JP2016092949A - Punching method - Google Patents

Punching method Download PDF

Info

Publication number
JP2016092949A
JP2016092949A JP2014224244A JP2014224244A JP2016092949A JP 2016092949 A JP2016092949 A JP 2016092949A JP 2014224244 A JP2014224244 A JP 2014224244A JP 2014224244 A JP2014224244 A JP 2014224244A JP 2016092949 A JP2016092949 A JP 2016092949A
Authority
JP
Japan
Prior art keywords
electromagnetic steel
plate
punching
processed
steel plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014224244A
Other languages
Japanese (ja)
Inventor
亮 長井
Akira Nagai
亮 長井
裕介 蓮尾
Yusuke Hasuo
裕介 蓮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2014224244A priority Critical patent/JP2016092949A/en
Publication of JP2016092949A publication Critical patent/JP2016092949A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a punching method capable of punching a plurality of steel plates simultaneously with sufficiently high accuracy, while reducing the material cost sufficiently.SOLUTION: A punching method includes (a) a step for preparing a tape roll of at least two magnetic steel sheets, (b) a step for supplying a processed plate composed of at least two magnetic steel sheets fixed each other, in a state pulled out from respective tape rolls and superimposed, and (c) a step for punching the processed plate in a mold. Widths of two magnetic steel sheets constituting two tape rolls are different from each other.SELECTED DRAWING: Figure 6

Description

本発明は複数枚の鋼板からなる被加工板の打抜き方法に関する。   The present invention relates to a method for punching a processed plate made of a plurality of steel plates.

積層鉄心はモーターの部品であり、所定の形状に加工された複数の電磁鋼板を積み重ね、これらを締結することによって形成される。モーターは積層鉄心からなる回転子(ロータ)及び固定子(ステータ)を備え、固定子にコイルを巻き付ける工程、回転子にシャフトを取り付ける工程などを経て完成する。積層鉄心が採用されたモーターは、従来、冷蔵庫、エアコン、ハードディスクドライブ、電動工具等の駆動源として使用され、近年ではハイブリッドカーの駆動源としても使用されている。   A laminated iron core is a component of a motor, and is formed by stacking a plurality of electromagnetic steel sheets processed into a predetermined shape and fastening them. The motor includes a rotor (rotor) and a stator (stator) made of laminated iron cores, and is completed through a process of winding a coil around the stator, a process of attaching a shaft to the rotor, and the like. A motor employing a laminated core is conventionally used as a drive source for a refrigerator, an air conditioner, a hard disk drive, an electric tool, and the like, and in recent years is also used as a drive source for a hybrid car.

近年、積層鉄心の磁気的特性を向上させ、これによりモーターの効率を向上させるため、従来と比較して薄い電磁鋼板が使用されている。これに伴い、一つの積層鉄心に使用される電磁鋼板の枚数が増加する傾向にある。積層鉄心を構成する電磁鋼板は、通常、打抜き加工によって製造されるため、その枚数が増加すると打抜き加工の回数が増大し、これにより生産性が低下するという課題がある。この課題を解決する手段として、特許文献1は複数枚の鋼板を同時に打抜き加工することを開示する。   In recent years, in order to improve the magnetic characteristics of the laminated iron core and thereby improve the efficiency of the motor, a thin electromagnetic steel sheet is used as compared with the conventional one. Along with this, the number of electromagnetic steel sheets used for one laminated iron core tends to increase. Since the electrical steel sheets constituting the laminated iron core are usually manufactured by punching, there is a problem that when the number of the steel sheets increases, the number of times of punching increases, thereby reducing productivity. As means for solving this problem, Patent Document 1 discloses that a plurality of steel plates are simultaneously punched.

特開2001−16832号公報JP 2001-16832 A

ところで、打抜き加工によって所定の形状の電磁鋼板を連続して得るには、巻重体から引き出された電磁鋼板(被加工板)を順送り金型内において断続的に移動させ、決めされた位置に開口を設ける必要がある。順送り金型内における被加工板の送り作業が正確に実施されないと打抜き加工された複数の電磁鋼板の形状にばらつきが生じ、これを積層してなる積層鉄心の磁気的特性の低下を招来する。   By the way, in order to continuously obtain an electromagnetic steel sheet having a predetermined shape by punching, the electromagnetic steel sheet (worked plate) drawn from the wound body is moved intermittently in the progressive die and opened at a predetermined position. It is necessary to provide. If the work of feeding the work plate in the progressive die is not performed accurately, the shapes of the plurality of punched magnetic steel sheets will vary, leading to a deterioration in the magnetic properties of the laminated iron core formed by laminating them.

上記のような不具合を防ぐため、従来の打抜き方法においては、被加工板の送り作業を適切に行えるように被加工板にある程度の強度を持たせている。すなわち、製品のサイズと比較して幅が過度に広い電磁鋼板を使用することによって、被加工板の強度を確保している。このため、打抜き加工後の被加工板には製品とならない部分(「スケルトン」と称される。)が多く残る状況にある。被加工板において製品とならない部分が多いということは材料のロスが多いことを意味し、従来の打抜き方法はこの点において改善の余地があった。   In order to prevent the above problems, in the conventional punching method, a certain level of strength is given to the processed plate so that the work of feeding the processed plate can be performed appropriately. That is, the strength of the plate to be processed is ensured by using an electromagnetic steel plate having an excessively wide width compared to the size of the product. For this reason, there are many portions (called “skeletons”) that remain as products on the processed plate after punching. The fact that there are many parts that do not become products in the processed plate means that there is a lot of material loss, and the conventional punching method has room for improvement in this respect.

本発明は、上記状況に鑑みてなされたものであり、十分に高い精度で複数の電磁鋼板を同時に打ち抜くことができ且つ材料費を十分に削減できる打抜き方法を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a punching method capable of simultaneously punching a plurality of electromagnetic steel sheets with sufficiently high accuracy and sufficiently reducing material costs.

本発明に係る打抜き方法は、(a)少なくとも二つの電磁鋼板の巻重体を準備する工程と、(b)それぞれの巻重体から引き出され且つ重ね合された状態で互いに固定された少なくとも二枚の電磁鋼板からなる被加工板を金型に供給する工程と、(c)金型において被加工板の打抜き加工を行う工程とを備え、二つの巻重体を構成する二枚の電磁鋼板の幅が互いに相違する。   The punching method according to the present invention includes (a) a step of preparing a wound body of at least two electromagnetic steel sheets, and (b) at least two sheets that are pulled out from each of the wound bodies and fixed to each other in an overlapped state. A step of supplying a work plate made of electromagnetic steel sheets to a mold; and (c) a step of punching the work plates in the mold, and the width of two magnetic steel sheets constituting two wound bodies is Different from each other.

本発明者らの検討によると、少なくとも二枚の電磁鋼板が積層されてなる被加工板に対して打抜き加工を実施する場合、被加工板を構成する全ての電磁鋼板が製品のサイズと比較して幅が過度に広い必要はなく、少なくとも一枚の電磁鋼板によって被加工板全体の強度が保たれればよい。上述のとおり、互いに異なる幅を有する複数の電磁鋼板で被加工板を構成することで、幅が広い電磁鋼板によって被加工板全体の強度を確保する一方、幅が狭い電磁鋼板を使用することによって製品とならない材料を削減できる。つまり、上記打抜き方法によれば、十分に高い精度で複数の電磁鋼板を同時に打ち抜くことができ且つ材料費を十分に削減できる。   According to the study by the present inventors, when punching is performed on a processed plate in which at least two electromagnetic steel plates are laminated, all the electromagnetic steel plates constituting the processed plate are compared with the product size. It is not necessary for the width to be excessively wide, as long as the strength of the entire processed plate is maintained by at least one electromagnetic steel plate. As described above, by configuring the work plate with a plurality of electromagnetic steel plates having different widths, the strength of the entire work plate is ensured by a wide electromagnetic steel plate, while using a narrow magnetic steel plate Material that is not a product can be reduced. That is, according to the punching method, a plurality of electromagnetic steel sheets can be punched simultaneously with sufficiently high accuracy, and the material cost can be sufficiently reduced.

上記打抜き方法において、上記少なくとも二枚の電磁鋼板はこれらの電磁鋼板の板厚偏差を相殺するように重ね合されていることが好ましい。電磁鋼板の巻重体は、通常、圧延によって製造された原反を所定の幅に切断することによって製造される。圧延によって得られる原反は幅方向の位置によって厚さが異なり、より具体的には中央部が厚く、外側が薄いという特徴を有する。このような原反から得られる巻重体は厚さにばらつきある。各巻重体を構成する電磁鋼板の板厚の特徴を予め把握し、その特徴に基づいて重ね合せるべき複数の電磁鋼板を選択し、更にこれらの電磁鋼板の板厚偏差を相殺するように重ね合わせることで、製造に適した被加工板を得ることができる。例えば、被加工板の厚さを所定の範囲内とすることで、被加工板が金型内を移動するときにガイドと干渉して送り不良が生じることを十分に抑制できる。また、幅方向において上面と下面が十分に平行ではない二枚の電磁鋼板を使用する場合には、一方の電磁鋼板の薄い側と他方の電磁鋼板の厚い側とが重なるようにすればよい(図9参照)。このような被加工板を打抜き加工して得られた複数の電磁鋼板を使用することにより、設計した形状により近い積層鉄心を製造することができる。   In the punching method, it is preferable that the at least two electromagnetic steel sheets are overlapped so as to cancel the thickness deviation of these electromagnetic steel sheets. A wound body of electrical steel sheets is usually manufactured by cutting an original fabric manufactured by rolling into a predetermined width. The original fabric obtained by rolling has a feature that the thickness varies depending on the position in the width direction, more specifically, the central portion is thick and the outside is thin. The wound body obtained from such an original fabric varies in thickness. Understand the thickness characteristics of the electrical steel sheets that make up each roll, select a plurality of electrical steel sheets to be superposed based on the characteristics, and then superimpose them so as to offset the thickness deviation of these electrical steel sheets Thus, it is possible to obtain a processed plate suitable for manufacturing. For example, by setting the thickness of the plate to be processed within a predetermined range, it is possible to sufficiently suppress the occurrence of poor feeding due to interference with the guide when the plate to be processed moves in the mold. In addition, when using two electromagnetic steel sheets whose upper and lower surfaces are not sufficiently parallel in the width direction, the thin side of one electromagnetic steel sheet and the thick side of the other electromagnetic steel sheet may overlap ( (See FIG. 9). By using a plurality of electromagnetic steel sheets obtained by punching such a processed plate, a laminated iron core closer to the designed shape can be manufactured.

被加工板を構成する複数の電磁鋼板は、これらの電磁鋼板の間に形成された油膜によって互いに固定されていてもよいし、溶接、カシメ又は接着剤によって互いに固定されていてもよい。隣り合う電磁鋼板の間に油膜を設けることで、幅が広い電磁鋼板に対して幅が狭い電磁鋼板の全体を貼り合わせることができるという利点がある。一方、溶接、カシメ又は接着剤は隣り合う電磁鋼板同士を強固に固定できるという利点がある。これらの両方の利点を享受するため、油膜による固定と、溶接、カシメ又は接着剤による固定とを併用してもよい。   The plurality of electromagnetic steel plates constituting the workpiece plate may be fixed to each other by an oil film formed between these electromagnetic steel plates, or may be fixed to each other by welding, caulking, or an adhesive. By providing an oil film between adjacent electromagnetic steel sheets, there is an advantage that the whole of the electromagnetic steel sheets having a narrow width can be bonded to the electromagnetic steel sheets having a wide width. On the other hand, welding, caulking, or an adhesive has an advantage that adjacent electromagnetic steel sheets can be firmly fixed. In order to enjoy both of these advantages, fixing by an oil film and fixing by welding, caulking, or an adhesive may be used in combination.

金型内において、被加工板の送り作業をより安定的に実施する観点から、被加工板を構成する複数の電磁鋼板のうち、最も下方に位置する電磁鋼板の幅が最も大きいことが好ましい。   From the viewpoint of more stably performing the work of feeding the work plate in the mold, it is preferable that the width of the lowermost electromagnetic steel sheet among the plurality of electromagnetic steel sheets constituting the work plate is the largest.

高い生産効率を実現する観点から、上記金型として順送り金型を採用してもよい。この場合、上記打抜き方法において(c)順送り金型において被加工板を打抜き加工する工程と、(d)被加工板を順送り金型内において前進させる工程とを繰り返すことにより、複数の電磁鋼板が重なり且つ所定の形状に加工された加工体を連続的に製造してもよい。   From the viewpoint of realizing high production efficiency, a progressive die may be adopted as the die. In this case, in the punching method, (c) a step of punching a workpiece plate in a progressive die and (d) a step of advancing the workpiece plate in the progressive die, a plurality of electromagnetic steel plates are obtained. You may manufacture the processed body which overlapped and was processed into the predetermined shape continuously.

上記(c)工程において、位置合わせのためのパイロット孔を形成する場合、被加工板を構成する複数の電磁鋼板のうち、最も幅が広い電磁鋼板のみを貫通するようにパイロット孔を形成することが好ましい。かかる構成を採用することで、パイロット孔を形成するためのパイロットピンがパイロット孔の打抜き後に被加工板に引っ掛かる現象を十分に抑制できる。同様の観点から、上記(c)工程において、被加工板を構成する複数の電磁鋼板のうち、最も幅が広い電磁鋼板を貫通するとともに、次に幅が広い電磁鋼板の縁部を含む領域を貫通するようにパイロット孔を形成してもよい(図11参照)。   In the step (c), when forming the pilot hole for alignment, the pilot hole is formed so as to penetrate only the widest electromagnetic steel sheet among the plurality of electromagnetic steel sheets constituting the workpiece plate. Is preferred. By adopting such a configuration, it is possible to sufficiently suppress the phenomenon that the pilot pin for forming the pilot hole is caught on the work plate after the pilot hole is punched. From the same viewpoint, in the step (c), among the plurality of electromagnetic steel sheets constituting the workpiece plate, an area including the edge of the next wide electromagnetic steel sheet while penetrating the widest electromagnetic steel sheet. A pilot hole may be formed so as to penetrate (see FIG. 11).

従来、電磁鋼板の厚さが比較的薄い場合(例えば0.1〜0.3mm)、被加工板の送り作業が正確に実施されないという不具合が顕著であったのに対し、本発明に係る打抜き方法によれば厚さ0.1〜0.3mmの電磁鋼板を使用する場合であっても上記不具合の発生を十分に抑制できる。   Conventionally, when the thickness of the electromagnetic steel sheet is relatively thin (for example, 0.1 to 0.3 mm), the defect that the work of feeding the work plate is not accurately performed has been remarkable, whereas the punching according to the present invention is performed. According to the method, even when an electromagnetic steel sheet having a thickness of 0.1 to 0.3 mm is used, the occurrence of the above problems can be sufficiently suppressed.

本発明によれば、十分に高い精度で複数の電磁鋼板を同時に打ち抜くことができ且つ材料費を十分に削減できる。   According to the present invention, it is possible to simultaneously punch out a plurality of electromagnetic steel sheets with sufficiently high accuracy and to sufficiently reduce material costs.

積層鉄心からなる固定子(ステータ)の一例を示す斜視図である。It is a perspective view which shows an example of the stator (stator) which consists of a laminated iron core. 図1中のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire in FIG. 積層鉄心からなる回転子(ロータ)の一例を示す斜視図である。It is a perspective view which shows an example of the rotor (rotor) which consists of a laminated iron core. 積層鉄心を製造するための装置の一例を示す概要図である。It is a schematic diagram which shows an example of the apparatus for manufacturing a laminated iron core. 被加工板の一例を模式的に示す断面図である。It is sectional drawing which shows an example of a processed board typically. (a)〜(e)は種々の打抜き加工が施された被加工板の一例を示す平面図であり、(f)は所定の形状に加工された加工体を示す平面図である。(A)-(e) is a top view which shows an example of the to-be-processed board in which various punching processes were given, (f) is a top view which shows the processed body processed into the predetermined shape. 電磁鋼板の裏面に油を塗布するロールを備える打抜き装置の一例を示す概要図である。It is a schematic diagram which shows an example of the punching apparatus provided with the roll which apply | coats oil to the back surface of an electromagnetic steel plate. 被加工板の他の例を模式的に示す断面図である。It is sectional drawing which shows the other example of a to-be-processed board typically. 被加工板の更に他の例を模式的に示す断面図である。It is sectional drawing which shows the further another example of a processed board typically. (a)及び(b)は被加工板の更に他の例を模式的に示す断面図である。(A) And (b) is sectional drawing which shows typically the further another example of a to-be-processed board. (a)〜(c)はパイロット孔と幅が狭い電磁鋼板の縁部との位置関係のバリエーションを示す平面図である。(A)-(c) is a top view which shows the variation of the positional relationship with a pilot hole and the edge of an electromagnetic steel plate with a narrow width | variety. (a)〜(c)はパイロット孔の位置の更なるバリエーションを示す平面図である。(A)-(c) is a top view which shows the further variation of the position of a pilot hole. 分割型の固定子用積層鉄心を示す平面図である。It is a top view which shows a division type laminated iron core for stators.

図面を参照しながら、本発明の実施形態について詳細に説明する。なお、以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。   Embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are used for the same elements or elements having the same functions, and redundant description is omitted.

<固定子を構成する積層鉄心>
図1は固定子を構成する積層鉄心Sの斜視図である。積層鉄心Sの形状は略円筒形であり、中央部に位置する開口Saは図3に示す積層鉄心(回転子)Rを配置するためのものである。積層鉄心Sは略円環状のヨーク部Syと、ヨーク部Syの内周側から中心方向に延びるティース部Stとを有する。モーターの用途及び性能にもよるが、ヨーク部Syの幅(図1におけるW)は2〜40mm程度である。図1に示す積層鉄心Sは6本のティース部Stを有する。なお、ティース部Stの本数は6本に限定されるものではない。
<Laminated iron core constituting the stator>
FIG. 1 is a perspective view of a laminated iron core S constituting a stator. The shape of the laminated iron core S is substantially cylindrical, and the opening Sa located at the center is for arranging the laminated iron core (rotor) R shown in FIG. The laminated iron core S has a substantially annular yoke portion Sy and a teeth portion St extending in the center direction from the inner peripheral side of the yoke portion Sy. Depending on the application and performance of the motor, the width of the yoke portion Sy (W in FIG. 1) is about 2 to 40 mm. The laminated iron core S shown in FIG. 1 has six teeth portions St. The number of teeth portions St is not limited to six.

図1,2に示すとおり、積層鉄心Sは、所定の形状に加工された複数の電磁鋼板MSからなる積層体10を備える。複数の電磁鋼板MSは、カシメ2Sをそれぞれ有する。カシメ2Sによって上下方向で隣り合う電磁鋼板MS同士が接合されることで積層体10が構成される。なお、複数の積層体10を積み重ねたときに積層体10同士が接合されないように、最下面に位置する電磁鋼板MSは、図2に示すようにカシメ2Sの代わりに穿孔3を有する。   As shown in FIGS. 1 and 2, the laminated iron core S includes a laminated body 10 composed of a plurality of electromagnetic steel plates MS processed into a predetermined shape. The plurality of electromagnetic steel plates MS each have a crimp 2S. The laminated body 10 is comprised by joining the electromagnetic steel plates MS adjacent in the up-down direction by caulking 2S. In addition, as shown in FIG. 2, the electromagnetic steel sheet MS located on the lowermost surface has perforations 3 instead of the caulking 2S so that the laminated bodies 10 are not joined to each other when the plurality of laminated bodies 10 are stacked.

<回転子を構成する積層鉄心>
図3は回転子を構成する積層鉄心Rの斜視図である。積層鉄心Rの形状は略円筒形であり、中央部に位置する開口Raはシャフト(不図示)を装着するためのものである。開口Raを構成する内周面Rbには凸状キーRcが設けられている。
<Laminated iron core constituting the rotor>
FIG. 3 is a perspective view of the laminated iron core R constituting the rotor. The shape of the laminated iron core R is substantially cylindrical, and the opening Ra located at the center is for mounting a shaft (not shown). A convex key Rc is provided on the inner peripheral surface Rb constituting the opening Ra.

積層鉄心Rは、複数の電磁鋼板MRからなる積層体20と、複数の磁石固定用開口25とを備える。複数の電磁鋼板MRは、カシメ2Rをそれぞれ有する。カシメ2Rによって上下方向で隣り合う電磁鋼板MR同士が接合されることで積層体20が構成される。積層体20は計16個の開口25を有する。隣接する2つの開口25が対をなしており、8対の開口25が積層体20の外周に沿って等間隔に並んでいる。各開口25は積層体20の上面20aから下面20bまで延びている。なお、開口25の総数は16個に限定されず、モーターの用途、要求させる性能などに応じて決定すればよい。また、開口25の形状及び位置もモーターの用途、要求させる性能などに応じて決定すればよい。   The laminated iron core R includes a laminated body 20 made of a plurality of electromagnetic steel plates MR and a plurality of magnet fixing openings 25. The plurality of electromagnetic steel plates MR each have a crimp 2R. The laminated body 20 is comprised by joining the electromagnetic steel plates MR adjacent in the up-down direction by caulking 2R. The laminate 20 has a total of 16 openings 25. Two adjacent openings 25 form a pair, and eight pairs of openings 25 are arranged at equal intervals along the outer periphery of the stacked body 20. Each opening 25 extends from the upper surface 20 a to the lower surface 20 b of the stacked body 20. The total number of openings 25 is not limited to 16, but may be determined according to the application of the motor, the required performance, and the like. Further, the shape and position of the opening 25 may be determined according to the use of the motor, the required performance, and the like.

開口25には磁石(不図示)が上下方向に並んで収容されている。磁石は永久磁石であり、例えばネオジム磁石などの焼結磁石を使用できる。なお、各開口25に入れる磁石の個数は一つでも二つ以上であってもよい。磁石の種類はモーターの用途、要求させる性能などに応じて決定すればよく、焼結磁石の代わりに例えばボンド磁石を使用してもよいし積厚方向若しくは幅方向、或いはこれら両方に複数に分割された磁石を使用してもよい。開口25の磁石を入れた後、開口25に樹脂(例えば熱硬化性樹脂組成物)を充填することによって開口25内に磁石を固定することができる。   Magnets (not shown) are accommodated in the opening 25 side by side in the vertical direction. The magnet is a permanent magnet, and for example, a sintered magnet such as a neodymium magnet can be used. In addition, the number of magnets put in each opening 25 may be one or more. The type of magnet may be determined according to the application of the motor and the required performance. For example, a bonded magnet may be used in place of the sintered magnet, and it is divided into a plurality of thickness direction or width direction, or both. A magnet may be used. After putting the magnet of the opening 25, the magnet can be fixed in the opening 25 by filling the opening 25 with a resin (for example, a thermosetting resin composition).

<打抜き装置>
図4は積層鉄心S及び積層鉄心Rを構成する電磁鋼板MS及び電磁鋼板MRを打抜き加工によって製造する打抜き装置の一例を示す概要図である。同図に示す打抜き装置100は、第1の電磁鋼板M1の巻重体C1が装着されるアンコイラー(巻重体保持器)111と、第2の電磁鋼板M2の巻重体C2が装着されるアンコイラー(巻重体保持器)112と、プレス機械120と、送り装置(送り手段)130と、プレス機械120によって動作する順送り金型140と、アンコイラー111,112と順送り金型140との間に設けられた油噴霧ノズル(油膜形成手段)150とを備える。
<Punching device>
FIG. 4 is a schematic diagram showing an example of a punching device for manufacturing the electromagnetic steel sheet MS and the electromagnetic steel sheet MR constituting the laminated iron core S and the laminated iron core R by punching. The punching apparatus 100 shown in the figure includes an uncoiler (winding body holder) 111 to which a winding body C1 of a first electromagnetic steel plate M1 is mounted and an uncoiler (winding) to which a winding body C2 of a second electromagnetic steel sheet M2 is mounted. (Heavy body holder) 112, press machine 120, feed device (feed means) 130, progressive die 140 operated by press machine 120, oil provided between uncoilers 111, 112 and progressive die 140. Spray nozzle (oil film forming means) 150.

アンコイラー111,112は、巻重体C1,C2を回転自在にそれぞれ保持する。巻重体C1,C2をそれぞれ構成する二枚の電磁鋼板M1,M2は、互い異なる幅を有する(図5参照)。巻重体C1,C2からそれぞれ引き出された電磁鋼板M1,M2は送り装置130で重ね合される。送り装置130は電磁鋼板M1,M2を両側から挟み込む一対のローラ130a,130bを有する。電磁鋼板M1,M2は、送り装置130を介して順送り金型140へと導入される。   The uncoilers 111 and 112 respectively hold the winding bodies C1 and C2 rotatably. The two electromagnetic steel plates M1 and M2 constituting the wound bodies C1 and C2 have different widths (see FIG. 5). The electromagnetic steel plates M1 and M2 drawn from the wound bodies C1 and C2 are overlapped by the feeding device 130. The feeding device 130 has a pair of rollers 130a and 130b that sandwich the electromagnetic steel plates M1 and M2 from both sides. The electromagnetic steel plates M1 and M2 are introduced into the progressive die 140 via the feeder 130.

送り装置130に導入されるに先立ち、電磁鋼板M1,M2に対してノズル150による油噴霧処理が施される。すなわち、図4に示すように、電磁鋼板M1の裏面及び電磁鋼板M2の表面に向けてノズル150から油が噴霧される。電磁鋼板M1の裏面と電磁鋼板M2の表面との間に油を噴霧した後、電磁鋼板M1,M2を送り装置130の導入することで、図5に示すとおり、二枚の電磁鋼板M1,M2と、これらの電磁鋼板M1,M2の間に介在する油膜Fとを有する被加工板Wが構成される。   Prior to being introduced into the feeding device 130, oil spraying by the nozzle 150 is performed on the electromagnetic steel sheets M1 and M2. That is, as shown in FIG. 4, oil is sprayed from the nozzle 150 toward the back surface of the electromagnetic steel plate M1 and the surface of the electromagnetic steel plate M2. After spraying oil between the back surface of the electromagnetic steel plate M1 and the surface of the electromagnetic steel plate M2, the electromagnetic steel plates M1 and M2 are introduced into the feeding device 130, whereby two electromagnetic steel plates M1 and M2 are introduced as shown in FIG. And the to-be-processed board W which has the oil film F interposed between these electromagnetic steel plates M1 and M2 is comprised.

なお、ここではノズル150によって電磁鋼板M1の裏面及び電磁鋼板M2の表面の両方に向けて油を噴霧する構成を例示したが、電磁鋼板M1の裏面に油を噴霧するノズルと、電磁鋼板M2の表面に油を噴霧するノズルとを設けてもよい。あるいは、ノズル150によって電磁鋼板M1の裏面及び電磁鋼板M2の表面の一方のみに油を噴霧してもよい。   In addition, although the structure which sprays oil toward both the back surface of the electromagnetic steel plate M1 and the surface of the electromagnetic steel plate M2 with the nozzle 150 was illustrated here, the nozzle which sprays oil on the back surface of the electromagnetic steel plate M1, and the electromagnetic steel plate M2 You may provide the nozzle which sprays oil on the surface. Alternatively, the nozzle 150 may spray oil only on one of the back surface of the electromagnetic steel plate M1 and the surface of the electromagnetic steel plate M2.

電磁鋼板M1,M2の厚さはそれぞれ0.1〜0.5mm程度であればよい。従来、電磁鋼板の厚さが比較的薄い場合(例えば0.1〜0.3mm)、製品とならない部分を過剰に残存させないと被加工板の強度不足に起因して被加工板の送り作業を適切に実施できない場合があった。これに対し、本実施形態に係る打抜き方法によれば送り金型140内において下方に位置する電磁鋼板M2のみに製品とならない部分を過剰に設けておけば、被加工板Wの送り作業を十分安定的に実施できる。電磁鋼板M1,M2として、厚さ0.1〜0.3mmの電磁鋼板をそれぞれ使用してもよく、更には厚さ0.1〜0.18mmの電磁鋼板をそれぞれ使用してもよい。なお、被加工板Wの全体の厚さは、好ましくは0.2〜1.0mmであり、より好ましくは0.3〜0.5mmである。被加工板Wの厚さが0.2mm未満であると複数枚の電磁鋼板を重ね合されて得られる効果が少なくなる傾向があり、1.0mmを超えると被加工板Wの可撓性が小さくなる傾向がある。油膜F自体の厚さは0.001mm程度であればよい。     The thickness of the electromagnetic steel sheets M1 and M2 may be about 0.1 to 0.5 mm. Conventionally, when the thickness of the magnetic steel sheet is relatively thin (for example, 0.1 to 0.3 mm), unless the portion that does not become a product remains excessively, the work of feeding the work plate is caused due to insufficient strength of the work plate. In some cases, it could not be implemented properly. On the other hand, according to the punching method according to the present embodiment, if an excessively non-product portion is provided only in the electromagnetic steel plate M2 positioned below in the feed mold 140, the work of feeding the workpiece W is sufficiently performed. It can be implemented stably. As the electromagnetic steel plates M1 and M2, electromagnetic steel plates having a thickness of 0.1 to 0.3 mm may be used, respectively, and further, electromagnetic steel plates having a thickness of 0.1 to 0.18 mm may be used. In addition, the total thickness of the work plate W is preferably 0.2 to 1.0 mm, and more preferably 0.3 to 0.5 mm. If the thickness of the work plate W is less than 0.2 mm, the effect obtained by superimposing a plurality of magnetic steel sheets tends to be reduced, and if it exceeds 1.0 mm, the flexibility of the work plate W is increased. There is a tendency to become smaller. The thickness of the oil film F itself may be about 0.001 mm.

従来、電磁鋼板の幅が広い場合(例えば250〜500mm)、電磁鋼板の強度不足に起因して順送り金型140内における送りに支障が生じやすかった。これに対し、本実施形態に係る打抜き方法によれば電磁鋼板M1,M2として幅250〜500mmの電磁鋼板をそれぞれ使用してもこれらを重ね合せ且つ一方の電磁鋼板(電磁鋼板M2)に製品とならない部分を過剰に設けることで順送り金型140内における送りを安定的に行うことができる。つまり、電磁鋼板M1,M2として、幅250〜500mmの電磁鋼板をそれぞれ使用してもよく、更には幅400〜500mmの電磁鋼板をそれぞれ使用してもよい。   Conventionally, when the width of the electromagnetic steel sheet is wide (for example, 250 to 500 mm), the feeding in the progressive die 140 is likely to be hindered due to insufficient strength of the electromagnetic steel sheet. On the other hand, according to the punching method according to the present embodiment, even if electromagnetic steel sheets having a width of 250 to 500 mm are used as the electromagnetic steel sheets M1 and M2, they are superposed and the product is applied to one of the electromagnetic steel sheets (electromagnetic steel sheet M2). By providing an excessive portion that does not become necessary, feeding in the progressive die 140 can be performed stably. That is, as the electromagnetic steel plates M1 and M2, electromagnetic steel plates having a width of 250 to 500 mm may be used, and further, electromagnetic steel plates having a width of 400 to 500 mm may be used.

電磁鋼板M2の幅は、被加工板Wから打ち抜くべき製品の最大幅プラス4〜20mmであることが好ましく、より好ましくは上記最大幅プラス6〜15mmであり、更に好ましくは上記最大幅プラス8〜10mmである。なお、「製品の最大幅」とは被加工板Wの長手方向に直交する方向における最大幅を意味する。電磁鋼板M2の幅が製品の最大幅プラス4mm未満であると被加工板Wの強度が不足して送り作業に支障が生じやすく、製品の最大幅プラス20mmを超えると材料費の削減効果が不十分となりやすい。   The width of the electromagnetic steel sheet M2 is preferably the maximum width of the product to be punched from the work plate W plus 4 to 20 mm, more preferably the maximum width plus 6 to 15 mm, and still more preferably the maximum width plus 8 to 8 mm. 10 mm. The “maximum product width” means the maximum width in a direction perpendicular to the longitudinal direction of the processed plate W. If the width of the magnetic steel sheet M2 is less than the maximum width of the product plus 4 mm, the strength of the processed plate W is insufficient and the feeding work is likely to be hindered. If the width of the product exceeds the maximum width of 20 mm, the effect of reducing the material cost is ineffective. It tends to be enough.

電磁鋼板M1の幅は、電磁鋼板M2の幅よりも狭ければよく、電磁鋼板M2の幅と電磁鋼板M1の幅の差は0.1mm以上であればよい。材料費をより一層削減する観点から、電磁鋼板M2の幅と電磁鋼板M1の幅の差は好ましくは2mm以上であり、より好ましくは4mm以上である。   The width of the electromagnetic steel plate M1 only needs to be narrower than the width of the electromagnetic steel plate M2, and the difference between the width of the electromagnetic steel plate M2 and the width of the electromagnetic steel plate M1 may be 0.1 mm or more. From the viewpoint of further reducing the material cost, the difference between the width of the electromagnetic steel sheet M2 and the width of the electromagnetic steel sheet M1 is preferably 2 mm or more, more preferably 4 mm or more.

電磁鋼板M1の幅は、被加工板Wから打ち抜くべき製品の最大幅プラス4〜18mmであることが好ましく、より好ましくは上記最大幅プラス4〜13mmであり、更に好ましくは上記最大幅プラス6〜8mmである。電磁鋼板M1の幅が製品の最大幅プラス2mm未満であると被加工板Wの幅方向端面付近を金型で打ち抜くことになり、製品寸法の悪化を招きやすく、製品の最大幅プラス18mmを超えると材料費の削減効果が不十分となりやすい。なお、製品外周に切り欠きが形成されてもよい場合は、電磁鋼板M1の幅を超えるように打抜きを行ってもよい。   The width of the electromagnetic steel sheet M1 is preferably the maximum width of the product to be punched from the work plate W plus 4 to 18 mm, more preferably the maximum width plus 4 to 13 mm, and even more preferably the maximum width plus 6 to 6 mm. 8 mm. If the width of the magnetic steel sheet M1 is less than the maximum width of the product plus 2 mm, the vicinity of the end surface in the width direction of the processed plate W will be punched out with a mold, and the product dimensions are likely to deteriorate, exceeding the maximum width of the product plus 18 mm. And the effect of reducing material costs tends to be insufficient. In addition, when notches may be formed on the outer periphery of the product, punching may be performed so as to exceed the width of the electromagnetic steel sheet M1.

打抜き装置100は、油膜Fを介して電磁鋼板M1,M2を重ね合された被加工板Wに対して打抜き加工を実施する。油膜Fは被加工板Wにおいて二枚の電磁鋼板M1,M2を貼り合わせる役割を果たす。このため、打抜き装置100によれば、十分に高い精度で二枚の電磁鋼板M1,M2を同時に打ち抜くことができるとともに、カス上がりの発生を十分に抑制できる。「カス上がり」とは金型が有するパンチに打ち抜かれた材料(「カス」又は「抜きカス」と称される。)が付着する現象を意味する。   The punching apparatus 100 performs a punching process on the workpiece plate W on which the electromagnetic steel plates M1 and M2 are overlapped via the oil film F. The oil film F plays a role of bonding the two electromagnetic steel plates M1 and M2 on the work plate W. For this reason, according to the punching device 100, the two electromagnetic steel plates M1 and M2 can be punched simultaneously with sufficiently high accuracy, and the occurrence of residue rise can be sufficiently suppressed. “Left-up” means a phenomenon in which a material punched into a punch included in a mold (referred to as “scrap” or “slip-out”) adheres.

