JP2004204602A - Joint structure between steel main girder and pier and joint method - Google Patents

Joint structure between steel main girder and pier and joint method Download PDF

Info

Publication number
JP2004204602A
JP2004204602A JP2002376669A JP2002376669A JP2004204602A JP 2004204602 A JP2004204602 A JP 2004204602A JP 2002376669 A JP2002376669 A JP 2002376669A JP 2002376669 A JP2002376669 A JP 2002376669A JP 2004204602 A JP2004204602 A JP 2004204602A
Authority
JP
Japan
Prior art keywords
steel
cell
pier
girder
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376669A
Other languages
Japanese (ja)
Other versions
JP3994873B2 (en
Inventor
Katsuyoshi Nakanishi
克佳 中西
Katsuaki Takeda
勝昭 武田
Mikio Koizumi
幹男 小泉
Kazuto Uchida
一人 内田
Hirohisa Ookubo
浩弥 大久保
Murahito Tanaka
祐人 田中
Tetsuya Mishima
徹也 三島
Natsuo Hara
夏生 原
Takayuki Obara
孝之 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Maeda Corp
Kawatetsu Kyoryo Tekko KK
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Maeda Corp
Kawatetsu Kyoryo Tekko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp, Maeda Corp, Kawatetsu Kyoryo Tekko KK filed Critical JFE Steel Corp
Priority to JP2002376669A priority Critical patent/JP3994873B2/en
Publication of JP2004204602A publication Critical patent/JP2004204602A/en
Application granted granted Critical
Publication of JP3994873B2 publication Critical patent/JP3994873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To greatly reduce reinforcements of a rigid connection section between a steel main girder and a pier, enable workability to improve and, at the same time, to provide a joint structure between the steel main girder capable of being rationally designed and the pier and a joint method. <P>SOLUTION: A plurality of cell chambers 13 are formed of oppositely arranged webs and cell steel plates partitioning among these webs, a multi-chamber cell cross beam 10 provided with a slippage stop to both of the web and the cell steel plate or either one of them and a pair of steel girders 1 placed in the direction of the bridge axis on the pier P are included in each cell chamber 13, the multi-chamber cell cross beam 10 is placed between a pair of steel girders 1 to fit the cell chamber 13 to the upper part of a projection attached steel frame 30 burying the lower part in the pier, both end sections thereof are connected to the steel girder 1 to constitute the steel main girder G, and the cell chamber 13 of the multi-chamber cell cross beam 10 is filled with concrete to make the rigid connection between the steel main girder G and the pier P. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼主桁と橋脚との接合構造及び接合方法に係り、さらに詳しくは、鋼主桁と橋脚とを剛結合するための構造及び方法に関するものである。
【0002】
【従来の技術】
鉄骨コンクリート橋脚としては、突起付きH形鋼の周囲に定着補強鉄筋を配置し、割裂ひび割れの進展を抑制することによって高い定着耐力を得ること(REED工法)が基本とされている。
また、鋼桁と鉄骨コンクリート橋脚との剛結構造については、橋脚内に埋設された外面リブ付き鋼管を、橋脚頂部において主桁又は横桁に直接連結して力を伝達させ、かつ、主桁はウェブにスタッドを設置することにより、横桁と平行して配置した型枠鋼板は孔あき鋼板シベルを設置することにより、それぞれ鉄骨コンクリート橋脚と剛結するようにしたものがある(例えば、非特許文献1参照)。
【0003】
【非特許文献1】
土木学会第57回年次学術講演概要集「鋼管・コンクリート合成橋脚を用いた複合ラーメン橋の合理的接合法に関する基礎的研究」(第757頁〜第758頁) 平成14年9月
【0004】
【発明が解決しようとする課題】
REED工法を鋼桁と鉄骨コンクリート橋脚との接合構造に適用すると、定着補強鉄筋の組立作業を主桁と横桁に囲まれた狭い空間で行わなければならないので作業性が悪く、多くの労力と時間が必要になる。また、鉄骨を定着させる鋼桁の高さがフーチングに比べて一般に低いため、この定着方法では定着長さが不足する場合が生じる。
【0005】
また、非特許文献1に記載された桁と鉄骨コンクリート橋脚との剛結構造では、橋脚内に埋設された外面リブ付き鋼管を、橋脚の頂部において主桁又は横桁に直接連結するため、橋脚内の鉄骨の施工誤差を許容できない。また、スタッドの設置に付随して多量の鉄筋が必要になり、配筋が困難であるばかりでなくコンクリートの施工性が悪い。さらに、剛桁から鉄骨コンクリート橋脚への荷重の伝達は、鋼桁から鉄骨に直接、主桁ウェブのスタッドからコンクリートを介して、及び型枠鋼板の孔あき鋼板ジベルからコンクリートを介しての3経路があり、剛結部を設計する際、各経路から伝達される力の割合が明確でないため、合理的な設計ができない。
【0006】
本発明は、上記のような課題を解決するためになされたもので、鋼主桁と橋脚との剛結部の鉄筋を大幅に削減し、かつ施工性を改善できると共に、合理的な設計が可能な鋼主桁と橋脚との接合構造及び接合方法を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
(1)本発明に係る鋼主桁と橋脚との接合構造は、対向配置されたウェブ及びこれらウェブの間を仕切るセル鋼板により複数のセル室を形成し、これら各セル室内においてウェブ及びセル鋼板の両者又はいずれか一方にずれ止めが設けられた多室セル横桁と、橋脚上の橋軸方向に設置された鋼桁とを有し、該鋼桁の間に前記多室セル横桁を配置してそのセル室を、下部が橋脚に埋設された突起付き鉄骨の上部にそれぞれ嵌合し、その両端部を前記鋼桁に接合して鋼主桁を構成し、前記多室セル横桁のセル室にコンクリートを充填して前記鋼主桁と橋脚とを剛結合したものである。
【0008】
(2)上記(1)の多室セル横桁に設けたずれ止めにスタッドを用いた。
(3)上記(2)の多室セル横桁に設けたスタッドにあらかじめ補強筋を結束した。
【0009】
(4)本発明に係る鋼主桁と橋脚との接合方法は、上記(1)〜(3)のいずれかの多室セル横桁をあらかじめ工場等で製作する工程と、下部が橋脚に埋設された突起付き鉄骨の両側において前記橋脚の橋軸方向に鋼桁を設置する工程と、多室セル横桁のセル室を前記突起付き鉄骨の上部に嵌合し、その両端部を前記鋼桁に接合して鋼主桁を構成する工程と、前記多室セル横桁のセル室にコンクリートを充填して鋼主桁と橋脚とを剛結合する工程とを含むものである。
【0010】
【発明の実施の形態】
図7は本発明に係る鋼主桁と橋脚との接合構造の基本的構成を示す模式図で、Pは鉄骨コンクリート橋脚(以下、単に橋脚という)、Aはアバット、Sは沓、Gは橋脚P上に設けた鋼主桁、Dは鋼主桁G上に設置した床版で、これら鋼主桁Gと床版Dにより上部構造Bを構成し、橋脚Pと鋼主桁Gは剛結されている。
図8は図7のC−C断面図で、1は鋼主桁Gを構成する鋼桁、10は同じく多室セル横桁で、4は橋面を構成する舗装である。
【0011】
[実施の形態1]
図1は本発明の実施の形態1の模式的縦断面図、図2は図1のA−A断面図、図3は図2の正面図、図4は図2のB−B断面図である。
図において、30は例えばフランジ外面に多数の突起等が設けられたH形断面の鋼材からなる突起付き鉄骨で、上部(突出部)を残して橋脚Pに埋設されている。なお、鋼主桁Gの外側に位置する突起付き鉄骨30a及び対向配置された多室セル横桁10の間に位置する突起付き鉄骨30aは、突起付き鉄骨30より短かく形成され、全長が橋脚Pに埋設されている(以下の説明では、突起付き鉄骨30,30aを併せて符号30で示すことがある)。
【0012】
上記の説明では、突起付き鉄骨30にH形断面で突起つきの鋼材を用いた場合を示したが、円形若しくは角形断面で表面に突起つきの鋼管を用いてもよい。また、突起のない通常のH形断面の鋼材又は鋼管の表面に、コンクリートと一体化をはかることのできるスタッドなどの突起物を設けてもよい。
【0013】
1は鋼主桁Gを構成するI形断面の一対の鋼桁で、突出した突起付き鉄骨30の両側において橋脚P上の橋軸方向に設置されている。そして、両鋼桁1のウェブ1aの対向面には、突起付き鉄骨30の突出部に対応し、かつ多室セル横桁10の幅に対応した間隔で、上下方向の中央部よりやや上方から下フランジ1bにかけて、ウェブ1aと直交してそれぞれ一対の連結鋼板2が溶接により接合されている。なお、この連結鋼板2は、あらかじめ工場等において鋼桁1に接合される。
【0014】
鋼桁1と共に鋼主桁Gを構成する一対の多室セル横桁10の一例を図5に示す。図5において、11a,11bは、対向する鋼桁1の連結鋼板2間の距離に対応した長さで、連結鋼板2の高さに対応した高さのI形断面又は板状の側板(以下、ウェブという)で、ウェブ11a,11bの間には所定の間隔で複数のセル鋼板12が溶接により接合されており、これにより、突起付き鉄骨30の断面積に対して余裕をもった大きさの複数のセル室13が形成されている。
【0015】
そして、各セル室13内において、ウェブ11a,11bの対向面(図には一方のウェブ11aのみ示してある)の長手方向にずれ止めである複数のスタッド14が、上下方向に複数列設けられており、また、対向するセル鋼板12の間には、これらスタッド14に対応して補強筋15が設けられ、この補強筋15はそれぞれスタッド14に結束されている。
このように、各セル室13にスタッド14及び補強筋15が設けられた多室セル横桁10は、あらかじめ工場等で製作され、工事現場に輸送される。
【0016】
上記の説明では、多室セル横桁10の各セル室13において、ウェブ11a,11bの対向面に複数のスタッド14を設けると共に、対向するセル鋼板12の間に設けた補強筋15をスタッド14に結束した場合を示したが、ウェブ11a,11bとセル鋼板12の対向面にそれぞれスタッド14とこれに結束される補強筋15を設けてもよく、あるいは、セル鋼板12の対向面にスタッド14を設け、ウェブ11a,11bの間にこれに結束される補強筋15を設けてもよい。
また、上記の補強筋15を省略し、スタッド14のみを設けてもよい。
【0017】
次に、上記のような本実施の形態の施工手順の一例について説明する。なお、橋脚Pには突起付き鉄骨30が埋込まれているものとし、また、鋼桁1のウェブ1aにはあらかじめ工場等において連結鋼板2が接合されており、多室セル横桁10もあらかじめ工場等で製作され、これらは工事現場に搬入されているものとする。
【0018】
先ず、橋脚P上の上面から突出した突起付き鉄骨30の両側の橋軸方向に、所定の距離を隔てて鋼桁1を対向配置する。
次に、両鋼桁1の間において、多室セル横桁10のセル室13を橋脚Pの上面から突出した突起付き鉄筋30にそれぞれ上方から嵌合し、橋脚P上に設置する。そして、多室セル横桁10のウェブ11a,11bの両端部を、鋼桁1に設けた連結鋼板2と位置合わせし、添接板3により両者を一体に接合する。これにより鋼主桁Gが構成される。
【0019】
ついで、橋脚Pと鋼主桁Gとの間にコンクリートを打設すると共に、多重セル横桁10の各セル室13にコンクリートを充填して突起付き鉄骨30と一体化し、鋼主桁Gを橋脚Pに剛結合する。この場合、多室セル横桁10の各セル鋼板12に1個又は複数個の穴を設け、コンクリートの打設個所数を低減するなどの施工性の向上をはかると共に、コンクリートと多重セル横桁10間の一体化に寄与させるようにしてもよい。
また、必要に応じて対向する多室セル横桁10の間に形成された空間領域SP(図4)にもコンクリートを打設し、剛結部の剛度をさらに向上させてもよい。
最後に多室セル横桁10の上面に、上面フランジ16を取付ける。
【0020】
上記のような橋脚Pと鋼主桁Gとの剛結部においては、多室セル横桁10から橋脚Pの突起付き鉄骨30への力の伝達は、多室セル横桁10のウェブ11a,11bにスタッド14を設けたことにより、多室セル横桁10→スタッド14→充填コンクリート→突起付き鉄骨30と行われる。このように鋼主桁Gから橋脚Pへの応力の伝達が明確なので、合理的な設計が可能である。
【0021】
[実施の形態2]
図6は本発明の実施の形態2の縦断面図である。
本実施の形態は、実施の形態1の鋼主桁Gを構成する鋼桁1に代えて、鋼箱桁5を設けたもので、その他の構成、作用効果は、実施の形態1の場合とほぼ同様である(以下の説明では、鋼桁1と鋼箱桁5を合せて鋼桁ということがある)。なお、実施の形態1,2では橋脚Pが鉄骨コンクリート橋脚の場合を示したが、軸方向鉄筋を併用した鉄骨鉄筋コンクリート橋脚にも本発明を実施することができる。
【0022】
【実施例】
本発明に係る各部の諸元については、対象となる構造物の種類、規模等に応じて種々異なるが、実施の形態1における各部の寸法の一例を示せず、次の通りである。
橋脚Pの断面は7m(橋軸直角方向)×3m(橋軸方向)で、突起付き鉄骨30は200×204×8×12mmの突起付きH形鋼であり、橋軸直角方向に等間隔に7本を橋軸方向に2列設置して、各列の両側の突起付き鉄骨30aを除き、コンクリートの上面より1.5m突出させた。
【0023】
鋼桁1は、高さ2.5mで、ウェブ1aの板厚は22mm、上下フランジ1b,1cの幅は0.65m、板厚は50mmであり、対向する鋼桁1間の距離は5mである。
また、多室セル横桁10のウェブ11a,11bの高さは2mで板厚12mm、上下のフランジの幅は0.25m、板厚は25mmである。セル鋼板12の板厚は12mmで、これによって一体化されたウェブ11a,11bの間隔は0.7m、セル鋼板12の間隔は1mである。また、ウェブ11a,11bに設けたスタッド14は、直径22mm、長さ0.15mで、セル室13内においてウェブ11a,11bのセル鋼板12間に2本、上下方向に4列設けた。補強筋15はD16である。
【0024】
上記のような寸法の鋼桁1及び多室セル横桁10を用いて、突起付き鉄骨30が設けられた橋脚Pに前述の要領で施工したところ、短時間でスムーズに鋼主桁Gを橋脚Pに剛結合することができた。
【0025】
上記のように構成した本発明によれば、突起付き鉄骨30の多室セル横桁10への定着において、スタッド14を設けた多室セル横桁10の鋼板が定着補強効果を発揮するため、定着補強鉄筋が不要になり、現場作業が大幅に簡略化できる。また、定着補強効果が大きいため、定着長を短かくすることができる。
さらに、多室セル横桁10のスタッド14の周囲に配置する鉄筋の量を零にし、又は少量に抑えることができるので、現場作業を大幅に簡略化できると共に、コンクリート打設時の施工性を向上することができる。
【0026】
また、多室セル横桁10のスタッド14の周囲に補強筋15を配置する場合は、補強筋15をあらかじめ工場等においてスタッド14に結束するので、現場作業を大幅に簡略化することができる。さらに、鋼主桁Gと橋脚Pとを付着接合するため、橋脚Pの施工誤差をある程度吸収することができ、これらにより、施工費を低減し、工期を短縮することができる。
【0027】
【発明の効果】
本発明に係る鋼主桁と橋脚との接合構造は、鋼桁の間に多室セル横桁を配置してそのセル室を、下部が橋脚に埋設された突起付き鉄骨の上部にそれぞれ嵌合し、その両端部を鋼桁に接合して鋼主桁を構成し、多室セル横桁のセル室にコンクリートを充填して鋼主桁と橋脚とを剛結合するようにしたので、剛結合部の鉄筋を大幅に削減し、かつ施工性を改善できると共に、合理的な設計を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る鋼主桁と橋脚との接合構造の模式的縦断面図である。
【図2】図1のA−A断面図である。
【図3】図2の正面図である。
【図4】図2のB−B断面図である。
【図5】一部を断面で示した多室セル横桁の斜視図である。
【図6】本発明の実施の形態2に係る鋼主桁と橋脚との接合構造の模式的縦断面図である。
【図7】本発明に係る鋼主桁と橋脚との接合構造の基本的構成を示す模式図である。
【図8】図7のC−C断面図である。
【符号の説明】
P 橋脚
G 鋼主桁
1 鋼桁
5 鋼箱桁
10 多室セル横桁
11a,11b ウェブ
12 セル鋼板
13 セル室
14 スタッド
15 補強筋
30 突起付き鉄骨
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a joining structure and a joining method between a steel main girder and a pier, and more particularly, to a structure and a method for rigidly connecting a steel main girder and a pier.
[0002]
[Prior art]
The basic principle of a steel concrete pier is to provide a high anchoring strength by arranging anchoring reinforcing steel around an H-beam with protrusions and suppressing the progress of split cracks (REED method).
For the rigid connection structure between a steel girder and a steel concrete pier, a steel pipe with external ribs embedded in the pier is directly connected to the main girder or cross girder at the top of the pier to transmit force, and For example, there is a type in which a stud is installed on a web, and a form steel plate arranged in parallel with a cross beam is rigidly connected to a steel concrete bridge pier by installing a perforated steel plate shovel (for example, Patent Document 1).
[0003]
[Non-patent document 1]
Proceedings of the 57th Annual Meeting of the Japan Society of Civil Engineers “Basic Study on Rational Jointing Method of Composite Rahmen Bridge Using Steel Pipe / Concrete Composite Pier” (pages 757 to 758) September, 2002
[Problems to be solved by the invention]
When the REED method is applied to the joint structure between a steel girder and a steel concrete pier, the work of assembling the reinforcing reinforcing steel must be performed in a narrow space surrounded by the main girder and the cross girder, resulting in poor workability and a lot of labor and labor. It takes time. Further, since the height of the steel girder for fixing the steel frame is generally lower than that of the footing, the fixing length may be insufficient in this fixing method.
[0005]
In the rigid connection structure between a girder and a steel concrete pier described in Non-Patent Document 1, a steel pipe with external ribs embedded in the pier is directly connected to a main girder or a cross girder at the top of the pier. The construction error of the steel frame inside cannot be tolerated. In addition, a large amount of reinforcing steel is required in connection with the installation of the stud, which makes it difficult not only to arrange the reinforcing bars but also to deteriorate the workability of concrete. In addition, the load transfer from the rigid girder to the steel-concrete bridge pier can be carried out in three ways: directly from the steel girder to the steel frame, from the studs of the main girder web through the concrete, and from the perforated steel plate dowel of the formwork steel through the concrete. When designing a rigid connection, it is not possible to make a rational design because the ratio of the force transmitted from each path is not clear.
[0006]
The present invention has been made in order to solve the above-described problems, and it is possible to significantly reduce the reinforcing steel at the rigid connection portion between the steel main girder and the pier, improve the workability, and achieve a rational design. It is an object of the present invention to provide a joining structure and a joining method between a steel main girder and a pier.
[0007]
[Means for Solving the Problems]
(1) In the joint structure between a steel main girder and a pier according to the present invention, a plurality of cell chambers are formed by opposed webs and a cell steel sheet partitioning between the webs, and a web and a cell steel sheet are formed in each of these cell chambers. A multi-chamber cell girder provided with a slip stopper on both or one of them, and a steel girder installed in the bridge axis direction on the pier, the multi-chamber cell girder between the steel girder. The cell chamber is arranged and the lower part is fitted to the upper part of the steel frame with projections buried in the pier, and both ends are joined to the steel girder to form a steel main girder, and the multi-cell horizontal girder is formed. Is filled with concrete, and the steel main girder and the pier are rigidly connected.
[0008]
(2) Studs were used for the stoppers provided in the multi-chamber horizontal beam of (1).
(3) Reinforcing bars were tied in advance to the studs provided on the multi-room cell cross beam of (2).
[0009]
(4) The method of joining a steel main girder and a pier according to the present invention includes the steps of previously manufacturing a multi-chamber cell cross girder according to any of the above (1) to (3) in a factory or the like, and embedding the lower part in a pier. Installing a steel girder in the bridge axis direction of the pier on both sides of the projected steel frame, fitting a cell chamber of a multi-compartment cell horizontal girder to the upper part of the steel frame with the projection, and attaching both ends of the steel girder to the steel girder. To form a steel main girder, and a step of filling concrete in the cell chamber of the multi-chamber horizontal girder to rigidly connect the steel main girder and the pier.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 7 is a schematic diagram showing a basic configuration of a joint structure between a steel main girder and a pier according to the present invention, where P is a steel concrete pier (hereinafter simply referred to as a pier), A is an abutment, S is a shoe, and G is a pier. Steel main girder provided on P, D is a floor slab installed on steel main girder G, and these steel main girder G and floor slab D constitute upper structure B, and pier P and steel main girder G are rigidly connected. Have been.
FIG. 8 is a cross-sectional view taken along the line CC of FIG. 7, where 1 is a steel girder forming the main steel girder G, 10 is a multi-cell horizontal girder, and 4 is a pavement forming a bridge surface.
[0011]
[Embodiment 1]
1 is a schematic longitudinal sectional view of Embodiment 1 of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, FIG. 3 is a front view of FIG. 2, and FIG. 4 is a sectional view taken along line BB of FIG. is there.
In the figure, reference numeral 30 denotes a steel frame with a projection made of a steel material having an H-shaped cross section and provided with a large number of projections and the like on the outer surface of the flange, and is buried in the pier P except for an upper portion (projection). In addition, the steel frame 30a with a protrusion located outside the steel main girder G and the steel frame 30a with a protrusion located between the opposed multi-chamber cell cross beams 10 are formed shorter than the steel frame 30 with the protrusion, and have a total length of the pier. It is buried in P (in the following description, the steel frames 30 with projections, 30a may be collectively indicated by reference numeral 30).
[0012]
In the above description, a case where a steel material having a protrusion in an H-shaped cross section is used for the steel frame 30 with a protrusion, but a steel pipe having a circular or square cross section and a surface with a protrusion may be used. In addition, a projection such as a stud that can be integrated with concrete may be provided on the surface of a steel material or a steel pipe having a normal H-shaped cross section without a projection.
[0013]
Reference numeral 1 denotes a pair of steel girders having an I-shaped cross section that constitute the steel main girder G, and is installed in the bridge axis direction on the pier P on both sides of the protruding steel frame 30 with projections. Then, on the facing surface of the web 1a of both steel girders 1, at a distance corresponding to the protruding portion of the steel frame 30 with projections and at a distance corresponding to the width of the multi-chamber cell horizontal girder 10, from slightly above the central part in the vertical direction. A pair of connecting steel plates 2 are welded to the lower flange 1b at right angles to the web 1a. The connected steel plate 2 is joined to the steel girder 1 in a factory or the like in advance.
[0014]
FIG. 5 shows an example of a pair of multi-chamber cell horizontal beams 10 constituting the steel main beam G together with the steel beam 1. In FIG. 5, reference numerals 11a and 11b denote I-shaped cross sections or plate-like side plates (hereinafter, referred to as lengths) corresponding to the distance between the connecting steel plates 2 of the opposed steel girders 1 and having a height corresponding to the height of the connecting steel plates 2. , A plurality of cell steel plates 12 are welded at predetermined intervals between the webs 11a and 11b, thereby providing a size with a margin for the cross-sectional area of the steel frame 30 with projections. Are formed.
[0015]
In each of the cell chambers 13, a plurality of studs 14 are provided in the vertical direction so as to prevent the webs 11 a and 11 b from shifting in the longitudinal direction of the facing surface (only one of the webs 11 a is shown). Reinforcing bars 15 are provided between the opposed cell steel plates 12 so as to correspond to the studs 14, and the reinforcing bars 15 are bound to the studs 14, respectively.
As described above, the multi-chamber cell cross beam 10 in which the studs 14 and the reinforcing bars 15 are provided in each cell chamber 13 is manufactured in advance at a factory or the like and transported to a construction site.
[0016]
In the above description, in each cell chamber 13 of the multi-chamber cell cross beam 10, a plurality of studs 14 are provided on the facing surfaces of the webs 11a and 11b, and the reinforcing bars 15 provided between the facing cell steel plates 12 are provided with the studs 14. Although studs 14 and reinforcing bars 15 tied to the studs 14 may be provided on the facing surfaces of the webs 11a and 11b and the cell steel plate 12, respectively, or the studs 14 may be provided on the facing surface of the cell steel plate 12. May be provided, and reinforcing bars 15 bound to the webs 11a and 11b may be provided.
Further, the reinforcing bars 15 may be omitted and only the studs 14 may be provided.
[0017]
Next, an example of the construction procedure of the present embodiment as described above will be described. It is assumed that a steel frame 30 with a projection is embedded in the pier P, and a connecting steel plate 2 is previously joined to the web 1a of the steel girder 1 in a factory or the like, and the multi-chamber cell horizontal girder 10 is also in advance. They are manufactured at factories, etc., and they are carried to the construction site.
[0018]
First, the steel girders 1 are opposed to each other at a predetermined distance in the bridge axis direction on both sides of the steel frame 30 with projections protruding from the upper surface on the pier P.
Next, between the two steel girders 1, the cell chambers 13 of the multi-chamber cell horizontal girder 10 are fitted from above into the reinforcing steel bars 30 with protrusions projecting from the upper surface of the pier P, and are installed on the pier P. Then, both ends of the webs 11a and 11b of the multi-compartment cell cross beam 10 are aligned with the connecting steel plate 2 provided on the steel beam 1, and both are integrally joined by the attachment plate 3. Thereby, the steel main girder G is formed.
[0019]
Next, concrete is poured between the pier P and the steel main girder G, and each cell room 13 of the multi-cell horizontal girder 10 is filled with concrete to be integrated with the steel frame 30 with projections. Rigidly bonded to P. In this case, one or more holes are provided in each cell steel plate 12 of the multi-compartment cell beam 10 to improve the workability such as reducing the number of concrete placing points, and at the same time, concrete and multi-cell beam are used. You may make it contribute to integration between ten.
Further, if necessary, concrete may be poured into the space region SP (FIG. 4) formed between the opposing multi-chamber cell cross beams 10 to further improve the rigidity of the rigid connection portion.
Finally, the upper surface flange 16 is attached to the upper surface of the multi-chamber cell cross beam 10.
[0020]
At the rigid connection between the pier P and the steel main girder G as described above, the transmission of the force from the multi-chamber cell girder 10 to the protruding steel frame 30 of the pier P is performed by the webs 11a, By providing the stud 14 on the 11b, the operation is performed in the order of the multi-chamber cell cross beam 10 → stud 14 → filled concrete → steel 30 with projection. Thus, since the transmission of the stress from the steel main girder G to the pier P is clear, a rational design is possible.
[0021]
[Embodiment 2]
FIG. 6 is a longitudinal sectional view of Embodiment 2 of the present invention.
In the present embodiment, a steel box girder 5 is provided instead of the steel girder 1 constituting the steel main girder G of the first embodiment, and other configurations, functions and effects are the same as those of the first embodiment. It is almost the same (the steel girder 1 and the steel box girder 5 may be collectively referred to as a steel girder in the following description). In the first and second embodiments, the case where the pier P is a steel reinforced concrete pier has been described. However, the present invention can be applied to a steel reinforced concrete pier that also uses an axial reinforcing bar.
[0022]
【Example】
The specifications of each part according to the present invention are variously varied depending on the type, scale, etc. of the target structure, but examples of the dimensions of each part in the first embodiment are not shown, but are as follows.
The cross section of the pier P is 7 m (in the direction perpendicular to the bridge axis) × 3 m (in the direction of the bridge axis), and the steel frame 30 with protrusions is an H-shaped steel with protrusions of 200 × 204 × 8 × 12 mm, and is equally spaced in the direction perpendicular to the bridge axis. Seven of them were installed in two rows in the bridge axis direction, and extruded 1.5 m above the concrete upper surface except for the steel frame 30a with protrusions on both sides of each row.
[0023]
The steel girder 1 has a height of 2.5 m, the thickness of the web 1 a is 22 mm, the width of the upper and lower flanges 1 b and 1 c is 0.65 m, the thickness is 50 mm, and the distance between the opposed steel girder 1 is 5 m. is there.
The height of the webs 11a and 11b of the multi-chamber horizontal beam 10 is 2 m, the plate thickness is 12 mm, the width of the upper and lower flanges is 0.25 m, and the plate thickness is 25 mm. The thickness of the cell steel plate 12 is 12 mm, the interval between the integrated webs 11a and 11b is 0.7 m, and the interval between the cell steel plates 12 is 1 m. The studs 14 provided on the webs 11a and 11b have a diameter of 22 mm and a length of 0.15 m, and two studs 14 are provided between the cell steel plates 12 of the webs 11a and 11b in the cell chamber 13 in four rows in the vertical direction. The reinforcing bar 15 is D16.
[0024]
Using the steel girder 1 and the multi-compartment cell cross girder 10 having the above-described dimensions, the steel girder G was smoothly and quickly connected to the pier P provided with the protruding steel frame 30 in the above-described manner. R could be rigidly bonded to P.
[0025]
According to the present invention configured as described above, in fixing the steel frame 30 with projections to the multi-chamber cell cross beam 10, the steel plate of the multi-chamber cell cross beam 10 provided with the studs 14 exerts a fixing reinforcement effect. An anchoring reinforcing bar is not required, and work on site can be greatly simplified. Further, since the fixing reinforcing effect is large, the fixing length can be shortened.
Furthermore, since the amount of rebar arranged around the stud 14 of the multi-chamber cell cross beam 10 can be reduced to zero or small, the work on site can be greatly simplified, and the workability at the time of concrete casting is improved. Can be improved.
[0026]
Further, when the reinforcing bars 15 are arranged around the studs 14 of the multi-room cell cross beam 10, the reinforcing bars 15 are previously bound to the studs 14 in a factory or the like, so that the on-site work can be greatly simplified. Further, since the steel main girder G and the pier P are bonded and joined, the construction error of the pier P can be absorbed to some extent, thereby reducing the construction cost and shortening the construction period.
[0027]
【The invention's effect】
In the joint structure between the main steel girder and the pier according to the present invention, the multi-chamber cell cross girder is arranged between the steel girder, and the cell chamber is fitted to the upper part of the steel frame with projections, the lower part of which is embedded in the pier. The steel girder was joined at both ends to form a steel girder, and the cell room of the multi-chamber horizontal girder was filled with concrete to make a rigid connection between the steel girder and the pier. The rebar of the part can be greatly reduced, the workability can be improved, and a rational design can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a joint structure between a steel main girder and a pier according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a front view of FIG. 2;
FIG. 4 is a sectional view taken along line BB of FIG. 2;
FIG. 5 is a perspective view of a multi-room cell cross beam partially shown in cross section.
FIG. 6 is a schematic longitudinal sectional view of a joint structure between a steel main girder and a pier according to Embodiment 2 of the present invention.
FIG. 7 is a schematic diagram showing a basic configuration of a joint structure between a steel main girder and a pier according to the present invention.
FIG. 8 is a sectional view taken along line CC of FIG. 7;
[Explanation of symbols]
P Pier G Steel main girder 1 Steel girder 5 Steel box girder 10 Multi-chamber cell cross girder 11a, 11b Web 12 Cell steel plate 13 Cell room 14 Stud 15 Reinforcing bar 30 Steel frame with projection

Claims (4)

対向配置されたウェブ及びこれらウェブの間を仕切るセル鋼板により複数のセル室を形成し、これら各セル室内においてウェブ及びセル鋼板の両者又はいずれか一方にずれ止めが設けられた多室セル横桁と、橋脚上の橋軸方向に設置された鋼桁とを有し、
該鋼桁の間に前記多室セル横桁を配置してそのセル室を、下部が橋脚に埋設された突起付き鉄骨の上部にそれぞれ嵌合し、その両端部を前記鋼桁に接合して鋼主桁を構成し、前記多室セル横桁のセル室にコンクリートを充填して前記鋼主桁と橋脚とを剛結合することを特徴とする鋼主桁と橋脚との接合構造。
A multi-chamber cell cross beam in which a plurality of cell chambers are formed by webs arranged opposite to each other and a cell steel plate separating these webs, and in each of these cell chambers, both or one of the web and the cell steel plate is provided with a stopper. And a steel girder installed in the bridge axis direction on the pier,
The multi-chamber cell cross girder is arranged between the steel girders, and the cell chamber is fitted to the upper part of the protruding steel frame whose lower part is embedded in the pier, and both ends are joined to the steel girder. A joint structure between a steel main girder and a pier, comprising a steel main girder, wherein concrete is filled in a cell room of the multi-chamber horizontal girder, and the steel main girder and the pier are rigidly connected.
前記多室セル横桁に設けたずれ止めにスタッドを用いたことを特徴とする請求項1記載の鋼主桁と橋脚との接合構造。The joint structure between a steel main girder and a pier according to claim 1, wherein a stud is used for a slip stopper provided in the multi-chamber cell cross beam. 前記多室セル横桁に設けたスタッドにあらかじめ補強筋が結束されていることを特徴とする請求項2記載の鋼主桁と橋脚との接合構造。The joint structure between a steel main girder and a pier according to claim 2, wherein a reinforcing bar is previously bound to a stud provided on the multi-chamber cell cross beam. 請求項1〜3のいずれかの多室セル横桁をあらかじめ工場等で製作する工程と、
下部が橋脚に埋設された突起付き鉄骨の両側において前記橋脚の橋軸方向に鋼桁を設置する工程と、
多室セル横桁のセル室を前記突起付き鉄骨の上部に嵌合し、その両端部を前記鋼桁に接合して鋼主桁を構成する工程と、
前記多室セル横桁のセル室にコンクリートを充填して鋼主桁と橋脚とを剛結合する工程とを含むことを特徴とする鋼主桁と橋脚との接合方法。
A step of manufacturing the multi-room cell cross beam according to any one of claims 1 to 3 in a factory or the like in advance;
A step of installing steel girders in the bridge axis direction of the pier on both sides of the protruding steel frame having a lower part embedded in the pier,
A step of fitting a cell chamber of a multi-chamber cell girder to the upper part of the steel frame with projections, and joining both ends to the steel girder to form a main steel girder,
A method of joining a steel main girder and a pier, comprising a step of filling concrete into a cell room of the multi-chamber horizontal girder and rigidly connecting the steel main girder and the pier.
JP2002376669A 2002-12-26 2002-12-26 Joining structure and joining method of steel main girder and pier Expired - Lifetime JP3994873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376669A JP3994873B2 (en) 2002-12-26 2002-12-26 Joining structure and joining method of steel main girder and pier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376669A JP3994873B2 (en) 2002-12-26 2002-12-26 Joining structure and joining method of steel main girder and pier

Publications (2)

Publication Number Publication Date
JP2004204602A true JP2004204602A (en) 2004-07-22
JP3994873B2 JP3994873B2 (en) 2007-10-24

Family

ID=32814073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376669A Expired - Lifetime JP3994873B2 (en) 2002-12-26 2002-12-26 Joining structure and joining method of steel main girder and pier

Country Status (1)

Country Link
JP (1) JP3994873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032232A (en) * 2005-07-29 2007-02-08 Maeda Corp Joint structure of bridge pier and cross beam and construction method for bridge
JP2009052283A (en) * 2007-08-27 2009-03-12 Ihi Corp Method and apparatus for connecting between steel member and concrete member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032232A (en) * 2005-07-29 2007-02-08 Maeda Corp Joint structure of bridge pier and cross beam and construction method for bridge
JP4537906B2 (en) * 2005-07-29 2010-09-08 前田建設工業株式会社 Junction structure between bridge pier and girder, bridge construction method and bridge
JP2009052283A (en) * 2007-08-27 2009-03-12 Ihi Corp Method and apparatus for connecting between steel member and concrete member

Also Published As

Publication number Publication date
JP3994873B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
AU2015246120B2 (en) Open web composite shear connector construction
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
KR101851557B1 (en) Arch structure with reinforced arch rib segment and arch structure construction method therefor
JP7118507B2 (en) Steel reinforced concrete wall pillar building structure
JP4537906B2 (en) Junction structure between bridge pier and girder, bridge construction method and bridge
JP7394256B1 (en) Joint structure
JP2014105547A (en) Structure for fixing precast floor slab
JP3752999B2 (en) Upper and lower integrated bridge and its construction method
KR20180026286A (en) Grid precast concrete structure and constructing method thereof
JP4086079B2 (en) Joint structure and joining method of main girder and reinforced concrete pier
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
KR101583401B1 (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
KR100622452B1 (en) Multi-H section steel girder compounded part
JP2004204602A (en) Joint structure between steel main girder and pier and joint method
JP2005127056A (en) Joint structure of column and beam in rigid frame structural body
JP2003105861A (en) Medium-rise and high-rise building using hfc column and hfc beam or the like
KR20170139873A (en) Coupling structure of double type for girder and column capable of reducing girder height
JP7265343B2 (en) steel building
JP3239867U (en) culvert structure
KR101457796B1 (en) Hybrid Structures Using Steel Framework and Precast Concrete Slab
JP7476836B2 (en) Composite structure and construction method
JP7138542B2 (en) Concrete beam structure
KR20090093585A (en) Connecting structure for form-less column and steel beams, and constructing method thereof
JP2006188881A (en) Joint structure of beam and floor board
JPH0762740A (en) Joint method for precast steel framed reinforced concrete construction pillar and beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3994873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term