JP3749478B2 - Manufacturing method of laminated core - Google Patents

Manufacturing method of laminated core Download PDF

Info

Publication number
JP3749478B2
JP3749478B2 JP2001388693A JP2001388693A JP3749478B2 JP 3749478 B2 JP3749478 B2 JP 3749478B2 JP 2001388693 A JP2001388693 A JP 2001388693A JP 2001388693 A JP2001388693 A JP 2001388693A JP 3749478 B2 JP3749478 B2 JP 3749478B2
Authority
JP
Japan
Prior art keywords
laminated core
sheets
manufacturing
core according
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001388693A
Other languages
Japanese (ja)
Other versions
JP2003189515A (en
Inventor
裕治 中原
直弘 桶谷
一之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001388693A priority Critical patent/JP3749478B2/en
Publication of JP2003189515A publication Critical patent/JP2003189515A/en
Application granted granted Critical
Publication of JP3749478B2 publication Critical patent/JP3749478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えばモータ等の回転電機の積層コアの製造方法に係り、特に積層コアの精度および生産性の向上に関するものである。
【0002】
【従来の技術】
近年、モータの高効率化を狙い、積層コアに適用される電磁鋼板の薄板化が進んでいる。一方、電磁鋼板は冷間圧延により製造されるが、図11に示すように圧延ロール1が弾性変形することによって、圧延方向(図中矢印で示す)と直角方向両端部の板厚に差が生じ、この板厚の差は図12に示すように電磁鋼板2の中央部では極めて少ないものの、両端付近では極端に大きくなる。
したがって、板厚の差の大きなところを材料取りされた電磁鋼帯2aを打ち抜いて積層される積層コアにおいては、上記のような薄板化により積み枚数が増加し、この板厚の差の累積が一層顕著となるため、コア精度が悪くなり、コギングトルク、騒音、振動等が発生する要因となっている。
【0003】
そこで、図示はしないが、例えば特開平9−216020号公報等では、形状の向きを幅方向で正、逆にした2種類のユニットを打ち抜き加工し、この打ち抜き加工の際に、所定の枚数毎に金型のダイを180度回転させることにより、2種類のユニットの向きを同方向に揃えて板厚の差を相殺させ、コア精度の向上を図ることが開示されている。
【0004】
【発明が解決しようとする課題】
従来の積層コアは以上のように、形状の向きが正、逆に打ち抜き加工された2種類のユニットを、金型のダイを180度回転させることにより形状の向きを同じに揃えて、板厚の差分を相殺させるようにしているので、コア精度を向上させることは可能となるが、金型ダイを180度回転させるための機構が複雑となり、又、180度回転に伴ってプレス速度が低下するため生産性が悪くなるという問題点があった。
【0005】
この発明は上記のような問題点を解消するためになされたもので、容易に生産性の向上を図ることが可能な積層コアの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
この発明の請求項1に係る積層コアの製造方法は、順送プレス金型に、所定の呼称厚さを有し圧延方向と直角方向の両端部の厚さが異なる鋼板を、厚さが大きい側と小さい側の端部同士が隣接するように2枚重ねた状態で供給する工程と、2枚重ねて供給される鋼板を同時に2枚打ち抜き加工して所望の成形を施し、圧延方向を一致させて順次積層する工程とを包含したものである。
【0007】
又、この発明の請求項2に係る積層コアの製造方法は、請求項1において、2枚ずつ重なる鋼板の圧延方向と直角方向の両端部の厚さを、それぞれ大きい側同士および小さい側同士で等しくしたものである。
【0008】
又、この発明の請求項3に係る積層コアの製造方法は、請求項1または2において、2枚ずつ重なる鋼板の間に、フイルム状の絶縁部材を挟持させるようにしたものである。
【0009】
又、この発明の請求項4に係る積層コアの製造方法は、請求項1または2において、2枚ずつ重なる鋼板の間に、接着層を介在させるようにしたものである。
【0010】
又、この発明の請求項5に係る積層コアの製造方法は、請求項4において、接着層を両面テープで形成したものである。
【0011】
又、この発明の請求項6に係る積層コアの製造方法は、請求項1または2において、2枚ずつ重なる鋼板のいずれか一方を、接着皮膜がコーティングされた鋼板としたものである。
【0012】
又、この発明の請求項7に係る積層コアの製造方法は、請求項1において、2枚重ねて供給される鋼板の圧延方向と直角方向の幅寸法を異ならせ、両鋼板を幅寸法が大きい側の幅方向両端を残して一体に固着するとともに、幅方向両端に残された領域にパイロット穴を形成するようにしたものである。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図に基づいて説明する。
実施の形態1.