油膜Fを形成するための油としては、例えば打抜き工作油(スタンピングオイルとも称される)、鉱油、シリコーンオイルなどを使用できる。本発明者らの検討によると、油膜Fを構成する油は、40℃における動粘度が好ましくは0.9mm/s以上であり、より好ましくは0.9〜10mm/sである。油の40℃における動粘度が0.9mm/s未満であると電磁鋼板M1と電磁鋼板M2とを貼り合わせる力が不十分となりやすく、他方、10mm/sを超えるとノズルによる油噴霧が困難となりやすい。なお、ここでいう動粘度は、JIS K2283(2000年)に記載の動粘度試験方法によって測定された値を意味する。 As the oil for forming the oil film F, for example, punching work oil (also referred to as stamping oil), mineral oil, silicone oil, or the like can be used. According to the study of the present inventors, the oil constituting the oil film F is preferably a kinematic viscosity at 40 ° C. and at 0.9 mm 2 / s or more, more preferably 0.9~10mm 2 / s. Force kinematic viscosity at 40 ° C. of oil bonding the electromagnetic steel plates M1 and the electromagnetic steel sheet M2 is less than 0.9 mm 2 / s is liable to be insufficient, while oil spray by the nozzle exceeds 10 mm 2 / s It tends to be difficult. In addition, kinematic viscosity here means the value measured by the kinematic viscosity test method as described in JISK2283 (2000).

上に挙げた油のうち、順送り金型140においても使用される打抜き工作油を使用することが好ましい。この場合、順送り金型140に打抜き工作油を供給する配管を途中で分岐することによって分岐管を通じてノズル150に打抜き工作油を供給することができる。   Of the oils listed above, it is preferable to use a punching working oil that is also used in the progressive die 140. In this case, it is possible to supply the punching work oil to the nozzle 150 through the branch pipe by branching the pipe for supplying the punching work oil to the progressive die 140 in the middle.

<積層鉄心の製造方法>
図4〜6を参照しながら、積層鉄心Sの製造方法について説明する。積層鉄心Sは、被加工板Wを打抜き加工をすることによって電磁鋼板MSを得るプロセス(下記(A)〜(E)工程)と、積み重ねた複数の電磁鋼板MS(積層体10)を一体化させるプロセス(下記(F)工程)とを経て製造される。より具体的には、積層鉄心Sの製造方法は以下の工程を備える。
(A)互いに幅が異なる電磁鋼板M1,M2からなる二つの巻重体C1,C2を準備する工程。
(B)巻重体C1,C2からそれぞれ引き出され且つ重ね合された状態で互いに固定された二枚の電磁鋼板M1,M2と、二枚の電磁鋼板M1,M2の間に介在する油膜Fとを有する被加工板Wを順送り金型140に供給する工程。
(C)順送り金型140において被加工板Wの打抜き加工を行う工程。
(D)被加工板Wを順送り金型140内において前進させる工程。
(E)上記(C)工程と、上記(D)工程とを繰り返すことによって所定の形状に加工された加工体WSを連続的に得る工程。
(F)複数の加工体WSを重ね合わせて得られる積層体10をカシメ2Sで締結することによって積層鉄心Sを得る工程。
<Manufacturing method of laminated core>
A method for manufacturing the laminated iron core S will be described with reference to FIGS. The laminated iron core S integrates a process (the following (A) to (E) steps) for obtaining the electromagnetic steel sheet MS by punching the workpiece W and a plurality of stacked electromagnetic steel sheets MS (laminated body 10). To be manufactured through a process (step (F) below). More specifically, the method for manufacturing the laminated iron core S includes the following steps.
(A) A step of preparing two wound bodies C1 and C2 made of electromagnetic steel plates M1 and M2 having different widths.
(B) Two electromagnetic steel plates M1 and M2 drawn out from the windings C1 and C2 and fixed in an overlapped manner, and an oil film F interposed between the two electromagnetic steel plates M1 and M2. A step of supplying the workpiece W to the progressive die 140.
(C) A step of punching the workpiece W in the progressive die 140.
(D) A step of moving the work plate W forward in the progressive die 140.
(E) A step of continuously obtaining a workpiece WS processed into a predetermined shape by repeating the step (C) and the step (D).
(F) The process of obtaining the laminated iron core S by fastening the laminated body 10 obtained by superimposing the some processed body WS with the crimp 2S.

まず、電磁鋼板の巻重体C1,C2を準備し((A)工程)、これらをアンコイラー111,112にそれぞれ装着する。巻重体C1,C2をそれぞれ構成する電磁鋼板M1,M2の長さは例えば500〜10000mである。なお、使用中の巻重体の残りが少なくなると新たな巻重体が準備され、新たな巻重体の始端部と使用中の巻重体の終端部が例えば溶接によって接合される。   First, windings C1 and C2 of electromagnetic steel sheets are prepared (step (A)), and these are mounted on the uncoilers 111 and 112, respectively. The lengths of the electromagnetic steel plates M1 and M2 constituting the wound bodies C1 and C2 are, for example, 500 to 10,000 m. When the remaining winding body in use decreases, a new winding body is prepared, and the starting end of the new winding body and the terminal end of the winding body in use are joined by welding, for example.

巻重体C1,C2からそれぞれ引き出された電磁鋼板M1,M2の間にノズル150から油を噴霧することによって被加工板Wを得る。送り装置130を介して被加工板Wを順送り金型140へと供給する((B)工程)。二枚の電磁鋼板M1,M2を油膜Fによって十分に高い強度で貼り合わせることができる限り、電磁鋼板M1の面積Aに対する油膜の面積Aの比率に制限はないが、この比率(A/A)は好ましくは0.8以上であり、より好ましくは0.9以上である。 A plate to be processed W is obtained by spraying oil from the nozzle 150 between the electromagnetic steel plates M1 and M2 drawn out from the wound bodies C1 and C2, respectively. The workpiece plate W is supplied to the progressive die 140 via the feeder 130 (step (B)). The ratio of the oil film area A F to the area A M of the electromagnetic steel sheet M1 is not limited as long as the two electromagnetic steel sheets M1 and M2 can be bonded together with the oil film F with a sufficiently high strength, but this ratio (A F / A M ) is preferably 0.8 or more, more preferably 0.9 or more.

ノズル150から油を噴霧することによって、厚さが十分に均一な油膜Fを形成することができる。油膜Fの厚さが不均一であると二枚の電磁鋼板M1,M2を貼り合わせる力が不足する傾向にある。また油膜Fを構成する油の量は多すぎても少なすぎても二枚の電磁鋼板M1,M2を貼り合わせる力が不足する傾向にある。油膜Fの粘度、雰囲気温度などに依存するが、電磁鋼板M1の単位面積当たりの油膜Fの質量は好ましくは0.5〜2.0g/mであり、より好ましくは0.5〜1.0g/mである。なお、油膜Fを構成する油の量は過剰であると、余分な油が送り装置130のローラ130a,130bに付着して送りミスを生じさせるおそれがある。 By spraying oil from the nozzle 150, the oil film F having a sufficiently uniform thickness can be formed. If the thickness of the oil film F is not uniform, the force for bonding the two electromagnetic steel sheets M1, M2 tends to be insufficient. Further, even if the amount of oil constituting the oil film F is too large or too small, the force for bonding the two electromagnetic steel plates M1 and M2 tends to be insufficient. Although depending on the viscosity of the oil film F, the ambient temperature, etc., the mass of the oil film F per unit area of the magnetic steel sheet M1 is preferably 0.5 to 2.0 g / m 2 , more preferably 0.5 to 1. 0 g / m 2 . If the amount of oil constituting the oil film F is excessive, excess oil may adhere to the rollers 130a and 130b of the feeding device 130 and cause a feeding error.

図5に示すとおり、電磁鋼板M1は電磁鋼板M2の幅方向の中央部に重ね合されている。言い換えれば、被加工板Wの幅方向の両方の周縁部には電磁鋼板M1が重なっておらず、電磁鋼板M2のみからなる領域Waが同程度の幅で設けられている。   As shown in FIG. 5, the electromagnetic steel plate M1 is overlapped with the central portion in the width direction of the electromagnetic steel plate M2. In other words, the electromagnetic steel plate M1 is not overlapped on both peripheral edges in the width direction of the processed plate W, and the region Wa made of only the electromagnetic steel plate M2 is provided with the same width.

順送り金型140が備えるパンチ(不図示)による打抜き作業((C)工程)と送り装置130による被加工板Wの送り作業((D)工程)とを繰り返す。これにより、所定の形状に加工された加工体WSが得られる((E)工程)。   The punching operation (step (C)) by the punch (not shown) provided in the progressive die 140 and the feeding operation ((D) step) of the work plate W by the feeding device 130 are repeated. Thereby, the processed object WS processed into the predetermined shape is obtained ((E) process).

図6を参照しながら上記(E)工程について説明する。図6の(a)は被加工板Wに位置合わせ用のパイロット孔Pを形成した状態を示す。本実施形態においては、電磁鋼板M2のみからなる領域Waにパイロット孔Pが形成される。領域Waにパイロット孔Pを形成することで、パイロット孔Pを形成するためのパイロットピンが被加工板Wに引っ掛かる現象を十分に抑制できる。複数の電磁鋼板が積層された領域にパイロット孔Pを形成すると、パイロットピンが被加工板に引っ掛かりやすく、これを抑制するため、パイロットピンのストロークスピードを下げたり、パイロット孔の径を小さくしたりするなどの対処が必要となる場合がある。この場合、ストロークスピードを下げると生産性が低下し、他方、パイロット孔の径を小さくするとカス上がりの問題が生じやすい。   The step (E) will be described with reference to FIG. FIG. 6A shows a state in which pilot holes P for alignment are formed in the work plate W. FIG. In this embodiment, the pilot hole P is formed in the area | region Wa which consists only of an electromagnetic steel plate M2. By forming the pilot hole P in the region Wa, a phenomenon that the pilot pin for forming the pilot hole P is caught on the work plate W can be sufficiently suppressed. When the pilot hole P is formed in the region where a plurality of electromagnetic steel sheets are laminated, the pilot pin is easily caught on the work plate. To suppress this, the pilot pin stroke speed is reduced, or the pilot hole diameter is reduced. It may be necessary to take measures such as In this case, if the stroke speed is lowered, the productivity is lowered. On the other hand, if the diameter of the pilot hole is made small, the problem of scrap rise tends to occur.

図6の(b)は積層鉄心Sのヨーク部Syの内周面とティース部Stの側面とを構成する計6つの開口H1を形成した状態を示す。   FIG. 6B shows a state in which a total of six openings H1 constituting the inner peripheral surface of the yoke portion Sy and the side surface of the tooth portion St of the laminated core S are formed.

図6の(c)はカシメ2Sを更に形成した状態を示す。カシメ2Sは複数の加工体WSの締結に利用される。   FIG. 6C shows a state in which the crimp 2S is further formed. The crimp 2S is used for fastening a plurality of workpieces WS.

図6の(d)は被加工板Wに開口H2を形成することによって加工体WSの内周面を形成した状態を示す。   FIG. 6D shows a state in which the inner peripheral surface of the workpiece WS is formed by forming the opening H2 in the workpiece plate W.

図6の(e)は積層鉄心Sのヨーク部Syの外周面を構成する開口H3を更に形成した状態を示す。開口H3を形成することにより、図6の(f)に示す形状の加工体WSが得られる。加工体WSは二枚の電磁鋼板MSが重ね合わさっている。   FIG. 6E shows a state where an opening H3 constituting the outer peripheral surface of the yoke portion Sy of the laminated core S is further formed. By forming the opening H3, a processed body WS having a shape shown in FIG. 6F is obtained. Two electromagnetic steel plates MS are overlaid on the workpiece WS.

上記工程を経て得られた加工体WSを所定の枚数重ね合せ、カシメ2Sによって互いに接合することによって図1に示す積層鉄心Rを得る((F)工程)。   A laminated core R shown in FIG. 1 is obtained by superposing a predetermined number of workpieces WS obtained through the above steps and joining them together by caulking 2S (step (F)).

本実施形態に係る積層鉄心の製造方法によれば、十分に高い精度で二枚の電磁鋼板M1,M2を同時に打ち抜くことができ且つ材料費を十分に削減できる。なお、回転子用の加工体は、その形状に応じた順送り金型140を使用することにより、上述の積層鉄心Sの製造方法と同様の過程を経て製造することができる。   According to the method for manufacturing a laminated core according to the present embodiment, the two electromagnetic steel plates M1 and M2 can be simultaneously punched with sufficiently high accuracy, and the material cost can be sufficiently reduced. In addition, the workpiece for rotors can be manufactured through the process similar to the manufacturing method of the above-mentioned laminated iron core S by using the progressive die 140 according to the shape.

以上、本発明の一実施形態について詳細に説明したが本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、ノズル150を使用して油を噴霧する場合を例示したが、図7に示すように、ノズル150の代わりにロール151を使用して電磁鋼板M1の裏面に油を塗布してもよい。この態様においては、油を収容可能な容器152と、容器152に対して回転自在に設けられたロール151とによって油膜形成手段が構成されている。容器152内に油を入れると、ロール151の下部が油に浸るようになっている。なお、二つのロールを設けて電磁鋼板M1の裏面及び電磁鋼板M2の表面の両方に油を塗布してもよい。   As mentioned above, although one Embodiment of this invention was described in detail, this invention is not limited to the said embodiment. For example, in the said embodiment, although the case where oil was sprayed using the nozzle 150 was illustrated, as shown in FIG. 7, using the roll 151 instead of the nozzle 150, oil is applied to the back surface of the electromagnetic steel plate M1. It may be applied. In this aspect, the oil film forming means is configured by the container 152 capable of containing oil and the roll 151 provided to be rotatable with respect to the container 152. When oil is put into the container 152, the lower part of the roll 151 is immersed in the oil. Two rolls may be provided to apply oil to both the back surface of the electromagnetic steel sheet M1 and the surface of the electromagnetic steel sheet M2.

上記実施形態に係る図5には、同程度の厚さを有する電磁鋼板M1,M2が重ね合された被加工板Wを模式的に図示したが、電磁鋼板M1,M2の厚さが互いに相違していてもよい。この場合、被加工板Wの送り作業をより安定的に実施する観点から、順送り金型140内において下方に位置する電磁鋼板M2の厚さが上方に位置する電磁鋼板M1の厚さよりも大きいことが好ましい(図8参照)。巻重体を構成する電磁鋼板の板厚の特徴を予め把握し、その特徴に基づいて重ね合せるべき二枚の電磁鋼板M1,M2を選択し、これらを重ね合わせることで、所定の厚さの被加工板Wを得ることができる。例えば、被加工板Wの厚さを所定の範囲内とすることで、被加工板Wが順送り金型140内を移動するときにガイドと干渉して送り不良が生じることを十分に抑制できる。なお、被加工板Wの強度を十分に確保できる限り、順送り金型140内において下方に位置する電磁鋼板M2の厚さを上方に位置する電磁鋼板M1の厚さよりも小さくしてもよい。   FIG. 5 according to the above embodiment schematically illustrates the processed plate W on which the electromagnetic steel plates M1 and M2 having the same thickness are overlapped, but the thicknesses of the electromagnetic steel plates M1 and M2 are different from each other. You may do it. In this case, from the viewpoint of more stably performing the work of feeding the work plate W, the thickness of the electromagnetic steel sheet M2 positioned below in the progressive die 140 is larger than the thickness of the electromagnetic steel sheet M1 positioned above. Is preferred (see FIG. 8). By grasping in advance the characteristics of the thickness of the electrical steel sheets constituting the wound body, selecting the two electrical steel sheets M1 and M2 to be superposed based on the characteristics, and superimposing them, the covering of a predetermined thickness is obtained. A processed plate W can be obtained. For example, by setting the thickness of the work plate W within a predetermined range, it is possible to sufficiently suppress the occurrence of feed failure due to interference with the guide when the work plate W moves in the progressive die 140. In addition, as long as the intensity | strength of the to-be-processed board W can fully be ensured, you may make the thickness of the electromagnetic steel plate M2 located below in the progressive die 140 smaller than the thickness of the electromagnetic steel plate M1 located above.

上記実施形態に係る図5には、厚さが十分に均一な二枚の電磁鋼板M1,M2が重ね合された被加工板Wを模式的に図示したが、幅方向に板厚偏差を有する電磁鋼板M1,M2(言い換えれば幅方向の厚さが均一ではない電磁鋼板M1,M2)を使用してもよい。この場合、図9に示すように、二枚の電磁鋼板M1,M2の板厚偏差を相殺するように電磁鋼板M1と電磁鋼板M2とを重ね合せればよい。すなわち、電磁鋼板M1の薄い側と電磁鋼板M2の厚い側とが重なるようにすればよい。準備した複数の巻重体を構成する電磁鋼板の特徴(厚さ、板厚偏差など)を予め把握し、使用すべき巻重体を選択するとともに、複数の電磁鋼板の重ね合わせる向きを最適化することにより、設計した形状により近い積層鉄心S,Rを製造することができる。   Although FIG. 5 which concerns on the said embodiment typically illustrated the to-be-processed board W with which two electromagnetic steel plates M1 and M2 with sufficiently uniform thickness were overlapped, it has plate | board thickness deviation in the width direction. The electromagnetic steel plates M1, M2 (in other words, the electromagnetic steel plates M1, M2 whose thickness in the width direction is not uniform) may be used. In this case, as shown in FIG. 9, the electromagnetic steel plate M1 and the electromagnetic steel plate M2 may be overlapped so as to cancel the thickness deviation between the two electromagnetic steel plates M1 and M2. That is, what is necessary is just to make it the thin side of the electromagnetic steel plate M1 and the thick side of the electromagnetic steel plate M2 overlap. To grasp in advance the characteristics (thickness, thickness deviation, etc.) of the electrical steel sheets that make up the prepared multiple rolls, select the rolls to be used, and optimize the orientation of the multiple electrical steel sheets Thus, the laminated cores S and R closer to the designed shape can be manufactured.

上記実施形態に係る図5には、下方に位置する電磁鋼板M2の幅方向の中央部に電磁鋼板M1が重ね合された被加工板Wを模式的に図示したが、電磁鋼板M1が電磁鋼板M2からはみ出さない限り、電磁鋼板M1は電磁鋼板M2の中央部から幅方向にずれた位置に重ね合されていてもよい(図10の(a)及び(b)参照)。図10の(b)に示すガイドGは順送り金型140内における被加工板Wの位置ずれを防止するためのものである。ガイドGは被加工板Wの側部の形状に応じた対向面Gaを有する。この例では対向面Gaは階段状に形成されている。   Although FIG. 5 which concerns on the said embodiment typically illustrated the to-be-processed board W with which the electromagnetic steel plate M1 was piled up in the center part of the width direction of the electromagnetic steel plate M2 located below, the electromagnetic steel plate M1 is an electromagnetic steel plate. As long as it does not protrude from M2, the electromagnetic steel plate M1 may be overlapped at a position shifted in the width direction from the central portion of the electromagnetic steel plate M2 (see FIGS. 10A and 10B). The guide G shown in FIG. 10B is for preventing the displacement of the work plate W in the progressive die 140. The guide G has a facing surface Ga corresponding to the shape of the side portion of the work plate W. In this example, the opposing surface Ga is formed in a step shape.

上記実施形態においては、(C)工程において、被加工板Wにおける電磁鋼板M2のみからなる領域Waにパイロット孔Pを形成する場合を例示したが、電磁鋼板M1の縁部M1aを含む領域を貫通するようにパイロット孔Pを形成してもよい(図11の(a)〜(c)の上方のパイロット孔P参照)。図11に示すように、パイロット孔Pが円形である場合、パイロットピンの抜けやすさの観点から、パイロット孔Pの中心は電磁鋼板M2のみからなる領域Waに位置することが好ましい(図11の(a)及び(b)参照)。   In the said embodiment, although the case where the pilot hole P was formed in the area | region Wa which consists only of the electromagnetic steel plate M2 in the to-be-processed board W in the (C) process was illustrated, it penetrated the area | region including the edge M1a of the electromagnetic steel plate M1. Alternatively, the pilot hole P may be formed (see the pilot hole P above (a) to (c) in FIG. 11). As shown in FIG. 11, when the pilot hole P is circular, it is preferable that the center of the pilot hole P is located in a region Wa composed only of the electromagnetic steel sheet M2 from the viewpoint of easy removal of the pilot pin (see FIG. 11). (See (a) and (b)).

図12の(a)〜(c)はパイロット孔Pの位置の更なるバリエーションを示す平面図である。図12の(a)に示すパイロット孔Pは二枚の電磁鋼板M1,M2が重なっている位置に設けられている。かかる構成は、電磁鋼板M1,M2の幅の差が小さい場合に有用である。図12の(b)に示すパイロット孔Pは電磁鋼板M1の縁部M1aに接するように形成されている。図12の(c)に示す上側のパイロット孔P及び下側のパイロット孔Pは、被加工板Wの送り方向の同じ位置ではなく、被加工板Wの送り方向の前後にずれた位置に設けられている。かかる構成は外周方向に突出した部分(例えばボルト締めするための耳部)を有する積層鉄心を製造する場合や多列取りをする場合に有用である。   FIGS. 12A to 12C are plan views showing further variations of the position of the pilot hole P. FIG. The pilot hole P shown in FIG. 12A is provided at a position where the two electromagnetic steel plates M1 and M2 overlap. Such a configuration is useful when the difference in width between the electromagnetic steel sheets M1 and M2 is small. The pilot hole P shown in FIG. 12B is formed so as to contact the edge M1a of the electromagnetic steel sheet M1. The upper pilot hole P and the lower pilot hole P shown in (c) of FIG. 12 are provided not at the same position in the feed direction of the work plate W but at positions shifted forward and backward in the feed direction of the work plate W. It has been. Such a configuration is useful when a laminated iron core having a portion protruding in the outer peripheral direction (for example, an ear portion for bolting) is manufactured or when multiple rows are taken.

上記実施形態においては、二つの巻重体C1,C2を準備し、油膜Fを介して二枚の電磁鋼板M1,M2を重ね合せた被加工板Wに対して打抜き加工を実施する場合を例示したが、油膜Fを介して三枚以上の電磁鋼板を重ね合せた被加工板に対して打抜き加工を実施してもよい。この場合、順送り金型140内において、被加工板Wの送り作業をより安定的に実施する観点から、被加工板Wを構成する複数の電磁鋼板のうち、最も下方に位置する電磁鋼板の幅が最も大きいことが好ましい。打抜き加工の精度の観点から、被加工板を構成する電磁鋼板の枚数の上限は5枚程度とすればよい。   In the said embodiment, the case where the punching process was implemented with respect to the to-be-processed board W which prepared two wound bodies C1 and C2 and overlapped two electromagnetic steel plates M1 and M2 via the oil film F was illustrated. However, a punching process may be performed on a workpiece plate in which three or more electromagnetic steel plates are overlapped via the oil film F. In this case, from the viewpoint of more stably performing the work of feeding the work plate W in the progressive die 140, the width of the lowermost magnetic steel sheet among the plurality of electromagnetic steel sheets constituting the work plate W. Is preferably the largest. From the viewpoint of punching accuracy, the upper limit of the number of electromagnetic steel sheets constituting the work plate may be about five.

上記実施形態においては、油膜Fによって二枚の電磁鋼板M1,M2を互いに固定する場合を例示したが、油膜Fの代わりに溶接、カシメ又は接着剤によって電磁鋼板M1,M2を互いに固定してもよい。二枚の電磁鋼板M1,M2の幅が異なるため(図5参照)、溶接がしやすいという利点がある。なお、溶接は製品として使用されない箇所に行えばよい。   In the above-described embodiment, the case where the two electromagnetic steel plates M1 and M2 are fixed to each other by the oil film F is illustrated. However, instead of the oil film F, the electromagnetic steel plates M1 and M2 may be fixed to each other by welding, caulking, or adhesive. Good. Since the two magnetic steel sheets M1 and M2 have different widths (see FIG. 5), there is an advantage that welding is easy. In addition, what is necessary is just to perform welding to the location which is not used as a product.

上記実施形態においては、被加工板Wに対してカシメ2S,2Rを形成する場合を例示したが、カシメの代わりに溶接、樹脂又は接着剤によって電磁鋼板MS同士又は電磁鋼板MR同士を締結してもよい。   In the said embodiment, although the case where the crimping 2S and 2R were formed with respect to the to-be-processed board W was illustrated, instead of crimping, the electrical steel plates MS or the electrical steel plates MR are fastened together by welding, resin or adhesive. Also good.

上記実施形態においては、被加工板Wから加工体WSのみを製造する場合を例示したが、被加工板Wから加工体WR及び加工体WSの両方を製造してもよい。   In the above embodiment, the case where only the workpiece WS is manufactured from the workpiece plate W has been exemplified, but both the workpiece WR and the workpiece WS may be manufactured from the workpiece plate W.

上記実施形態においては、一体型の積層鉄心S,R及びその製造方法を例示したが、本発明は一体型の積層鉄心S,Rに限定されず、分割型の積層鉄心及びその製造方法に適用されてもよい。図13に示す積層鉄心Sは周方向に並ぶように配置された計12個の積層体30によって構成されている。各積層体30にはダミーカシメ部30aが設けられている。ダミーカシメ部30aは積層体30を溶接、接着又は樹脂材料で締結した後に取り外される。なお、積層体30及びダミーカシメ部30aの個数は12個に限定されるものではない。 In the above embodiment, the monolithic laminated cores S and R and the manufacturing method thereof are exemplified. However, the present invention is not limited to the monolithic laminated cores S and R, and is applied to the split type laminated cores and the manufacturing method thereof. May be. The laminated iron core SD shown in FIG. 13 is configured by a total of twelve laminated bodies 30 arranged in a circumferential direction. Each laminated body 30 is provided with a dummy caulking portion 30a. The dummy caulking portion 30a is removed after the laminated body 30 is fastened by welding, adhesion, or a resin material. In addition, the number of the laminated bodies 30 and the dummy caulking portions 30a is not limited to twelve.

2R,2S…カシメ、140…順送り金型(金型)、C1,C2…巻重体、F…油膜、M1,M2…電磁鋼板、M1a…電磁鋼板の縁部、R…回転子用の積層鉄心、S…固定子用の積層鉄心、S…分割型の積層鉄心、W…被加工板、WR,WS…加工体。 2R, 2S ... caulking, 140 ... progressive die (die), C1, C2 ... winding, F ... oil film, M1, M2 ... electromagnetic steel plate, M1a ... edge of electromagnetic steel plate, R ... laminated iron core for rotor , S: laminated iron core for stator, S D : split laminated iron core, W: work plate, WR, WS: processed body.

Claims (8)

(a)少なくとも二つの電磁鋼板の巻重体を準備する工程と、
(b)それぞれの前記巻重体から引き出され且つ重ね合された状態で互いに固定された少なくとも二枚の電磁鋼板からなる被加工板を金型に供給する工程と、
(c)前記金型において前記被加工板の打抜き加工を行う工程と、
を備え、
二つの前記巻重体を構成する二枚の前記電磁鋼板の幅が互いに相違する、打抜き方法。
(A) preparing a roll of at least two electrical steel sheets;
(B) supplying a work plate made of at least two electromagnetic steel plates pulled out from each of the winding bodies and fixed to each other in a superposed state to a mold;
(C) a step of punching the work plate in the mold;
With
The punching method in which the widths of the two electromagnetic steel sheets constituting the two wound bodies are different from each other.
前記被加工板を構成する複数の前記電磁鋼板は、これらの電磁鋼板の間に形成された油膜によって互いに固定されている、請求項1に記載の打抜き方法。   The punching method according to claim 1, wherein the plurality of electromagnetic steel plates constituting the workpiece plate are fixed to each other by an oil film formed between the electromagnetic steel plates. 前記被加工板を構成する複数の前記電磁鋼板は、溶接、カシメ又は接着剤によって互いに固定されている、請求項1又は2に記載の打抜き方法。   The punching method according to claim 1 or 2, wherein the plurality of electromagnetic steel plates constituting the workpiece plate are fixed to each other by welding, caulking, or an adhesive. 前記金型内において、前記被加工板を構成する複数の電磁鋼板のうち、最も下方に位置する電磁鋼板の幅が最も大きい、請求項1〜3のいずれか一項に記載の打抜き方法。   The punching method according to any one of claims 1 to 3, wherein a width of an electromagnetic steel sheet located at a lowermost position among a plurality of electromagnetic steel sheets constituting the workpiece plate is the largest in the mold. 前記金型は順送り金型であり、(c)前記金型において前記被加工板を打抜き加工する工程と、(d)前記被加工板を前記金型内において前進させる工程とを繰り返すことにより、複数の電磁鋼板が重なり且つ所定の形状に加工された加工体を連続的に製造する、請求項1〜4のいずれか一項に記載の打抜き方法。   The mold is a progressive mold, and (c) a step of punching the processed plate in the mold and (d) a step of moving the processed plate forward in the mold, The punching method as described in any one of Claims 1-4 which manufactures the processed body by which the some electromagnetic steel plate overlapped and was processed into the predetermined shape continuously. 前記(c)工程において、前記被加工板を構成する複数の電磁鋼板のうち、最も幅が広い電磁鋼板のみを貫通するようにパイロット孔を形成する、請求項4に記載の打抜き方法。   5. The punching method according to claim 4, wherein, in the step (c), a pilot hole is formed so as to penetrate only the widest electromagnetic steel plate among the plurality of electromagnetic steel plates constituting the workpiece plate. 前記(c)工程において、前記被加工板を構成する複数の電磁鋼板のうち、最も幅が広い電磁鋼板を貫通するとともに、次に幅が広い電磁鋼板の縁部を含む領域を貫通するようにパイロット孔を形成する、請求項4に記載の打抜き方法。   In the step (c), among the plurality of electromagnetic steel sheets constituting the workpiece plate, the electromagnetic steel sheet having the widest width is penetrated and the region including the edge of the next wide electromagnetic steel sheet is penetrated. The punching method of Claim 4 which forms a pilot hole. 前記電磁鋼板の厚さは0.1〜0.3mmである、請求項1〜7のいずれか一項に記載の打抜き方法。   The punching method according to any one of claims 1 to 7, wherein the thickness of the electromagnetic steel sheet is 0.1 to 0.3 mm.
JP2014224244A 2014-11-04 2014-11-04 Punching method Pending JP2016092949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224244A JP2016092949A (en) 2014-11-04 2014-11-04 Punching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224244A JP2016092949A (en) 2014-11-04 2014-11-04 Punching method

Publications (1)

Publication Number Publication Date
JP2016092949A true JP2016092949A (en) 2016-05-23

Family

ID=56017290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224244A Pending JP2016092949A (en) 2014-11-04 2014-11-04 Punching method

Country Status (1)

Country Link
JP (1) JP2016092949A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104403A1 (en) * 2015-12-15 2017-06-22 三菱電機株式会社 Core sheet, divided laminated core, stator, and method for manufacturing divided laminated core
WO2018127983A1 (en) * 2017-01-09 2018-07-12 黒田精工株式会社 Laminated iron core production device and production method
JP2018137385A (en) * 2017-02-23 2018-08-30 新日鐵住金株式会社 Core manufacturing device and core manufacturing method
JP2021093908A (en) * 2021-02-24 2021-06-17 黒田精工株式会社 Manufacturing device and manufacturing method of laminated iron core
WO2024052519A1 (en) * 2022-09-08 2024-03-14 Magna powertrain gmbh & co kg Method of producing multilayer material prior to stamping press for electric motor laminated components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281841A (en) * 1987-04-27 1988-11-18 アームコ・インコーポレイテッド Laminate and forming method thereof
JPH04148927A (en) * 1990-10-15 1992-05-21 Armco Inc Method of forming a lamination layer and its product
JP2003189515A (en) * 2001-12-21 2003-07-04 Mitsubishi Electric Corp Laminated core and method of manufacturing the same
JP2005175238A (en) * 2003-12-12 2005-06-30 Nippon Steel Corp Manufacturing method of laminated iron core for transformer
JP2005348456A (en) * 2004-05-31 2005-12-15 Toshiba Corp Process for manufacturing core of rotary machine
JP2007190570A (en) * 2006-01-17 2007-08-02 Mitsui High Tec Inc Feeding method and feeding device in press machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281841A (en) * 1987-04-27 1988-11-18 アームコ・インコーポレイテッド Laminate and forming method thereof
JPH04148927A (en) * 1990-10-15 1992-05-21 Armco Inc Method of forming a lamination layer and its product
JP2003189515A (en) * 2001-12-21 2003-07-04 Mitsubishi Electric Corp Laminated core and method of manufacturing the same
JP2005175238A (en) * 2003-12-12 2005-06-30 Nippon Steel Corp Manufacturing method of laminated iron core for transformer
JP2005348456A (en) * 2004-05-31 2005-12-15 Toshiba Corp Process for manufacturing core of rotary machine
JP2007190570A (en) * 2006-01-17 2007-08-02 Mitsui High Tec Inc Feeding method and feeding device in press machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104403A1 (en) * 2015-12-15 2017-06-22 三菱電機株式会社 Core sheet, divided laminated core, stator, and method for manufacturing divided laminated core
WO2018127983A1 (en) * 2017-01-09 2018-07-12 黒田精工株式会社 Laminated iron core production device and production method
CN109643941A (en) * 2017-01-09 2019-04-16 黑田精工株式会社 Laminated iron core manufacturing device and manufacturing method
JPWO2018127983A1 (en) * 2017-01-09 2019-11-07 黒田精工株式会社 Manufacturing apparatus and manufacturing method of laminated iron core
CN109643941B (en) * 2017-01-09 2021-10-01 黑田精工株式会社 Laminated core manufacturing apparatus and manufacturing method
CN113783378A (en) * 2017-01-09 2021-12-10 黑田精工株式会社 Manufacturing apparatus and manufacturing method of laminated iron core
US11355282B2 (en) 2017-01-09 2022-06-07 Kuroda Precision Industries Ltd. Manufacturing method for laminated iron core
JP2018137385A (en) * 2017-02-23 2018-08-30 新日鐵住金株式会社 Core manufacturing device and core manufacturing method
JP2021093908A (en) * 2021-02-24 2021-06-17 黒田精工株式会社 Manufacturing device and manufacturing method of laminated iron core
WO2024052519A1 (en) * 2022-09-08 2024-03-14 Magna powertrain gmbh & co kg Method of producing multilayer material prior to stamping press for electric motor laminated components

Similar Documents

Publication Publication Date Title
US10411568B2 (en) Method of manufacturing laminated core
JP2016092949A (en) Punching method
JP6343556B2 (en) Laminated body for laminated iron core, method for producing the same, and method for producing laminated iron core
CA2929174C (en) Method for manufacturing workpiece and method for manufacturing laminated core
US10720802B2 (en) Laminated core and method for producing same
JP2006353001A (en) Laminated iron core and its manufacturing method and apparatus
JP2017017855A (en) Manufacturing method for laminated core
WO2015111096A1 (en) Laminated iron core manufacturing device and laminated iron core manufacturing method
JP6438731B2 (en) Punching method, punching apparatus, and method for manufacturing laminated iron core
JP5991241B2 (en) Core manufacturing method
JP2016540480A (en) Method for producing a lamination for a lamination pack, in particular for electrical machines and generators, an apparatus having at least one punch press, and a lamination and a lamination pack produced according to the method
CN107107141A (en) Sequentially-fed processing method
JP6392089B2 (en) Punching method, punching apparatus, and method for manufacturing laminated iron core
JP5338190B2 (en) Manufacturing apparatus and manufacturing method of laminated iron core
JP2013090386A (en) Method of manufacturing core for dynamo-electric machine, and core plate punching device
JP2019054727A (en) Method for manufacturing laminated iron core
CN109672305B (en) Method for manufacturing laminated iron core
JP5291774B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP6400458B2 (en) Punching method and laminated iron core manufacturing method
JP2017093191A (en) Laminated iron core and manufacturing method thereof
JP5697640B2 (en) Laminated core manufacturing method and laminated core manufacturing apparatus
CN108141116B (en) Method for manufacturing laminated iron core
KR20140071918A (en) Armture manufacturing method and progressive die apparatus
JP5016650B2 (en) Method for manufacturing unit laminated body for annular laminated iron core
JP7292348B2 (en) LAMINATED CORE MANUFACTURING METHOD AND LAMINATED CORE MANUFACTURING APPARATUS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008