JP2005020972A - Manufacturing method and manufacturing device of laminated core - Google Patents

Manufacturing method and manufacturing device of laminated core Download PDF

Info

Publication number
JP2005020972A
JP2005020972A JP2003186288A JP2003186288A JP2005020972A JP 2005020972 A JP2005020972 A JP 2005020972A JP 2003186288 A JP2003186288 A JP 2003186288A JP 2003186288 A JP2003186288 A JP 2003186288A JP 2005020972 A JP2005020972 A JP 2005020972A
Authority
JP
Japan
Prior art keywords
core
core piece
laminated
piece
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186288A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamamoto
一之 山本
Hiroyuki Akita
裕之 秋田
Akira Hashimoto
昭 橋本
Yuji Nakahara
裕治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003186288A priority Critical patent/JP2005020972A/en
Publication of JP2005020972A publication Critical patent/JP2005020972A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing device of a laminated core, by which a split type stator superior in magnetic characteristics and mechanical characteristics (rigidity) is obtained, without making a die and a press larger in size, even when the laminated core used for stators of intermediate- and large-sized rotary machines is manufactured. <P>SOLUTION: The manufacturing device includes the die having a single portion punching parts 5, 6 which selectively punch a concave portion 22a of an end or the other end of a single core piece 22, and a punching portion 7 as a whole which punches the single core piece 22 as a whole, a feeder 3 that feeds an electromagnetic steel plate 2 to the die 1, and a laminated portion 8a which receives the punched single core piece 22, wherein a laminating device is equipped, by which the single core piece 22 is arranged with a convex portion 22b and the concave portion 22a confronted each other, by causing the single core piece 22 received at the laminating portion 8a to move in order into a ring form. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、モータ等の固定子に使用される積層鉄心の製造方法及び製造装置に関するものである。
【0002】
【従来の技術】
回転機の固定子等には、電磁鋼板をプレスで打ち抜いてコア片を形成し、このコア片を積層して形成した積層鉄心が用いられる。
【0003】
積層鉄心に装着する巻線の占積率を向上させるために、ティース毎に分割した単コア片を形成し、各単コア片を積層して分割ティースを形成し、この分割ティースに巻線をした後、分割ティースをつなぎ合わせてコイルが装着された積層鉄心を組み立てることが行われる。
【0004】
例えば、ティース毎に分割した単コア片をプレスで打ち抜き、積層し、レーザ溶接によって溶接して複数の分割ティースを形成し、分割ティースの嵌め合わせ部を嵌め合わせることによって組み立てる分割型固定子用積層鉄心がある(例えば、特許文献1)。
【0005】
しかしながら、このように分割ティースを嵌め合わせることによって組み立てる分割型固定子用積層鉄心では、嵌め合わせ部における磁気抵抗が大きいので磁気特性が悪く、また、嵌め合わせのために機械的特性(剛性)が悪いという問題がある。
【0006】
この問題に対して、分割ティースの端部同士が重なり合うように組み立てるものがある(例えば、特許文献2)。
【0007】
また、各ティース間が薄肉部で連結されるとともに、直線状に並んだ単コア片をプレスで打ち抜き、この単コア片を積層して積層鉄心を形成し、薄肉部でティース間を屈曲させて積層鉄心の巻線部間を広げて巻線を行い、巻線の占積率を向上させるものがある(例えば、特許文献3)。
【0008】
【特許文献1】
特開平7−298522号公報(第2−3頁、図1)
【特許文献2】
特開2000−201458号公報(第5−6頁、図1,2)
【特許文献3】
特開平9−191588号公報(第4−5頁、図1,2)
【0009】
【発明が解決しようとする課題】
上記特許文献2及び3の積層鉄心の製造方法では、積層する1層分の単コア片をプレスで打ち抜くことが必要であるので、中型または大型の回転機に適用するためには、大型の金型及びこれに対応した大型のプレス機が必要になるという問題がある。
【0010】
また、横方向に一列に並んだ単コア片を打ち抜くためには、幅広の帯状の電磁鋼板が必要になり、縦方向に並んだ単コア片を打ち抜くためには、幅広の帯状の電磁鋼板は必要としないが、鋼板の搬送距離が大きくなり高速の搬送装置が必要になるという問題がある。
【0011】
この発明は、上記のような問題を解決し、中大型の回転機の固定子に用いられる積層鉄心を製造する場合にも、金型及びプレス機を大型にすることなく、磁気特性及び機械特性(剛性)に優れた分割型固定子が得られる積層鉄心の製造方法及び製造装置を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
この発明に係る積層鉄心の製造方法は、電磁鋼板を打ち抜いて、コアバックと該コアバックから突出した巻線部とを有する単コア片を形成し、該単コア片を積層した分割ティースを形成するとともに、上記分割ティースをつなぎ合わせる積層鉄心の製造方法において、
上記コアバックの一端に凸形状部が形成され、他端に凹形状部が形成された第1のコア片を打ち抜き、該第1のコア片の凸形状部と凹形状部とを対向させて上記第1のコア片を配列することにより第1の層を形成する工程、
上記第1のコア片とは逆向きに凸形状部と凹形状部が上記コアバックに形成された第2のコア片を打ち抜き、該第2のコア片の凸形状部と凹形状部とを対向させ上記第2のコア片を配列することにより第2の層を形成し、かつ、上記第2のコア片の凸形状部を上記第1のコア片の凸形状部とを重ね合わせて上記第2の層を上記第1の層に積層する工程、
上記第1のコア片の凸形状部を上記第2のコア片の凸形状部とを重ね合わせて上記第1の層を上記第2の層に積層する工程を備え、
上記第2の層を上記第1の層に積層する工程及び上記第1の層を上記第2の層に積層する工程を順次繰り返して所定の積層数積層するものである。
【0013】
この発明に係る積層鉄心の製造装置は、電磁鋼板を打ち抜いて、コアバックと該コアバックから突出した巻線部とを有する単コア片を形成し、該単コア片を積層した分割ティースを形成するとともに、上記分割ティースをつなぎ合わせる積層鉄心の製造装置において、
上記コアバックの一端に凸形状部が形成され、他端に凹形状部が形成された第1のコア片及び上記第1のコア片とは逆向きに凸形状部と凹形状部が上記コアバックに形成された第2のコア片を選択的に打ち抜く金型、
上記電磁鋼板を金型内に搬送する送り装置、
打ち抜かれた上記第1のコア片及び第2のコア片を受ける積層部を有し、該積層部に受けたコア片を順次移動させることにより上記凸形状部と凹形状部とを対向させて上記第1のコア片及び上記第2のコア片それぞれを配列する積層装置、を備えたものである。
【0014】
【発明の実施の形態】
以下に、図面に基づき、この発明の実施の形態を説明する。
実施の形態1.
図1は、この発明に係る積層鉄心の製造装置における実施の形態1の構成を示す平面図(a)及び側面図(b)である。
【0015】
同図において、鉄心材である電磁鋼板2は、送り装置3によって金型1内へ搬送される。
【0016】
金型1は、バックコア22eとバックコア22eから突出する巻線部22fとを有する単コア片22のバックコア22eの端部同士が嵌り合う凸形状部22bと凹形状部22aの中の凹形状部22aを打ち抜く端部打ち抜き部5、6と凸形状部22を含む単コア片22全体を打ち抜く全体打ち抜き部7を備え、端部打ち抜き部5は、単コア片22の一方の端部を打ち抜き、端部打ち抜き部6は反対側の端部を打ち抜く。
【0017】
端部打ち抜き部5、6は、シリンダなどの駆動装置により、いずれか一方を選択的に作動させることができるように構成されている。
【0018】
金型1で打ち抜かれた単コア片22は、ガイドピン8にガイドされることにより、崩れることなく積層装置4の積層部8aへ挿入される。その後、積層装置4は、ステップモータ23で積層部8aへ挿入された単コア片22を、次の単コア片22が挿入できるように回転する。
【0019】
図2は、積層装置4内において積層鉄心が組み立てられる様子を示す平面図である。
【0020】
まず、金型1の端部打ち抜き部5及び全体打ち抜き部7で打ち抜かれた単コア片22は、図2(a)に示したように、積層装置4内において隣り合う単コア片22の凸形状部2bと凹形状部2aが嵌り合うように次の単コア片22が順次挿入され、第1層が形成される。
【0021】
次に、金型1の端部打ち抜き部6及び全体打ち抜き部7で打ち抜かれた単コア片22は、図2(b)に示したように、破線で示した第1層の上に、隣り合う単コア片22の凸形状部22bと凹形状部22aが嵌り合うように次の単コア片22が順次挿入され、第2層が形成される。この時、凸形状部22b及び凹形状部2aの向きは、第1層と第2層とで逆向きになっているので、第1層の凸形状部2bと第2層の凸形状部2bとを重ね合わせ、かつ、第2層の単コア片22が第1層の凸形状部22bと凹形状部22aとの嵌合部をまたぐようにすることができる。
【0022】
次に、第1層と同様の単コア片22の打ち抜き及び積層を行って第3層を形成し、その後、第2層同様の単コア片22の打ち抜き及び積層を行って第4層を形成する。この打ち抜き及び積層を繰り返して、図2(c)に示したように、所定の積層数nの積層鉄心24を製造する。
【0023】
積層鉄心24は、図2(c)の矢印で示した各分割ティース24aの外周中央部において層間を溶接あるいは接着等の接合手段により接合して一体化される。
【0024】
図3は、この実施の形態の製造装置で作成された積層鉄心を示す斜視図であり、(a)は完成したときの状態を示し、この完成した積層鉄心は(b)に示したように、各分割ティース24aの連結部24bで隣り合う分割ティース24a同士を屈曲させることができる。図3(b)に示したように、連結部24bで隣り合う分割ティース24a同士を屈曲させ、分割ティース24aの巻線部24c間を広げることにより、巻線性がよくなり、高密度に巻線を行うことができる。
【0025】
図4は、巻線工程の状態を示す平面図である。図4(a)に示したように、完成した積層鉄心24は、各分割ティース2aを挟み込む保持部9aを蝶番状部9bで連結した治具9で保持され、巻線部24cに絶縁材10を取り付けた後、図4(b)に示したように、蝶番状部9bで保持部9aを屈曲させて巻線機11で巻線を行う。この巻線における巻線の締め付け力によって、層間を強固に固定することができる。
【0026】
この実施の形態では、単コア片22単位で打ち抜くので、プレス荷重は小さくてすみ、小型で安価なプレス機及び金型を使用することができる。
【0027】
また、各層間の単コア片22は、凸形状部22bで重なり合うように積層されているので、磁気特性がよく、かつ、各層間で凸形状部22bの向きが逆向きになっているので、凸形状部22bと凹形状部22aとの嵌め合わせ部が積層方向において単コア片22間に挟まれ、機械強度(剛性)に優れた積層鉄心が得られる。
【0028】
実施の形態2.
図5は、この発明に係る積層鉄心の製造装置における実施の形態2の構成を示す平面図(a)及び側面図(b)であり、上記実施の形態1と同一符号は同一部分または相当部分を示す。
【0029】
この実施の形態は、上記実施の形態1とは金型1の構成が異なり、送り装置3及び積層装置4の構成は上記実施の形態1と同じである。
【0030】
図5(a)に示したように、金型1は、単コア片22の一方の端部が凹形状で他方の端部が凸形状の単コア片22を微小連結部14で電磁鋼板2につなぎ止めるように打ち抜く第1の打ち抜き部12と、第1の打ち抜き部12とは凹形状及び凸形状を逆方向の端部に形成した単コア片22を微小連結部14で電磁鋼板2につなぎ止めるように打ち抜く第2の打ち抜き部13と、微小連結部を切断するダイパンチ機構15と、ダイパンチ機構15に併設されたノックアウト機構16とを備えている。
【0031】
第1の打ち抜き部12及び第2の打ち抜き部13は、シリンダなどの駆動装置により、いずれか一方を選択的に作動させることができる。
【0032】
また、積層装置4上においてダイパンチ機構15によって微小連結部14が切断されると、同時に、打ち抜かれた単コア片22はノックアウト機構1によって積層装置4の積層部に押し出される。
【0033】
単コア片22の打ち抜きサイクルが高速になると、ダイの厚さが障害となって、打ち抜かれた単コア片22をダイの下部に設けた積層装置4の積層部に高速に搬送することが困難になるが、この実施の形態では、積層装置4上において微小連結部14のみを打ち抜くのでダイの厚さAを薄くすることができ、打ち抜きサイクルが高速になっても、安定して、打ち抜かれた単コア片22をダイの下部に設けた積層装置4の積層部に高速に搬送することができる。
【0034】
積層鉄心の組み立ては、上記実施の形態1と同様に行われる。まず、第1の打ち抜き部12で打ち抜かれた後、ダイパンチ機構15によって微小連結部14が切断されると、同時に、打ち抜かれた単コア片22はノックアウト機構1によって積層装置4に押し出される。
【0035】
積層装置4は、次に打ち抜かれる単コア片22が積層装置4内において隣り合う単コア片22の凸形状部2bと凹形状部2aが嵌り合うような位置に回転し、次の単コア片22が順次打ち抜かれ、挿入され、第1層が形成される。
【0036】
次に、第2の打ち抜き部13で単コア片22が打ち抜かれ、ダイパンチ機構15によって微小連結部14が切断され、ノックアウト機構1によって積層装置4に押し出され、第1層上に積層される。単コア片22は、第1層の上に、隣り合う単コア片22の凸形状部2bと凹形状部2aが嵌り合うように順次挿入され、第2層が形成される。この時、凸形状部2b及び凹形状部2aの向きは、第1層と第2層とで逆向きになっているので、第1層の凸形状部2bと第2層の凸形状部2bとを重ね合わせ、かつ、第1層の凸形状部2bと凹形状部2aとの嵌合部を第2層の単コア片22がまたぐようにすることができる。
【0037】
次に、第1層と同様の単コア片22の打ち抜き及び積層を行って第3層を形成し、その後、第2層同様の単コア片22の打ち抜き及び積層を行って第4層を形成する。この打ち抜き及び積層を繰り返して、所定の積層数の積層鉄心24を製造する。
【0038】
積層鉄心24は、各分割ティース24aの外周中央部において層間を溶接あるいは接着等の接合手段により接合して一体化される。
【0039】
この実施の形態では、単コア片22単位で打ち抜くので、プレス荷重は小さくてすみ、小型で安価なプレス機及び金型を使用することができる。
【0040】
また、各層間の単コア片22は、凸形状部22bで重なり合うように積層されているので、磁気特性がよく、かつ、各層間で凸形状部22bの向きが逆向きになっているので、凸形状部22bと凹形状部22aとの嵌め合わせ部が積層方向において単コア片22間に挟まれ、機械強度(剛性)に優れた積層鉄心が得られる。
【0041】
実施の形態3.
図6は、この発明に係る積層鉄心の製造装置における実施の形態3の構成を示す平面図(a)及び側面図(b)であり、上記実施の形態1と同一符号は同一部分または相当部分を示す。
【0042】
この実施の形態では、図6に示したように、積層部8aに積層ベース17を設け、積層ベース17をモータ17a等で上下に駆動するようにしたものである。
【0043】
積層ベース17は、ダイパンチ機構15のダイ下部と積層下単コア片22の上面との距離が一定距離Cとなるように、1層の積層終了毎に単コア片22の板圧分だけ下降するようにプログラムされている。
【0044】
積層枚数が多い場合、積層の初期においては、積層部8aが深いため、打ち抜かれた単コア片22が傾いたり、正しい位置に積層できないという問題が発生するが、この実施の実施の形態では、積層ベース17を上下させることによってダイ下部と積層された単コア片22の上面との間を常に距離Cに保つことができるので、打ち抜かれた単コア片22を安定して積層することができる。
【0045】
実施の形態4.
図7は、この発明に係る積層鉄心の製造装置における実施の形態4の構成を示す平面図(a)及び側面図(b)であり、上記実施の形態1と同一符号は同一部分または相当部分を示す。
【0046】
この実施の形態では、図7に示したように、積層装置18が直線状に移動し、金型1で打ち抜かれた単コア片22は直線状に配列された状態で積層され、直線状の積層鉄心が得られる。
【0047】
この実施の形態では、直線状の積層鉄心が得られるので、分割ティース間を屈曲させず、図8に示すように、直線状態のままで巻線機19による巻線を行うことができ、作業時間を短縮することができる。
【0048】
実施の形態5.
図9は、この発明に係る積層鉄心の製造装置における実施の形態5の構成を示す平面図であり、上記実施の形態1と同一符号は同一部分または相当部分を示す。
【0049】
この実施の形態では、図9に示したように、単コア片22のコイルを巻回する歯部22cを外周側に突出させるように積層装置4に挿入し、積層工程を行うことによって、このままの積層状態でコイルを巻回する。
【0050】
この実施の形態では、コイルを巻回する歯部22c周辺の空間が大きく空くので、巻線における障害物がなくなり、高速で、巻線に対するダメージの少ない巻回ができる。
【0051】
実施の形態6.
図10は、この発明に係る積層鉄心の製造装置における実施の形態6の構成を示す平面図(a)及び側面図(b)であり、上記実施の形態1と同一符号は同一部分または相当部分を示す。
【0052】
この実施の形態では、図10に示したように、第1の打ち抜き部12または第2の打ち抜き部13により微小連結部14で電磁鋼板2つなぎ止めるように打ち抜かれた単コア片22の凸形状部22bに、ダイ・パンチ20で、表面側が凹で裏面側が凸の嵌合部22dを形成した後、微小連結部14を切断し、単コア片22を積層装置4に挿入する。
【0053】
この実施の形態によれば、積層された単コア片22は、嵌合部22dで上下間の位置が固定されるので積層間のずれが少なく、精度のよい状態で積層することができる。
【0054】
また、図11に示したように、嵌合部22dにおける凹凸のすきまを小さくし、かしめることによって、上下間の単コア片22同士を固定することができる。
【0055】
実施の形態7.
図12は、この発明に係る積層鉄心の製造装置における実施の形態7の構成を示す平面図、図13は、単コア片を積層装置で積層した状態を示す平面図であり、上記実施の形態1と同一符号は同一部分または相当部分を示す。
【0056】
この実施の形態では、図12に示した積層鉄心の製造装置における積層装置18で、図13に示したように、下層とその上層の凸形状部22bが完全に重なった状態(b)から少しずらして凸形状部22bと凹形状部22aとの間にすき間22cができる状態(a)で積層する。
【0057】
図14は、積層された鉄心を固定子に組み上げる工程を示す平面図である。同図に示したように、積層された鉄心24を図示していない治具で挟み込み(a)、次に、巻線機19で各分割ティース24aに巻線をし(b)、各分割ティース24aにコイル24eを装着する(c)。
【0058】
次に、ディスペンサ21で、連結部のすき間22cに接着剤を塗布する(d)。接着剤には、例えば、低粘度の熱硬化性接着剤を使用する。
【0059】
次に、コイルを装着した積層鉄心24を円筒形に丸め、固定子の形状にし、この状態で加熱炉に入れ、接着剤を硬化させて固定子が完成する(c)。
【0060】
この実施の形態によれば、接着剤が層間の凸形状部22bの重なり部を伝わって広い範囲の単コア片間に浸透し、同一層における単コア片及び層間の単コア片の固定が強固になされるので、固定子としての剛性が高くなり、振動の少ない回転機が得られる。
【0061】
【発明の効果】
この発明に係る積層鉄心の製造方法によれば、電磁鋼板を打ち抜いて、コアバックと該コアバックから突出した巻線部とを有する単コア片を形成し、該単コア片を積層した分割ティースを形成するとともに、上記分割ティースをつなぎ合わせる積層鉄心の製造方法において、
上記コアバックの一端に凸形状部が形成され、他端に凹形状部が形成された第1のコア片を打ち抜き、該第1のコア片の凸形状部と凹形状部とを対向させて上記第1のコア片を配列することにより第1の層を形成する工程、
上記第1のコア片とは逆向きに凸形状部と凹形状部が上記コアバックに形成された第2のコア片を打ち抜き、該第2のコア片の凸形状部と凹形状部とを対向させ上記第2のコア片を配列することにより第2の層を形成し、かつ、上記第2のコア片の凸形状部を上記第1のコア片の凸形状部とを重ね合わせて上記第2の層を上記第1の層に積層する工程、
上記第1のコア片の凸形状部を上記第2のコア片の凸形状部とを重ね合わせて上記第1の層を上記第2の層に積層する工程を備え、
上記第2の層を上記第1の層に積層する工程及び上記第1の層を上記第2の層に積層する工程を順次繰り返して所定の積層数積層するものであるので、小型で安価なプレス機及び金型を使用することができ、また、磁気特性がよく、かつ、機械強度(剛性)に優れた積層鉄心が得られる。
【0062】
この発明に係る積層鉄心の製造装置によれば、電磁鋼板を打ち抜いて、コアバックと該コアバックから突出した巻線部とを有する単コア片を形成し、該単コア片を積層した分割ティースを形成するとともに、上記分割ティースをつなぎ合わせる積層鉄心の製造装置において、
上記コアバックの一端に凸形状部が形成され、他端に凹形状部が形成された第1のコア片及び上記第1のコア片とは逆向きに凸形状部と凹形状部が上記コアバックに形成された第2のコア片を選択的に打ち抜く金型、
上記電磁鋼板を金型内に搬送する送り装置、
打ち抜かれた上記第1のコア片及び第2のコア片を受ける積層部を有し、該積層部に受けたコア片を順次移動させることにより上記凸形状部と凹形状部とを対向させて上記第1のコア片及び上記第2のコア片それぞれを配列する積層装置、を備えたものであるので、小型で安価なプレス機及び金型を使用することができ、また、磁気特性がよく、かつ、機械強度(剛性)に優れた積層鉄心が得られる。
【図面の簡単な説明】
【図1】この発明に係る積層鉄心の製造装置における実施の形態1の構成を示す平面図(a)及び側面図(b)である。
【図2】実施の形態1の積層装置内において積層鉄心が組み立てられる様子を示す平面図である。
【図3】実施の形態1の製造装置で作成された積層鉄心を示す斜視図である。
【図4】実施の形態1における巻線工程の状態を示す平面図である。
【図5】この発明に係る積層鉄心の製造装置における実施の形態2の構成を示す平面図(a)及び側面図(b)である。
【図6】この発明に係る積層鉄心の製造装置における実施の形態3の構成を示す平面図(a)及び側面図(b)である。
【図7】この発明に係る積層鉄心の製造装置における実施の形態4の構成を示す平面図(a)及び側面図(b)である。
【図8】実施の形態4における巻線工程を示す平面図である。
【図9】この発明に係る積層鉄心の製造装置における実施の形態5の構成を示す平面図である。
【図10】この発明に係る積層鉄心の製造装置における実施の形態6の構成を示す平面図(a)及び側面図(b)である。
【図11】実施の形態6における嵌合の状態を示す断面図である。
【図12】この発明に係る積層鉄心の製造装置における実施の形態7の構成を示す平面図である。
【図13】実施の形態7において、単コア片を積層装置で積層した状態を示す平面図。
【図14】実施の形態7において、積層された鉄心を固定子に組み上げる工程を示す平面図である。
【符号の説明】
1 金型、2 電磁鋼板、3 送り装置、4,18 積層装置、
5,6 端部打ち抜き部、7 全体打ち抜き部、8 ガイドピン、
8a 積層部、9 治具、9a 保持部、9b 蝶番状部、10 絶縁材、
11,19 巻線機、12 第1の打ち抜き部、13 第2の打ち抜き部、
14 微小連結部、15 ダイパンチ機構、16 ノックアウト機構、
17 積層ベース、17a モータ、20 ダイ・パンチ、
21 ディスペンサ、22 単コア片、22a 凹形状部、22b 凸形状部、22c すき間、22d 嵌合部、22e バックコア、22f 巻線部、
23 ステップモータ、24 積層鉄心、24a 分割ティース、
24b 連結部、24c 巻線部、24d 嵌合部、24e コイル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for manufacturing a laminated iron core used for a stator such as a motor.
[0002]
[Prior art]
For a stator of a rotating machine, a laminated iron core formed by punching an electromagnetic steel sheet with a press to form a core piece and laminating the core pieces is used.
[0003]
In order to improve the space factor of the windings attached to the laminated iron core, a single core piece divided for each tooth is formed, and each single core piece is laminated to form a divided tooth, and the winding is applied to this divided tooth. After that, it is performed to assemble the laminated iron core on which the coil is mounted by joining the divided teeth.
[0004]
For example, a single core piece divided for each tooth is punched out with a press, laminated, and welded by laser welding to form a plurality of divided teeth, and then assembled by fitting the fitting portions of the divided teeth together. There is an iron core (for example, patent document 1).
[0005]
However, the laminated core for a split type stator assembled by fitting the divided teeth in this way has a poor magnetic property because the magnetic resistance at the fitting portion is large, and the mechanical property (rigidity) for fitting is poor. There is a problem of being bad.
[0006]
There exists what is assembled so that the edge part of a division | segmentation tooth may overlap with respect to this problem (for example, patent document 2).
[0007]
In addition, each tooth is connected at the thin part, and single core pieces arranged in a straight line are punched out with a press, the single core pieces are laminated to form a laminated iron core, and the teeth are bent at the thin part. There is one that increases the space factor of the winding by winding between the winding portions of the laminated iron core (for example, Patent Document 3).
[0008]
[Patent Document 1]
JP-A-7-298522 (page 2-3, FIG. 1)
[Patent Document 2]
JP 2000-201458 A (Page 5-6, FIGS. 1 and 2)
[Patent Document 3]
JP-A-9-191588 (page 4-5, FIGS. 1 and 2)
[0009]
[Problems to be solved by the invention]
In the manufacturing method of the laminated cores of Patent Documents 2 and 3, it is necessary to punch out a single core piece for one layer to be laminated with a press. There is a problem that a mold and a large press corresponding to the mold are required.
[0010]
Moreover, in order to punch out single core pieces arranged in a row in the horizontal direction, a wide strip-shaped electrical steel sheet is required, and in order to punch out single core pieces aligned in the vertical direction, a wide strip-shaped electrical steel sheet is used. Although not required, there is a problem that the transport distance of the steel plate becomes large and a high-speed transport device is required.
[0011]
The present invention solves the above-described problems, and even in the case of manufacturing a laminated core used for a stator of a medium-sized or large-sized rotating machine, the magnetic characteristics and mechanical characteristics are obtained without increasing the size of the mold and the press machine. An object of the present invention is to provide a method and an apparatus for manufacturing a laminated core from which a split stator having excellent (rigidity) is obtained.
[0012]
[Means for Solving the Problems]
The method for manufacturing a laminated core according to the present invention includes punching out an electromagnetic steel sheet to form a single core piece having a core back and a winding portion protruding from the core back, and forming divided teeth in which the single core pieces are laminated. In addition, in the method of manufacturing a laminated core that joins the divided teeth,
A first core piece having a convex portion formed at one end of the core back and a concave portion formed at the other end is punched out, and the convex portion and the concave portion of the first core piece are opposed to each other. Forming the first layer by arranging the first core pieces;
A second core piece having a convex portion and a concave portion formed on the core back in a direction opposite to the first core piece is punched, and the convex portion and the concave portion of the second core piece are formed. A second layer is formed by arranging the second core pieces to face each other, and the convex shape portion of the second core piece is overlapped with the convex shape portion of the first core piece to Laminating a second layer on the first layer;
A step of stacking the first layer on the second layer by superimposing the convex portion of the first core piece on the convex portion of the second core piece;
The step of laminating the second layer on the first layer and the step of laminating the first layer on the second layer are sequentially repeated to form a predetermined number of layers.
[0013]
An apparatus for manufacturing a laminated core according to the present invention punches electromagnetic steel sheets to form a single core piece having a core back and a winding portion protruding from the core back, and forms a divided tooth by laminating the single core pieces. In addition, in the manufacturing apparatus of the laminated iron core that joins the divided teeth,
The first core piece in which the convex portion is formed at one end of the core back and the concave portion is formed at the other end, and the convex portion and the concave portion are opposite to the first core piece. A mold for selectively punching the second core piece formed on the back;
A feeding device for conveying the electromagnetic steel sheet into a mold;
It has a laminated part which receives the 1st core piece and the 2nd core piece which were pierce | punched, and makes the said convex shape part and a concave shape part oppose by moving the core piece received in this laminated part sequentially A laminating apparatus for arranging the first core piece and the second core piece, respectively.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a plan view (a) and a side view (b) showing the configuration of the first embodiment of the laminated core manufacturing apparatus according to the present invention.
[0015]
In the drawing, an electromagnetic steel plate 2 that is an iron core material is conveyed into a mold 1 by a feeding device 3.
[0016]
The mold 1 includes a convex portion 22b in which the ends of the back core 22e of the single core piece 22 having a back core 22e and a winding portion 22f protruding from the back core 22e are fitted, and a concave portion in the concave portion 22a. An end punched portion 5, 6 for punching the shape portion 22 a and an entire punched portion 7 for punching the entire single core piece 22 including the convex shape portion 22 are provided. The end punched portion 5 has one end portion of the single core piece 22. Punching, the end punching part 6 punches the opposite end.
[0017]
The end punching portions 5 and 6 are configured so that either one can be selectively operated by a driving device such as a cylinder.
[0018]
The single core piece 22 punched out by the mold 1 is inserted into the laminating portion 8a of the laminating device 4 without collapsing by being guided by the guide pins 8. Thereafter, the stacking device 4 rotates the single core piece 22 inserted into the stacking portion 8a by the step motor 23 so that the next single core piece 22 can be inserted.
[0019]
FIG. 2 is a plan view showing how the laminated iron core is assembled in the laminating apparatus 4.
[0020]
First, the single core piece 22 punched by the end punching portion 5 and the overall punching portion 7 of the mold 1 is a convex of the adjacent single core piece 22 in the laminating apparatus 4 as shown in FIG. The next single core pieces 22 are sequentially inserted so that the shape portion 2b and the concave shape portion 2a fit together, thereby forming the first layer.
[0021]
Next, the single core piece 22 punched by the end punching portion 6 and the entire punching portion 7 of the mold 1 is adjacent to the first layer indicated by the broken line as shown in FIG. The next single core piece 22 is sequentially inserted so that the convex shape portion 22b and the concave shape portion 22a of the matching single core piece 22 are fitted, and the second layer is formed. At this time, since the directions of the convex shape portion 22b and the concave shape portion 2a are opposite in the first layer and the second layer, the convex shape portion 2b of the first layer and the convex shape portion 2b of the second layer. And the single core piece 22 of the second layer straddles the fitting portion between the convex portion 22b and the concave portion 22a of the first layer.
[0022]
Next, the third layer is formed by punching and stacking the single core piece 22 similar to the first layer, and then the fourth layer is formed by punching and stacking the single core piece 22 similar to the second layer. To do. By repeating this punching and lamination, as shown in FIG. 2C, a laminated core 24 having a predetermined number n is manufactured.
[0023]
The laminated iron core 24 is integrated by joining the layers by joining means such as welding or adhesion at the center of the outer periphery of each of the divided teeth 24a indicated by the arrows in FIG.
[0024]
FIG. 3 is a perspective view showing a laminated core produced by the manufacturing apparatus of this embodiment, where (a) shows a state when completed, and this completed laminated core is as shown in (b). The adjacent divided teeth 24a can be bent at the connecting portion 24b of each divided tooth 24a. As shown in FIG. 3B, the adjacent divided teeth 24a are bent at the connecting portion 24b, and the space between the winding portions 24c of the divided teeth 24a is widened, so that the winding property is improved and the winding is performed at a high density. It can be performed.
[0025]
FIG. 4 is a plan view showing a state of the winding process. As shown in FIG. 4A, the completed laminated core 24 is held by a jig 9 in which holding portions 9a sandwiching each divided tooth 2a are connected by a hinge-like portion 9b, and the insulating material 10 is attached to the winding portion 24c. Then, as shown in FIG. 4 (b), the holding portion 9 a is bent by the hinge-shaped portion 9 b and winding is performed by the winding machine 11. The interlayer can be firmly fixed by the tightening force of the winding in this winding.
[0026]
In this embodiment, since punching is performed in units of 22 single core pieces, the press load is small, and a compact and inexpensive press machine and die can be used.
[0027]
In addition, since the single core pieces 22 between the layers are stacked so as to overlap with each other in the convex portion 22b, the magnetic characteristics are good, and the direction of the convex portion 22b is reversed between the layers. A fitting portion of the convex portion 22b and the concave portion 22a is sandwiched between the single core pieces 22 in the laminating direction, and a laminated iron core having excellent mechanical strength (rigidity) is obtained.
[0028]
Embodiment 2. FIG.
FIG. 5 is a plan view (a) and a side view (b) showing the configuration of the second embodiment in the laminated core manufacturing apparatus according to the present invention, where the same reference numerals as those in the first embodiment denote the same or corresponding parts. Indicates.
[0029]
This embodiment is different from the first embodiment in the configuration of the mold 1, and the configurations of the feeding device 3 and the laminating device 4 are the same as those in the first embodiment.
[0030]
As shown in FIG. 5 (a), the mold 1 includes a single core piece 22 having a concave shape at one end of the single core piece 22 and a convex shape at the other end. The first punching portion 12 punched to be connected to the first steel punching portion 12 and the first punching portion 12 are connected to the magnetic steel sheet 2 by the micro-connecting portion 14 with a single core piece 22 having a concave shape and a convex shape formed at opposite ends. The second punching portion 13 for punching in this way, the die punch mechanism 15 for cutting the minute coupling portion, and the knockout mechanism 16 provided along with the die punch mechanism 15 are provided.
[0031]
One of the first punching portion 12 and the second punching portion 13 can be selectively operated by a driving device such as a cylinder.
[0032]
Further, when the micro-connecting portion 14 is cut by the die punch mechanism 15 on the laminating device 4, the punched single core piece 22 is simultaneously pushed out to the laminating portion of the laminating device 4 by the knockout mechanism 1.
[0033]
When the punching cycle of the single core piece 22 becomes high speed, the thickness of the die becomes an obstacle, and it is difficult to transport the punched single core piece 22 to the stacking portion of the stacking apparatus 4 provided at the lower part of the die. However, in this embodiment, since only the micro-connecting portion 14 is punched on the laminating apparatus 4, the thickness A of the die can be reduced, and even if the punching cycle becomes high, punching can be performed stably. The single core piece 22 can be transported at high speed to the stacking portion of the stacking apparatus 4 provided at the lower part of the die.
[0034]
Assembling of the laminated iron core is performed in the same manner as in the first embodiment. First, after being punched by the first punching portion 12, when the micro-connecting portion 14 is cut by the die punch mechanism 15, the punched single core piece 22 is simultaneously pushed out to the laminating device 4 by the knockout mechanism 1.
[0035]
In the laminating apparatus 4, the single core piece 22 to be punched next is rotated to a position where the convex shape portion 2b and the concave shape portion 2a of the adjacent single core pieces 22 fit in the laminating apparatus 4, and the next single core piece 22 are sequentially punched and inserted to form the first layer.
[0036]
Next, the single core piece 22 is punched by the second punching portion 13, the micro-connecting portion 14 is cut by the die punch mechanism 15, pushed out to the stacking device 4 by the knockout mechanism 1, and stacked on the first layer. The single core pieces 22 are sequentially inserted on the first layer so that the convex shape portions 2b and the concave shape portions 2a of the adjacent single core pieces 22 are fitted to form a second layer. At this time, since the directions of the convex shape portion 2b and the concave shape portion 2a are opposite in the first layer and the second layer, the convex shape portion 2b of the first layer and the convex shape portion 2b of the second layer. And the single core piece 22 of the second layer straddles the fitting portion between the convex portion 2b and the concave portion 2a of the first layer.
[0037]
Next, the third layer is formed by punching and stacking the single core piece 22 similar to the first layer, and then the fourth layer is formed by punching and stacking the single core piece 22 similar to the second layer. To do. By repeating this punching and lamination, a laminated core 24 having a predetermined number of laminations is manufactured.
[0038]
The laminated iron core 24 is integrated by joining the layers by a joining means such as welding or adhesion at the center of the outer periphery of each divided tooth 24a.
[0039]
In this embodiment, since punching is performed in units of 22 single core pieces, the press load is small, and a compact and inexpensive press machine and die can be used.
[0040]
In addition, since the single core pieces 22 between the layers are stacked so as to overlap with each other in the convex portion 22b, the magnetic characteristics are good, and the direction of the convex portion 22b is reversed between the layers. A fitting portion of the convex portion 22b and the concave portion 22a is sandwiched between the single core pieces 22 in the laminating direction, and a laminated iron core having excellent mechanical strength (rigidity) is obtained.
[0041]
Embodiment 3 FIG.
FIG. 6 is a plan view (a) and a side view (b) showing the configuration of the third embodiment of the laminated core manufacturing apparatus according to the present invention, where the same reference numerals as those in the first embodiment denote the same or corresponding parts. Indicates.
[0042]
In this embodiment, as shown in FIG. 6, a laminated base 17 is provided in the laminated portion 8a, and the laminated base 17 is driven up and down by a motor 17a or the like.
[0043]
The laminated base 17 is lowered by the plate pressure of the single core piece 22 every time one layer is laminated so that the distance between the die lower part of the die punch mechanism 15 and the upper surface of the single laminated core piece 22 is a constant distance C. Is programmed to do so.
[0044]
When the number of stacked layers is large, since the stacked portion 8a is deep in the initial stage of stacking, there is a problem that the punched single core piece 22 is tilted or cannot be stacked at the correct position, but in this embodiment, By moving the laminated base 17 up and down, the distance between the lower part of the die and the upper surface of the laminated single core pieces 22 can always be kept at a distance C, so that the punched single core pieces 22 can be stably laminated. .
[0045]
Embodiment 4 FIG.
FIG. 7 is a plan view (a) and a side view (b) showing the configuration of the fourth embodiment of the laminated core manufacturing apparatus according to the present invention. Indicates.
[0046]
In this embodiment, as shown in FIG. 7, the laminating apparatus 18 moves linearly, and the single core pieces 22 punched out by the mold 1 are laminated in a linearly arranged state. A laminated iron core is obtained.
[0047]
In this embodiment, since a linear laminated iron core is obtained, it is possible to perform winding by the winding machine 19 in a straight state as shown in FIG. Time can be shortened.
[0048]
Embodiment 5 FIG.
FIG. 9 is a plan view showing the configuration of the fifth embodiment of the laminated core manufacturing apparatus according to the present invention. The same reference numerals as those in the first embodiment denote the same or corresponding parts.
[0049]
In this embodiment, as shown in FIG. 9, the tooth portion 22c around which the coil of the single core piece 22 is wound is inserted into the laminating apparatus 4 so as to protrude to the outer peripheral side, and the laminating process is performed, so that The coil is wound in the laminated state.
[0050]
In this embodiment, since the space around the tooth portion 22c around which the coil is wound is large, there is no obstacle in the winding, and the winding can be performed at high speed with little damage to the winding.
[0051]
Embodiment 6 FIG.
FIG. 10 is a plan view (a) and a side view (b) showing the configuration of the sixth embodiment of the laminated core manufacturing apparatus according to the present invention. The same reference numerals as those in the first embodiment denote the same or corresponding parts. Indicates.
[0052]
In this embodiment, as shown in FIG. 10, the convex portion of the single core piece 22 punched out by the first punched portion 12 or the second punched portion 13 so as to hold the two magnetic steel plates together by the minute connecting portion 14. In 22b, a die punch 20 is used to form a fitting portion 22d having a concave on the front side and a convex on the back side, and then the fine connecting portion 14 is cut and the single core piece 22 is inserted into the laminating apparatus 4.
[0053]
According to this embodiment, the stacked single core pieces 22 are fixed at the upper and lower positions by the fitting portion 22d, so that there is little displacement between the stacked layers, and can be stacked with high accuracy.
[0054]
Moreover, as shown in FIG. 11, the single core pieces 22 between the upper and lower sides can be fixed by reducing and caulking the unevenness in the fitting portion 22d.
[0055]
Embodiment 7 FIG.
FIG. 12 is a plan view showing the configuration of the seventh embodiment of the laminated core manufacturing apparatus according to the present invention, and FIG. 13 is a plan view showing a state in which the single core pieces are laminated by the lamination apparatus. The same reference numerals as 1 indicate the same or corresponding parts.
[0056]
In this embodiment, in the laminating apparatus 18 in the laminated core manufacturing apparatus shown in FIG. 12, as shown in FIG. 13, the lower layer and the upper convex portion 22b are slightly overlapped with each other (b). The layers are stacked in a state (a) where a gap 22c is formed between the convex portion 22b and the concave portion 22a.
[0057]
FIG. 14 is a plan view showing a process of assembling the laminated iron cores into the stator. As shown in the figure, the laminated iron core 24 is sandwiched by a jig (not shown) (a), and then the winding machine 19 winds the divided teeth 24a (b). A coil 24e is attached to 24a (c).
[0058]
Next, an adhesive is applied to the gap 22c of the connecting portion by the dispenser 21 (d). For the adhesive, for example, a low-viscosity thermosetting adhesive is used.
[0059]
Next, the laminated iron core 24 equipped with the coil is rounded into a cylindrical shape to form a stator. In this state, the laminated iron core 24 is placed in a heating furnace, and the adhesive is cured to complete the stator (c).
[0060]
According to this embodiment, the adhesive penetrates between the overlapping portions of the convex portions 22b between the layers and permeates between the single core pieces in a wide range, and the single core pieces in the same layer and the single core pieces between the layers are firmly fixed. Therefore, the rigidity as a stator is increased, and a rotating machine with less vibration is obtained.
[0061]
【The invention's effect】
According to the method for manufacturing a laminated iron core according to the present invention, a divided tooth obtained by punching an electromagnetic steel sheet to form a single core piece having a core back and a winding portion protruding from the core back, and laminating the single core pieces. In the manufacturing method of the laminated iron core that joins the divided teeth,
A first core piece having a convex portion formed at one end of the core back and a concave portion formed at the other end is punched out, and the convex portion and the concave portion of the first core piece are opposed to each other. Forming the first layer by arranging the first core pieces;
A second core piece having a convex portion and a concave portion formed on the core back in a direction opposite to the first core piece is punched, and the convex portion and the concave portion of the second core piece are formed. A second layer is formed by arranging the second core pieces to face each other, and the convex shape portion of the second core piece is overlapped with the convex shape portion of the first core piece to Laminating a second layer on the first layer;
A step of stacking the first layer on the second layer by superimposing the convex portion of the first core piece on the convex portion of the second core piece;
Since the step of laminating the second layer on the first layer and the step of laminating the first layer on the second layer are sequentially repeated and a predetermined number of layers are laminated, a small size and a low cost are obtained. A press machine and a mold can be used, and a laminated iron core having good magnetic properties and excellent mechanical strength (rigidity) can be obtained.
[0062]
According to the laminated iron core manufacturing apparatus of the present invention, a divided tooth obtained by punching out an electromagnetic steel sheet to form a single core piece having a core back and a winding portion protruding from the core back, and laminating the single core pieces. In the manufacturing apparatus of the laminated iron core that joins the divided teeth,
The first core piece in which the convex portion is formed at one end of the core back and the concave portion is formed at the other end, and the convex portion and the concave portion are opposite to the first core piece. A mold for selectively punching the second core piece formed on the back;
A feeding device for conveying the electromagnetic steel sheet into a mold;
It has a laminated part which receives the 1st core piece and the 2nd core piece which were pierce | punched, and makes the said convex shape part and a concave shape part oppose by moving the core piece received in this laminated part sequentially Since the apparatus includes the laminating apparatus for arranging the first core piece and the second core piece, a small and inexpensive press machine and a mold can be used, and the magnetic characteristics are good. In addition, a laminated core excellent in mechanical strength (rigidity) can be obtained.
[Brief description of the drawings]
FIG. 1A is a plan view and FIG. 1B is a side view showing the configuration of a first embodiment of a laminated core manufacturing apparatus according to the present invention.
FIG. 2 is a plan view showing a state in which a laminated core is assembled in the laminating apparatus according to the first embodiment.
3 is a perspective view showing a laminated iron core created by the manufacturing apparatus of Embodiment 1. FIG.
FIG. 4 is a plan view showing a state of a winding process in the first embodiment.
FIGS. 5A and 5B are a plan view and a side view showing the configuration of a second embodiment of the laminated core manufacturing apparatus according to the present invention. FIGS.
FIGS. 6A and 6B are a plan view and a side view showing a configuration of a third embodiment of the laminated core manufacturing apparatus according to the present invention. FIGS.
FIGS. 7A and 7B are a plan view and a side view showing a configuration of a fourth embodiment of the laminated core manufacturing apparatus according to the present invention. FIGS.
FIG. 8 is a plan view showing a winding process in the fourth embodiment.
FIG. 9 is a plan view showing a configuration of a fifth embodiment of the laminated core manufacturing apparatus according to the present invention.
FIGS. 10A and 10B are a plan view and a side view showing a configuration of a sixth embodiment of the laminated core manufacturing apparatus according to the present invention. FIGS.
FIG. 11 is a sectional view showing a fitting state in the sixth embodiment.
FIG. 12 is a plan view showing a configuration of a seventh embodiment of the laminated core manufacturing apparatus according to the present invention.
13 is a plan view showing a state in which single core pieces are laminated by a laminating apparatus in Embodiment 7. FIG.
14 is a plan view showing a process of assembling stacked iron cores into a stator in Embodiment 7. FIG.
[Explanation of symbols]
1 mold, 2 electrical steel sheet, 3 feeding device, 4,18 laminating device,
5, 6 End punched part, 7 Whole punched part, 8 Guide pin,
8a Laminated part, 9 Jig, 9a Holding part, 9b Hinged part, 10 Insulating material,
11, 19 Winding machine, 12 1st punching part, 13 2nd punching part,
14 micro coupling part, 15 die punch mechanism, 16 knockout mechanism,
17 laminated base, 17a motor, 20 die punch,
21 dispenser, 22 single core piece, 22a concave shape part, 22b convex shape part, 22c clearance, 22d fitting part, 22e back core, 22f winding part,
23 step motor, 24 laminated iron core, 24a divided teeth,
24b connecting part, 24c winding part, 24d fitting part, 24e coil.

Claims (13)

電磁鋼板を打ち抜いて、コアバックと該コアバックから突出した巻線部とを有する単コア片を形成し、該単コア片を積層した分割ティースを形成するとともに、上記分割ティースをつなぎ合わせる積層鉄心の製造方法において、
上記コアバックの一端に凸形状部が形成され、他端に凹形状部が形成された第1のコア片を打ち抜き、該第1のコア片の凸形状部と凹形状部とを対向させて上記第1のコア片を配列することにより第1の層を形成する工程、
上記第1のコア片とは逆向きに凸形状部と凹形状部が上記コアバックに形成された第2のコア片を打ち抜き、該第2のコア片の凸形状部と凹形状部とを対向させ上記第2のコア片を配列することにより第2の層を形成し、かつ、上記第2のコア片の凸形状部を上記第1のコア片の凸形状部とを重ね合わせて上記第2の層を上記第1の層に積層する工程、
上記第1のコア片の凸形状部を上記第2のコア片の凸形状部とを重ね合わせて上記第1の層を上記第2の層に積層する工程を備え、
上記第2の層を上記第1の層に積層する工程及び上記第1の層を上記第2の層に積層する工程を順次繰り返して所定の積層数積層することを特徴とする積層鉄心の製造方法。
A laminated iron core is formed by punching an electromagnetic steel sheet to form a single core piece having a core back and a winding portion protruding from the core back, forming divided teeth in which the single core pieces are laminated, and connecting the divided teeth. In the manufacturing method of
A first core piece having a convex portion formed at one end of the core back and a concave portion formed at the other end is punched, and the convex portion and the concave portion of the first core piece are opposed to each other. Forming the first layer by arranging the first core pieces;
A second core piece having a convex portion and a concave portion formed on the core back in a direction opposite to the first core piece is punched, and the convex portion and the concave portion of the second core piece are formed. A second layer is formed by arranging the second core pieces to face each other, and the convex shape portion of the second core piece is overlapped with the convex shape portion of the first core piece. Laminating a second layer on the first layer;
A step of stacking the first layer on the second layer by overlapping the convex portion of the first core piece with the convex portion of the second core piece;
Producing a laminated iron core comprising a step of laminating the second layer on the first layer and a step of laminating the first layer on the second layer to sequentially laminate a predetermined number of layers. Method.
上記第1のコア片及び第2のコア片は、該第1のコア片及び第2のコア片を微小連結部で上記電磁鋼板につなぎ止めるように打ち抜いた後、上記微小連結部を切断することにより形成されることを特徴とする請求項1記載の積層鉄心の製造方法。The first core piece and the second core piece are formed by punching the first core piece and the second core piece so as to be fastened to the electromagnetic steel plate by the fine connection portion, and then cutting the fine connection portion. The method for manufacturing a laminated core according to claim 1, wherein 上記第1のコア片及び第2のコア片の配列を直線状にすることを特徴とする請求項1記載の積層鉄心の製造方法。2. The method of manufacturing a laminated core according to claim 1, wherein the arrangement of the first core pieces and the second core pieces is linear. 上記第1のコア片及び第2のコア片の配列を上記巻線部を外周側に突出させて円環状にすることを特徴とする請求項1記載の積層鉄心の製造方法。2. The method of manufacturing a laminated core according to claim 1, wherein the first core piece and the second core piece are arranged in an annular shape by projecting the winding portion toward the outer peripheral side. 上記第1のコア片及び第2のコア片の打ち抜きの際、またはその前後に、上記第1のコア片及び第2のコア片のコアバックまたは巻線部に凹凸状の突起を設けることを特徴とする請求項1記載の積層鉄心の製造方法。When the first core piece and the second core piece are punched out, or before and after the punching, a concavo-convex protrusion is provided on the core back or winding portion of the first core piece and the second core piece. The method for producing a laminated iron core according to claim 1, wherein: 上記凸形状部と凹形状部とを、すき間を設けて対向させることを特徴とする請求項1記載の積層鉄心の製造方法。2. The method of manufacturing a laminated core according to claim 1, wherein the convex portion and the concave portion are opposed to each other with a gap. 電磁鋼板を打ち抜いて、コアバックと該コアバックから突出した巻線部とを有する単コア片を形成し、該単コア片を積層した分割ティースを形成するとともに、上記分割ティースをつなぎ合わせる積層鉄心の製造装置において、
上記コアバックの一端に凸形状部が形成され、他端に凹形状部が形成された第1のコア片及び上記第1のコア片とは逆向きに凸形状部と凹形状部が上記コアバックに形成された第2のコア片を選択的に打ち抜く金型、
上記電磁鋼板を金型内に搬送する送り装置、
打ち抜かれた上記第1のコア片及び第2のコア片を受ける積層部を有し、該積層部に受けたコア片を順次移動させることにより上記凸形状部と凹形状部とを対向させて上記第1のコア片及び上記第2のコア片それぞれを配列する積層装置、を備えたことを特徴とする積層鉄心の製造装置。
A laminated iron core is formed by punching an electromagnetic steel sheet to form a single core piece having a core back and a winding portion protruding from the core back, forming divided teeth in which the single core pieces are laminated, and connecting the divided teeth. In the manufacturing equipment of
The first core piece in which the convex part is formed at one end of the core back and the concave part is formed at the other end, and the convex part and the concave part are opposite to the first core piece. A mold for selectively punching the second core piece formed on the back;
A feeding device for conveying the electromagnetic steel sheet into a mold;
It has a lamination part which receives the 1st core piece and the 2nd core piece which were pierce | punched, and makes the said convex shape part and a concave shape part oppose by moving the core piece received in this lamination part one by one An apparatus for manufacturing a laminated iron core, comprising: a laminating apparatus for arranging the first core piece and the second core piece.
上記金型は、上記第1のコア片の凹形状部及び上記第2のコア片の凹形状部を選択的に打ち抜く端部打ち抜き部と、上記凸形状部を含む上記コア片の全体を打ち抜く全体打ち抜き部とを備えたことを特徴とする請求項7記載の積層鉄心の製造装置。The mold punches the whole of the core piece including the protruding portion and the end punching portion for selectively punching the concave shape portion of the first core piece and the concave shape portion of the second core piece. The laminated core manufacturing apparatus according to claim 7, further comprising a whole punched portion. 上記金型は、上記第1のコア片及び第2のコア片を微小連結部で上記電磁鋼板につなぎ止めた状態で打ち抜く第1及び第2の打ち抜き部、上記微小連結部を上記積層部の上部で切断するダイパンチ機構、該ダイパンチ機構と併設され、上記微小連結部が切断されたコア片を上記積層部に押し込むノックアウト機構を備えたことを特徴とする請求項7記載の積層鉄心の製造装置。The mold includes first and second punched portions for punching the first core piece and the second core piece in a state where the first core piece and the second core piece are fastened to the electromagnetic steel plate by the finely connected portion, and the minutely connected portion of the laminated portion. 8. A laminated core manufacturing apparatus according to claim 7, further comprising: a die punch mechanism for cutting at an upper portion; and a knockout mechanism which is provided together with the die punch mechanism and pushes the core piece from which the minute connecting portion is cut into the laminated portion. . 上記積層部に上記第1のコア片及び第2のコア片が載置される積層ベースを設け、該積層ベースを上下できるようにしたことを特徴とする請求項7記載の積層鉄心の製造装置。8. The laminated core manufacturing apparatus according to claim 7, wherein a laminated base on which the first core piece and the second core piece are placed is provided in the laminated portion, and the laminated base can be moved up and down. . 上記積層装置は、上記積層部に受けたコア片を直線状に移動させることを特徴とする請求項7記載の積層鉄心の製造装置。8. The laminated core manufacturing apparatus according to claim 7, wherein the laminating apparatus moves the core piece received by the laminating portion in a straight line. 上記積層装置は、上記積層部に受けたコア片を円環状に移動させることを特徴とする請求項7記載の積層鉄心の製造装置。8. The laminated core manufacturing apparatus according to claim 7, wherein the laminating apparatus moves the core piece received by the laminating portion in an annular shape. 上記コアバックまたは上記巻線部に凹部を有する突起を形成するダイ・パンチを設けたことを特徴とする請求項7記載の積層鉄心の製造装置。8. The apparatus for manufacturing a laminated core according to claim 7, further comprising a die punch for forming a protrusion having a recess in the core back or the winding portion.
JP2003186288A 2003-06-30 2003-06-30 Manufacturing method and manufacturing device of laminated core Pending JP2005020972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186288A JP2005020972A (en) 2003-06-30 2003-06-30 Manufacturing method and manufacturing device of laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186288A JP2005020972A (en) 2003-06-30 2003-06-30 Manufacturing method and manufacturing device of laminated core

Publications (1)

Publication Number Publication Date
JP2005020972A true JP2005020972A (en) 2005-01-20

Family

ID=34185457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186288A Pending JP2005020972A (en) 2003-06-30 2003-06-30 Manufacturing method and manufacturing device of laminated core

Country Status (1)

Country Link
JP (1) JP2005020972A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077355B2 (en) * 2004-09-28 2006-07-18 Toyo Denso Kabushiki Kaisha Split-type stator core winding device
JP2006296169A (en) * 2005-04-14 2006-10-26 Besutec:Kk Apparatus and method for winding wire
JP2007089326A (en) * 2005-09-22 2007-04-05 Mitsui High Tec Inc Stacked stator core, and its manufacturing method and its manufacturing device
JP2009124851A (en) * 2007-11-14 2009-06-04 Asmo Co Ltd Manufacturing method for stator, stator, and brushless motor
JP2010045921A (en) * 2008-08-12 2010-02-25 Nissan Motor Co Ltd Apparatus and method for manufacturing laminated core
JP2012070634A (en) * 2006-11-27 2012-04-05 Honda Motor Co Ltd Manufacturing apparatus and manufacturing method of ring core
US8234775B2 (en) 2007-02-28 2012-08-07 Aisin Seiki Kabushiki Kaisha Method for manufacturing laminated rotor core
CN103023230A (en) * 2011-09-22 2013-04-03 丰田纺织株式会社 Method for manufacturing core of rotating electrical machine
WO2014065174A1 (en) * 2012-10-23 2014-05-01 株式会社三井ハイテック Production method for laminated iron core
CN105356689A (en) * 2015-12-07 2016-02-24 苏州工业职业技术学院 Split type inner stator core lamination tool
EP2481495B1 (en) * 2011-01-31 2016-04-06 Kienle + Spiess GmbH Method for producing end products made from stacked laminations
JP2019004642A (en) * 2017-06-16 2019-01-10 株式会社ミツバ Motor, and manufacturing method of divided core piece
IT201800004520A1 (en) * 2018-04-16 2019-10-16 Device for the manufacture of armatures of electrical machines in particular of stators and / or rotors and manufacturing process
CN110451221A (en) * 2019-07-16 2019-11-15 无锡市亨达电机有限公司 A kind of extension type stator punching device for piling sheets structure
JP7385225B1 (en) 2022-07-23 2023-11-22 大垣精工株式会社 Laminated steel plate manufacturing device and laminated steel plate manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117153A (en) * 1990-09-04 1992-04-17 Mitsui High Tec Inc Manufacture of laminated core
JPH07222383A (en) * 1994-01-28 1995-08-18 Tamagawa Seiki Co Ltd Manufacture of stator core and split laminate core
JP2000201458A (en) * 1998-06-30 2000-07-18 Mitsubishi Electric Corp Iron core device and its manufacture
JP2001096318A (en) * 1999-09-24 2001-04-10 Matsushita Electric Ind Co Ltd Method for manufacturing laminate and its apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117153A (en) * 1990-09-04 1992-04-17 Mitsui High Tec Inc Manufacture of laminated core
JPH07222383A (en) * 1994-01-28 1995-08-18 Tamagawa Seiki Co Ltd Manufacture of stator core and split laminate core
JP2000201458A (en) * 1998-06-30 2000-07-18 Mitsubishi Electric Corp Iron core device and its manufacture
JP2001096318A (en) * 1999-09-24 2001-04-10 Matsushita Electric Ind Co Ltd Method for manufacturing laminate and its apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077355B2 (en) * 2004-09-28 2006-07-18 Toyo Denso Kabushiki Kaisha Split-type stator core winding device
JP2006296169A (en) * 2005-04-14 2006-10-26 Besutec:Kk Apparatus and method for winding wire
JP4664115B2 (en) * 2005-04-14 2011-04-06 株式会社ベステック Winding machine and winding method
JP2007089326A (en) * 2005-09-22 2007-04-05 Mitsui High Tec Inc Stacked stator core, and its manufacturing method and its manufacturing device
JP2012070634A (en) * 2006-11-27 2012-04-05 Honda Motor Co Ltd Manufacturing apparatus and manufacturing method of ring core
JP2012070633A (en) * 2006-11-27 2012-04-05 Honda Motor Co Ltd Manufacturing apparatus of ring core
US8234775B2 (en) 2007-02-28 2012-08-07 Aisin Seiki Kabushiki Kaisha Method for manufacturing laminated rotor core
JP2009124851A (en) * 2007-11-14 2009-06-04 Asmo Co Ltd Manufacturing method for stator, stator, and brushless motor
JP2010045921A (en) * 2008-08-12 2010-02-25 Nissan Motor Co Ltd Apparatus and method for manufacturing laminated core
EP2481495B1 (en) * 2011-01-31 2016-04-06 Kienle + Spiess GmbH Method for producing end products made from stacked laminations
JP2013070531A (en) * 2011-09-22 2013-04-18 Toyota Boshoku Corp Manufacturing method of rotary electric machine core
US9017506B2 (en) 2011-09-22 2015-04-28 Toyota Boshoku Kabushiki Kaisha Method for manufacturing core of rotating electrical machine
CN103023230A (en) * 2011-09-22 2013-04-03 丰田纺织株式会社 Method for manufacturing core of rotating electrical machine
WO2014065174A1 (en) * 2012-10-23 2014-05-01 株式会社三井ハイテック Production method for laminated iron core
JP2014087163A (en) * 2012-10-23 2014-05-12 Mitsui High Tec Inc Method for manufacturing laminated core
CN104756374A (en) * 2012-10-23 2015-07-01 株式会社三井高科技 Production method for laminated iron core
US9520761B2 (en) 2012-10-23 2016-12-13 Mitsui High-Tec, Inc. Production method for laminated iron core
CN105356689A (en) * 2015-12-07 2016-02-24 苏州工业职业技术学院 Split type inner stator core lamination tool
JP2019004642A (en) * 2017-06-16 2019-01-10 株式会社ミツバ Motor, and manufacturing method of divided core piece
IT201800004520A1 (en) * 2018-04-16 2019-10-16 Device for the manufacture of armatures of electrical machines in particular of stators and / or rotors and manufacturing process
CN110451221A (en) * 2019-07-16 2019-11-15 无锡市亨达电机有限公司 A kind of extension type stator punching device for piling sheets structure
JP7385225B1 (en) 2022-07-23 2023-11-22 大垣精工株式会社 Laminated steel plate manufacturing device and laminated steel plate manufacturing method

Similar Documents

Publication Publication Date Title
JP6457969B2 (en) Manufacturing method of laminated iron core
US8683675B2 (en) Method for fabricating molded stator of rotary electric machine
JP2005020972A (en) Manufacturing method and manufacturing device of laminated core
WO2013051125A1 (en) Laminated core manufacturing method and laminated core manufactured using same
JP4730461B2 (en) Magnetic core manufacturing method
JP4934402B2 (en) Armature manufacturing method and progressive mold apparatus
JP5342948B2 (en) Stator manufacturing method
JP6764463B2 (en) Manufacturing method of laminated iron core
CN106849535B (en) Laminated iron core and manufacturing method thereof
JP2000116074A (en) Laminating die apparatus of core member and laminating method therefor
CN110800190A (en) Laminated iron core and manufacturing method thereof
JP5154398B2 (en) Manufacturing method of laminated iron core and manufacturing method of laminated stator
JP5773926B2 (en) Laminated stator core, laminated stator, laminated stator manufacturing method
CN108141116B (en) Method for manufacturing laminated iron core
JP7154264B2 (en) CORE ELEMENT MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP2009065833A (en) Laminated core and manufacturing method thereof
JP2019075884A (en) Method for manufacturing laminated iron core
JP2006158003A (en) Process for manufacturing laminated stator core
JP2006217718A (en) Laminated core and its manufacturing method
JP2006158002A (en) Process for manufacturing laminated stator core
JP5726118B2 (en) Laminated stator core, method for producing laminated stator core
JP2003070213A (en) Method of manufacturing stator
KR20220120845A (en) Divided core for motor
JP5212273B2 (en) Laminated core
JP2022115565A (en) Manufacturing method of lamination iron core, lamination iron core, and press working device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520