JP3748939B2 - Laminate for superconducting equipment and method for manufacturing the same - Google Patents

Laminate for superconducting equipment and method for manufacturing the same Download PDF

Info

Publication number
JP3748939B2
JP3748939B2 JP08236796A JP8236796A JP3748939B2 JP 3748939 B2 JP3748939 B2 JP 3748939B2 JP 08236796 A JP08236796 A JP 08236796A JP 8236796 A JP8236796 A JP 8236796A JP 3748939 B2 JP3748939 B2 JP 3748939B2
Authority
JP
Japan
Prior art keywords
laminate
fiber
superconducting
inorganic filler
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08236796A
Other languages
Japanese (ja)
Other versions
JPH09272155A (en
Inventor
久之 平井
聖子 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08236796A priority Critical patent/JP3748939B2/en
Publication of JPH09272155A publication Critical patent/JPH09272155A/en
Application granted granted Critical
Publication of JP3748939B2 publication Critical patent/JP3748939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は絶縁構造物として極低温で使用される超電導機器の構成材料として適した積層板およびその製造方法に関する。
【0002】
【従来の技術】
強化繊維または強化繊維の織布(クロス)に熱硬化樹脂を含浸し、その複数枚を積層して加圧・加熱した積層板は、各種強化繊維と各種熱硬化性樹脂が複合されており、一般に積層板あるいはFRPと呼称されて各方面で重用されている。この内、電機機器ではガラス強化繊維エポキシ樹脂積層板が最も広く用いられている。
【0003】
このエポキシ樹脂積層板は、電機絶縁性や機械特性に優れ、また耐熱的にも幅広く対応できるバランスのとれた特性を有しており、かつ経済的である。しかしながら、積層しているために貫層方向の膨脹・収縮が大きく、また機械的にも層を剥離する方向の強度にさらに高いものが望まれている。
【0004】
そこで、特に貫層方向の膨脹・収縮を小さく抑えるために、樹脂量を通常の30〜40wt%から極限まで低下させる研究が行われている。一方、含浸樹脂に充填材を複合してクロスの間を埋めることで樹脂量を低下させる試みもある。例えば、CEC/ICMC in Albuque Arb-8 “GLASSFIBER REINFORCED PLASTICS FOR CRYOGENIC USE IMPROVEMENT OF THEMAL CONTRACTION AND ELASTICMODULUS IN THICKNESS DIRECTION”および1994年度電絶展予稿集“極低温用高性能積層板の開発”によれば、室温から液体チッ素温度までの収縮率を0.3%程度にするには樹脂量を30wt%以下にしなければならないが、これを実際のヘリウム温度にまで拡張すると収縮率をさらに低下させることが望まれる。
【0005】
しかしながら、上記文献のうち、前者の文献で充填材を複合した結果を見ると、樹脂マトリックスでは収縮率、圧縮強さのいずれにも効果が出ているが、これを強化繊維と共に積層板として成形すると、収縮率にはほとんど効果がなく、しかも曲げ強さが大幅に低下している。
【0006】
このように、積層板をさらに低収縮・高強度へとその特性を向上させることはこれまで達成することができなかった。それにも拘らず、近年超電導機器の製品が拡大しており、このような特性向上の要求はさらに高まっている。
【0007】
【発明が解決しようとする課題】
本発明は上記状況に対してなされたもので、絶縁構造物として使用される積層板において、室温から極低温にしたときの貫層方向の収縮率を低下させ、かつ機械的強度を向上させることを目的とするもので、特に極低温で使用される超電導機器に適用できる積層板を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は、熱硬化性樹脂を含浸した繊維基材を複数枚積層してなる超電導機器用積層板において、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂を用い、これに平均粒径1.5μmの球状のシリカを添加したことを特徴とする。また、熱硬化性樹脂を含浸した繊維基材を複数枚積層してなる超電導機器用積層板において、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂を用い、これに平均粒径1.5μmの球状のシリカおよび短繊維無機質充填材を添加したことを特徴とする。
【0009】
上記において、球状のシリカは、溶融した後、粒状化して得られる。また、短繊維無機質充填材は短繊維状または結晶針状(ウイスカー)のガラスが好ましい。さらに、ガラスの短繊維は直径2〜20μm、長さが3〜300μmで平均長さ100μm以下がよい。
【0010】
球状のシリカと短繊維無機質充填材との両方を添加する場合には、両者の比は前者が20〜80重量%、後者が80〜20重量%がよい
【0011】
また本発明は上記積層板の製造方法に関するもので、上記球状のシリカまたはこれと短繊維無機質充填材を添加したビスフェノールA型エポキシ樹脂を繊維基材に含浸させ、これを乾燥してプリプレグリシートとし、プリプレグリシートを複数枚重ねて加圧加熱硬化することを特徴とする。ここで、繊維基材にビスフェノールA型エポキシ樹脂を含浸させた後に、その両面をバーコーターを使用して塗布面および塗布量の調整をするとよい。これは、特に短繊維無機質充填材を使用した場合に、積層板を成型するときの加圧によって繊維基材を損傷することがあり、これを防ぐ必要からである。バーコーターを使用すると、繊維基材の凸部にのった短繊維無機質充填材をクロスの織り目あるいは繊維に沿った方向に矯正することができ、繊維基材を損傷することがない。なお、バーコーターの代わりにスキージーを用いてもよい。
【0012】
現在一般に使用されている積層板は、強化繊維または強化繊維の織布(クロス)に樹脂を塗布して積層したもので、クロスの織り目が樹脂として形成されているので、積層方向の膨脹や収縮が繊維方向に比べて非常に大きく、問題となっている。そこで樹脂に充填材を入れることで膨脹・収縮の低減を図ることができるが、従来使用されていた充填材は粉砕品であって、その粒子形状や粒径によっては積層板を形成するときの加圧によって基材繊維を損傷する。
【0013】
本発明では球状のシリカを使用したので、クロス目に適合し、基材繊維を損傷する危惧が少ない。また、その粒径も、繊維径よりも小さく、1.5μmとしたので、繊維の間やクロスの織り目によく含浸する
【0014】
また、本発明において短繊維無機質充填材を上記球状のシリカに配合すると、積層したときの層と層との接着力を高めることができる。その場合、短繊維無機質充填材として直径2〜20μm、長さが3〜300μmで平均長さ100μm以下のものを使用すると、クロスの織り目に含浸が容易で、積層板を成形するときの加圧によって基材繊維を損傷する危惧が少ない。また、球状のシリカとの配合比を前者が20〜80重量%、後者が80〜20重量%とすると、含浸樹脂を低粘度化する効果があり、含浸性の優れたものとなる
【0015】
一般に積層板は極低温で使用されると、室温から約300Kも冷却されることになるので、そのときの収縮率が熱歪みとして機器の信頼性に影響を与えることになる。従来の積層板では収縮率が0.4〜0.5%であるので、多用されるステンレス材の0.3%に比べるとその差は大きい。超電導機器では電磁力が強く、大型であり、かつ寸法精度の要求も厳しいので、収縮率の信頼性に与える影響はさらに大きくなる。したがって少なくともステンレス材程度の収縮率が必要となる。本発明の積層板はこのような要求に答えることができる。
【0016】
【発明の実施の形態】
(実施例1)
ビスフェノールA型エポキシ樹脂100部、ジシアンジアミド3部、2−エチル−4−メチルイミダゾール0.1部およびアセトン60部を加えて攪拌溶融し、次に無機質充填材として球状シリカ(平均粒径1.5μm)を100部加えてエポキシ樹脂ワニスを調製した。このワニスを厚さ190μmのガラスクロスに塗布含浸し、130℃の温度で乾燥してプリフレグを作成した。
【0017】
これを24枚重ねて、熱プレスで170℃、40kg/cm2 で60分間で一体に成形して、厚さ約3mmの積層板を作成した。
比較例として、表1に示すように、充填材の入らない積層板、破砕シリカまたは破砕アルミナを添加した積層板を同様の方式で作成した。
【0018】
(実施例2)
無機質充填材として球状シリカ(平均粒径1.5μm)を50部およびガラス短繊維(直径12μm、平均長70μm)を50部用いた以外は実施例1と同様な方法で、積層板を作成した。
【0019】
(実施例3)
実施例2において、エポキシ樹脂ワニスをガラスクロスに塗布するとき、直径5mmのステンレス棒をバーコーターとして両面を調整してプリフレグを作成した。それ以外は上記のとうりに積層板を作成した。
【0020】
上記実施例1〜3および比較例の各積層板をそれぞれ室温〜4.2K、室温〜液体チッ素温度に置いて、収縮率(%)を調べた。また、層方向圧縮強さおよび曲げ強さ(MPa)を調べた。結果は以下のとうりである。
【0021】
【表1】

Figure 0003748939
【0022】
【発明の効果】
以上説明したように、本発明の積層板は極低温まで温度変化した場合でも層方向への収縮率が低く、かつ機械的強度も低下しない。したがって、極低温で使用される機器、特に超電導機器の絶縁および構造材料として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated board and a manufacturing method suitable as the constituent material of the superconducting apparatus which is used at a low temperature electrode and the insulation structure.
[0002]
[Prior art]
A laminated sheet made by impregnating a reinforced fiber or a woven fabric (cloth) of reinforced fiber with a thermosetting resin, laminating a plurality of the sheets, and pressing and heating is a composite of various reinforcing fibers and various thermosetting resins. In general, it is called a laminate or FRP and is used in various directions. Of these, glass reinforced fiber epoxy resin laminates are most widely used in electrical equipment.
[0003]
This epoxy resin laminate is excellent in electrical insulation and mechanical properties, has balanced properties that can be widely used in heat resistance, and is economical. However, since the layers are laminated, the expansion and contraction in the penetration direction is large, and a higher strength in the direction in which the layers are peeled mechanically is also desired.
[0004]
Therefore, in order to suppress the expansion / contraction in the penetration direction to a small value, research is being carried out to reduce the resin amount from the usual 30 to 40 wt% to the limit. On the other hand, there is an attempt to reduce the amount of resin by combining an impregnating resin with a filler and filling between the cloths. For example, according to CEC / ICMC in Albuque Arb-8 “GLASSFIBER REINFORCED PLASTICS FOR CRYOGENIC USE IMPROVEMENT OF THEMAL CONTRACTION AND ELASTICMODULUS IN THICKNESS DIRECTION” and the “1994 Development of High-Performance Laminates for Cryogenic” In order to reduce the shrinkage rate from room temperature to the liquid nitrogen temperature to about 0.3%, the resin amount must be 30 wt% or less, but if this is expanded to the actual helium temperature, the shrinkage rate may be further reduced. desired.
[0005]
However, looking at the result of combining the fillers in the former document among the above documents, the resin matrix is effective for both shrinkage and compression strength, but this is molded as a laminate with reinforcing fibers. Then, there is almost no effect on the shrinkage rate, and the bending strength is greatly reduced.
[0006]
As described above, it has not been possible to improve the properties of the laminated plate to further reduce shrinkage and strength. Nevertheless, in recent years, products of superconducting devices have been expanded, and the demand for such improvement in characteristics has further increased.
[0007]
[Problems to be solved by the invention]
The present invention has been made for the above situation, and in a laminate used as an insulating structure, it reduces the shrinkage rate in the penetration direction when the temperature is changed from room temperature to extremely low temperature, and improves the mechanical strength. In particular, it is an object of the present invention to provide a laminate that can be applied to superconducting equipment used at extremely low temperatures.
[0008]
[Means for Solving the Problems]
The present invention uses a bisphenol A type epoxy resin as a thermosetting resin in a laminate for a superconducting device in which a plurality of fiber base materials impregnated with a thermosetting resin are laminated, and has an average particle size of 1.5 μm. It is characterized by adding spherical silica . Further, in a superconducting device laminate obtained by laminating a plurality of fiber base materials impregnated with a thermosetting resin , a bisphenol A type epoxy resin is used as the thermosetting resin, and a spherical shape having an average particle diameter of 1.5 μm is used. The silica and the short fiber inorganic filler were added.
[0009]
In the above, spherical silica is obtained by melting and then granulating. The short fiber inorganic filler is preferably short fiber or crystal needle (whisker) glass. Furthermore, the short glass fiber has a diameter of 2 to 20 μm, a length of 3 to 300 μm, and an average length of 100 μm or less.
[0010]
In the case of adding both the spherical silica and short fibers inorganic filler, both the ratio of the former is 20 to 80 wt%, the latter is better 80 to 20% by weight.
[0011]
The present invention relates to a process for the preparation of the laminate, a bisphenol A type epoxy resin obtained by adding silica or its short fiber inorganic fillers of the spherical impregnating a fibrous base material, prepreg Li sheet and dried to And a plurality of prepreg sheets are stacked and cured under pressure and heat. Here, after impregnating a fiber base material with a bisphenol A type epoxy resin , it is good to adjust the coating surface and coating amount on both surfaces using a bar coater. This is because, particularly when a short fiber inorganic filler is used, the fiber base material may be damaged by pressurization when the laminate is molded, and it is necessary to prevent this. When the bar coater is used, the short fiber inorganic filler on the convex portion of the fiber base material can be corrected in the direction of the cloth texture or fiber, and the fiber base material is not damaged. A squeegee may be used instead of the bar coater.
[0012]
Laminates currently in common use are made by laminating a resin on a reinforced fiber or a woven fabric (cloth) of reinforced fiber, and the cross weave is formed as a resin. Is very large compared to the fiber direction, which is a problem. Therefore, it is possible to reduce expansion and contraction by adding a filler to the resin, but the conventionally used filler is a pulverized product, and depending on the particle shape and particle size, Damage to the base fiber by pressing.
[0013]
Since spherical silica is used in the present invention, it conforms to the cross eye and has little fear of damaging the base fiber. Moreover, since the particle diameter is also smaller than the fiber diameter and is 1.5 μm, it is well impregnated between the fibers and the cloth weave .
[0014]
Moreover, when the short fiber inorganic filler is blended with the spherical silica in the present invention, the adhesive force between the layers can be increased. In that case, when a short fiber inorganic filler having a diameter of 2 to 20 μm, a length of 3 to 300 μm and an average length of 100 μm or less is used, it is easy to impregnate the cloth weave, and pressurization when forming a laminate There is little fear of damaging the base fiber. Further, when the blending ratio with the spherical silica is 20 to 80% by weight for the former and 80 to 20% by weight for the latter, there is an effect of reducing the viscosity of the impregnating resin, and the impregnation property is excellent .
[0015]
In general, when the laminated plate is used at a very low temperature, it is cooled by about 300 K from room temperature, and the shrinkage at that time affects the reliability of the device as a thermal strain. Since the conventional laminate has a shrinkage ratio of 0.4 to 0.5%, the difference is large compared to 0.3% of the commonly used stainless steel material. Superconducting equipment has strong electromagnetic force, large size, and strict dimensional accuracy requirements, so the impact on shrinkage reliability is even greater. Therefore, a shrinkage ratio of at least about stainless steel is required. The laminate of the present invention can meet such a demand.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
Add 100 parts of bisphenol A type epoxy resin, 3 parts of dicyandiamide, 0.1 part of 2-ethyl-4-methylimidazole and 60 parts of acetone, and stir and melt. Then, spherical silica (average particle size 1.5 μm as an inorganic filler) ) Was added to prepare an epoxy resin varnish. The varnish was applied and impregnated into a 190 μm thick glass cloth, and dried at a temperature of 130 ° C. to prepare a pre-fragment.
[0017]
Twenty-four of these were stacked and integrally formed in a hot press at 170 ° C. and 40 kg / cm 2 for 60 minutes to produce a laminate having a thickness of about 3 mm.
As a comparative example, as shown in Table 1, a laminate without a filler, a laminate to which crushed silica or crushed alumina was added were prepared in the same manner.
[0018]
(Example 2)
A laminate was prepared in the same manner as in Example 1 except that 50 parts of spherical silica (average particle size 1.5 μm) and 50 parts of short glass fibers (diameter 12 μm, average length 70 μm) were used as the inorganic filler. .
[0019]
Example 3
In Example 2, when an epoxy resin varnish was applied to a glass cloth, a pre-freg was prepared by adjusting both surfaces using a stainless steel bar having a diameter of 5 mm as a bar coater. Otherwise, a laminate was prepared as described above.
[0020]
The laminates of Examples 1 to 3 and Comparative Example were placed at room temperature to 4.2 K and room temperature to liquid nitrogen temperature, respectively, and the shrinkage rate (%) was examined. Further, the layer direction compressive strength and bending strength (MPa) were examined. The result is as follows.
[0021]
[Table 1]
Figure 0003748939
[0022]
【The invention's effect】
As described above, the laminate of the present invention has a low shrinkage rate in the layer direction and does not decrease the mechanical strength even when the temperature changes to a very low temperature. Therefore, it is useful as an insulating and structural material for equipment used at cryogenic temperatures, particularly superconducting equipment.

Claims (5)

熱硬化性樹脂を含浸した繊維基材を複数枚積層してなる超電導機器用積層板において、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂を用い、これに平均粒径1.5μmの球状のシリカを添加したことを特徴とする超電導機器用積層板。In a superconducting device laminate made by laminating a plurality of fiber substrates impregnated with thermosetting resin , bisphenol A type epoxy resin is used as the thermosetting resin, and spherical silica with an average particle size of 1.5 μm is used for this. A laminate for superconducting equipment , characterized in that is added. 熱硬化性樹脂を含浸した繊維基材を複数枚積層してなる超電導機器用積層板において、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂を用い、これに平均粒径1.5μmの球状のシリカおよび短繊維無機質充填材を添加したことを特徴とする超電導機器用積層板。In a superconducting device laminate made by laminating a plurality of fiber substrates impregnated with thermosetting resin , bisphenol A type epoxy resin is used as the thermosetting resin, and spherical silica with an average particle size of 1.5 μm is used for this. And a laminate for superconducting equipment , characterized by adding a short fiber inorganic filler. 短繊維無機質充填材が短繊維状または結晶針状のガラスである請求項2記載の超電導機器用積層板。The laminate for superconducting equipment according to claim 2, wherein the short fiber inorganic filler is short fiber or crystal needle glass. 平均粒径1.5μmの球状のシリカまたはこれと短繊維無機質充填材を添加したビスフェノールA型エポキシ樹脂を繊維基材に含浸させ、これを乾燥してプリプレグリシートとし、このプリプレグリシートを複数枚重ねて加圧加熱硬化することを特徴とする超電導機器用積層板の製造方法。The fiber base material is impregnated with spherical silica having an average particle diameter of 1.5 μm or bisphenol A type epoxy resin added with this and a short fiber inorganic filler, and this is dried to prepare a prepreg sheet. A method for producing a laminate for a superconducting device , wherein a plurality of sheets are stacked and pressure-heated and cured. 平均粒径1.5μmの球状のシリカまたはこれと短繊維無機質充填材を添加したビスフェノールA型エポキシ樹脂を繊維基材に含浸させた後、その両表面をバーコーターまたはスキージーで調整する請求項記載の超電導機器用積層板の製造方法。 A fiber base material is impregnated with spherical silica having an average particle diameter of 1.5 μm or a bisphenol A type epoxy resin added with a short fiber inorganic filler, and both surfaces thereof are adjusted by a bar coater or a squeegee. 4. A method for producing a laminate for a superconducting device according to 4 .
JP08236796A 1996-04-04 1996-04-04 Laminate for superconducting equipment and method for manufacturing the same Expired - Fee Related JP3748939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08236796A JP3748939B2 (en) 1996-04-04 1996-04-04 Laminate for superconducting equipment and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08236796A JP3748939B2 (en) 1996-04-04 1996-04-04 Laminate for superconducting equipment and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09272155A JPH09272155A (en) 1997-10-21
JP3748939B2 true JP3748939B2 (en) 2006-02-22

Family

ID=13772621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08236796A Expired - Fee Related JP3748939B2 (en) 1996-04-04 1996-04-04 Laminate for superconducting equipment and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3748939B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202775B2 (en) * 2000-05-23 2013-06-05 三菱瓦斯化学株式会社 Prepreg, metal-clad laminate and use thereof
JP2003020407A (en) * 2001-07-05 2003-01-24 Hitachi Chem Co Ltd Varnish composition, prepreg and metal foil-clad laminate using the same
JP2011236430A (en) * 2011-06-20 2011-11-24 Hitachi Chem Co Ltd Varnish composition, and prepreg and metal foil-clad laminate using the same
JP5924893B2 (en) * 2011-09-08 2016-05-25 日光化成株式会社 Low specific gravity resin laminate and method for producing the same
CN114571751B (en) * 2022-03-07 2023-06-06 常州华日新材有限公司 SMC sheet material impregnating and extruding device

Also Published As

Publication number Publication date
JPH09272155A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
CN103129042B (en) A kind of carbon fiber base fabric composite material and Synthesis and applications thereof
EP0782500A1 (en) Foiled ud-prepreg and pwb laminate prepared therefrom
WO2005085334A1 (en) Polymer composite formed article, printed wiring board using the formed article and method for producing them
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
US4547408A (en) Metal-clad laminate adapted for printed circuits
JP3748939B2 (en) Laminate for superconducting equipment and method for manufacturing the same
CN100358708C (en) Self-reinforced interlayer shearing intensity resin base fiber reinforced composite material preparation method
Botelho et al. Monitoring of nylon 6, 6/carbon fiber composites processing by X‐ray diffraction and thermal analysis
JP4880986B2 (en) Method for producing article formed using epoxy resin composition
CN219164807U (en) Low dielectric and toughened liquid crystal polymer base circuit substrate
CN113388228A (en) Resin composition, resin-based composite material, and preparation method and application thereof
EP0487868A2 (en) Composite tooling
JPH07202362A (en) Thermoplastic resin printed wiring board
JPS62199439A (en) Extremely thin board made of carbon-fiber reinforced thermo-setting resin
CN1424868A (en) Method for producing basalt fiber reinforced copper coated boards
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JP4116361B2 (en) Intermediate material for FRP molding and manufacturing method thereof
TW211098B (en)
CN110202876A (en) A kind of warpage type thermoset epoxy plate and preparation method thereof
JPS621827B2 (en)
JP2017179357A (en) Post-deaeration prepreg and method for producing fiber-reinforced plastic
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
EP3865272A1 (en) Method for producing a fire-resistant and heat-resistant preimpregnated fibre material
CA2000086A1 (en) Thermal conductive material
KR20230120628A (en) Resin compositions, adhesive sheets, prepregs and laminates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees