JP4798965B2 - Manufacturing method of rotating machine iron core - Google Patents

Manufacturing method of rotating machine iron core Download PDF

Info

Publication number
JP4798965B2
JP4798965B2 JP2004161454A JP2004161454A JP4798965B2 JP 4798965 B2 JP4798965 B2 JP 4798965B2 JP 2004161454 A JP2004161454 A JP 2004161454A JP 2004161454 A JP2004161454 A JP 2004161454A JP 4798965 B2 JP4798965 B2 JP 4798965B2
Authority
JP
Japan
Prior art keywords
electromagnetic steel
rotating machine
adhesive
core
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004161454A
Other languages
Japanese (ja)
Other versions
JP2005348456A (en
Inventor
英二 霜村
資康 望月
伊藤  渉
貴志 荒木
正克 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2004161454A priority Critical patent/JP4798965B2/en
Publication of JP2005348456A publication Critical patent/JP2005348456A/en
Application granted granted Critical
Publication of JP4798965B2 publication Critical patent/JP4798965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、鉄損を低減させることができる回転機鉄心の製造方法に関する。
The present invention relates to a method of manufacturing a rotary machine core capable of reducing iron loss.

近年、同期機、誘導機等の回転電機は、インバータと組み合わせることにより可変速運転を実施して、HEV(Hybrid Electric Vehicle)或いはマイクロガスタービンなど広い運転速度を持つ用途に応用されている。
これら回転電機が高速で運転されると、固定子巻線に通電される電流が高周波になるため、その電流により生じる駆動磁界も高周波になる。また、その電流に含まれる高調波電流成分を考えると、駆動磁界による固定子鉄心に渦電流が発生し、さらに、駆動電流が正弦波であっても、固定子鉄心にスロットが存在することにより主間隙には磁界の空間高調波成分が発生する。そして、この高調波成分が回転子鉄心に侵入することで、回転子鉄心に渦電流が発生する。
2. Description of the Related Art In recent years, rotating electrical machines such as synchronous machines and induction machines perform variable speed operation by being combined with an inverter and are applied to applications having a wide operating speed such as HEV (Hybrid Electric Vehicle) or micro gas turbine.
When these rotating electrical machines are operated at high speed, the current applied to the stator windings becomes high frequency, and the drive magnetic field generated by the current also becomes high frequency. Also, considering the harmonic current component included in the current, eddy currents are generated in the stator core due to the drive magnetic field, and even if the drive current is a sine wave, there are slots in the stator core. A spatial harmonic component of the magnetic field is generated in the main gap. Then, when this harmonic component enters the rotor core, an eddy current is generated in the rotor core.

ところで、電磁鋼板の高周波数における損失は、その周波数の二乗に比例する渦電流の影響が大きことが知られている。次式は、渦電流損失Weを与える一般式である。
We=C(ωBt)2/(24ρd)
ここで、Cは定数、ωは励磁角周波数、Bは磁束密度、tは板厚、ρは電気抵抗率、dは密度である。
Incidentally, the loss at high frequencies of the electromagnetic steel sheet, it is known that have large influence of the eddy current loss proportional to the square of the frequency. The following equation is a general equation that gives the eddy current loss We.
We = C (ωBt) 2 / (24ρd)
Here, C is a constant, ω is an excitation angular frequency, B is a magnetic flux density, t is a plate thickness, ρ is an electrical resistivity, and d is a density.

この渦電流損失Weから明らかなように、鉄心の低損失化対策としては、固有電気抵抗率の高い材質を採用する或いは板厚の薄い電磁鋼板を採用することで渦電流を低減する手段がとられるが、特に渦電流損失Weは、板厚の二乗で比例することから、電磁鋼板の薄板材の採用は効果的である。
回転機鉄心に板厚の薄い電磁鋼板を採用するに当っては、腰の無い薄板であるため、鉄心形状に打抜き成形する際に、プレス機まで送る送り装置或いはプレス機内で電磁鋼板のたわみを生じたり、プレス機でのプレス抜きの際に、電磁鋼板に折れを生じたりすることが懸念されて、歩留まりが悪くなり、さらには、電磁鋼板薄板を採用して、所定の鉄心積厚を確保するためには、打抜き加工される電磁鋼板の枚数が多くなり、工数が多くなっていた。
As is clear from this eddy current loss We, as a measure for reducing the loss of the iron core, there is a means for reducing the eddy current by adopting a material having a high specific electrical resistivity or adopting a thin steel plate. However, since the eddy current loss We is proportional to the square of the plate thickness, it is effective to employ a thin steel plate material.
When adopting a thin steel sheet for a rotating machine iron core, it is a thin sheet with no waist, so when punching into an iron core shape, the bending of the electromagnetic steel sheet is carried out in a feeding device or press machine that sends it to the press machine. It is feared that the magnetic steel sheet may be bent when it is punched or pressed by a press machine, and the yield deteriorates. Furthermore, the use of a magnetic steel sheet thin plate ensures a predetermined core thickness. In order to do this, the number of electromagnetic steel sheets to be punched has increased, and the number of man-hours has increased.

そのため、電磁鋼板の薄板を複数枚重ねて同時に打抜くと共にかしめ結束することで、電磁鋼板に腰を持たせると共に工数を削減するようにしたが、その場合、打抜きかしめ時に複数枚の電磁鋼板相互のずれが発生するといったことが起こっていた。
そのため従来より、複数枚の電磁鋼板を重ねてかしめ結束される部位の近傍を溶接或いは接着することで、かしめ結束時における電磁鋼板相互のずれを抑制し歩留まりを向上させると共に工数を減少させことができる積層鉄心が提供されている(特許文献1参照)。
特開2003−219585号公報
For this reason, multiple sheets of electromagnetic steel sheets are stacked and punched at the same time, and caulking and bundling, thereby reducing the man-hours and reducing man-hours. It was happening that a gap occurred.
Therefore, conventionally, by welding or adhering the vicinity of a portion to be caulked and bonded by overlapping a plurality of electromagnetic steel sheets, it is possible to suppress the deviation between the electromagnetic steel sheets during caulking and improve the yield and reduce the man-hours. A laminated iron core that can be produced is provided (see Patent Document 1).
JP 2003-219585 A

しかしながら従来例によれば、回転機鉄心のかしめ部近傍が溶接されている場合には、その溶接された部位は熱ひずみを発生している。そのため、回転機鉄心には、鉄損であるヒステリシス損が発生することになり、回転電機の性能を低下させるといった問題があっ。
また、回転機鉄心のかしめ部位近傍が接着されている場合には、かしめ結束の衝撃により接着層が剥離して、電磁鋼板に反りを生じたり、その剥離した接着層が製造される回転機鉄心の電磁鋼板相互の隙間に残留してしまうため、回転機鉄心の傾き等を発生したりし、その状態で製造された回転機鉄心は、鉄損であるヒステリシス損が発生することになり、総じて回転電機の性能を低下させるといった問題があった。
However, according to the conventional example, when the vicinity of the caulking portion of the rotary machine iron core is welded, the welded portion generates thermal strain. For this reason, a hysteresis loss, which is an iron loss, occurs in the rotating machine iron core, and there is a problem that the performance of the rotating electrical machine is deteriorated.
Also, when the vicinity of the caulking part of the rotating machine core is bonded, the adhesive layer is peeled off due to the caulking and binding, causing the warp to the electromagnetic steel sheet, or the rotating machine core in which the peeled adhesive layer is manufactured. electromagnetic steel sheets each other to remain in the gap Mautame, or to generate the slope and the like of the rotating machine core, rotating machine core produced in that state, will be the hysteresis loss is an iron loss occurs, In general, there is a problem that the performance of the rotating electrical machine is degraded.

本発明は上記事情に鑑みてなされたもので、薄板の電磁鋼板を採用しても、回転機鉄心に発生するヒステリシス損失を低減することで、回転機の性能を維持することができる回転機鉄心の製造方法を提供するにある。   The present invention has been made in view of the above circumstances, and a rotating machine core capable of maintaining the performance of a rotating machine by reducing hysteresis loss occurring in the rotating machine core even when a thin electromagnetic steel sheet is adopted. To provide a manufacturing method.

請求項1記載の発明は、複数枚の電磁鋼板の長手方向の端面を溶接して一体化させ、これら複数枚の電磁鋼板を同時に打抜くと共にかしめ結束をして回転機鉄心を構成することを特徴とする。
このような構成によれば、電磁鋼板の端面を溶接することにより、熱ひずみによる影響箇所を避けて電磁鋼板を打抜き成形することができるため、薄板の電磁鋼板を採用しても、熱ひずみにより鉄心に発生するヒステリシス損失を低減することができ、回転電機の性能を維持することができる。
According to the first aspect of the present invention, the end surfaces in the longitudinal direction of a plurality of electromagnetic steel sheets are integrated by welding, and the plurality of electromagnetic steel sheets are simultaneously punched and caulked to form a rotating machine core. Features.
According to such a configuration, by welding the end surfaces of the electromagnetic steel sheet, the electromagnetic steel sheet can be stamped and formed while avoiding the influence of the thermal strain. Hysteresis loss occurring in the iron core can be reduced, and the performance of the rotating electrical machine can be maintained.

請求項3記載の発明は、複数枚の電磁鋼板の略全面を接着剤にて貼り合わせて一体化させ、これら複数枚の電磁鋼鈑を同時に打抜くと共にかしめ結束して回転機鉄心を構成し、前記複数枚の電磁鋼板間に存在する接着層は、3μm以内の厚さで、かつ電磁鋼板の面積率にて80%以上の略全面に塗布され、前記接着層を構成する接着剤に、半硬化樹脂を使用したことを特徴とする。
このような構成によれば、電磁鋼板の略全面を接着剤にて貼り合せることにより、打抜き及びかしめの衝撃により接着剤が剥離しないように十分な強度を持たせることができるため、薄板の電磁鋼板を採用しても、電磁鋼板に反りや傾きにより鉄心に発生するヒステリシス損失を低減することができ、回転電機の性能を維持することができる
また、電磁鋼板の面積率に対して塗布する接着剤を80%以上とすることで、打抜きかしめ結束に対しても剥離することが無い程度の強度を維持することができる。さらに、接着層の厚さを3μmとすることで、回転機鉄心を所定の厚さに積層した場合に、回転機鉄心の断面積に対する電磁鋼板の占積率を高くすることで、透磁率を向上させて、回転電機の性能を高く維持することができる。
According to a third aspect, the substantially entire surface of a plurality of electromagnetic steel plates are integrated by bonding with an adhesive, and crimping bundling constitute rotary machine core with punched these plurality of electromagnetic steel plates at the same time The adhesive layer present between the plurality of electromagnetic steel sheets is applied to substantially the entire surface of a thickness of 3 μm or less and 80% or more of the area ratio of the electromagnetic steel sheet, and constitutes the adhesive layer, It is characterized by using a semi-cured resin .
According to such a configuration, by attaching almost the entire surface of the electromagnetic steel sheet with an adhesive, it is possible to give the adhesive sufficient strength so that the adhesive does not peel off due to punching and caulking impacts. Even if a steel plate is employed, hysteresis loss generated in the iron core due to warpage or inclination of the electromagnetic steel plate can be reduced, and the performance of the rotating electrical machine can be maintained .
Moreover, the intensity | strength of the grade which does not peel also to a punching caulking bundling can be maintained because the adhesive agent apply | coated with respect to the area ratio of an electromagnetic steel sheet shall be 80% or more. Furthermore, by setting the thickness of the adhesive layer to 3 μm, when the rotary machine core is laminated to a predetermined thickness, the permeability of the magnetic steel sheet is increased by increasing the space factor of the electromagnetic steel sheet relative to the cross-sectional area of the rotary machine core. The performance of the rotating electrical machine can be maintained high by improving.

本発明によれば、薄板の電磁鋼板を採用しても、回転機鉄心に発生するヒステリシス損失を低減させることで、回転機の性能を維持することができる。   According to the present invention, even if a thin electromagnetic steel sheet is employed, the performance of the rotating machine can be maintained by reducing the hysteresis loss generated in the rotating machine iron core.

(第1実施例)
以下本発明の第1の実施例について、図1および図2を参照しながら説明する。まず、図1は、回転機鉄心の製造装置の全体構成を示す。送給装置1には、フープ状に巻回された帯状の電磁鋼板2が上下に2つ配設される。この電磁鋼板2,2は、送給装置1より、3対の送り案内ローラ3,4,5を介してプレス機6まで送られる。まず、この場合、回転機鉄心に用いられる電磁鋼板は、通常、0.5mm厚のものであるが、この実施例では、電磁鋼板2として0.1mm厚のものとする。送給装置1の電磁鋼板2,2は、1対の送り案内ローラ3により、合流重合されて送り出される。送り案内ローラ3,4間には、溶接装置7が設けられ、この溶接装置7は、例えばパルスレーザを用いて溶接するものであり、パルスの大きなエネルギーによって十分な強度を持たせつつも、被溶接物に熱影響をほとんど与えることなく溶接することができるものである。この溶接装置7により、送り案内ローラ3により送り出された電磁鋼板2,2の長手方向の端面として例えば片端面2aの溶接が行なわれて、電磁鋼板2,2は一体化される。また、送り案内ローラ4,5は、これらの協働により、溜め送り装置8として働き、その溜め送り部8aは、送り案内ローラ3,4より送られた電磁鋼板2,2が一時的に溜められる部分であり、送給装置1とプレス機6との間のあそびである。そして、溜め送り部8aを経た電磁鋼板2,2は、送り案内ローラ5により、プレス機6まで送り案内され、プレス機6では、溶接して一体化された電磁鋼板2,2を同時に回転機鉄心の形状に打抜くと共にかしめ結束が行なわれて抜き鋼板9aが形成され、これが複数個積層されて、回転機鉄心9が形成される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 shows the overall configuration of a rotating machine iron core manufacturing apparatus. In the feeding device 1, two strip-shaped electromagnetic steel plates 2 wound in a hoop shape are arranged vertically. The electromagnetic steel plates 2 and 2 are fed from the feeding device 1 to the press machine 6 through three pairs of feed guide rollers 3, 4 and 5. First, in this case, the electromagnetic steel sheet used for the rotating machine iron core is usually 0.5 mm thick, but in this embodiment, the electromagnetic steel sheet 2 is 0.1 mm thick. The electromagnetic steel plates 2 and 2 of the feeding device 1 are merged and polymerized by a pair of feed guide rollers 3 and sent out. A welding device 7 is provided between the feed guide rollers 3 and 4, and this welding device 7 is welded by using, for example, a pulse laser. It can be welded with almost no heat effect on the welded material. For example, one end face 2a is welded as an end face in the longitudinal direction of the electromagnetic steel plates 2 and 2 fed by the feed guide roller 3 by the welding device 7, and the electromagnetic steel plates 2 and 2 are integrated. Further, the feed guide rollers 4 and 5 work as a reservoir feed device 8 by the cooperation of these, and the reservoir feed portion 8a temporarily stores the electromagnetic steel plates 2 and 2 fed from the feed guide rollers 3 and 4. This is a play between the feeding device 1 and the press machine 6. The electromagnetic steel plates 2 and 2 that have passed through the reservoir feed portion 8a are guided to the press machine 6 by the feed guide roller 5, and the press machine 6 simultaneously welds and integrates the electromagnetic steel plates 2 and 2 to the rotating machine. A punched steel sheet 9a is formed by punching into the shape of an iron core and caulking and binding, and a plurality of these are laminated to form a rotating machine iron core 9.

このようにして、形成された回転機鉄心9は、図2に示すように、例えば誘導機10の固定子鉄心11または回転子鉄心13に相当する。この固定子鉄心11には、同心円状に複数のスロット11aが形成されており、そのスロット11a間に渡って巻線12が巻装され、また、回転子鉄心13には、導体13aが埋設されている。そして、誘導機10には、図示しないインバータ等を介して、電源が供給されて、可変速運転が実施されるのである。   The rotor core 9 thus formed corresponds to, for example, the stator core 11 or the rotor core 13 of the induction machine 10 as shown in FIG. The stator core 11 is formed with a plurality of concentric slots 11a. A winding 12 is wound between the slots 11a. A conductor 13a is embedded in the rotor core 13. ing. The induction machine 10 is supplied with power through an inverter (not shown) and the like, and variable speed operation is performed.

このような構成によれば、電磁鋼板2,2をその長手方向である片端面2aを溶接して一体化させ、電磁鋼板2,2を同時に打抜くと共にかしめ結束をして回転機鉄心9を構成するようにした。従って、薄板の電磁鋼板2を採用しても、電磁鋼板2,2を溶接により一体化させることにより、電磁鋼板2,2に腰を持たせることができ、同時に打抜いてかしめ結束を行なうため、工数を削減することができる。さらに、電磁鋼板2,2の片端面2aを溶接することにより、成形後の抜き鋼板9aは、熱ひずみによる影響箇所2b(図2のハッチング部)を避けて、打抜き成形されるため、熱ひずみにより鉄心に発生するヒステリシス損失を低減させることで、回転電機(誘導機10)の性能を維持することができる。   According to such a configuration, the electromagnetic steel plates 2 and 2 are integrated by welding one end surface 2a which is the longitudinal direction thereof, and the electromagnetic steel plates 2 and 2 are simultaneously punched and caulked and bonded to form the rotary machine core 9. I made it up. Therefore, even if the thin electromagnetic steel sheet 2 is adopted, the electromagnetic steel sheets 2 and 2 can be integrated by welding so that the electromagnetic steel sheets 2 and 2 can have a waist, and at the same time, punching and caulking and binding are performed. Man-hours can be reduced. Further, by welding the one end face 2a of the electromagnetic steel plates 2 and 2, the blanked steel sheet 9a after forming is stamped and formed while avoiding the affected part 2b (hatched portion in FIG. 2) due to thermal strain. By reducing the hysteresis loss generated in the iron core, the performance of the rotating electrical machine (induction machine 10) can be maintained.

また、電磁鋼板2,2の溶接として、パルスレーザによる溶接を行なっているため、溶接ヘッドと電磁鋼板2を非接触にできるだけでなく、発生する熱量はパルス数を変化させることにより微量に調整することができる。従って、電磁鋼板2,2を熱量が少なくても十分な強度で一体化して溶接できるため、電磁鋼板2に発生する熱ひずみを抑えることができる。   Further, since welding is performed by pulse laser as welding of the electromagnetic steel plates 2 and 2, not only the welding head and the electromagnetic steel plate 2 can be brought into non-contact, but also the amount of generated heat is adjusted to a minute amount by changing the number of pulses. be able to. Therefore, since the electromagnetic steel plates 2 and 2 can be integrated and welded with sufficient strength even with a small amount of heat, thermal strain generated in the electromagnetic steel plate 2 can be suppressed.

(第2実施例)
次に、本発明の第2の実施例について、図3を参照しながら説明するに、上記第1の実施例と同一部分には同一符号を付して示す。
図3および図4は、回転機鉄心の製造装置の全体構成を示す。この図3において、送給装置14には、フープ状に巻回された薄板である電磁鋼板2が配設され、この送給装置14より送り出される電磁鋼板2は、第1接着剤供給装置16により、第1接着剤17aが電磁鋼板2の略全面に塗布される。ここで、第1接着剤供給装置16は、ローラ16a,16bの協働により、塗布する第1接着剤17aの厚さを制御するもので、ローラ16aには、溝が設けられており、この溝が第1接着剤17aだまりとすることで安定した膜厚を維持することができ、また、第1接着剤17aは、後述する第2接着剤17bと接触すると速やかに硬化する2液式の接着剤17であり、第2接着剤17bは、速乾性であるため膜厚管理の必要はないものである。また、送給装置18には、電磁鋼板2が配設されており、この送給装置18より送り出される電磁鋼板2は、送り案内ローラ15,15と対になるように設けられた第2接着剤供給装置19により、第2接着剤17bが電磁鋼板2の略全面に塗布される。この第2接着剤17bが塗布された電磁鋼板2は、送り案内ローラ15,15により、第1接着剤17aが塗布された電磁鋼板2と合流重合すると共に電磁鋼板2の略全面が貼り合わせ接着されて一体化硬化される。ここで、電磁鋼板2,2間には、第1接着剤17a及び第2接着剤17bで構成された接着剤17である接着層が形成されており、この接着層(接着剤17)は、電磁鋼板2の片面の面積に対して80%以上の面積率である略全面に形成されると共に、3μm以内の厚さで構成されている。ここで、接着層(接着剤17)の厚さが、3μmを超えると、未硬化部分が残り、プレス機6により成形されるまでに十分な強度を発揮できなかったり、プレス機6の形に貼り付いたりしてプレス機6の能力を低下させ、そのような不具合を発生しない上限が3μmである。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. 3. The same parts as those in the first embodiment are denoted by the same reference numerals.
3 and 4 show the overall configuration of the rotating machine iron core manufacturing apparatus. In FIG. 3, the feeding device 14 is provided with an electromagnetic steel plate 2 that is a thin plate wound in a hoop shape, and the electromagnetic steel plate 2 fed out from the feeding device 14 is a first adhesive feeding device 16. Thus, the first adhesive 17a is applied to substantially the entire surface of the electromagnetic steel sheet 2. Here, the first adhesive supply device 16 controls the thickness of the first adhesive 17a to be applied by the cooperation of the rollers 16a and 16b, and the roller 16a is provided with a groove. A stable film thickness can be maintained because the grooves are accumulated in the first adhesive 17a, and the first adhesive 17a is a two-component type that quickly cures when it comes into contact with the second adhesive 17b described later. The adhesive 17 and the second adhesive 17b are quick-drying and do not require film thickness management. In addition, the electromagnetic steel plate 2 is disposed in the feeding device 18, and the electromagnetic steel plate 2 fed out from the feeding device 18 is provided with a second adhesion provided to be paired with the feed guide rollers 15 and 15. The second adhesive 17 b is applied to substantially the entire surface of the electromagnetic steel sheet 2 by the agent supply device 19. The electromagnetic steel sheet 2 coated with the second adhesive 17b is merged and polymerized with the electromagnetic steel sheet 2 coated with the first adhesive 17a by the feed guide rollers 15 and 15, and substantially the entire surface of the electromagnetic steel sheet 2 is bonded and bonded. And is integrally cured. Here, an adhesive layer, which is an adhesive 17 composed of the first adhesive 17a and the second adhesive 17b, is formed between the electromagnetic steel plates 2 and 2, and this adhesive layer (adhesive 17) is The electromagnetic steel sheet 2 is formed on a substantially entire surface with an area ratio of 80% or more with respect to the area of one surface of the electromagnetic steel sheet 2 and is configured with a thickness of 3 μm or less. Here, when the thickness of the adhesive layer (adhesive 17) exceeds 3 μm, an uncured portion remains, and sufficient strength cannot be exhibited until it is molded by the press machine 6, or the shape of the press machine 6 is reduced. The upper limit is 3 μm at which the capability of the press machine 6 is deteriorated by sticking or the like does not occur.

そして、一体化された電磁鋼板2,2は、送り案内ローラ15,4,5により送り出されて、溜め送り装置8を介して、プレス機6まで送り案内される。プレス機6では、送り案内ローラ5により送られた電磁鋼板2,2を同時に回転機鉄心の形状に打抜くと共にかしめ結束が行なわれて抜き鋼板20aが形成され、これが複数個積層されて、回転機鉄心20が形成される。   The integrated electromagnetic steel plates 2, 2 are fed out by the feed guide rollers 15, 4, 5 and are guided to the press machine 6 via the reservoir feeding device 8. In the press machine 6, the electromagnetic steel plates 2 and 2 fed by the feed guide roller 5 are simultaneously punched into the shape of a rotary machine core and are caulked and bundled to form a punched steel plate 20a. A machine core 20 is formed.

このような構成によれば、薄板の電磁鋼板2を採用しても、複数枚例えば2枚の電磁鋼板2,2の略全面を接着剤にて貼り合わせて一体化させているため、電磁鋼板2,2に腰を持たせると共に打抜き及びかしめ結束を行なう際の衝撃により剥離しないように十分な強度を持たせることができる。回転機鉄心の形成後に剥離した接着剤が電磁鋼板2,2の隙間に発生すること防止できるため、薄板の電磁鋼板2を採用しても、一体化された電磁鋼板2,2に反りを防止することができると共に、その電磁鋼板2を基にして回転機鉄心20が形成されても鉄心自体の傾きを防止することができ、さらに、電磁鋼板2,2を同時に打抜くことにより、工数を削減することもできる。従って、薄板の電磁鋼板2を採用しても、電磁鋼板2の反りや鉄心の傾きより鉄心に発生するヒステリシス損失を低減させることで、回転電機の性能を維持することができる。 According to such a configuration, even if the thin electromagnetic steel plate 2 is adopted, a plurality of, for example, two substantially entire surfaces of the electromagnetic steel plates 2 and 2 are bonded and integrated with an adhesive. 2 and 2 can be provided with sufficient strength so that they do not peel off due to the impact of punching and caulking and bundling. Since the adhesive was peeled after formation of the rotating machine core can be prevented from occurring in the gap of the electromagnetic steel plates 2, 2, employing electromagnetic steel plates 2 of the sheet, the warpage electromagnetic steel plates 2, 2 which is integrated It is possible to prevent the tilting of the iron core itself even if the rotating machine iron core 20 is formed on the basis of the electromagnetic steel plate 2, and the man-hours can be obtained by punching the electromagnetic steel plates 2 and 2 simultaneously. Can also be reduced. Therefore, even if the thin electromagnetic steel sheet 2 is adopted, the performance of the rotating electrical machine can be maintained by reducing the hysteresis loss generated in the iron core due to the warp of the electromagnetic steel sheet 2 and the inclination of the iron core.

また、電磁鋼板2,2間の接着層(接着剤17)は、電磁鋼板2の片面の面積に対して80%以上の面積率である略全面に形成されると共に、3μm以内の厚さで構成されている。電磁鋼板2の面積率に対して塗布する接着剤17を80%以上とすることで、プレス機6での打抜き時に接着剤17が潤滑剤として働き、プレス機6の刃物の磨耗を低減させ、型寿命を延ばすことができと共に、打抜きかしめ結束に対しても剥離することが無い程度の強度を維持することができるさらに、接着層(接着剤17)の厚さを3μmとすることで、回転機鉄心20を所定の厚さに積層した場合に、回転機鉄心20の断面積に対する電磁鋼板2の占積率を高くすることで、透磁率を向上させて、回転電機の性能を高く維持することができる。 Further, the adhesive layer (adhesive 17) between the electromagnetic steel plates 2 and 2 is formed on substantially the entire surface having an area ratio of 80% or more with respect to the area of one surface of the electromagnetic steel plate 2, and has a thickness of 3 μm or less. It is configured. By setting the adhesive 17 to be applied to the area ratio of the electromagnetic steel sheet 2 to 80% or more, the adhesive 17 acts as a lubricant when punching with the press machine 6 to reduce wear of the blade of the press machine 6, with Ru can be extended die life, it is possible to maintain the strength of the degree that there is no peeling off even for punching caulking unity. Further, by setting the thickness of the adhesive layer (adhesive 17) to 3 μm, when the rotary machine core 20 is laminated to a predetermined thickness, the space factor of the electromagnetic steel sheet 2 with respect to the cross-sectional area of the rotary machine core 20 is set. in a high to Turkey, to improve permeability, it is possible to maintain high performance of the rotating electric machine.

ところで、回転機鉄心20は、図示しない固定子鉄心(11)或いは回転子鉄心(13)に相当するもので、回転機鉄心20には、スロットや導体埋設孔が形成されているため、プレス機6によりそれらを打抜く際には、大きな打抜きひずみが発生する。このため、熱処理を施すことにより、打抜きひずみに起因した損失を低減することができる。
図4は回転機鉄心20の熱処理方法を示している。この図4において、積層鉄心21は、脚部の一部がカットされた開磁路となっており、一方の脚部21aには励磁巻線22が巻装され、他方の脚部21bには複数の回転機鉄心20が嵌合されている。これらの回転機鉄心20は、搬送装置23により、脚部21bの一方の端部から他方の端部まで搬送されることで、連続的に脚部21bに供給される。
By the way, the rotary machine core 20 corresponds to a stator core (11) or a rotor core (13) (not shown). Since the rotary machine core 20 is formed with slots and conductor embedded holes, a press machine is used. When they are punched by 6, a large punching distortion occurs. For this reason, the loss resulting from punching distortion can be reduced by performing heat treatment.
FIG. 4 shows a heat treatment method for the rotary machine core 20. In FIG. 4, a laminated iron core 21 is an open magnetic circuit in which a part of a leg portion is cut, an excitation winding 22 is wound around one leg portion 21a, and the other leg portion 21b is wound around the other leg portion 21b. A plurality of rotating machine iron cores 20 are fitted. These rotating machine iron cores 20 are continuously supplied to the leg part 21b by being conveyed from one end part of the leg part 21b to the other end part by the conveying device 23.

ところで、脚部21bの両端部の間隙部21cは、回転機鉄心20の厚さと略同程度となっており、励磁巻線22に励磁が行なわれる際は、この間隙部21cに回転機鉄心20が存在した状態で行なわれる。このため、脚部21aが励磁されて磁束が発生すると、磁束は脚部21aから回転機鉄心20中を通過して脚部21bに入り、さらに回転機鉄心20中を通過して、脚部21aに戻るため、間隙部21cに存在する回転機鉄心20が積層鉄心21の一部として利用されるのである。そして、励磁巻線22に電流を流すことで励磁が行われると、回転機鉄心20内に脚部21bを介して磁束が鎖交し、回転機鉄心20内の周方向には、大きな短絡電流が流れる。この短絡電流の大きさは、巻数nとしてnIの大きさであり、回転機鉄心20内に発生するジュール損失は(nI)2に比例することから、熱処理に十分な熱量を付与できるものである。 By the way, the gap portion 21c at both ends of the leg portion 21b is substantially the same as the thickness of the rotary machine core 20, and when the excitation winding 22 is excited, the rotary machine core 20 is placed in the gap portion 21c. Performed in the presence of For this reason, when the leg portion 21a is excited and magnetic flux is generated, the magnetic flux passes from the leg portion 21a through the rotating machine core 20 and enters the leg portion 21b, and further passes through the rotating machine iron core 20 to pass through the leg portion 21a. Therefore, the rotating machine iron core 20 existing in the gap portion 21 c is used as a part of the laminated iron core 21. When excitation is performed by passing the current I through the excitation winding 22, magnetic flux is linked to the rotating machine core 20 via the legs 21 b, and a large short circuit occurs in the circumferential direction in the rotating machine core 20. flowing current. The size of the short-circuit current is a magnitude of the nI as turns n, Joule loss generated in the rotating machine core 20 is proportional to (nI) 2, as it can provide sufficient heat to the heat treatment is there.

そして、励磁巻線22に流す電流Iを調節することにより、回転機鉄心20を熱処理するために必要な温度に設定されて、回転機鉄心20に例えば500℃で熱処理が行われる。
ここで、第1の実施例に示す回転機鉄心9は、700℃以上の温度の通常の熱処理が行なわれ、電磁鋼板内に発生したひずみは再結晶により取り除くことができ、その鉄損は、基の素材の値と代わらないまでに回復させることができる。
Then, by adjusting the current I flowing through the exciting winding 22, the temperature required for heat-treating the rotary machine core 20 is set, and the rotary machine core 20 is heat-treated at 500 ° C., for example.
Here, the rotating machine core 9 shown in the first embodiment is carried out the usual heat treatment temperature above 700 ° C., the strain generated in the electromagnetic steel sheet can be removed by recrystallization, the iron loss, It can be recovered without changing the value of the base material.

しかし、現在700℃以上の温度に耐えられる接着剤は存在しないため、接着剤用いて重合された鉄心では、700℃以上の温度での熱処理は不可能である。しかしながら、500℃以下での熱処理に対しては、接着力を保持できる接着剤が存在する。
表1には、一般的に使用される薄板の電磁鋼板にて、300℃から500℃までの温度で熱処理を実施した実験結果を、電磁鋼板の基の素材の損失を1として、比率で示したものである。
However, since the adhesive can withstand a temperature of more than the current 700 ° C. is not present, the polymerized core with an adhesive, it is not possible heat treatment at 700 ° C. or higher. However, there are adhesives that can maintain the adhesive strength for heat treatment at 500 ° C. or lower.
Table 1 shows the experimental results of heat treatment at a temperature of 300 ° C. to 500 ° C. in a thin electromagnetic steel plate that is generally used, with the loss of the base material of the electromagnetic steel plate as 1 and expressed as a ratio. It is a thing.

Figure 0004798965
熱処理無しに比べて、300℃では0.2、400℃では0.6、500℃では0.9改善されているのがわかる。500℃以下の温度では、完全に特性が改善されているわけではないが、熱処理の効果があるといえ、設定温度が高くなるに従い、回復量は増えることがわかる。このように通常の熱処理の温度である700℃よりも低温(500℃以下)であっても、緩和できる熱ひずみは存在することから、損失低減効果は大きいといえる。そのため、接着剤の樹脂により接着力を失う限界温度に合わせて300℃から500℃の範囲内で熱処理を行うことができる。
Figure 0004798965
It can be seen that the improvement is 0.2 at 300 ° C., 0.6 at 400 ° C., and 0.9 at 500 ° C. as compared to the case without heat treatment. Although the characteristics are not completely improved at a temperature of 500 ° C. or less, it can be said that there is an effect of heat treatment, and it can be seen that the recovery amount increases as the set temperature increases. Thus, even if the temperature is lower than 700 ° C. (500 ° C. or less ), which is a normal heat treatment temperature, there is thermal strain that can be relaxed, and thus the loss reduction effect can be said to be great. Therefore, heat treatment can be performed within a range of 300 ° C. to 500 ° C. in accordance with a limit temperature at which the adhesive strength is lost by the adhesive resin.

(変形例)
積層鉄心による励磁にて、回転機鉄心20に熱処理を行なうことができ積層鉄心の形状ならば良いため、図5および図6に示すような積層鉄心24及び25を用いてもよい。
まず、図5の積層鉄心24は、励磁巻線22が巻装された一方の脚部24aと他方の脚部24bとを有する。他方の脚部24bは、脚24ba,24baとこれらにラップする脚24bbとからなり、そのラップ部24cには、励磁巻線22に励磁が行なわれる際は、このラップ部24cに回転機鉄心20が存在した状態で行なわれる。これによると、回転機鉄心20に流れる磁束は、回転機鉄心の径方向に流れて電磁鋼板2,2の層間を通過しないため、さらに、磁束が効率よく流れるようになる。
(Modification)
Since the rotary machine core 20 can be heat-treated by excitation with the laminated core and the shape of the laminated core is sufficient, laminated cores 24 and 25 as shown in FIGS. 5 and 6 may be used.
First, the laminated iron core 24 of FIG. 5 has one leg part 24a around which the excitation winding 22 is wound and the other leg part 24b. The other leg 24b is composed of legs 24ba, 24ba and legs 24bb that wrap around the legs 24ba. When the excitation winding 22 is excited in the wrap 24c, the wrap part 24c is provided with the rotating machine core 20. Performed in the presence of According to this, since the magnetic flux flowing through the rotating machine core 20 flows in the radial direction of the rotating machine core and does not pass between the layers of the electromagnetic steel plates 2 and 2, the magnetic flux flows more efficiently.

次に、図6の積層鉄心25は、励磁巻線22が巻装された一方の脚部25aと他方の脚部25bとを有する。一つの継鉄部25cは、脚部25aに開閉可能に枢設部25dにて枢設されており、脚部25bに回転機鉄心20を嵌合させた後、継鉄部25cを閉じて固定部25eにてピン等で他方の脚部2bに固定することで、積層鉄心25を閉磁路とすることができる。そのため、少ない交流電流で回転機鉄心20を励磁することができる。 Next, the laminated core 25 of FIG. 6 has one leg portion 25a around which the excitation winding 22 is wound and the other leg portion 25b. One yoke part 25c is pivotally connected to the leg part 25a by a pivot part 25d so that it can be opened and closed. After the rotating machine core 20 is fitted to the leg part 25b, the yoke part 25c is closed and fixed. The laminated core 25 can be a closed magnetic circuit by fixing it to the other leg 2 5 b with a pin or the like at the portion 25 e. Therefore, the rotating machine iron core 20 can be excited with a small alternating current.

(第3の実施例)
以下本発明の第3の実施例について、図7および図8を参照しながら説明し、上記第2の実施例と同一部分には同一符号を付し、以下異なるところについて説明する。
図7は、回転機鉄心の製造装置の全体構成を示し、上記第2の実施例における、2液式の接着剤17の代わりに、熱硬化性樹脂で構成された1液式の接着剤26を用い、一対の送り案内ローラ15,15の代わりに、一対の送り案内ローラ27,27を所定の間隔(厚さ)になるよう配置して用いると共に、送り案内ローラ27および4間に、新たに一対の送り案内ローラ28,28が所定の間隔(厚さ)になるように配設される。そして、これら送り案内ローラ27,28には、永久電磁石27a,28aが設けられる。また、送り案内ローラ27および28間には、誘導加熱装置29が設けられている。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 7 and 8. The same parts as those in the second embodiment will be denoted by the same reference numerals, and the differences will be described below.
Figure 7 shows an overall configuration of a manufacturing apparatus for a rotating machine core, that put in the second embodiment, in place of the two-liquid type adhesive 17, the adhesive of one-pack type composed of a thermosetting resin Instead of the pair of feed guide rollers 15 and 15, a pair of feed guide rollers 27 and 27 are arranged at a predetermined interval (thickness) and used between the feed guide rollers 27 and 4. The pair of feed guide rollers 28 and 28 are newly arranged at a predetermined interval (thickness). The feed guide rollers 27 and 28 are provided with permanent electromagnets 27a and 28a. An induction heating device 29 is provided between the feed guide rollers 27 and 28.

続いて本実施例の作用について説明する。送給装置14より送出された電磁鋼板2には、接着剤供給装置30により接着剤26が塗布され、この接着剤26が塗布された電磁鋼板2と送給装置18より送出された電磁鋼板2とが、送り案内ローラ27,27とにより貼り合わされる。ここで、貼り合せ接着時の拡大図を図8に示す。この図8に示すように、永久磁石27a,27aにより、それぞれの合流する電磁鋼板2,2は、強力に吸引されて送り案内ローラ27,27に密着することで、上側の電磁鋼板2の上面と下側の電磁鋼板2の下面との間の厚み寸法は設定値に一定となり、電磁鋼板2,2間の接着剤26の厚さが変化する。そして、誘導加熱装置29により、接着剤26が加熱されることで半硬化或いは完全硬化されると共に送り案内ローラ28,28により設定された厚さに最終的に調整されて、全体として所定の厚さ寸法を有した電磁鋼板2,2が形成される。   Next, the operation of this embodiment will be described. The electromagnetic steel sheet 2 sent from the feeding device 14 is coated with an adhesive 26 by an adhesive supply device 30, and the electromagnetic steel plate 2 coated with the adhesive 26 and the electromagnetic steel plate 2 sent from the feeding device 18. Are attached by the feed guide rollers 27 and 27. Here, the enlarged view at the time of bonding is shown in FIG. As shown in FIG. 8, the magnetic steel plates 2 and 2 that join each other are strongly attracted and brought into close contact with the feed guide rollers 27 and 27 by the permanent magnets 27a and 27a. And the thickness dimension between the lower surface of the lower electromagnetic steel sheet 2 is constant, and the thickness of the adhesive 26 between the electromagnetic steel sheets 2 and 2 changes. Then, the adhesive 26 is heated to be semi-cured or completely cured by the induction heating device 29, and finally adjusted to the thickness set by the feed guide rollers 28, 28, so that the predetermined thickness is obtained as a whole. The electromagnetic steel plates 2 and 2 having a length are formed.

ところで、一般的な電磁鋼板は、長手方向に対して横幅方向に板厚の偏差を有しており、電磁鋼板を積層した際の偏差の累積により、回転機鉄心の主間隙精度を悪化させる。そこで、電磁鋼板の板厚偏差を製造段階から正確に管理した場合、電磁鋼板の製造単価が上がってしまうため、所定の積層量毎に回転子鉄心を反転させて積み上げることで板厚偏差を吸収して解消するといった作業が必要であった。   By the way, a general electromagnetic steel sheet has a thickness deviation in the width direction with respect to the longitudinal direction, and the accuracy of the main gap of the rotating machine iron core is deteriorated by the accumulation of the deviation when the electromagnetic steel sheets are laminated. Therefore, if the thickness deviation of the electromagnetic steel sheet is accurately managed from the manufacturing stage, the manufacturing cost of the electromagnetic steel sheet will increase, so the thickness deviation is absorbed by inverting and stacking the rotor cores for each predetermined stacking amount. It was necessary to work to solve it.

本実施例の構成によれば、電磁鋼板2,2を磁気的に吸引する一対の送り案内ローラ27および28を設置し、これら送り案内ローラ27,28により吸引された電磁鋼板2,2間に、接着剤26が供給されるので、所定の間隔に設定されたローラ間を通過させることで、電磁鋼板2の板厚偏差が接着剤26の柔軟性により吸収され、一体化された電磁鋼板2,2を所定の厚さとすることができる。そのため、従来行なわれていた回転子鉄心の鉄心ブロックを回し積みにより修正する作業を省略することができ、平行度が良好に一体化された電磁鋼板2,2を形成することができる。   According to the configuration of this embodiment, a pair of feed guide rollers 27 and 28 for magnetically attracting the electromagnetic steel plates 2 and 2 are installed, and between the electromagnetic steel plates 2 and 2 sucked by these feed guide rollers 27 and 28. Since the adhesive 26 is supplied, the thickness deviation of the electromagnetic steel sheet 2 is absorbed by the flexibility of the adhesive 26 by passing between rollers set at a predetermined interval, and the integrated electromagnetic steel sheet 2 is integrated. , 2 can have a predetermined thickness. Therefore, it is possible to omit the conventional work of rotating and correcting the iron core blocks of the rotor core, and to form the electromagnetic steel plates 2 and 2 with a well-integrated parallelism.

(第4の実施例)
以下本発明の第4の実施例について、図9を参照しながら説明し、上記第2の実施例と同一部分には同一符号を付して説明する。
図9は、回転機鉄心の電磁鋼板の巻取り装置の全体構成を示す。この図9において、送給装置14から送り出された電磁鋼板2には、接着剤供給装置31により、半硬化樹脂で構成された接着剤32が例えば電磁鋼板2の片面の略全面に塗布される。この電磁鋼板2と送給装置18から送り出された電磁鋼板2とが、送り案内ローラ33,33により貼り合わされる。一体化された電磁鋼板2,2は、送り案内ローラ34を介して、巻取り装置35によりフープ状に巻取られて、フープ状鋼板36が形成される。そして、フープ状鋼板36は、図示しないプレス機等に送られることで、打抜きかしめ結束されて回転機鉄心が成形される。
(Fourth embodiment)
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. 9, and the same parts as those in the second embodiment will be described with the same reference numerals.
FIG. 9 shows an overall configuration of a magnetic steel sheet winding device for a rotating machine core. In FIG. 9, an adhesive 32 made of semi-cured resin is applied to, for example, substantially the entire surface of one side of the electromagnetic steel sheet 2 by the adhesive supply device 31 to the electromagnetic steel sheet 2 sent out from the feeding device 14. . The electromagnetic steel plate 2 and the electromagnetic steel plate 2 fed from the feeding device 18 are bonded together by the feed guide rollers 33 and 33. The integrated electromagnetic steel plates 2 and 2 are wound into a hoop shape by a winding device 35 via a feed guide roller 34 to form a hoop-shaped steel plate 36. Then, the hoop-shaped steel plate 36 is sent to a press machine or the like (not shown), and is punched and crimped to form a rotating machine iron core.

このような構成によれば、電磁鋼板2,2を、接着剤として半硬化樹脂を用いて貼り合わせて一体させた後、電磁鋼板2,2をフープ状に巻き取る作業と、このフープ状鋼板36を基にして、打抜くと共にかしめ結束をして回転機鉄心を構成する作業とを別々の場所で行うことができ、効率がよくなる。この場合、径の小さいフープ状に巻取る際の応力を柔軟性を持った半硬化樹脂が吸収することができる。 According to this structure, after the electromagnetic steel plates 2, 2, is integrated with bonded using a semi-cured resin as an adhesive, and the work of winding the magnetic steel sheets 2, 2 hoop, the hoop Based on the steel plate 36, the work of punching and caulking and binding to form the rotating machine core can be performed in different places, and the efficiency is improved. In this case, the stress at the time of winding in a hoop shape with a small diameter can be absorbed by the flexible semi-cured resin.

(第5の実施例)
図10は本発明の第5の実施例を示しており、上記第1の実施例と同一部分には同一の符号を付して説明し、以下異なるところを説明する。
本実施例では、電磁鋼板2を用いる代わりに、表面に被膜を有しない電磁鋼板37を使用し、一対の送り案内ローラ4,4の上部の送り案内ローラ4に代わって接着剤供給装置38を設けることで、貼り合せて一体化された電磁鋼板37,37の片面に、1液式の接着剤39を3μmの厚さで電磁鋼板37,37の略全面に例えば電磁鋼板37の面積率にて80%以上に塗布した後、打抜くと共にかしめ結束して抜き鋼板40aを形成し、これら複数個積層して、回転機鉄心40を形成する。
(Fifth embodiment)
FIG. 10 shows a fifth embodiment of the present invention. The same parts as those in the first embodiment will be described with the same reference numerals, and the differences will be described below.
In this embodiment, instead of using the electromagnetic steel plate 2, an electromagnetic steel plate 37 having no coating on the surface is used, and an adhesive supply device 38 is used instead of the feed guide rollers 4 above the pair of feed guide rollers 4 and 4. By providing, on one side of the electromagnetic steel plates 37 and 37 that are bonded and integrated, a one-pack type adhesive 39 with a thickness of 3 μm is formed on the substantially entire surface of the electromagnetic steel plates 37 and 37 to an area ratio of the electromagnetic steel plate 37, for example. After being applied to 80% or more, punching and caulking and binding are performed to form a punched steel sheet 40a, and a plurality of these are laminated to form the rotating machine core 40.

ところで、一般的な電磁鋼板は表面の被膜の厚みは、0.5〜1.0μm程度であり、3μmの接着剤を塗布した場合は、4.0μm程度の膜厚となり、回転機鉄心の合体の積層厚は、定格によって規制されているので、この膜厚の増加により回転機鉄心に対する電磁鋼板の占積率を低下させてしまう。この占積率の低下は回転機のトルク低下に結びついてしまうといった問題がある。   By the way, the thickness of the coating film on the surface of a general electromagnetic steel sheet is about 0.5 to 1.0 μm, and when a 3 μm adhesive is applied, the film thickness is about 4.0 μm. Since the lamination thickness is regulated by the rating, the increase in the film thickness reduces the space factor of the electromagnetic steel sheet with respect to the rotating machine core. There is a problem that the decrease in the space factor leads to a decrease in torque of the rotating machine.

このような構成によれば、被膜を有しない電磁鋼板37,37を使用して貼り合せ一体化させた電磁鋼板の片面に接着剤39を塗布することで、打抜きかしめ結束された回転機鉄心40のそれぞれの電磁鋼板37間には、接着剤39が存在することより、絶縁性能を低下させることなく、被膜を有した電磁鋼板で形成された回転鉄心に比し、回転機鉄心40の断面積に対する電磁鋼板37の占積率を高くすることができ、回転電機のトルク低下を抑制することができる。さらに、プレス機6により打抜きかしめ結束される際に、一体化された電磁鋼板37,37表面に塗布されている接着剤39が潤滑材の役目を果たすことにより、プレス機6の刃物の耐久性を向上させることができるのである。 According to such a configuration, the rotary machine core 40 is punched and bonded by applying the adhesive 39 to one surface of the magnetic steel sheets 37 and 37 which are bonded and integrated using the magnetic steel sheets 37 and 37 having no coating. Since there is an adhesive 39 between the electromagnetic steel plates 37, the insulation of the rotating machine core 40 is cut as compared with a rotating machine core formed of a magnetic steel sheet having a coating without reducing the insulation performance. The space factor of the electromagnetic steel sheet 37 with respect to the area can be increased, and the torque reduction of the rotating electrical machine can be suppressed. Further, when the stamping and caulking and binding are performed by the press machine 6, the adhesive 39 applied to the surfaces of the integrated electromagnetic steel sheets 37 and 37 serves as a lubricant, whereby the durability of the cutter of the press machine 6 is improved. Can be improved.

(その他の実施例)
上記実施例において、電磁鋼板2に代わって、一般構造鋼或いは純鉄系の薄板を使用しても良い。この場合、商用周波数において性能の悪い電磁材料であっても板厚の影響が優位にある高周波数での用途においては低損失材料となり、さらに、電気抵抗率を向上するための珪素などの非磁性体を添加していない素材であることから、素材自体の飽和磁束密度が高いといった利点があり、飽和磁束密度を向上させることで、実質的には占積率を向上させるのと同様の効果を得ることができる。さらに、低級な電磁材料であるため、素材自体の単価が安く、コストの低減に役立つ。
(Other examples)
In the above embodiment, instead of the electromagnetic steel plate 2, a general structural steel or a pure iron-based thin plate may be used. In this case, even electromagnetic materials with poor performance at commercial frequencies are low loss materials for high frequency applications where the effect of plate thickness is dominant, and non-magnetic materials such as silicon to improve electrical resistivity. Since it is a material without added body, there is an advantage that the saturation magnetic flux density of the material itself is high, and by improving the saturation magnetic flux density, the effect is substantially the same as improving the space factor. Obtainable. Furthermore, since it is a low-grade electromagnetic material, the unit price of the material itself is low, which helps to reduce costs.

上記第2および第5の実施例において、接着剤17を用いる構成としたが、接着剤17に代わって、半硬化樹脂により構成された接着剤を使用しても良い。この場合、打抜くと共にかしめ結束された誘導機10の固定子鉄心11のスロット11a間に巻線12が巻装され、ワニス加熱処理が行われる際に、ワニスと接着剤がなじみ、半硬化樹脂の接着剤が完全硬化する。これにより、誘導機10の運転時に巻線12に流れる電流による発熱に対する放熱特性が良くなる。   In the second and fifth embodiments, the adhesive 17 is used. However, instead of the adhesive 17, an adhesive made of a semi-cured resin may be used. In this case, when the coil 12 is wound between the slots 11a of the stator core 11 of the induction machine 10 that has been punched and caulked and bonded to the varnish when the varnish heat treatment is performed, the varnish and the adhesive become familiar, and the semi-cured resin The adhesive is completely cured. Thereby, the heat dissipation characteristic with respect to the heat_generation | fever by the electric current which flows into the coil | winding 12 at the time of the driving | operation of the induction machine 10 becomes good.

上記第2の実施例において、熱処理を行なう構成としたが、上記第1、第3ないし第5の実施例に同様の熱処理を行ってもよい。
上記第3の実施例において、送り案内ローラ27,28を略水平方向に設置した構成としたが、これら送り案内ローラ27,28を水平方向から大きく傾けることにより、所定の板厚に成形した場合に、電磁鋼板2,2の端部から吐き出された余分な接着剤を電磁鋼板2の表面から取り除く構成としても良い。
Although the heat treatment is performed in the second embodiment, the same heat treatment may be performed in the first, third, and fifth embodiments.
In the third embodiment, although a substantially installed horizontally constituting the feed guide rollers 27, 28, by tilting increase these feed guide rollers 27, 28 from the horizontal direction, and formed form a predetermined thickness In such a case, a configuration may be employed in which excess adhesive discharged from the end portions of the electromagnetic steel plates 2 and 2 is removed from the surface of the electromagnetic steel plate 2.

上記第3の実施例において、永久磁石27a、28bを用いる構成としたが、永久磁石でなくても電磁石を使用してもよい。
上記第3の実施例において、永久磁石27a,28bにより、電磁鋼板2,2を吸引することで、所定の板厚となる構成としたが、上記第2,4,5の実施例に同様の構成を適用してもよい。
In the third embodiment, the permanent magnets 27a and 28b are used. However, an electromagnet may be used instead of the permanent magnet.
In the third embodiment, the magnetic steel plates 2 and 2 are attracted by the permanent magnets 27a and 28b to obtain a predetermined thickness, but the same as the second, fourth and fifth embodiments. A configuration may be applied.

上記実施例において、電磁鋼板2,37を2枚用いて貼り合せる構成としたが、特に2枚限定する必要はなく3枚以上を同時に貼り合せる構成としてもよい。
上記第1の実施例において、溶接装置7を送り案内ローラ3および4間に設置する構成としたが、特定の場所に固定する必要はなく、プレス機6で打抜くまでの間ならどこに設置してもよい。
In the said Example, although it was set as the structure bonded together using the two electromagnetic steel plates 2 and 37, it is not necessary to specifically limit to 2 sheets , It is good also as a structure which bonds 3 or more sheets simultaneously.
In the first embodiment, the welding device 7 is installed between the feed guide rollers 3 and 4, but it is not necessary to fix the welding device 7 at a specific location. May be.

上記実施例において、回転機鉄心として誘導機10の固定子鉄心11または回転子鉄心13に適用する構成としたが、誘導機10に限定する必要はなく同期機であってもよい。   In the said Example, although it was set as the structure applied to the stator core 11 or the rotor core 13 of the induction machine 10 as a rotary machine core, it is not necessary to limit to the induction machine 10 and a synchronous machine may be sufficient.

本発明の第1の実施例を示す全体構成図(a)及び電磁鋼板の上面図(b)FIG. 1 is an overall configuration diagram (a) showing a first embodiment of the present invention and a top view (b) of a magnetic steel sheet. 回転電機の断面を示す横断面図Cross-sectional view showing a cross section of a rotating electrical machine 本発明の第2の実施例を示す全体構成図Overall configuration diagram showing a second embodiment of the present invention 回転機鉄心の熱処理を示す図Diagram showing heat treatment of rotating machine iron core 変形例を示す図4相当図FIG. 4 equivalent diagram showing a modification 変形例を示す図4相当図FIG. 4 equivalent diagram showing a modification 本発明の第3の実施例を示す図3相当図FIG. 3 equivalent view showing a third embodiment of the present invention. 図7の部分拡大図Partial enlarged view of FIG. 本発明の第4の実施例を示す図3相当図FIG. 3 equivalent view showing a fourth embodiment of the present invention. 本発明の第5の実施例を示す図3相当図FIG. 3 equivalent view showing a fifth embodiment of the present invention.

符号の説明Explanation of symbols

図面中、1,14,18は送給装置、2,37は電磁鋼板、2aは片端面、2bは影響箇所、3,4,5,15,27,28,33,34は送り案内ローラ、6はプレス機、7は溶接装置、9,20,40は回転機鉄心、9a,20a,40aは抜き鉄心、16は第1接着剤供給装置、16a、16bローラ、17,26,32,39は接着剤、19は第2接着剤供給装置、21,24,25は積層鉄心、21a,24a,25aは脚部(一方の脚部)、21b,24b,25bは脚部(他方の脚)、24ba,24ba,24bbは脚、21cは間隙部、22は励磁巻線、24cはラップ部、25cは枢設部、25dは固定部、27a、28aは永久磁石、29は誘導加熱装置、30,31,38は接着剤供給装置、35は巻取り装置、36はフープ状鋼板を示す。   In the drawings, 1, 14 and 18 are feeding devices, 2 and 37 are electromagnetic steel plates, 2a is one end surface, 2b is an affected area, 3, 4, 5, 15, 27, 28, 33 and 34 are feed guide rollers, 6 is a pressing machine, 7 is a welding device, 9, 20 and 40 are rotating machine iron cores, 9a, 20a and 40a are punched iron cores, 16 is a first adhesive supply device, 16a and 16b rollers, 17, 26, 32 and 39. Is an adhesive, 19 is a second adhesive supply device, 21, 24 and 25 are laminated iron cores, 21a, 24a and 25a are leg portions (one leg portion), and 21b, 24b and 25b are leg portions (the other leg). 24ba, 24ba and 24bb are legs, 21c is a gap, 22 is an excitation winding, 24c is a wrapping part, 25c is a pivoting part, 25d is a fixed part, 27a and 28a are permanent magnets, 29 is an induction heating device, 30 , 31 and 38 are adhesive supply devices, 35 is a winding device, 3 It shows a hoop-shaped steel plate.

Claims (9)

複数枚の電磁鋼板の長手方向の端面を溶接して一体化させ、これら複数枚の電磁鋼板を同時に打抜くと共にかしめ結束をして回転機鉄心を構成することを特徴とする回転機鉄心の製造方法。   Manufacturing of a rotating machine core characterized in that a plurality of electromagnetic steel sheets are welded and integrated in the longitudinal direction, and the plurality of electromagnetic steel sheets are punched simultaneously and caulked and bound to form a rotating machine core. Method. 溶接方法として、パルスレーザを採用したことを特徴とする請求項1記載の回転機鉄心の製造方法。   2. The method of manufacturing a rotating machine core according to claim 1, wherein a pulse laser is employed as a welding method. 複数枚の電磁鋼板の略全面を接着剤にて貼り合わせて一体化させ、これら複数枚の電磁鋼鈑を同時に打抜くと共にかしめ結束して回転機鉄心を構成し、
前記複数枚の電磁鋼板間に存在する接着層は、3μm以内の厚さで、かつ電磁鋼板の面積率にて80%以上の略全面に塗布され、
前記接着層を構成する接着剤に、半硬化樹脂を使用したことを特徴とする回転機鉄心の製造方法。
Bonding and integrating almost the entire surface of a plurality of electromagnetic steel sheets with an adhesive, simultaneously punching and binding these plurality of electromagnetic steel sheets together to constitute a rotating machine iron core ,
The adhesive layer existing between the plurality of electrical steel sheets is applied to substantially the entire surface of 80% or more in thickness within 3 μm and in the area ratio of the electrical steel sheet,
A method of manufacturing a rotating machine iron core, wherein a semi-cured resin is used as an adhesive constituting the adhesive layer .
複数枚の電磁鋼鈑を接着剤として半硬化樹脂を用いて貼り合わせて一体化させた後、電磁鋼板をフープ状に巻取り、この巻取られた電磁鋼板を基に、打抜くと共にかしめ結束をして回転機鉄心を構成することを特徴とする請求項3記載の回転機鉄心の製造方法。 After a plurality of electromagnetic steel plates are bonded and integrated using a semi-cured resin as an adhesive, the electromagnetic steel sheet is wound into a hoop shape, and punched and caulked and bound based on the wound electromagnetic steel sheet 4. The method of manufacturing a rotating machine core according to claim 3, wherein the rotating machine core is constituted . 電磁鋼鈑を磁気的に吸引する一対のローラ群を設置し、これらのローラにより吸引された電磁鋼板間に接着剤を供給するようにしたことを特徴とする請求項3または4記載の回転機鉄心の製造方法。 5. A rotating machine according to claim 3, wherein a pair of rollers for magnetically attracting the electromagnetic steel plate is provided, and an adhesive is supplied between the electromagnetic steel plates attracted by these rollers. Manufacturing method of iron core. 前記複数の電磁鋼鈑として、表面に皮膜を有しない電磁鋼板を使用したことを特徴とする請求項3ないし5のいずれかに記載の回転機鉄心の製造方法。 The method for manufacturing a rotating machine core according to any one of claims 3 to 5, wherein an electromagnetic steel plate having no coating on the surface is used as the plurality of electromagnetic steel plates . 前記複数枚の電磁鋼板として、特に一般構造鋼或いは純鉄系の薄板を使用したことを特徴する請求項3ないし6のいずれかに記載の回転機鉄心の製造方法。 7. The method of manufacturing a rotating machine core according to claim 3, wherein a general structural steel or a pure iron-based thin plate is used as the plurality of electromagnetic steel plates . 500℃以下にて回転機鉄心の熱処理を行なうことを特徴とする請求項3ないし7のいずれかに記載の回転機鉄心の製造方法。 The method for manufacturing a rotary machine core according to any one of claims 3 to 7 , wherein the rotary machine core is heat-treated at 500 ° C or lower . 積層鉄心の一方の脚には巻線が巻回され、他方の脚には回転機鉄心が嵌合されて、前記巻線に交流電流を流すことにより、回転機鉄心の熱処理を行なうことを特徴とする請求項8に記載の回転機鉄心の製造方法。 A winding is wound on one leg of the laminated iron core, and a rotating machine iron core is fitted on the other leg, and the rotating machine iron core is heat-treated by flowing an alternating current through the winding. The manufacturing method of the rotary machine iron core of Claim 8 .
JP2004161454A 2004-05-31 2004-05-31 Manufacturing method of rotating machine iron core Expired - Lifetime JP4798965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161454A JP4798965B2 (en) 2004-05-31 2004-05-31 Manufacturing method of rotating machine iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161454A JP4798965B2 (en) 2004-05-31 2004-05-31 Manufacturing method of rotating machine iron core

Publications (2)

Publication Number Publication Date
JP2005348456A JP2005348456A (en) 2005-12-15
JP4798965B2 true JP4798965B2 (en) 2011-10-19

Family

ID=35500329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161454A Expired - Lifetime JP4798965B2 (en) 2004-05-31 2004-05-31 Manufacturing method of rotating machine iron core

Country Status (1)

Country Link
JP (1) JP4798965B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088618A1 (en) * 2017-11-06 2019-05-09 Hangnam Co., Ltd. Apparatus for manufacturing adhesive lamination core by adhesive coating on strip
KR20190051812A (en) * 2017-11-06 2019-05-15 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core by Adhesive Coating on Strip
KR20190051171A (en) * 2017-11-06 2019-05-15 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core by Adhesive Coating on Strip

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630150B2 (en) * 2010-08-31 2014-11-26 トヨタ紡織株式会社 Punching device
JP6401466B2 (en) * 2014-03-10 2018-10-10 株式会社三井ハイテック Laminated iron core and method for manufacturing the same
DE102014011474A1 (en) * 2014-07-30 2016-02-04 Kienle + Spiess Gmbh Disc pack and method for its production
JP2016092949A (en) * 2014-11-04 2016-05-23 株式会社三井ハイテック Punching method
JP6392089B2 (en) * 2014-11-13 2018-09-19 株式会社三井ハイテック Punching method, punching apparatus, and method for manufacturing laminated iron core
JP6210058B2 (en) 2014-12-26 2017-10-11 Jfeスチール株式会社 Punching method for laminated iron core and method for producing laminated iron core
JP6587800B2 (en) * 2014-12-26 2019-10-09 Jfeスチール株式会社 Manufacturing method of laminated iron core
DE102015101390A1 (en) * 2015-01-30 2016-08-04 Hoerbiger Antriebstechnik Holding Gmbh Method and device for producing friction torques transmitting sheet metal rings
JP2017011863A (en) * 2015-06-22 2017-01-12 新日鐵住金株式会社 Laminated electrical steel plate for motor core and production method therefor
CA3007608C (en) 2016-01-27 2020-04-14 Mitsui High-Tec, Inc. Method for processing laminated material
JP6288201B1 (en) 2016-09-29 2018-03-07 Jfeスチール株式会社 Method for punching electromagnetic steel sheet and method for manufacturing laminated iron core
JP2018081896A (en) * 2016-11-20 2018-05-24 吉川工業株式会社 Heating apparatus and heating facility
EP3373419A1 (en) * 2017-03-09 2018-09-12 voestalpine Automotive Components Deutschland GmbH Device and method for connecting sheet metal to a sheet package
JP7096015B2 (en) 2018-03-09 2022-07-05 Jfeスチール株式会社 Manufacturing method of electrical steel sheet
DE102018122047A1 (en) * 2018-09-10 2020-03-12 voestalpine Automotive Components Dettingen GmbH & Co. KG METHOD AND DEVICE FOR CONNECTING SHEET PARTS TO SHEET PACKAGES
DE102019213658A1 (en) * 2019-09-09 2021-03-11 Elringklinger Ag Process for the production of a sheet metal stack, sheet metal stack, machine component and electric motor
JP6894616B1 (en) * 2020-12-25 2021-06-30 田中精密工業株式会社 Heating device for laminated iron core

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891690A (en) * 1972-02-04 1973-11-28
JPS5239880A (en) * 1975-09-23 1977-03-28 Matsushita Electric Ind Co Ltd Method for punching a double steel tape continuously
JPS54157214A (en) * 1978-06-02 1979-12-12 Shinko Electric Co Ltd Method of producing iron core for electric appliances
JPS57156657A (en) * 1981-06-22 1982-09-28 Mitsui Haitetsuku:Kk Manufacture of laminated iron core
JP2740573B2 (en) * 1990-10-15 1998-04-15 アームコ・インコーポレイテッド Lamination. Forming method and products therefrom
JP2883225B2 (en) * 1991-07-10 1999-04-19 三菱電機株式会社 Heat resistant pressure resistant permanent magnet synchronous motor
JPH066960A (en) * 1992-06-16 1994-01-14 Toshiba Corp Binding method for laminated core
JP2000116046A (en) * 1998-10-02 2000-04-21 Miyachi Technos Corp Rotor of motor and assembling method thereof
JP2001037112A (en) * 1999-07-21 2001-02-09 Mitsubishi Heavy Ind Ltd Stator of magnet motor
JP3656733B2 (en) * 2000-04-14 2005-06-08 株式会社デンソー Stator for rotating electrical machine for vehicle and method for manufacturing the same
JP3749478B2 (en) * 2001-12-21 2006-03-01 三菱電機株式会社 Manufacturing method of laminated core
JP2003219585A (en) * 2002-01-22 2003-07-31 Mitsubishi Electric Corp Laminated core and its manufacturing method
JP2005191033A (en) * 2003-12-24 2005-07-14 Matsushita Electric Ind Co Ltd Method of manufacturing laminated core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088618A1 (en) * 2017-11-06 2019-05-09 Hangnam Co., Ltd. Apparatus for manufacturing adhesive lamination core by adhesive coating on strip
KR20190051812A (en) * 2017-11-06 2019-05-15 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core by Adhesive Coating on Strip
KR20190051171A (en) * 2017-11-06 2019-05-15 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core by Adhesive Coating on Strip
KR102005635B1 (en) * 2017-11-06 2019-10-01 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core by Adhesive Coating on Strip
KR102256174B1 (en) * 2017-11-06 2021-05-26 주식회사 비엠씨 Apparatus for Manufacturing Adhesive Lamination Core by Adhesive Coating on Strip

Also Published As

Publication number Publication date
JP2005348456A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4798965B2 (en) Manufacturing method of rotating machine iron core
TWI734303B (en) Laminated iron core and rotating electric machine
JP7173162B2 (en) Laminated core and rotating electric machine
TWI733277B (en) Adhesive laminated iron core for stator and rotating electric machine
JP7486434B2 (en) Adhesive laminated core for stator and rotating electric machine
JP4938389B2 (en) Laminated core and stator
JP7311791B2 (en) Laminated core and rotating electric machine
CN113169595A (en) Laminated iron core, iron core block, rotating electrical machine, and method for manufacturing iron core block
KR20240052877A (en) Stator adhesive laminated core and rotating electrical machine
TW201251274A (en) Stator of rotation motor and method for manufacturing the same
JP2015171201A (en) Stator of rotary electric machine
JP2016539616A (en) Stator stack with channel obstruction
KR20210092259A (en) Method for manufacturing a multi-material split stator for a rotating electric machine and a stator manufactured by the method
JP5428334B2 (en) Electric motor
JPH066960A (en) Binding method for laminated core
JP2011072148A (en) Rotating machine
KR101310973B1 (en) Method for manufacturing stator of electric machine using wire cutting and electric machine manufactured by the same
JP4369797B2 (en) Stator core manufacturing method
CN111146882A (en) Armature of rotating electric machine
JP2018117440A (en) Rotary electric machine
JP2004222410A (en) Stator core for motor
EA042110B1 (en) PLATED CORE AND ELECTRIC MOTOR
JP2021114868A (en) Manufacturing method of lamination iron core of electric machine and manufacturing method of the electric machine
JP2005278236A (en) Exciter and rotating machine using it
CN114747117A (en) Laminated iron core for electric machine, method for manufacturing laminated iron core for electric machine, and method for manufacturing electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350