図1はこの発明の実施の形態1における積層コアの構成を示し、(A)は平面図、(B)は側面図、図2は図1における積層コアの要部の構成を示す側面図、図3は図1における積層コアの製造工程を示す側面図である。
【0014】
図において、3、4は所定の呼称厚さを有し、圧延方向と直角な幅方向両端の板厚が異なる2種類の電磁鋼板5、6を、図2に示すように板厚の大きい側と小さい側の端部同士が隣接するように重ねて、2枚ずつ同時に打ち抜き加工することにより、図1に示すような所定の形状に形成されたコア部材で、これら両コア部材3、4は圧延方向(図中矢印で示す)が一致するように順次積層され、積層コア7が構成されている。
【0015】
上記のように構成される実施の形態1における積層コア7は、図3に示すように各ドラム8、9に巻回された2種類の電磁鋼板5、6を、板厚の大きい側と小さい側の端部同士が隣接するように2枚重ねた状態で順送プレス金型10に供給し、順送プレス金型10において、2枚重ねて供給される電磁鋼板5、6を同時に2枚打ち抜き加工して、所望の形状に成形することにより両コア部材3、4を形成するとともに、圧延方向が一致するように順次積層することにより完成される。
【0016】
このように上記実施の形態1によれば、所定の呼称厚さを有し、幅方向両端の板厚が異なる2種類の電磁鋼板5、6を、板厚偏差の大きい側と小さい側の端部同士が隣接するように重ねて2枚ずつ同時に打ち抜き加工することにより所定の形状に成形してコア部材3、4を形成し、圧延方向が一致するように順次積層することにより積層コア7を構成するようにしているので、金型ダイを回転させる等の複雑な機構を用いなくとも板厚の差の相殺が可能となり、プレス速度を高めて生産性の向上を図ることができる。
【0017】
なお、両電磁鋼板5、6の板厚が0.2mm以下、すなわち、特に積み枚数が増加する薄板に適用すれば、さらに板厚の差の相殺が顕著となり、また、両電磁鋼板5、6を板厚および幅方向端部の板厚が、それぞれ大きい側同士および小さい側同士で等しい、すなわち、同じ材料とすることにより板厚の差の相殺がさらに容易となり性能の向上を図ることができる。
【0018】
実施の形態2.
図4はこの発明の実施の形態2における積層コアの構成を示す側面図、図5は図4における積層コアの製造工程を示す側面図である。
図において、上記実施の形態1におけると同様な部分は同一符号を付して説明を省略する。11は2枚ずつ同時に打ち抜き加工された両コア部材3、4間に挟持され、両コア部材3、4の厚みの1/10程度の厚みを有するフイルム状の絶縁部材であり、両コア部材3、4と共に圧延方向が一致するように順次積層され、積層コア12が構成されている。
【0019】
上記のように構成される実施の形態2における積層コア12は、図5に示すように各ドラム8、9に巻回された2種類の電磁鋼板5、6を、その間にドラム13に巻回されたフイルム状の絶縁部材11を挟んだ状態で、板厚の大きい側と小さい側の端部同士が隣接するように2枚重ねた状態で順送プレス10に供給し、順送プレス金型10において、2枚重ねて供給される電磁鋼板5、6を同時に2枚打ち抜き加工して、所望の形状に成形することにより両コア部材3、4を形成するとともに、圧延方向が一致するように順次積層することにより完成される。
【0020】
このように上記実施の形態2によれば、所定の呼称厚さを有し、幅方向両端の板厚が異なる2種類の電磁鋼板5、6を、その間にフイルム状の絶縁部材11を挟んだ状態で、板厚の大きい側と小さい側の端部同士が隣接するように重ねて2枚ずつ同時に打ち抜き加工することにより所定の形状に成形してコア部材3、4を形成し、圧延方向が一致するように順次積層することにより積層コア12を構成するようにしているので、上記実施の形態1におけると同様、金型ダイを回転させる等の複雑な機構を用いなくとも板厚の差の相殺が可能となり、プレス速度を高めて生産性の向上を図ることができることは勿論のこと、渦電流防止効果を上げて性能の向上を図ることが可能になる。
【0021】
実施の形態3.
図6はこの発明の実施の形態3における積層コアの構成を示す側面図、図7は図6における積層コアの製造工程を示す側面図である。
図において、上記実施の形態1におけると同様な部分は同一符号を付して説明を省略する。14は2枚ずつ同時に打ち抜き加工された両コア部材3、4間に介在される接着層であり、両コア部材3、4と共に圧延方向が一致するように順次積層され、積層コア15が構成されている。
【0022】
上記のように構成される実施の形態3における積層コア15は、図7に示すように各ドラム8、9に巻回された2種類の電磁鋼板5、6のうち、いずれか一方の電磁鋼板6の表面に、塗布ノズル16から例えば熱硬化性樹脂17を吹き付けて塗布し、その表面を他方の電磁鋼板5で挟むとともに、加圧、加熱手段18において両電磁鋼板5、6の外側から押圧して加熱することにより、両電磁鋼板5、6間に熱硬化性樹脂17が硬化した接着層14が形成される。
【0023】
そして、接着層14を介して固着一体化された両電磁鋼板5、6は順送プレス10に供給され、順送プレス10において、2枚同時に打ち抜き加工され、所望の形状に成形されて両コア部材3、4が接着層14が介在された状態で形成され、圧延方向が一致するように順次積層することにより完成される。
【0024】
このように上記実施の形態3によれば、接着層14を介して固着一体化された両電磁鋼板5、6を、2枚ずつ同時に打ち抜き加工することにより所望の形状に成形して両コア部材3、4を形成し、圧延方向が一致するように順次積層することにより積層コア15を構成するようにしているので、上記各実施の形態1、2におけると同様に、生産性の向上および性能の向上を図ることができることは勿論のこと、両電磁鋼板5、6を接着層14で固着一体化した状態で打ち抜き加工を行っているため、両電磁鋼板5、6がずれるのを防止することができ、さらに性能の向上を図ることが可能になる。
【0025】
なお、上記構成では一方の電磁鋼板6の表面に塗布された熱硬化性樹脂17により接着層14を形成するようにしているが、例えば両面に接着層を有する両面テープを両電磁鋼板5、6間に介在させるようにすれば、接着層の形成がさらに容易となりより生産性の向上を図ることができる。
【0026】
実施の形態4.
図8はこの発明の実施の形態4における積層コアの製造工程を示す側面図である。
この実施の形態4における積層コアは、電磁鋼板5と表面に接着層を有する接着電磁鋼板19を積み重ねて、加圧、加熱手段18において両電磁鋼板5、19の外側から押圧して加熱することにより固着一体化して順送プレス10に供給され、順送プレス10により所望の形状に成形されて両コア部材(図示せず)が形成され、圧延方向が一致するように順次積層することにより完成される。
【0027】
このように上記実施の形態4によれば、電磁鋼板のいずれか一方を接着電磁鋼板19とし、両電磁鋼板5、19を加熱、加圧手段18により押圧して加熱することにより固着一体化し、順送プレス10において打ち抜き加工するようにしているので、上記実施の形態3におけると同様、両電磁鋼板5、19がずれるのを防止することができ、さらに性能の向上を図ることが可能になる。
【0028】
実施の形態5.
図9はこの発明の実施の形態5における積層コアの製造工程を示す側面図、図10は両電磁鋼板の積重方法を説明するための平面図である。
この実施の形態5における積層コアは、図10に示すように幅方向の寸法が異なる2枚の電磁鋼板20、21を、幅方向寸法が大きい方の電磁鋼板20の幅方向両端に領域20a、20bを残して積み重ね、例えばレーザ溶接手段22により溶接23を施して固着一体化し、順送金型10において電磁鋼板20の幅方向両端に残された領域20a、20bに順送のためのパイロット穴24を形成し、このパイロット穴24を基準にして打ち抜き加工が施され、所望の形状に成形されて両コア部材(図示せず)が形成され、圧延方向が一致するように順次積層することにより完成する。
【0029】
このように上記実施の形態5によれば、幅方向の寸法が異なる2枚の電磁鋼板20、21を、幅方向寸法の大きい方の電磁鋼板20の両端に領域20a、20bを残して積み重ね、溶接2を施すことにより固着一体化し、両領域20a、20b、すなわち一方の電磁鋼板20に順送のためのパイロット穴24を形成して打ち抜き加工を施し、所望の形状に成形するようにしてるので、両電磁鋼板20、21がずれるのを防止することができ、さらに性能の向上を図ることが可能になる。
【0030】
なお、上記各実施の形態1ないし5においては、一体形コアの場合について説明したが、これに限定されるものではなく、図示はしないが分割形コアの場合に適用しても、また、屈曲可能な連結部を介して連結される複数のコア片でなるコア部材を、連結部を屈曲させることにより環状に成形して構成されるコアに適用しても、上記と同様の効果を得ることができることは言うまでもない。
【0031】
【発明の効果】
以上のように、この発明の請求項1によれば、順送プレス金型に、所定の呼称厚さを有し圧延方向と直角方向の両端部の厚さが異なる鋼板を、厚さが大きい側と小さい側の端部同士が隣接するように2枚重ねた状態で供給する工程と、2枚重ねて供給される鋼板を同時に2枚打ち抜き加工して所望の成形を施し、圧延方向を一致させて順次積層する工程とを包含するようにしたので、生産性の向上を図ることが可能な積層コアの製造方法を提供することができる。
【0032】
又、この発明の請求項2によれば、請求項1において、2枚ずつ重なる鋼板の圧延方向と直角方向の両端部の厚さを、それぞれ大きい側同士および小さい側同士で等しくしたので、性能の向上を図ることが可能な積層コアの製造方法を提供することができる。
【0033】
又、この発明の請求項3によれば、請求項1または2において、2枚ずつ重なる鋼板の間に、フイルム状の絶縁部材を挟持させるようにしたので、性能の向上を図ることが可能な積層コアの製造方法を提供することができる。
【0034】
又、この発明の請求項4によれば、請求項1または2において、2枚ずつ重なる鋼板の間に、接着層を介在させるようにしたので、性能の向上を図ることが可能な積層コアの製造方法を提供することができる。
【0035】
又、この発明の請求項5によれば、請求項4において、接着層を両面テープで形成したので、容易に性能の向上を図ることが可能な積層コアの製造方法を提供することができる。
【0036】
又、この発明の請求項6によれば、請求項1または2において、2枚ずつ重なる鋼板のいずれか一方を、接着皮膜がコーティングされた鋼板としたので、容易に性能の向上を図ることが可能な積層コアを提供することができる。
【0037】
又、この発明の請求項7によれば、請求項1において、2枚重ねて供給される鋼板の圧延方向と直角方向の幅寸法を異ならせ、両鋼板を幅寸法が大きい側の幅方向両端を残して一体に固着するとともに、幅方向両端に残された領域にパイロット穴を形成するようにしたので、性能の向上を図ることが可能な積層コアの製造方法を提供することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における積層コアの構成を示し、(A)は平面図、(B)は側面図である。
【図2】 図1における積層コアの要部の構成を示す側面図である。
【図3】 図1における積層コアの製造工程を示す側面図である。
【図4】 この発明の実施の形態2における積層コアの構成を示す側面図である。
【図5】 図4における積層コアの製造工程を示す側面図である。
【図6】 この発明の実施の形態3における積層コアの構成を示す側面図である。
【図7】 図6における積層コアの製造工程を示す側面図である。
【図8】 この発明の実施の形態4における積層コアの製造工程を示す側面図である。
【図9】 この発明の実施の形態5における積層コアの製造工程を示す側面図である。
【図10】 両電磁鋼板の積重方法を説明するための平面図である。
【図11】 一般的な鋼帯の圧延状態を示す斜視図である。
【図12】 図11で圧延された鋼帯の断面を示す断面図である。
【符号の説明】
3,4 コア部材、5,6,20,21 電磁鋼板、20a,20b 領域、
7,12,15 積層コア、10 順送プレス金型、11 フイルム状の絶縁部材、
14 接着層、17 熱硬化性樹脂、19 接着電磁鋼板、24 パイロット穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a laminated core of a rotating electric machine such as a motor, and more particularly to improvement in accuracy and productivity of the laminated core.
[0002]
[Prior art]
In recent years, with the aim of increasing the efficiency of motors, magnetic steel sheets applied to laminated cores have been made thinner. On the other hand, the electromagnetic steel sheet is manufactured by cold rolling. As shown in FIG. 11, the rolling roll 1 is elastically deformed, so that there is a difference in the thickness between the rolling direction (indicated by arrows in the figure) and the both end portions in the perpendicular direction. As shown in FIG. 12, the difference between the plate thicknesses is extremely small at the central portion of the electromagnetic steel sheet 2, but becomes extremely large near both ends.
Therefore, in the laminated core that is laminated by punching the electromagnetic steel strip 2a with a large difference in the plate thickness, the number of stacked sheets increases due to the thinning as described above, and the accumulation of the plate thickness difference is increased. Since it becomes more conspicuous, the core accuracy is deteriorated, which is a cause of generation of cogging torque, noise, vibration and the like.
[0003]
Therefore, although not shown, for example, in Japanese Patent Application Laid-Open No. 9-216020, etc., two types of units whose shape directions are forward and reverse in the width direction are punched, and at the time of this punching, every predetermined number of units are punched. In addition, it is disclosed that by rotating the die of the mold 180 degrees, the orientations of the two types of units are aligned in the same direction to cancel the difference in plate thickness, thereby improving the core accuracy.
[0004]
[Problems to be solved by the invention]
As described above, the conventional laminated core has the same thickness direction by rotating the die of the two types of units punched in the opposite direction of the shape, and rotating the die of the mold 180 degrees. However, the core accuracy can be improved, but the mechanism for rotating the die die by 180 degrees becomes complicated, and the press speed decreases with the rotation of 180 degrees. As a result, there is a problem that productivity is deteriorated.
[0005]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a laminated core capable of easily improving productivity.
[0006]
[Means for Solving the Problems]
In the laminated core manufacturing method according to claim 1 of the present invention, a steel plate having a predetermined nominal thickness and different thicknesses at both ends in a direction perpendicular to the rolling direction is used as a progressive press die. The process of supplying in a state where two sheets are stacked so that the end portions on the side and the small side are adjacent to each other, and two sheets of steel sheets supplied in a stacked manner are simultaneously punched to form a desired shape, and the rolling direction is matched. And sequentially stacking the layers.
[0007]
Moreover, the manufacturing method of the laminated core which concerns on Claim 2 of this invention WHEREIN: The thickness of the both ends of the rolling direction of the steel plate which overlaps 2 sheets at a time and the orthogonal direction in Claim 1 is each on the large side and small side, respectively. It is equal.
[0008]
According to a third aspect of the present invention, there is provided a method for manufacturing a laminated core according to the first or second aspect, wherein a film-like insulating member is sandwiched between two overlapping steel sheets.
[0009]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a laminated core according to the first or second aspect, wherein an adhesive layer is interposed between two steel plates that are overlapped each other.
[0010]
According to a fifth aspect of the present invention, there is provided a laminated core manufacturing method according to the fourth aspect, wherein the adhesive layer is formed of a double-sided tape.
[0011]
According to a sixth aspect of the present invention, there is provided a method for manufacturing a laminated core according to the first or second aspect, wherein any one of the two overlapping steel sheets is a steel sheet coated with an adhesive film.
[0012]
According to a seventh aspect of the present invention, there is provided a method for producing a laminated core according to the first aspect, wherein the width dimension in the direction perpendicular to the rolling direction of the steel sheets supplied in a stacked manner is different, and the width dimensions of both steel sheets are large. In addition to fixing both ends in the width direction on the side, the pilot holes are formed in the regions left at both ends in the width direction.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 shows a configuration of a laminated core according to Embodiment 1 of the present invention, (A) is a plan view, (B) is a side view, and FIG. 2 is a side view showing a configuration of a main part of the laminated core in FIG. FIG. 3 is a side view showing a manufacturing process of the laminated core in FIG.
[0014]
In the figure, 3 and 4 have predetermined nominal thicknesses, and two types of electromagnetic steel plates 5 and 6 having different thicknesses at both ends in the width direction perpendicular to the rolling direction are shown in FIG. 1 is a core member formed in a predetermined shape as shown in FIG. 1 by stacking so that the end portions on the small side are adjacent to each other and punching two pieces at a time. Lamination cores 7 are configured by sequentially laminating so that the rolling directions (indicated by arrows in the figure) coincide.
[0015]
The laminated core 7 according to the first embodiment configured as described above has two types of electromagnetic steel plates 5 and 6 wound around the drums 8 and 9 as shown in FIG. Are fed to the progressive press die 10 in a state where two end portions are adjacent to each other, and in the progressive press die 10, the two electromagnetic steel plates 5 and 6 fed in duplicate are fed simultaneously. The two core members 3 and 4 are formed by stamping and forming into a desired shape, and are completed by sequentially laminating so that the rolling directions coincide.
[0016]
As described above, according to the first embodiment, two types of electromagnetic steel plates 5 and 6 having a predetermined nominal thickness and different plate thicknesses at both ends in the width direction are connected to the end on the side where the thickness deviation is large and the side where the plate thickness deviation is small. The core members 3 and 4 are formed by forming two or more pieces so as to be adjacent to each other and simultaneously punching each other to form the core members 3 and 4, and sequentially laminating so that the rolling directions coincide with each other. Since it is configured, it is possible to cancel the difference in plate thickness without using a complicated mechanism such as rotating the die, and the productivity can be improved by increasing the press speed.
[0017]
In addition, if the thickness of both the electromagnetic steel plates 5 and 6 is 0.2 mm or less, that is, particularly when applied to a thin plate in which the number of stacked sheets increases, the difference between the thicknesses becomes more remarkable. The plate thickness and the plate thickness at the end in the width direction are equal to each other on the large side and the small side, that is, by using the same material, the difference in the plate thickness can be more easily offset and the performance can be improved. .
[0018]
Embodiment 2. FIG.
FIG. 4 is a side view showing the configuration of the laminated core according to Embodiment 2 of the present invention, and FIG. 5 is a side view showing the manufacturing process of the laminated core in FIG.
In the figure, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 11 denotes a film-like insulating member that is sandwiched between the core members 3 and 4 that are punched at the same time, and has a thickness of about 1/10 of the thickness of the core members 3 and 4. 4 are sequentially laminated so that the rolling direction is coincident with each other, thereby forming a laminated core 12.
[0019]
The laminated core 12 in the second embodiment configured as described above has two types of electromagnetic steel plates 5 and 6 wound around the drums 8 and 9 as shown in FIG. In a state where the film-like insulating member 11 is sandwiched, two sheets are stacked so that the end portions on the thick side and the small side are adjacent to each other and fed to the progressive press 10, and the progressive press die 10, the two steel sheets 5 and 6 supplied in a stacked manner are simultaneously punched and formed into a desired shape to form both core members 3 and 4, so that the rolling directions coincide with each other. It is completed by sequentially laminating.
[0020]
As described above, according to the second embodiment, two types of electromagnetic steel plates 5 and 6 having a predetermined nominal thickness and different thicknesses at both ends in the width direction are sandwiched with the film-like insulating member 11 therebetween. In this state, the core members 3 and 4 are formed by forming two or more pieces at the same time by stamping and processing them so that the end portions on the large side and the small side are adjacent to each other. Since the laminated core 12 is configured by sequentially laminating so as to coincide with each other, as in the first embodiment, the difference in sheet thickness can be obtained without using a complicated mechanism such as rotating a die die. It is possible to cancel out, and it is possible to improve the productivity by improving the eddy current prevention effect as well as improving the productivity by increasing the press speed.
[0021]
Embodiment 3 FIG.
6 is a side view showing the configuration of the laminated core according to Embodiment 3 of the present invention, and FIG. 7 is a side view showing the manufacturing process of the laminated core in FIG.
In the figure, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 14 denotes an adhesive layer interposed between the core members 3 and 4 that are punched two by two at a time. The adhesive layers are sequentially laminated together with the core members 3 and 4 so that the rolling directions coincide with each other. ing.
[0022]
The laminated core 15 in the third embodiment configured as described above is one of the two types of electromagnetic steel plates 5 and 6 wound around the drums 8 and 9 as shown in FIG. For example, a thermosetting resin 17 is sprayed on the surface of the coating 6 from the coating nozzle 16, and the surface is sandwiched between the other electromagnetic steel plates 5. Then, the adhesive layer 14 in which the thermosetting resin 17 is cured is formed between the electromagnetic steel plates 5 and 6 by heating.
[0023]
Then, the two electromagnetic steel plates 5 and 6 fixedly integrated through the adhesive layer 14 are supplied to the progressive press 10, in which two sheets are simultaneously punched and formed into a desired shape, and both cores are formed. The members 3 and 4 are formed with the adhesive layer 14 interposed therebetween, and are completed by sequentially laminating so that the rolling directions coincide.
[0024]
As described above, according to the third embodiment, the two magnetic steel sheets 5 and 6 fixedly integrated through the adhesive layer 14 are formed into a desired shape by punching two sheets at a time, and both core members are formed. 3 and 4 are formed, and the laminated core 15 is formed by sequentially laminating so that the rolling directions coincide with each other. Therefore, as in each of the first and second embodiments, improvement in productivity and performance are achieved. As a matter of course, since the punching process is performed in a state in which both the electromagnetic steel plates 5 and 6 are fixedly integrated with the adhesive layer 14, the electromagnetic steel plates 5 and 6 are prevented from being displaced. And the performance can be further improved.
[0025]
In the above configuration, the adhesive layer 14 is formed by the thermosetting resin 17 applied to the surface of one of the electromagnetic steel plates 6, but for example, a double-sided tape having an adhesive layer on both surfaces is used for both the electromagnetic steel plates 5 and 6. If it is interposed, the formation of the adhesive layer is further facilitated, and the productivity can be further improved.
[0026]
Embodiment 4 FIG.
FIG. 8 is a side view showing the manufacturing process of the laminated core according to Embodiment 4 of the present invention.
The laminated core in the fourth embodiment is obtained by stacking the electromagnetic steel sheet 5 and the adhesive electromagnetic steel sheet 19 having an adhesive layer on the surface, and pressing and heating from the outside of the electromagnetic steel sheets 5 and 19 in the pressurizing and heating means 18. And then fed to the progressive press 10 and formed into a desired shape by the progressive press 10 to form both core members (not shown) and completed by sequentially laminating so that the rolling directions coincide. Is done.
[0027]
As described above, according to the fourth embodiment, either one of the electromagnetic steel sheets is the bonded electromagnetic steel sheet 19, and both the electromagnetic steel sheets 5 and 19 are heated and pressed by the pressurizing means 18 to be heated and integrated. Since punching is performed in the progressive press 10, it is possible to prevent the electromagnetic steel plates 5 and 19 from shifting as in the third embodiment, and to further improve the performance. .
[0028]
Embodiment 5. FIG.
FIG. 9 is a side view showing the manufacturing process of the laminated core according to Embodiment 5 of the present invention, and FIG. 10 is a plan view for explaining a method of stacking both electromagnetic steel sheets.
As shown in FIG. 10, the laminated core in the fifth embodiment includes two electromagnetic steel plates 20 and 21 having different widthwise dimensions, and regions 20 a and 20 a at both ends in the widthwise direction of the electromagnetic steel plate 20 having a larger widthwise dimension. 20b is left and stacked, for example, welding 23 is applied by laser welding means 22, and fixed and integrated. In the progressive die 10, pilot holes 24 for progressive feeding are left in the regions 20a and 20b left at both ends in the width direction of the electromagnetic steel sheet 20. This is punched out with reference to the pilot hole 24, formed into a desired shape to form both core members (not shown), and completed by sequentially laminating so that the rolling directions match. To do.
[0029]
As described above, according to the fifth embodiment, two electromagnetic steel plates 20 and 21 having different widthwise dimensions are stacked, leaving the regions 20a and 20b at both ends of the electromagnetic steel plate 20 having a larger widthwise dimension, The welding 2 is fixed and integrated, and the pilot holes 24 for progressive feeding are formed in both regions 20a and 20b, that is, one of the electromagnetic steel sheets 20, and punching is performed to form a desired shape. The electromagnetic steel sheets 20 and 21 can be prevented from shifting, and the performance can be further improved.
[0030]
In each of the first to fifth embodiments described above, the case of an integral core has been described. However, the present invention is not limited to this, and although not illustrated, it may be applied to a case of a split core, and may be bent. Even when a core member composed of a plurality of core pieces connected through possible connecting portions is applied to a core formed by forming the connecting portion into an annular shape by bending the connecting portions, the same effects as described above can be obtained. Needless to say, you can.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, a steel plate having a predetermined nominal thickness and different thicknesses at both ends in the direction perpendicular to the rolling direction is used as the progressive press die. The process of supplying in a state where two sheets are stacked so that the end portions on the side and the small side are adjacent to each other, and two sheets of steel sheets supplied in a stacked manner are simultaneously punched to form a desired shape, and the rolling direction is matched. And the step of sequentially stacking the layers, it is possible to provide a method of manufacturing a stacked core capable of improving productivity.
[0032]
According to claim 2 of the present invention, in claim 1, since the thicknesses of both end portions in the direction perpendicular to the rolling direction of the steel sheets that overlap each other are made equal on the large side and the small side, respectively, The manufacturing method of the lamination | stacking core which can aim at improvement of can be provided.
[0033]
According to the third aspect of the present invention, in the first or second aspect, the film-like insulating member is sandwiched between the steel plates that are overlapped two by two, so that the performance can be improved. A method for manufacturing a laminated core can be provided.
[0034]
According to the fourth aspect of the present invention, in the first or second aspect, since the adhesive layer is interposed between the steel sheets that are overlapped two by two, it is possible to improve the performance of the laminated core. A manufacturing method can be provided.
[0035]
According to the fifth aspect of the present invention, since the adhesive layer is formed of the double-sided tape in the fourth aspect, it is possible to provide a method for manufacturing a laminated core capable of easily improving the performance.
[0036]
According to the sixth aspect of the present invention, in any one of the first and second aspects, either one of the two overlapping steel sheets is a steel sheet coated with an adhesive film, so that the performance can be easily improved. Possible laminated cores can be provided.
[0037]
According to claim 7 of the present invention, in claim 1, the width dimension in the direction perpendicular to the rolling direction of the steel sheets supplied in a stack of two sheets is made different, and both widths of both steel sheets in the width direction on the side where the width dimension is larger. Since the pilot holes are formed in the regions left at both ends in the width direction, the laminated core manufacturing method capable of improving the performance can be provided.
[Brief description of the drawings]
1A and 1B show a configuration of a laminated core according to Embodiment 1 of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a side view.
2 is a side view showing a configuration of a main part of the laminated core in FIG. 1. FIG.
3 is a side view showing a manufacturing process of the laminated core in FIG. 1. FIG.
FIG. 4 is a side view showing a configuration of a laminated core according to Embodiment 2 of the present invention.
5 is a side view showing a manufacturing process of the laminated core in FIG. 4; FIG.
FIG. 6 is a side view showing a configuration of a laminated core according to Embodiment 3 of the present invention.
7 is a side view showing a manufacturing process of the laminated core in FIG. 6. FIG.
FIG. 8 is a side view showing a manufacturing process of a laminated core in Embodiment 4 of the present invention.
FIG. 9 is a side view showing the manufacturing process for the laminated core in the fifth embodiment of the present invention.
FIG. 10 is a plan view for explaining a method of stacking both electromagnetic steel sheets.
FIG. 11 is a perspective view showing a rolled state of a general steel strip.
12 is a cross-sectional view showing a cross section of the steel strip rolled in FIG. 11. FIG.
[Explanation of symbols]
3, 4 core member, 5, 6, 20, 21 electrical steel sheet, 20a, 20b region,
7, 12, 15 laminated core, 10 progressive press mold, 11 film-like insulating member,
14 Adhesive layer, 17 Thermosetting resin, 19 Adhesive electrical steel sheet, 24 Pilot holes.

Claims (7)

順送プレス金型に、所定の呼称厚さを有し圧延方向と直角方向の両端部の厚さが異なる鋼板を、上記厚さが大きい側と小さい側の上記端部同士が隣接するように2枚重ねた状態で供給する工程と、上記2枚重ねて供給される鋼板を同時に2枚打ち抜き加工して所望の成形を施し、上記圧延方向を一致させて順次積層する工程とを包含したことを特徴とする積層コアの製造方法。A steel plate having a predetermined nominal thickness and different thicknesses at both ends in the direction perpendicular to the rolling direction is placed on the progressive press die so that the end portions on the large and small sides are adjacent to each other. Including a step of supplying two sheets in a stacked state, and a step of simultaneously punching the two sheets of steel sheets supplied in a stacked manner to perform desired forming, and sequentially laminating the rolling directions so as to coincide with each other. A method for producing a laminated core characterized by the above. 2枚ずつ重なる鋼板の圧延方向と直角方向の両端部の厚さが、それぞれ大きい側同士および小さい側同士で等しいことを特徴とする請求項1に記載の積層コアの製造方法。The method for producing a laminated core according to claim 1, wherein the thicknesses of both end portions in the direction perpendicular to the rolling direction of the steel sheets that overlap each other are equal on the large side and on the small side, respectively. 2枚ずつ重なる鋼板の間にはフイルム状の絶縁部材が挟持されていることを特徴とする請求項1または請求項2に記載の積層コアの製造方法。The method for producing a laminated core according to claim 1 or 2, wherein a film-like insulating member is sandwiched between two steel plates that are overlapped each other. 2枚ずつ重なる鋼板の間には接着層が介在されていることを特徴とする請求項1または請求項2に記載の積層コアの製造方法。The method for producing a laminated core according to claim 1, wherein an adhesive layer is interposed between the steel plates that are overlapped two by two. 接着層は両面テープであることを特徴とする請求項4に記載の積層コアの製造方法。The method for manufacturing a laminated core according to claim 4, wherein the adhesive layer is a double-sided tape. 2枚ずつ重なる鋼板のいずれか一方が、接着皮膜がコーティングされた鋼板であることを特徴とする請求項1または請求項2に記載の積層コアの製造方法。3. The method for manufacturing a laminated core according to claim 1, wherein any one of the two steel plates that overlap each other is a steel plate coated with an adhesive film. 2枚重ねて供給される鋼板は圧延方向と直角方向の幅寸法が異なり、上記両鋼板は上記幅寸法が大きい側の幅方向両端を残して一体に固着されるとともに、上記幅方向両端に残された領域にパイロット穴が形成されていることを特徴とする請求項1に記載の積層コアの製造方法。The two steel sheets supplied in a stacked manner have different width dimensions in the direction perpendicular to the rolling direction, and both the steel sheets are fixed together, leaving both ends in the width direction on the side where the width dimension is larger, and remain at both ends in the width direction. The method for manufacturing a laminated core according to claim 1, wherein pilot holes are formed in the formed region.
JP2001388693A 2001-12-21 2001-12-21 Manufacturing method of laminated core Expired - Fee Related JP3749478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388693A JP3749478B2 (en) 2001-12-21 2001-12-21 Manufacturing method of laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388693A JP3749478B2 (en) 2001-12-21 2001-12-21 Manufacturing method of laminated core

Publications (2)

Publication Number Publication Date
JP2003189515A JP2003189515A (en) 2003-07-04
JP3749478B2 true JP3749478B2 (en) 2006-03-01

Family

ID=27597122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388693A Expired - Fee Related JP3749478B2 (en) 2001-12-21 2001-12-21 Manufacturing method of laminated core

Country Status (1)

Country Link
JP (1) JP3749478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050989A (en) * 2010-08-31 2012-03-15 Toyota Boshoku Corp Punching device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606731B2 (en) * 2003-12-11 2011-01-05 株式会社デンソー LAMINATE MANUFACTURING METHOD AND LAMINATE MANUFACTURING APPARATUS
JP4798965B2 (en) * 2004-05-31 2011-10-19 株式会社東芝 Manufacturing method of rotating machine iron core
JP4840215B2 (en) * 2007-03-27 2011-12-21 株式会社日立製作所 Permanent magnet type rotating electric machine and compressor using the same
JP5691462B2 (en) * 2010-12-09 2015-04-01 トヨタ自動車株式会社 Manufacturing method of laminated iron core and laminated iron core manufacturing system
JP6307285B2 (en) * 2014-01-22 2018-04-04 株式会社三井ハイテック Punching method of iron core pieces
JP2016092949A (en) * 2014-11-04 2016-05-23 株式会社三井ハイテック Punching method
JP6273239B2 (en) 2015-09-04 2018-01-31 Jfeスチール株式会社 Laminated core manufacturing apparatus and laminated core manufacturing method
JP6299005B2 (en) 2015-09-04 2018-03-28 Jfeスチール株式会社 Laminated core manufacturing apparatus and laminated core manufacturing method
DE102018133207A1 (en) * 2018-12-20 2020-06-25 Thyssenkrupp Steel Europe Ag Packing of lamellas from a composite material by means of welding
DE102018133202A1 (en) * 2018-12-20 2020-06-25 Thyssenkrupp Steel Europe Ag Stamping of at least two metal sheets arranged one above the other
JP2020142285A (en) * 2019-03-07 2020-09-10 株式会社山田ドビー Laminate manufacturing line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050989A (en) * 2010-08-31 2012-03-15 Toyota Boshoku Corp Punching device

Also Published As

Publication number Publication date
JP2003189515A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP3749478B2 (en) Manufacturing method of laminated core
US8205320B2 (en) Method of manufacturing a rotating electric machine
JP4938389B2 (en) Laminated core and stator
JP2006353001A (en) Laminated iron core and its manufacturing method and apparatus
JP2006515144A (en) Method for manufacturing a stator and stator manufactured by the method
WO2011061803A1 (en) Method of manufacturing molded stator of dynamo electric machine
JP2003219585A (en) Laminated core and its manufacturing method
KR20130118955A (en) Stator for rotating electrical machine, and method for producing same
JP5104111B2 (en) Stator core manufacturing method
JP2016140134A (en) Motor core and method of manufacturing motor core
JP4752613B2 (en) Manufacturing method of laminated parts
JP3749490B2 (en) Laminated iron core and method for manufacturing the same
JP3313965B2 (en) Manufacturing method of laminated iron core using amorphous alloy foil strip
JP2007221927A (en) Stator core of rotating electric machine and method of manufacturing same
JP2005020972A (en) Manufacturing method and manufacturing device of laminated core
JP2000116074A (en) Laminating die apparatus of core member and laminating method therefor
JP2005191033A (en) Method of manufacturing laminated core
JPH0716557U (en) Laminated iron core for rotating machinery
JP2003153503A (en) Manufacturing method for motor core
JP4027132B2 (en) Iron core device, method for manufacturing iron core device, permanent magnet motor and hermetic compressor
JP3439658B2 (en) Iron core
JP2021175240A (en) Manufacturing method of iron core, iron core, and stator
JP4890375B2 (en) Manufacturing method of stator of rotating electric machine
JP2002191142A (en) Laminated core
JP2000341913A (en) Stator core for rotary electric machine and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3749478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees