた電子回路によれば、互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えた可変リアクタンス回路であって、印加電圧vに対して少なくとも2次の関数であって、C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、(3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記可変リアクタンス回路の可変リアクタンス素子として選択して用いる。これによって、従来技術に比較して、第2高調波歪及び第3高調波歪などの非線形歪を大幅に抑圧した可変リアクタンス回路又はそれを用いた電子回路を実現できる。
【図面の簡単な説明】
【図1】 本発明に係る第1の実施形態である、アレーアンテナ装置で用いるダイポール型非励振素子A11の構成を示す回路図である。
【図2】 本発明に係る第2の実施形態である、アレーアンテナ装置で用いるダイポール型非励振素子A12の構成を示す回路図である。
【図3】 本発明に係る第3の実施形態である、アレーアンテナ装置で用いるダイポール型非励振素子A13の構成を示す回路図である。
【図4】 本発明に係る第4の実施形態であるアレーアンテナ装置の構成を示す斜視図、及びそれに用いる可変リアクタンス回路の構成を示す回路図であって、図4(a)は従来例に係る単一バラクタ型(SV)の可変リアクタンス回路を示す回路図であり、図4(b)は実施例に係る逆直列型バラクタ型(ASVP)の可変リアクタンス回路を示す回路図である。
【図5】 図4のアレーアンテナ装置100aを収容した小型電波暗箱90を示す縦断面図である。
【図6】 図4のアレーアンテナ装置100aの高調波歪の測定を行う測定回路のブロック図である。
【図7】 図6の測定回路による測定結果であって、バイアス電圧Vcont=−0.5Vを印加したときの、アンテナ入力電力の変化に対する、基本波、2次高調波、及び3次高調波の相対出力電力を示すグラフである。
【図8】 図6の測定回路による測定結果であって、バイアス電圧Vcont=20Vを印加したときの、アンテナ入力電力の変化に対する、基本波、2次高調波、及び3次高調波の相対出力電力を示すグラフである。
【図9】 図6の測定回路による測定結果であって、バイアス電圧Vcon =−0.5Vを印加したときの、アンテナ入力電力の変化に対する、基本波に対する2次及び3次高調波の相対出力電力を示すグラフである。
【図10】 図6の測定回路による測定結果であって、バイアス電圧Vcont=20Vを印加したときの、アンテナ入力電力の変化に対する、基本波に対する2次及び3次高調波の相対出力電力を示すグラフである。
【図11】 従来例のアレーアンテナの制御装置の構成を示すブロック図である。
【図12】 従来技術で用いられるダイポール型無給電素子A10の構成を示す平面図である。
【図13】 従来技術で用いられる図12の可変リアクタンス素子12の一例である可変容量ダイオード14を示す図である。
【符号の説明】
A0,A10…励振素子、
A1乃至A6…非励振素子、
A11,A12,A13…ダイポール型非励振素子、
11…接地導体、
12…可変リアクタンス素子、
13a,13b…アンテナ素子、
14,14a,14b,14c,14d…可変容量ダイオード、
15a,15b,15c…抵抗、
17a,17b,17c…抵抗、
18…キャパシタ、
20…適応制御型コントローラ、
21…学習シーケンス信号発生器、
22…高周波受信部、
23…復調器、
31乃至34、41乃至44…可変容量ダイオード、
51乃至54…接続点、
61,62,71,72…回路群、
80…誘電体フィルム、
90…小型電波暗箱、
91…電波吸収体、
92…磁界プローブ、
93…支持部材、
100a…アレーアンテナ装置、
101,111…高周波信号発生器、
102,112…高周波電力増幅器、
103,105,113…アイソレータ、
104,106,114…帯域通過フィルタ、
107…スペクトラムアナライザ、
108…電力合成器、
109…低雑音増幅器。

Claims (15)

  1. 無線信号を送受信するための励振素子と、上記励振素子から所定の間隔だけ離れて設けられた複数の平衡型非励振素子と、上記複数の平衡型非励振素子にそれぞれ接続された複数の可変リアクタンス回路とを備え、上記各可変リアクタンス回路のリアクタンス値を変化させることにより、上記複数の平衡型非励振素子をそれぞれ導波器又は反射器として動作させ、アレーアンテナの指向特性を変化させるアレーアンテナの設計方法であって、
    上記各可変リアクタンス回路は、互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えて構成され、
    印加電圧vに対して少なくとも2次の関数であって、
    C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、
    (3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記各可変リアクタンス回路の可変リアクタンス素子として選択することを特徴とするアレーアンテナの設計方法。
  2. 上記互いに逆方向で接続された少なくとも1対の可変リアクタンス素子は、互いに実質的に同一の接合容量Cの特性を有することを特徴とする請求項1記載のアレーアンテナの設計方法。
  3. 上記各可変リアクタンス回路は、各回路群が複数の可変リアクタンス素子を並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする請求項1又は2記載のアレーアンテナの設計方法。
  4. 上記各可変リアクタンス回路は、各回路群が複数の可変リアクタンス素子を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする請求項1乃至3のうちのいずれか1つに記載のアレーアンテナの設計方法。
  5. 上記励振素子の周囲に誘電体フィルムを設け、上記誘電体フィルム上に上記複数の平衡型非励振素子を形成したことを特徴とする請求項1乃至4のうちのいずれか1つに記載のアレーアンテナの設計方法。
  6. 上記選択すべき可変リアクタンス素子は、所定の定数から印加電圧vを減算した値の平方根に逆比例する上記印加電圧vに対する接合容量Cの特性を有することを特徴とする請求項1乃至5のうちのいずれか1つに記載のアレーアンテナの設計方法。
  7. 上記選択すべき可変リアクタンス素子は、実質的に階段型p−n接合を有することを特徴とする請求項6記載のアレーアンテナの設計方法。
  8. 互いに逆方向で接続された少なくとも1対の可変リアクタンス素子を備えた可変リアクタンス回路であって、
    印加電圧vに対して少なくとも2次の関数であって、
    C=C+Cv+C(ここで、C,C,Cは定数である。)で表される接合容量Cの特性をそれぞれ有する複数の可変リアクタンス素子から、
    (3C /2C−C)である規範関数が実質的に最小となるような可変リアクタンス素子を上記可変リアクタンス回路の可変リアクタンス素子として選択して用いたことを特徴とする可変リアクタンス回路。
  9. 上記互いに逆方向で接続された少なくとも1対の可変リアクタンス素子は、互いに実質的に同一の接合容量Cの特性を有することを特徴とする請求項8記載の可変リアクタンス回路。
  10. 上記可変リアクタンス回路は、各回路群が複数の可変リアクタンス素子を並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする請求項8又は9記載の可変リアクタンス回路。
  11. 上記可変リアクタンス回路は、各回路群が複数の可変リアクタンス素子を直列にかつ並列に接続された回路にてなる少なくとも1対の回路群が互いに逆方向で接続されて構成されたことを特徴とする請求項8乃至10のうちのいずれか1つに記載の可変リアクタンス回路。
  12. 上記選択すべき可変リアクタンス素子は、所定の定数から印加電圧vを減算した値の平方根に逆比例する上記印加電圧vに対する接合容量Cの特性を有することを特徴とする請求項8乃至11のうちのいずれか1つに記載の可変リアクタンス回路。
  13. 上記選択すべき可変リアクタンス素子は、実質的に階段型p−n接合を有することを特徴とする請求項12記載の可変リアクタンス回路。
  14. 請求項8乃至13のうちのいずれか1つに記載の可変リアクタンス回路を備えたことを特徴とする電子回路。
  15. 上記電子回路は、電圧制御型発振器、電圧制御型移相器、又は電圧制御型フィルタであることを特徴とする請求項14記載の電子回路。
JP2003122253A 2002-08-16 2003-04-25 アレーアンテナの設計方法、可変リアクタンス回路及び電子回路 Expired - Fee Related JP3754426B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122253A JP3754426B2 (ja) 2002-08-16 2003-04-25 アレーアンテナの設計方法、可変リアクタンス回路及び電子回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002237457 2002-08-16
JP2003053953 2003-02-28
JP2003122253A JP3754426B2 (ja) 2002-08-16 2003-04-25 アレーアンテナの設計方法、可変リアクタンス回路及び電子回路

Publications (2)

Publication Number Publication Date
JP2004320682A JP2004320682A (ja) 2004-11-11
JP3754426B2 true JP3754426B2 (ja) 2006-03-15

Family

ID=33479506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122253A Expired - Fee Related JP3754426B2 (ja) 2002-08-16 2003-04-25 アレーアンテナの設計方法、可変リアクタンス回路及び電子回路

Country Status (1)

Country Link
JP (1) JP3754426B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211637A (ja) * 2004-12-27 2006-08-10 Advanced Telecommunication Research Institute International アレーアンテナ装置
EP1889359B1 (en) * 2005-06-08 2013-01-16 The Regents of the University of California Linear variable voltage diode capacitor and adaptive matching networks
JP4205758B2 (ja) * 2005-12-21 2009-01-07 パナソニック株式会社 指向性可変アンテナ
JP2007221523A (ja) * 2006-02-17 2007-08-30 National Institute Of Information & Communication Technology アレーアンテナ装置
JP5192726B2 (ja) * 2007-05-15 2013-05-08 新日本無線株式会社 半導体集積回路

Also Published As

Publication number Publication date
JP2004320682A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
Sussman-Fort et al. Non-Foster impedance matching of electrically-small antennas
US6407719B1 (en) Array antenna
Liu et al. Electrically small and low cost smart antenna for wireless communication
JP3124385U (ja) 広帯域受信用能動アンテナ
Mirzaei et al. A resonant printed monopole antenna with an embedded non-Foster matching network
US20060232492A1 (en) Array antenna control device and array antenna device
Chew et al. Meander line technique for size reduction of quadrifilar helix antenna
EP2834881A1 (en) Antenna array with wide-band reactance reduction
Noguchi et al. A compact broad-band helical antenna with two-wire helix
WO2013152141A1 (en) Antenna array with wide-band reactance reduction
KR20120015352A (ko) 통신 장치에서 근거리 방사 및 전자파 흡수율값을 감소시키는 방법
JP3669915B2 (ja) アレーアンテナの制御装置及び制御方法
JP3754426B2 (ja) アレーアンテナの設計方法、可変リアクタンス回路及び電子回路
JP2002299952A (ja) アレーアンテナ装置とその測定方法及びアンテナ装置の測定方法
Oezdamar et al. Considerations for harmonics distribution in aperture-tuned inverted-F antenna for cellular handheld devices
JP2008042852A (ja) アンテナ
Majumder et al. Dielectric metasurface inspired directional multi-port luneburg lens as a medium for 5g wireless power transfer—a design methodology
Han et al. Low spurious, broadband reflection frequency modulation using an active metasurface
US20040183741A1 (en) Antenna device and transmitter-receiver using the antenna device
Vincelj et al. Experimental demonstration of non-Foster self-oscillating Huygens radiator
JP4665176B2 (ja) 超伝導トンネル型ミキサ
JP3762349B2 (ja) アレーアンテナの制御装置及び制御方法
Myllymaki et al. Method for measuring user-induced load on mobile terminal antenna
Alhamad et al. An electrically tunable antenna for IOT applications
RU169100U1 (ru) Укороченный несимметричный вибратор

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees