JP3752999B2 - Upper and lower integrated bridge and its construction method - Google Patents

Upper and lower integrated bridge and its construction method Download PDF

Info

Publication number
JP3752999B2
JP3752999B2 JP2001003147A JP2001003147A JP3752999B2 JP 3752999 B2 JP3752999 B2 JP 3752999B2 JP 2001003147 A JP2001003147 A JP 2001003147A JP 2001003147 A JP2001003147 A JP 2001003147A JP 3752999 B2 JP3752999 B2 JP 3752999B2
Authority
JP
Japan
Prior art keywords
steel pipe
steel
concrete
bridge
floor slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001003147A
Other languages
Japanese (ja)
Other versions
JP2002206209A (en
Inventor
克佳 中西
勝昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001003147A priority Critical patent/JP3752999B2/en
Publication of JP2002206209A publication Critical patent/JP2002206209A/en
Application granted granted Critical
Publication of JP3752999B2 publication Critical patent/JP3752999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、橋脚と鋼桁とが一体に剛結合された上下部一体構造の橋梁及びその施工方法に関するものである。
【0002】
【従来の技術】
近年、橋梁の低コスト化の目的で、橋梁の様々な構造形式が提案されている。この中で、鋼材で製作された橋梁の上部構造(橋桁部分)と、鉄筋コンクリートで製作された橋脚とを剛結合した構造の橋梁(以下、上下部一体構造の橋梁という)は、橋梁の支承及び伸縮継手装置を省略することにより、維持管理費用が低減できる構造であること、橋梁架設後に張出し架設工法が可能である構造上の優位性があることなどの特長を有する。
【0003】
この種上下部一体構造の橋梁の一例として、特開平8−302619号公報に記載された発明がある。この発明に係る複合部材の接合方法は、鋼構造梁部材と鉄筋コンクリート構造柱脚とを接合した複合部材の接合構造において、鋼構造部材の接合端を形成する鋼製主桁と、鉄筋コンクリート構造柱脚の頂部から鋼製主桁内に延在するように設けた鉄筋コンクリート構造梁の接合端とを直接相互に一体的に接合したものである。
【0004】
そして、このように構成したことにより、強固、安全な合成構造を得ることができ、常時荷重に対しても、また地震時荷重に対しても充分に耐え、鋼構造部材と鉄筋コンクリート構造梁部材間で円滑な力の伝達をはかることができるとしている。
【0005】
【発明が解決しようとする課題】
上記のように構成した複合部材の接合構造、すなわち、上下部一体構造の橋梁においては、鉄筋を配筋してコンクリートを打設した鉄筋コンクリート構造柱部の一部を建設したのち、その頂部に仮受け材を設置してさらにこの仮受け材上に鋼製主桁を設置し、仮受け材の下端より上方の部分に鉄筋を配筋し、コンクリートを打設して鉄筋コンクリート構造柱脚を完成すると共に、この鉄筋コンクリート構造柱脚と鋼製主桁とを一体化しなければならない。
【0006】
このため、仮受け材及び鋼製主桁を回避して鉄筋を配筋するのがきわめて面倒であり、その上、鉄筋を現場で組み、かつ鉄筋コンクリート構造柱脚のコンクリート打設が2段階となるため、工期が長期化する。さらに、鋼製主桁に形鋼を用いる場合、桁高が低いため鋼製主桁と鉄筋コンクリート構造柱脚との間に作用するせん断力に抵抗するに足るずれ止部材を鋼製主桁に設置することができず、桁の合理化が困難になるなど、多くの問題がある。
【0007】
本発明は、上記の課題を解決するめたになされたもので、橋脚柱と鋼桁との接合部近傍に発生する大きな断面力に抵抗でき、その上低コストで急速施工が可能な上下部一体構造の橋梁及びその施工方法を提供することを目的としたものである。
【0008】
【課題を解決するための手段】
本発明に係る上下部一体構造の橋梁は、地盤上に立設された橋脚と、床版を含み前記橋脚柱の上に設けられる上部構造と、前記橋脚と上部構造を一体化する剛結部とからなり、前記剛結部は、前記橋脚柱の頂部に橋軸と直交して一体に接合された張出し部と、上面にコンクリート充填穴を有し前記張出し部と直交して上面及び両側壁の一部を除く大部分が該張出し部に埋込まれた鋼管と、該鋼管に挿通された長尺の鋼桁とを有し、コンクリートを打設して前記床版を造成することにより、前記鋼管内にコンクリートが充填されると共に該鋼管の上面及び両側壁の一部が床版内に取り込まれて該床版、前記鋼管及び鋼桁を一体化したものである。
【0009】
また、本発明に係る上下部一体構造の橋梁の施工方法は、橋脚を地盤に設置された杭に接合し、前記橋脚柱の頂部に橋軸と直交して、上面にコンクリート充填穴を有し橋軸方向に上面及び両側壁の一部を除く大部分が埋設された鋼管を有する張出し部を接合して前記鋼管内に長尺の鋼桁を挿通し、前記鋼桁上に床版を造成するためにコンクリートを打設することにより前記コンクリート充填穴から鋼管内にコンクリートを充填して前記鋼管の上面および両側壁の一部を前記床版内に取込み、該コンクリートが硬化することにより前記鋼管、鋼桁及び床版を一体化したものである。
【0010】
【発明の実施の形態】
[実施の形態1]
図1は本発明の実施の形態1に係る上下一体構造の橋梁の縦断面図、図2は図1の要部の斜視図、図3は図1の床版用コンクリートを打設する前のA−A断面図、図4は本実施の形態に係る橋梁の全体構成を示す正面図である。
【0011】
先ず、図4により本実施の形態に係る橋梁の全体構造について説明する。図4において、1は本実施の形態に係る上下部一体構造の橋梁で、地盤G上に立設された鋼管にコンクリートが充填された橋脚柱2と、この橋脚柱2上に設けられた橋梁1の上部構造21とによって構成されており、橋脚柱2と上部構造21とにより剛結部11が形成されている。なお、4は橋脚柱2の上部に橋軸と直交して一体に結合された橋脚柱2の張出し部、12は剛結部11を構成する鋼管、14は鋼管12内を貫通して橋軸方向に設置された鋼桁、5は剛結部11を構成する橋脚柱2以外の橋脚柱2aと上部構造21との間に介装された支承である。以下、各部の構造について説明する。
【0012】
図1、図2及び図3において、橋脚柱2は鋼管内にコンクリート5を充填してなり、地盤Gに埋設された杭3の上部に建て込まれて一体に接合されている。
次に、剛結部11において、4は橋脚柱2の頂部に一体に接合された橋脚の張出し部、12はこの張出し部4の桁位置に、張出し部4と直交してその大部分が張出し部4に埋設され、かつ前後に突出した複数本の鋼管(図には2本の場合が示してある)で、図3に示すように、その上面には複数のコンクリート充填穴13が設けられている。14は鋼管12内に挿通されて橋軸方向に設置された例えばH形鋼からなる長尺の鋼桁で、鋼管12内には上部構造21の床版22と一体にコンクリート6が打設されている。
【0013】
上部構造21において、22は鋼管12内と一体に打設されたコンクリート6によって形成された床版、23は橋面を形成する舗装、24は地覆、25は高欄である。
なお、図5は剛結部11を設けた以外の区間における橋梁1の上部を示す断面図で、橋脚柱2の上部に設けた張出し部4と鋼桁14との間には支承5が介装されており、上部構造21の床版22は鋼桁14により支持されている。
【0014】
次に、上記のように構成した本実施の形態に係る上下部一体構造の橋梁の施工手順について説明する。
先ず、あらかじめ工場等で、桁位置となる部分に、コンクリート充填穴13を上面にして、鋼管12の上面及び両側壁の一部を除く大部分が埋込まれた張出し部4を製作しておき、工事現場に輸送する。
一方、工事現場では、地盤Gに杭3を打込んでその上部に橋脚柱2を建て込み、杭3の上部にコンクリート6を打設して、杭3と橋脚柱2を一体に接合する。そして、橋脚柱2の上部に、連結リング15を利用して張出し部4を一体に接合する。
【0015】
次に、張出し部4に埋め込まれた鋼管12内に長尺の鋼桁14を挿通し、床版22のためのコンクリート6を打設する。これにより、床版22が形成されると共に、鋼管12の上面に設けたコンクリート充填穴13から鋼桁14が挿通された鋼管12内にコンクリート6が流入し、充填される。
このとき、鋼管12の上部は床版22内に取り込まれ、鋼管12内の鋼桁14の上面は、床版22の下面とほぼ同一平面上に位置する。したがって、剛結部11が設けられていない区間は、前述のように、床版22は鋼桁14によって支持される。
コンクリート6が硬化したのちは、鋼管12、鋼桁14及び床版22は一体化して剛結合11が構成される。
【0016】
[実施の形態2]
図6は本発明の実施の形態2に係る上下一体構造の橋梁の全体構成を示す正面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、剛結部11を例えば橋梁の橋軸方向のほぼ中央部に設け、その両側の区間には剛結部11を設けずに、上部構造21を張出し部4と鋼桁14との間に介装された支承5によって支持するようにしたものである。
【0017】
なお、本実施の形態においては、剛結部11を、2本の橋脚柱2を近接して設け、両橋脚柱2の上部にそれぞれ設けた張出し部4を連通して鋼管12を設置し、この鋼管12に長尺の鋼桁14を挿通した。
図6では、橋梁の橋軸方向の1か所に剛結部11を設けた場合を示したが、2か所以上に剛結部11を設けてもよい。
【0018】
上記の説明では、橋脚柱2として、鋼管にコンクリートを充填した合成橋脚柱を用いた場合を示したが、鋼製橋脚を用いてもよい。
また、橋脚の張出し部4に2本の鋼管12を設置した場合を示したが、3本以上であってもよい。
さらに、実施の形態1においては、連続して設置された複数本の橋脚柱2と上部構造21との間にそれぞれ剛結部11を設け、その間に剛結部11が設けられていない区間を設けた場合を示し、実施の形態2においては、橋梁の橋軸方向のほぼ中間部に剛結部11を設け、その他の区間には剛結部11が設けられていない場合を示したが、現場の状況等に応じて、適宜剛結部11を設け又は剛結部11を省略することができる。
【0019】
【実施例】
次に、本発明の実施の形態1の実施例について説明する。なお、具体的な諸元については、適用対象となる橋梁の種類、規模等に応じて種々な設計が可能であるが、寸法の一例を挙げれば、次の通りである。
先ず、外径2m、長さ15m、板厚14mmの翼付きねじ込み式鋼管杭3を地盤中に貫入し、杭頭部から3m下方に仕切り板を設けた。
【0020】
そして、この鋼管杭3の上部の空間部に、内径1.5m、板厚25mm、長さ10mの鋼管内にコンクリート6を充填した橋脚柱2の下部を3m挿入し、鋼管杭3の上部の空間部にコンクリート6を充填し、一体化した。
また、橋脚の張出し部4は、長さ(幅)4m、最大高さ1.5mの鋼製のもので、その両側の桁位置に、内径0.8m、板厚12mm、長さ6mで、上面に直径150mmのコンクリート充填穴13が4個設けられた角形鋼管12を、橋脚の張出し部4内にその上面から15cm露出させて接合したもので、これらはあらかじめ工場で製作した。そして、この張出し部4を工事現場に輸送し、連結リング15を利用して橋脚柱2の上部に接合した。
【0021】
ついで、この鋼管12内に、ウェブ高さ0.5m、フランジ幅0.3m、長さ10mのH形鋼からなる鋼桁14を挿通した。このときの鋼桁14の間隔は6mであった。
次に、鋼管12の上部を含めて、幅8mの範囲にコンクリート6を打設して床版22を形成した。このとき、コンクリート充填穴13から鋼管12内にコンクリート6が流入し、床版22、鋼管12及び鋼桁14が一体化され、コンクリート6の硬化により剛結部11が構成された。なお、床版22の表面に厚み5cmの舗装を施した。完成した橋梁の径間長は20m、有効幅員は7mであった。
【0022】
上記のように構成した本発明によれば、橋脚柱2と鋼桁14とを上下部一体構造としたので、地震時に橋脚柱2の基部及び頂部だけでなく、橋脚柱2の近傍の鋼桁14にも過大な断面力が作用する。しかしながら、橋脚柱2の近傍の鋼桁14の断面を、鋼管12及び鋼管12内に充填したコンクリート6により増加しているので、過大な断面力にも耐えることができる。
また、橋脚柱2と鋼桁14とを上下部一体構造としたので、橋脚柱2の基部に発生する曲げモーメントを鋼桁14が分担するため、橋脚柱2の基部の断面を縮小することができる。
【0023】
さらに、鋼管12が設置された張出し部4等の主部材は、あらかじめ工場等で製作できるため、現場作業工数を減らすことができ、これにより、工期を短縮することができる。
また、橋脚柱2に鉄筋を配筋する必要がないので、現場作業工数を低減することができる。
さらに、鋼材どうしの接合にコンクリート6を用いたので、接合部の設計が容易であり、その上多少の鋼材の製造誤差を許容することができる。
また、鋼桁14にH形鋼の如き形鋼を用いたので、経済性が高い。
【0024】
【発明の効果】
本発明に係る上下部一体構造の橋梁は、地盤上に立設された橋脚と、床版を含み前記橋脚柱の上に設けられる上部構造と、前記橋脚と上部構造を一体化する剛結部とからなり、前記剛結部は、前記橋脚柱の頂部に橋軸と直交して一体に接合された張り出し部と、上面にコンクリート充填穴を有し前記張出し部と直交して上面及び両側壁の一部を除く大部分が該張出し部に埋込まれた鋼管と、該鋼管に挿通された長尺の鋼桁とを有し、コンクリートを打設して前記床版を造成することにより、前記鋼管内にコンクリートが充填されると共に該鋼管の上面および両側壁の一部が床版内に取り込まれて該床版、前記鋼管及び鋼桁を一体化して剛結部を構成したので、橋脚柱と鋼桁との接合部近傍に発生する大きな断面力に抵抗でき、その上低コストで工期を短縮することができる。
【0025】
また、本発明に係る上下部一体構造の橋梁の施工方法は、橋脚を地盤に設置された杭に接合し、前記橋脚柱の頂部に橋軸と直交して、上面にコンクリート充填穴を有し橋軸方向に上面及び両側壁の一部を除く大部分が埋設された鋼管を有する張出し部を接合して前記鋼管内に長尺の鋼桁を挿通し、前記鋼桁上に床版を造成するためにコンクリートを打設することにより前記コンクリート充填穴から鋼管内にコンクリートを充填して前記鋼管の上面及び両側壁の一部を前記床版内に取込み、該コンクリートが硬化することにより前記鋼管、鋼桁及び床版を一体化するようにしたので、上記と同様の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の縦断面図である。
【図2】図1の要部の斜視図である。
【図3】図1の床版用のコンクリートを打設する前のA−A断面図である。
【図4】実施の形態1の全体構成を示す正面図である。
【図5】図4の剛結部が設けられていない部分の縦断面図である。
【図6】本発明の実施の形態2の全体構成を示す正面図である。
【符号の説明】
1 上下部一体構造の橋梁
2,2a 橋脚柱
3 杭
4 橋脚の張出し部
5 支承
6 コンクリート
11 剛結部
12 鋼管
13 コンクリート充填穴
14 鋼桁
21 上部構造
22 床版
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bridge having an upper and lower integrated structure in which a bridge pier and a steel girder are integrally rigidly connected, and a construction method thereof.
[0002]
[Prior art]
In recent years, various structural types of bridges have been proposed for the purpose of reducing the cost of the bridges. Among these, the bridge structure (hereinafter referred to as the upper and lower unit integrated bridge) with a rigid connection between the superstructure of the bridge made of steel (bridge girder) and the pier made of reinforced concrete is the bridge support and By omitting the expansion joint device, there are features such as a structure that can reduce the maintenance cost, and a structural advantage that the extension construction method is possible after the bridge construction.
[0003]
As an example of this type of upper and lower unit integrated bridge, there is an invention described in JP-A-8-302619. A method for joining composite members according to the present invention includes a steel main girder that forms a joint end of a steel structural member, a steel main beam that forms a joint end of the steel structural member, and a reinforced concrete structural column base. The joint ends of reinforced concrete structural beams provided so as to extend from the top of the steel main girder are directly and integrally joined to each other.
[0004]
With this configuration, it is possible to obtain a strong and safe composite structure, which can withstand both normal loads and earthquake loads, and between steel structural members and reinforced concrete structural beam members. It is said that smooth transmission of force can be achieved.
[0005]
[Problems to be solved by the invention]
In the joint structure of composite members constructed as described above, that is, a bridge with an upper and lower integrated structure, after constructing a part of a reinforced concrete structural column with reinforcing bars and placing concrete, a temporary structure is placed on the top. Install the receiving material, install a steel main girder on the temporary receiving material, place reinforcing bars in the upper part of the temporary receiving material, and place concrete to complete the reinforced concrete structural column base. At the same time, this reinforced concrete column base and the steel main girder must be integrated.
[0006]
For this reason, it is very troublesome to arrange the reinforcing bars while avoiding the temporary support members and the steel main girders. In addition, the reinforcing bars are assembled in the field, and the concrete placement of the reinforced concrete structure column base is in two stages. Therefore, the construction period is prolonged. In addition, when using shaped steel for the steel main girder, the girder height is low, so a detent member is installed in the steel main girder that resists the shearing force acting between the steel main girder and the reinforced concrete structure column base. There are many problems, such as being unable to do so and making it difficult to rationalize digits.
[0007]
The present invention has been made to solve the above-mentioned problems, and can resist a large cross-sectional force generated in the vicinity of the joint between the pier column and the steel girder, and can be rapidly integrated at a low cost. The purpose is to provide a structural bridge and its construction method.
[0008]
[Means for Solving the Problems]
Bridge the upper and lower integrated structure according to the present invention, the erected pier pillars on the ground, an upper structure provided on the abutment pillar comprises a floor slab, Tsuyoshi integrating the pier pillar and superstructure The rigid connection portion includes an overhang portion integrally joined to the top of the bridge pier column perpendicularly to the bridge axis, a concrete filling hole on the upper surface, and an upper surface orthogonal to the overhang portion. A steel pipe in which most of the side walls except for a part thereof are embedded in the projecting portion, and a long steel girder inserted into the steel pipe, and concrete is cast to form the floor slab. Thus, the steel pipe is filled with concrete, and the upper surface and part of both side walls of the steel pipe are taken into the floor slab and the floor slab, the steel pipe and the steel girder are integrated.
[0009]
Moreover, the construction method of the bridge of the upper and lower portions integral structure according to the present invention, the abutment pillar bonded to pile installed in the ground, perpendicular to the bridge axis at the top of the pier pillars have a concrete filled hole in an upper surface Join the overhanging part that has a steel pipe with most of the upper surface and part of both side walls embedded in the direction of the bridge axis, insert a long steel girder into the steel pipe, and place a floor slab on the steel girder The concrete is poured into the steel pipe through the concrete filling hole to form the concrete, the upper surface and part of both side walls of the steel pipe are taken into the floor slab, and the concrete is hardened to A steel pipe, steel girder and floor slab are integrated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
1 is a longitudinal sectional view of a bridge having a vertically integrated structure according to Embodiment 1 of the present invention, FIG. 2 is a perspective view of the main part of FIG. 1, and FIG. 3 is a diagram before placing the concrete for floor slab of FIG. AA sectional view and Drawing 4 are front views showing the whole bridge composition concerning this embodiment.
[0011]
First, the overall structure of the bridge according to the present embodiment will be described with reference to FIG. In FIG. 4, reference numeral 1 denotes a bridge having an upper and lower unit integrated structure according to the present embodiment, a bridge pier column 2 in which a steel pipe standing on the ground G is filled with concrete, and a bridge provided on the pier column 2. 1, and the rigid linking portion 11 is formed by the pier column 2 and the upper structure 21. In addition, 4 is the overhang | projection part of the bridge pier pillar 2 integrally joined to the upper part of the bridge pier pillar 2 at right angles to the bridge axis, 12 is the steel pipe which comprises the rigid connection part 11, 14 penetrates the inside of the steel pipe 12, and bridge axis A steel girder 5 installed in the direction is a support interposed between the pier column 2 a other than the pier column 2 constituting the rigid connection portion 11 and the upper structure 21. Hereinafter, the structure of each part will be described.
[0012]
1, 2, and 3, a pier column 2 is formed by filling a steel pipe with concrete 5, and is built on and integrally joined to an upper portion of a pile 3 embedded in the ground G.
Next, in the rigid coupling portion 11, 4 is an overhang portion of the bridge pier that is integrally joined to the top of the pier column 2, and 12 is a portion of the overhang portion 4 that is orthogonal to the overhang portion 4 and is mostly overhang. A plurality of steel pipes embedded in the portion 4 and projecting forward and backward (two cases are shown in the figure), as shown in FIG. 3, a plurality of concrete filling holes 13 are provided on the upper surface thereof. ing. 14 is a long steel girder made of, for example, H-shaped steel, which is inserted in the steel pipe 12 and installed in the direction of the bridge axis. In the steel pipe 12, concrete 6 is cast integrally with the floor slab 22 of the upper structure 21. ing.
[0013]
In the superstructure 21, 22 is a floor slab formed of concrete 6 cast integrally with the inside of the steel pipe 12, 23 is a pavement forming a bridge surface, 24 is a ground cover, and 25 is a balustrade.
FIG. 5 is a cross-sectional view showing the upper part of the bridge 1 in a section other than where the rigid connection part 11 is provided, and a support 5 is interposed between the overhanging part 4 provided on the upper part of the bridge pier column 2 and the steel girder 14. The floor slab 22 of the superstructure 21 is supported by a steel girder 14.
[0014]
Next, the construction procedure of the bridge having the upper and lower unit integrated structure according to the present embodiment configured as described above will be described.
First, in the factory or the like, the overhanging portion 4 in which most of the steel pipe 12 except a part of the upper surface and both side walls is embedded is manufactured in the portion to be the girder position with the concrete filling hole 13 as the upper surface. Transport to the construction site.
On the other hand, at the construction site, the pile 3 is driven into the ground G, the pier column 2 is built on the top, the concrete 6 is placed on the top of the pile 3, and the pile 3 and the pier column 2 are joined together. And the overhang | projection part 4 is integrally joined to the upper part of the pier pillar 2 using the connection ring 15. FIG.
[0015]
Next, the long steel girder 14 is inserted into the steel pipe 12 embedded in the overhanging portion 4, and the concrete 6 for the floor slab 22 is placed. As a result, the floor slab 22 is formed, and the concrete 6 flows into the steel pipe 12 through which the steel girders 14 are inserted from the concrete filling holes 13 provided on the upper surface of the steel pipe 12 and is filled therewith.
At this time, the upper part of the steel pipe 12 is taken into the floor slab 22, and the upper surface of the steel girder 14 in the steel pipe 12 is positioned substantially on the same plane as the lower surface of the floor slab 22. Accordingly, the floor slab 22 is supported by the steel girders 14 in the section where the rigidly connected portion 11 is not provided, as described above.
After the concrete 6 is hardened, the steel pipe 12, the steel girder 14, and the floor slab 22 are integrated to form the rigid joint 11.
[0016]
[Embodiment 2]
FIG. 6 is a front view showing an overall configuration of a bridge having a vertically integrated structure according to Embodiment 2 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, for example, the rigid portion 11 is provided at substantially the central portion in the bridge axis direction of the bridge, and the upper structure 21 is provided with the overhang portion 4 and the steel girder 14 without providing the rigid portion 11 in the sections on both sides thereof. And is supported by a support 5 interposed between the two.
[0017]
In this embodiment, the rigid connection portion 11 is provided with the two pier columns 2 close to each other, and the overhang portions 4 respectively provided on the upper portions of the two pier columns 2 are connected to each other, and the steel pipe 12 is installed. A long steel girder 14 was inserted into the steel pipe 12.
Although FIG. 6 shows the case where the rigid connection part 11 is provided at one place in the bridge axis direction of the bridge, the rigid connection part 11 may be provided at two or more places.
[0018]
In the above description, a case where a synthetic pier column in which a steel pipe is filled with concrete is used as the pier column 2, but a steel pier column may be used.
Moreover, although the case where the two steel pipes 12 were installed in the overhang | projection part 4 of a bridge pier was shown, three or more may be sufficient.
Furthermore, in Embodiment 1, the rigid connection part 11 is provided between the plurality of bridge pier columns 2 and the upper structure 21 that are continuously installed, and the section in which the rigid connection part 11 is not provided therebetween is provided. In the second embodiment, the rigid connection portion 11 is provided in the substantially middle portion of the bridge in the bridge axis direction, and the rigid connection portion 11 is not provided in the other sections. Depending on the situation at the site, the rigid portion 11 can be appropriately provided or the rigid portion 11 can be omitted.
[0019]
【Example】
Next, an example of the first embodiment of the present invention will be described. In addition, about a specific specification, although various designs are possible according to the kind, scale, etc. of the bridge used as application object, if an example of a dimension is given, it will be as follows.
First, a winged screwed steel pipe pile 3 having an outer diameter of 2 m, a length of 15 m, and a plate thickness of 14 mm was inserted into the ground, and a partition plate was provided 3 m below the pile head.
[0020]
Then, 3 m of the lower part of the pier column 2 filled with concrete 6 in a steel pipe having an inner diameter of 1.5 m, a plate thickness of 25 mm, and a length of 10 m is inserted into the upper space of the steel pipe pile 3. The space 6 was filled with concrete 6 and integrated.
The overhanging portion 4 of the pier is made of steel with a length (width) of 4 m and a maximum height of 1.5 m. The girder positions on both sides have an inner diameter of 0.8 m, a plate thickness of 12 mm, and a length of 6 m. A square steel pipe 12 provided with four concrete filling holes 13 having a diameter of 150 mm on the upper surface was joined to the overhanging portion 4 of the bridge pier by being exposed 15 cm from the upper surface, and these were manufactured in advance at the factory. And this overhang | projection part 4 was transported to the construction site, and it joined to the upper part of the pier pillar 2 using the connection ring 15. FIG.
[0021]
Next, a steel girder 14 made of H-section steel having a web height of 0.5 m, a flange width of 0.3 m, and a length of 10 m was inserted into the steel pipe 12. The distance between the steel girders 14 at this time was 6 m.
Next, including the upper part of the steel pipe 12, the concrete 6 was cast in the range of width 8m, and the floor slab 22 was formed. At this time, the concrete 6 flowed into the steel pipe 12 from the concrete filling hole 13, the floor slab 22, the steel pipe 12, and the steel girder 14 were integrated, and the rigid portion 11 was configured by hardening of the concrete 6. The surface of the floor slab 22 was paved with a thickness of 5 cm. The span length of the completed bridge was 20m, and the effective width was 7m.
[0022]
According to the present invention configured as described above, since the pier column 2 and the steel girder 14 have an upper and lower integrated structure, not only the base and top of the pier column 2 but also the steel girder in the vicinity of the pier column 2 at the time of an earthquake. 14 also has an excessive cross-sectional force. However, since the cross section of the steel girder 14 in the vicinity of the pier column 2 is increased by the steel pipe 12 and the concrete 6 filled in the steel pipe 12, it can withstand an excessive cross-sectional force.
In addition, since the pier column 2 and the steel girder 14 have an upper and lower integrated structure, the steel girder 14 shares the bending moment generated at the base portion of the pier column 2, so that the cross section of the base portion of the pier column 2 can be reduced. it can.
[0023]
Furthermore, since main members, such as the overhang | projection part 4 in which the steel pipe 12 was installed, can be manufactured beforehand at a factory etc., an on-site work man-hour can be reduced and, thereby, a construction period can be shortened.
Moreover, since it is not necessary to arrange a reinforcing bar in the bridge pier pillar 2, the number of field work man-hours can be reduced.
Further, since the concrete 6 is used for joining the steel materials, the design of the joint portion is easy, and a slight manufacturing error of the steel materials can be allowed.
Moreover, since the steel girder 14 uses a shape steel such as an H-section steel, it is highly economical.
[0024]
【The invention's effect】
Bridge the upper and lower integrated structure according to the present invention, the erected pier pillars on the ground, an upper structure provided on the abutment pillar comprises a floor slab, Tsuyoshi integrating the pier pillar and superstructure The rigid connection portion includes an overhang portion integrally joined to the top of the bridge pier column perpendicular to the bridge axis, a concrete filling hole on the upper surface, and an upper surface orthogonal to the overhang portion. A steel pipe in which most of the side walls except for a part thereof are embedded in the projecting portion and a long steel girder inserted through the steel pipe, and concrete is cast to form the floor slab. As a result, the concrete is filled in the steel pipe, and the upper surface of the steel pipe and a part of both side walls are taken into the floor slab, and the floor slab, the steel pipe and the steel girder are integrated to form a rigid connection portion. It can resist the large cross-sectional force generated in the vicinity of the joint between the pier column and the steel girder. It is possible to shorten the construction period at the door.
[0025]
Moreover, the construction method of the bridge of the upper and lower portions integral structure according to the present invention, the abutment pillar bonded to pile installed in the ground, perpendicular to the bridge axis at the top of the pier pillars have a concrete filled hole in an upper surface Join the overhanging part that has a steel pipe with most of the upper surface and part of both side walls embedded in the direction of the bridge axis, insert a long steel girder into the steel pipe, and place a floor slab on the steel girder Concrete is poured into the steel pipe from the concrete filling hole by placing concrete to form, and the upper surface and part of both side walls of the steel pipe are taken into the floor slab, and the concrete is hardened to Since the steel pipe, the steel girder, and the floor slab are integrated, the same effect as described above can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention.
FIG. 2 is a perspective view of a main part of FIG.
FIG. 3 is a cross-sectional view taken along the line AA before placing the concrete for the floor slab of FIG. 1;
4 is a front view showing an overall configuration of the first embodiment. FIG.
5 is a longitudinal sectional view of a portion where the rigid connection portion of FIG. 4 is not provided.
FIG. 6 is a front view showing an overall configuration of a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bridge 2 and 2a of an upper-lower integrated structure Pier pillar 3 Pile 4 Overhang part 5 Pier 6 Concrete 11 Rigid connection part 12 Steel pipe 13 Concrete filling hole 14 Steel girder 21 Superstructure 22 Floor slab

Claims (2)

地盤上に立設された橋脚と、床版を含み前記橋脚柱の上に設けられる上部構造と、前記橋脚と上部構造を一体化する剛結部とからなり、
前記剛結部は、前記橋脚柱の頂部に橋軸と直交して一体に接合された張出し部と、上面にコンクリート充填穴を有し前記張出し部と直交して上面及び両側壁の一部を除く大部分が該張出し部に埋込まれた鋼管と、該鋼管に挿通された長尺の鋼桁とを有し、
コンクリートを打設して前記床版を造成することにより、前記鋼管内にコンクリートが充填されると共に該鋼管の上面及び両側壁の一部が床版内に取り込まれて該床版、前記鋼管及び鋼桁を一体化したことを特徴とする上下部一体構造の橋梁。
Consists of a erected pier pillars on the ground, an upper structure provided on the abutment pillar comprises a slab, a rigid connection part for integrating the pier pillar and superstructure,
The rigid portion includes an overhang portion integrally joined to the top of the bridge pier column perpendicular to the bridge axis, a concrete filling hole on the upper surface, and a part of the upper surface and both side walls perpendicular to the overhang portion. Most of the steel pipe except the steel pipe embedded in the overhang, and a long steel girder inserted through the steel pipe,
By placing concrete and creating the floor slab, the steel pipe is filled with concrete and the upper surface and part of both side walls of the steel pipe are taken into the floor slab and the floor slab, the steel pipe, and A bridge with an integrated upper and lower part, characterized by integrating steel girders.
橋脚を地盤に設置された杭に接合し、前記橋脚柱の頂部に橋軸と直交して、上面にコンクリート充填穴を有し橋軸方向に上面及び両側壁の一部を除く大部分が埋設された鋼管を有する張出し部を接合して前記鋼管内に長尺の鋼桁を挿通し、前記鋼桁上に床版を造成するためにコンクリートを打設することにより前記コンクリート充填穴から鋼管内にコンクリートを充填して前記鋼管の上面及び両側壁の一部を前記床版内に取込み、該コンクリートが硬化することにより前記鋼管、鋼桁及び床版を一体化したことを特徴とする上下部一体構造の橋梁の施工方法。The abutment post is joined to the pile installed in the ground, perpendicular to the bridge axis at the top of the pier pillar, a large portion excluding the part of the upper surface and both side walls have bridge axis concrete filling hole on the upper surface A steel pipe is inserted from the concrete filling hole by joining a projecting portion having an embedded steel pipe, inserting a long steel girder into the steel pipe, and placing concrete to form a floor slab on the steel girder. The upper and lower sides are characterized in that concrete is filled in and the upper surface and part of both side walls of the steel pipe are taken into the floor slab, and the steel pipe, steel girder and floor slab are integrated by hardening the concrete. Construction method of a bridge with an integral part.
JP2001003147A 2001-01-11 2001-01-11 Upper and lower integrated bridge and its construction method Expired - Fee Related JP3752999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003147A JP3752999B2 (en) 2001-01-11 2001-01-11 Upper and lower integrated bridge and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003147A JP3752999B2 (en) 2001-01-11 2001-01-11 Upper and lower integrated bridge and its construction method

Publications (2)

Publication Number Publication Date
JP2002206209A JP2002206209A (en) 2002-07-26
JP3752999B2 true JP3752999B2 (en) 2006-03-08

Family

ID=18871543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003147A Expired - Fee Related JP3752999B2 (en) 2001-01-11 2001-01-11 Upper and lower integrated bridge and its construction method

Country Status (1)

Country Link
JP (1) JP3752999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041341A (en) * 2018-09-11 2020-03-19 鹿島建設株式会社 Pier structure construction method and pier structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427683C (en) * 2003-05-12 2008-10-22 上海市政工程设计研究院 Wide pier with canopy beam
KR101672933B1 (en) * 2015-12-09 2016-11-04 (주)지아이건설 Bridge using the socket member and the construction method thereof
CN105803916B (en) * 2016-03-30 2017-10-13 邵旭东 Light-duty combined box-type bent cap of steel and ultra-high performance concrete and preparation method thereof
KR101762140B1 (en) * 2016-05-04 2017-07-27 한울로드 주식회사 Footpath enlarging apparatus for slope edges in road
KR101850346B1 (en) * 2017-07-18 2018-04-19 우일종합건설주식회사 Footpath enlarging apparatus for slope edges in road
KR200486239Y1 (en) * 2017-07-18 2018-04-19 우일종합건설주식회사 Footpath enlarging apparatus for slope edges in road
CN108505433B (en) * 2018-04-27 2023-11-21 福建工程学院 Pier structure and construction method thereof
CN114541242B (en) * 2022-01-14 2024-04-16 东南大学 Anchor ear type concrete connection structure of assembled bridge pier column and pile foundation and construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041341A (en) * 2018-09-11 2020-03-19 鹿島建設株式会社 Pier structure construction method and pier structure

Also Published As

Publication number Publication date
JP2002206209A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR101011252B1 (en) Rigid-frame bridge frame for reinforcing negative moment part and rigid-frame bridge having it
JP3752999B2 (en) Upper and lower integrated bridge and its construction method
JP3899354B2 (en) Seismic isolation building
JP2010261270A (en) Composite structure and method for constructing composite structure building
KR101735077B1 (en) Bridge deck using precast concrete panel
JP2006112179A (en) Bridge girder installing method
JP2002030672A (en) Structure of joining foundation pile to pier base and method of constructing the structure
JP2959325B2 (en) Construction method of steel frame reinforced concrete structure
KR20210004289A (en) Transfer Structure Construction Method Using U-shaped Steel Girder
JP2003055961A (en) Steel-concrete integrated underground wall and construction method thereof
JPH1150538A (en) Building and method for constructing the same
JP2002364072A (en) Beam for hybrid-structure frame
JPH0366878A (en) Construction method for precast column and beam and precast anti-seismic wall
JP4003444B2 (en) Support method
JPH0598653A (en) Steel pipe concrete pillar in underground inverter construction method
JPH0447737B2 (en)
JPH07103583B2 (en) Construction method for large span underground structure
JPH0428063B2 (en)
JPH11172689A (en) Anchoring method of leg section of steel-framed column
JPH032435A (en) Construction method for jointing column and steel frame reinforced-concrete beam to each other
JPH04140366A (en) Preceding erection method of prefabricated column bar and semi-pc girder in pc construction
JPH0781315B2 (en) Construction method of composite structure with precast reinforced concrete columns and steel beams
JPH0711171B2 (en) Reinforced steel composite column
JP2004204602A (en) Joint structure between steel main girder and pier and joint method
JPH06257166A (en) Foundation structure for unit building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees