JPH07202362A - Thermoplastic resin printed wiring board - Google Patents

Thermoplastic resin printed wiring board

Info

Publication number
JPH07202362A
JPH07202362A JP35418893A JP35418893A JPH07202362A JP H07202362 A JPH07202362 A JP H07202362A JP 35418893 A JP35418893 A JP 35418893A JP 35418893 A JP35418893 A JP 35418893A JP H07202362 A JPH07202362 A JP H07202362A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
wiring board
printed wiring
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35418893A
Other languages
Japanese (ja)
Inventor
Sadao Kajiura
貞夫 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP35418893A priority Critical patent/JPH07202362A/en
Publication of JPH07202362A publication Critical patent/JPH07202362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a thermoplastic resin printed wiring board free of voids, which has improved dielectric characteristics and a smaller coefficient of linear thermal expansion in thickness direction. CONSTITUTION:In the printed wiring board, a thermoplastic resin is impregnated in a fiber cloth base 2 consisting of a three-dimensional textile which is manufactured by multiple weaving.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、比誘電率及び誘電正接
が低く、かつ厚み方向での線熱膨脹係数が小さい熱可塑
性樹脂プリント配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin printed wiring board having a low relative permittivity and dielectric loss tangent and a small coefficient of linear thermal expansion in the thickness direction.

【0002】[0002]

【従来の技術】最近の情報通信技術の進展は目覚まし
く、適用される周波数は益々高周波数化しているので、
このような条件で使用される半導体装置の基板には、低
比誘電率及び低誘電正接という誘電特性が要求される。
2. Description of the Related Art Recent advances in information and communication technology are remarkable, and the applied frequencies are becoming higher and higher.
A substrate of a semiconductor device used under such conditions is required to have low dielectric constant and low dielectric loss tangent.

【0003】熱可塑性樹脂は、比誘電率及び誘電正接が
小さいので、高周波用半導体装置の基板の結着樹脂とし
て有用であり、例えば、弗素樹脂、ポリエチレンなど多
くの熱可塑性樹脂が使用されている。これらの樹脂は、
分子量が高く、有機溶剤に溶解しても高粘度であるた
め、樹脂の微粒子を液中に分散させてワニス化した後、
プリプレグ化して基板が作製されている。なお、この場
合には、ワニス中の溶剤の除去あるいは圧縮成形中のボ
イド抜きを容易に行なうために、単葉の平織りの繊維布
基材を用いて配線基板が作製される。ワニスを使用した
場合、ワニスの調製、ワニスの基材への含浸、一次乾燥
等の多段階工程を要するため生産性が劣り、工業的に不
利である。
The thermoplastic resin is useful as a binder resin for the substrate of a semiconductor device for high frequency because it has a small relative permittivity and a low dielectric loss tangent. For example, many thermoplastic resins such as fluorine resin and polyethylene are used. . These resins are
High molecular weight and high viscosity even when dissolved in an organic solvent, so after dispersing resin fine particles in a liquid to form a varnish,
A substrate is produced by making a prepreg. In this case, in order to easily remove the solvent in the varnish or to remove voids during compression molding, the wiring board is manufactured using a single leaf plain weave fiber cloth base material. When a varnish is used, productivity is inferior and industrially disadvantageous because it requires a multi-step process such as varnish preparation, impregnation of the varnish into a substrate, and primary drying.

【0004】また、ワニス化を回避する方法として、繊
維布基材とフィルム状の熱可塑性樹脂とを交互に積層し
て基板を作製する方法が知られている。図2に、この構
造の基板の断面構造の一例を示す。図2に示す両面金属
張積層板7は、熱可塑性樹脂フィルム9と繊維布基材8
とを交互に積層して熱圧縮し、さらに金属箔10を積層
して作製されたものである。必要に応じて、この金属箔
10のマット面に熱可塑性樹脂フィルム11を裏打ちし
たものが使用される。
As a method for avoiding varnishing, a method is known in which a fiber cloth base material and a film-shaped thermoplastic resin are alternately laminated to prepare a substrate. FIG. 2 shows an example of a cross-sectional structure of a substrate having this structure. The double-sided metal-clad laminate 7 shown in FIG. 2 has a thermoplastic resin film 9 and a fiber cloth base material 8.
Are alternately laminated, heat-compressed, and further laminated with the metal foil 10. If necessary, a matte surface of the metal foil 10 backed with a thermoplastic resin film 11 is used.

【0005】なお、繊維布基材8としては、SiO2
有量を増加させて誘電特性を改善したSガラス、Dガラ
ス及び石英ガラスクロスなどが使われている。
As the fiber cloth base material 8, S glass, D glass, quartz glass cloth and the like having an increased SiO 2 content and improved dielectric properties are used.

【0006】このような交互積層構造の積層板において
は、溶融粘度の高い樹脂を布基材中に均一に含浸させる
べく布基材の空隙率に対して過剰量の樹脂を加熱圧縮に
よって布基材中に強制的に押し込むことが行なわれてい
る。この際、樹脂は、基板の面に沿って外側に流動せざ
るを得ない。ところが、この平面内では、基板の厚み方
向と比較して流動に対する樹脂の抵抗が大きく、また、
熱可塑性樹脂自体の溶融粘度も大きいので、繊維布基材
や積層物の層間ズレ、樹脂の充填不良、繊維布基材にお
ける織り目のズレ、糸の切断、ボイド等が生じ、強度等
の特性、形状に関して再現性を持って樹脂積層材を得る
ことができなかった。
In such a laminated board having an alternating laminated structure, an excessive amount of resin is heat-compressed with respect to the porosity of the cloth base material in order to uniformly impregnate the cloth base material with the resin having a high melt viscosity. It is being forced into the material. At this time, the resin is forced to flow outward along the surface of the substrate. However, in this plane, the resistance of the resin to flow is greater than in the thickness direction of the substrate, and
Since the thermoplastic resin itself has a large melt viscosity, interlayer deviation of the fiber cloth base material or laminate, resin filling failure, weaving deviation in the fiber cloth base material, thread cutting, voids, etc. occur, and properties such as strength, It was not possible to obtain a resin laminated material with reproducibility regarding the shape.

【0007】一方、回路基板は、回路の微細化、高集積
化あるいは基板の多層化のために、回路を形成する材料
の線熱膨脹係数と同程度の線熱膨脹係数を有することが
求められている。
On the other hand, the circuit board is required to have a linear thermal expansion coefficient similar to that of the material forming the circuit in order to miniaturize the circuit, increase the degree of integration, or increase the number of substrates. .

【0008】しかし、結着剤として熱可塑性樹脂を用い
た基板においては、基板の厚み方向の線熱膨脹係数を所
定の値に抑制することができないという問題がある。も
ちろん、基板中の樹脂含有量を下げることにより線熱膨
脹係数を小さくすることができるが、線熱膨脹係数の大
小と比誘電率及び誘電正接の大小とは二律背反の関係に
あるため、現在、基板の厚み方向の線熱膨脹係数は、回
路材料の数倍程度になっている。
However, a substrate using a thermoplastic resin as a binder has a problem that the linear thermal expansion coefficient in the thickness direction of the substrate cannot be suppressed to a predetermined value. Of course, the linear thermal expansion coefficient can be reduced by lowering the resin content in the substrate, but the linear thermal expansion coefficient and the relative dielectric constant and the dielectric loss tangent are in a trade-off relationship. The coefficient of linear thermal expansion in the thickness direction is about several times that of the circuit material.

【0009】これらの問題を解決するために、熱可塑性
樹脂に付加反応性官能基を付け、他の付加反応性低分子
化合物と架橋反応させる樹脂系も開発されているが、高
分子量の熱可塑性樹脂に付加反応性官能基を導入するに
は、合成上多大な労力及び時間が費やされてしまうので
現実的ではない。
In order to solve these problems, resin systems in which an addition-reactive functional group is added to a thermoplastic resin and a crosslinking reaction with other addition-reactive low molecular weight compounds have been developed, but high molecular weight thermoplastics have been developed. Introducing an addition-reactive functional group into a resin is not realistic because it requires a great deal of labor and time during synthesis.

【0010】[0010]

【発明が解決しようとする課題】本発明者らは、樹脂の
流動方向に着目して、複数の繊維布基材と所定厚みの樹
脂フィルムとを一単位とし、これを交互積層して流動抵
抗の小さい積層物の厚み方向に樹脂を流動させて基板を
作製する方法を先に開示し(特開平5−80113
号)、この方法を“ブロック交互積層法”と名付けた。
DISCLOSURE OF THE INVENTION The present inventors pay attention to the flow direction of the resin, and make a plurality of fiber cloth base materials and a resin film of a predetermined thickness as one unit, and stack them alternately to obtain a flow resistance. A method of making a substrate by causing a resin to flow in the thickness direction of a laminate having a small size has been previously disclosed (JP-A-5-80113).
No.), and named this method "block alternating lamination method".

【0011】この方法において使用される繊維布基材の
枚数、及び樹脂フィルムの厚みは、事前に所定成形圧力
での繊維布基材の空隙率(樹脂を最大量含浸できる空
間)に基づいて設定され得る。具体的には、樹脂フィル
ムの厚みtは、空隙に相当する空間を確保し得る理論的
な膜厚より若干厚くすると、ボイドフリーの基板が得ら
れる。しかしながら、基板の誘電特性と厚み方向の線熱
膨脹係数との両方を所望の範囲内に維持することは、依
然として困難であった。
The number of fiber cloth base materials and the thickness of the resin film used in this method are set in advance based on the porosity of the fiber cloth base material at a predetermined molding pressure (a space in which the maximum amount of resin can be impregnated). Can be done. Specifically, if the thickness t of the resin film is slightly thicker than a theoretical film thickness that can secure a space corresponding to a void, a void-free substrate can be obtained. However, it was still difficult to maintain both the dielectric properties of the substrate and the linear thermal expansion coefficient in the thickness direction within desired ranges.

【0012】そこで、本発明は、ボイドフリーであっ
て、かつ優れた誘電特性を有し、その厚み方向の線熱膨
脹係数が低い熱可塑性樹脂プリント配線基板を提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a thermoplastic resin printed wiring board which is void-free, has excellent dielectric properties, and has a low coefficient of linear thermal expansion in the thickness direction.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、多重織りで作製された三次元織物からな
る繊維布基材に熱可塑性樹脂を含浸してなる熱可塑性樹
脂プリント配線基板を提供する。
In order to solve the above problems, the present invention provides a thermoplastic resin printed wiring obtained by impregnating a thermoplastic resin into a fiber cloth substrate made of a three-dimensional woven fabric made by multiple weaving. Provide a substrate.

【0014】[0014]

【作用】本発明の熱可塑性樹脂プリント配線基板は、多
重織りで作製した三次元織物を繊維布基材として使用し
ている。この三次元織物は、厚み方向にも繊維が存在し
て空隙を有している。このため、先に開示した“ブロッ
ク交互積層法”を用いた場合よりも、基板の厚み方向に
樹脂を流動させることが容易となるので、ボイドの発生
を避けることができる。したがって、比誘電率、及び誘
電正接をよりいっそう低減させるとともに、厚み方向の
線熱膨脹係数を低減することが可能となった。
The thermoplastic resin printed wiring board of the present invention uses a three-dimensional woven fabric prepared by multiple weaving as a fiber cloth substrate. In this three-dimensional woven fabric, fibers also exist in the thickness direction and have voids. For this reason, it becomes easier to flow the resin in the thickness direction of the substrate than in the case of using the “block alternate lamination method” disclosed above, so that the occurrence of voids can be avoided. Therefore, the relative permittivity and the dielectric loss tangent can be further reduced, and the linear thermal expansion coefficient in the thickness direction can be reduced.

【0015】[0015]

【実施例】以下、図面を参照して本発明を詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

【0016】図1は、本発明の一実施例である両面金属
張積層板1の断面の構成を示す模式図である。
FIG. 1 is a schematic view showing a cross-sectional structure of a double-sided metal-clad laminate 1 which is an embodiment of the present invention.

【0017】図1に示すように、本発明の両面金属張積
層板1は、三次元織物からなる繊維布基材2の上下両面
に、熱可塑性樹脂フィルム3が配置され、さらに、この
上下に、熱可塑性樹脂フィルム5で裏打ちされた金属箔
4が配置された構成である。
As shown in FIG. 1, in the double-sided metal-clad laminate 1 of the present invention, thermoplastic resin films 3 are arranged on both upper and lower sides of a fiber cloth base material 2 made of a three-dimensional woven fabric. The metal foil 4 lined with the thermoplastic resin film 5 is arranged.

【0018】所望の厚みの基板を得るために、必要に応
じて樹脂フィルム3と三次元織物2とを交互に積層して
もよい。また、三次元織物2の上下両面に、まず通常の
平織りの繊維布基材(図示せず)を配置し、この上下に
樹脂フィルム3を配置してもよい。平織りの繊維布基材
は、三次元織物に対してクッションの働きをするので、
ボイドの発生をさらに避けるとともに、基板の平滑性を
確保することが可能である。
In order to obtain a substrate having a desired thickness, the resin film 3 and the three-dimensional woven fabric 2 may be alternately laminated if necessary. Further, a normal plain weave fiber cloth base material (not shown) may be arranged on both upper and lower sides of the three-dimensional fabric 2 and the resin films 3 may be arranged on the upper and lower sides thereof. Since the plain weave fiber cloth base material acts as a cushion for the three-dimensional fabric,
It is possible to further avoid the generation of voids and ensure the smoothness of the substrate.

【0019】本発明に用いられる熱可塑性樹脂フィルム
は、耐熱性の観点から、熱溶融性の弗素樹脂フィルム、
例えばテトラフルオロエチレン−パーフルオロヘキサン
共重合体、テトラフルオロエチレン−パーフルオロアル
キルビニルエーテル共重合体が好ましいが、基本的には
何等限定されるものではない。
From the viewpoint of heat resistance, the thermoplastic resin film used in the present invention is a heat-meltable fluororesin film,
For example, a tetrafluoroethylene-perfluorohexane copolymer and a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer are preferable, but basically not limited thereto.

【0020】三次元織物は、x軸、y軸、及びxy平面
と直交するz軸の3方向に直線状に配向する糸が、40
〜60%程度の空隙率を有して織られたものである。所
定の空隙率を得るために、糸は、直径7〜10μm程度
のフィラメントを撚合して得られた直径40〜100μ
mのものであることが好ましい。
The three-dimensional woven fabric has 40 yarns that are linearly oriented in the three directions of the x axis, the y axis, and the z axis orthogonal to the xy plane.
It is woven with a porosity of about 60%. In order to obtain a predetermined porosity, the yarn has a diameter of 40 to 100 μ obtained by twisting filaments having a diameter of about 7 to 10 μm.
It is preferably m.

【0021】三次元織物を構成する繊維は、誘電特性維
持と加工性確保のため、DガラスあるいはSガラスから
なることが好ましく、3方向ともガラスからなる繊維を
用いると耐水性に富んだ織物が得られる。
The fibers constituting the three-dimensional woven fabric are preferably made of D glass or S glass in order to maintain dielectric properties and ensure processability, and when fibers made of glass in all three directions are used, the woven fabric is highly water resistant. can get.

【0022】なお、z方向(厚み方向)の糸(ヤーン)
として芳香族アラミド繊維等の有機繊維を用いて、前記
無機繊維との混織体で作製された三次元織物を使用して
もよい。誘電特性及び耐熱性の良好な有機繊維を使用す
ると、圧力に対する織物の耐性を向上させることができ
る。アラミド繊維の例としては、例えば、ケプラー繊維
などが挙げられ、このような繊維を使用すると織り難さ
の問題を解決することもできる。
A yarn (yarn) in the z direction (thickness direction)
As the organic fiber such as aromatic aramid fiber, a three-dimensional woven fabric made of a mixed woven fabric with the inorganic fiber may be used. The use of organic fibers having good dielectric properties and heat resistance can improve the resistance of the fabric to pressure. Examples of aramid fibers include, for example, Kepler fibers, and the use of such fibers can solve the problem of difficulty in weaving.

【0023】また、金属箔としては、通常の銅箔の他に
ニッケル箔、又はSUS、鉄箔など、導電性を有する金
属が選ばれる。この金属箔は、さらに酸化処理あるいは
他の金属、例えば亜鉛、ニッケルなどでメッキ処理して
用いてもよい。
As the metal foil, a conductive metal such as nickel foil, SUS, or iron foil is selected in addition to ordinary copper foil. The metal foil may be further subjected to an oxidation treatment or a plating treatment with another metal such as zinc or nickel before use.

【0024】本発明の熱可塑性樹脂プリント配線基板1
の作製にあたっては、まず、三次元織物からなる繊維布
基材2の上下に熱可塑性樹脂フィルム3を配置して加熱
し、樹脂の熱溶融により流動させて積層物を得る。
Thermoplastic resin printed wiring board 1 of the present invention
In the production of, first, the thermoplastic resin films 3 are arranged on the upper and lower sides of the fiber cloth base material 2 made of a three-dimensional woven fabric and heated, and the resin is melted by heat to be fluidized to obtain a laminate.

【0025】基板成形の際の温度は、熱可塑性樹脂フィ
ルムの融点より30〜60℃高い温度とが好ましく、3
0〜50℃高い温度がより好ましい。成形温度が低すぎ
ると樹脂の流動性が小さくなり、ボイドフリーの積層板
が作製できなくなり、一方、成形温度が高すぎると樹脂
の熱分解と基板への影響が避けられない。
The temperature at the time of molding the substrate is preferably 30 to 60 ° C. higher than the melting point of the thermoplastic resin film, and 3
A temperature of 0 to 50 ° C. higher is more preferable. If the molding temperature is too low, the fluidity of the resin becomes small, and a void-free laminate cannot be produced. On the other hand, if the molding temperature is too high, the thermal decomposition of the resin and the influence on the substrate cannot be avoided.

【0026】成形圧力は、5〜60kg/cm2 が好ま
しく、5〜40kg/cm2 がより好ましい。成形圧力
が高いと基材の損傷を生じ、逆に、低すぎると樹脂の流
動が不完全になってボイドフリー化が困難になる。な
お、先に述べたように、通常の平織りの単葉の繊維布基
材を併用することによって、この問題を解決することが
できる。
The molding pressure is preferably 5~60kg / cm 2, 5~40kg / cm 2 is more preferable. If the molding pressure is high, the base material will be damaged. On the contrary, if it is too low, the flow of the resin will be incomplete and void-free will be difficult. As described above, this problem can be solved by using a plain plain weave monoleaf fiber cloth base material in combination.

【0027】成形時間は、樹脂の流動距離及び樹脂の熱
分解防止(短い時間が好ましい)の両面を考慮して選定
することができ、具体的には、1〜5時間、好ましくは
1〜3時間の範囲である。
The molding time can be selected in consideration of both the flow distance of the resin and the prevention of thermal decomposition of the resin (short time is preferable), and specifically, 1 to 5 hours, preferably 1 to 3 hours. It is a range of time.

【0028】繊維布基材2の上下に熱可塑性樹脂フィル
ム3を配置して熱圧着した後、予め熱可塑性樹脂フィル
ム5を裏打ちした金属箔4を前述の積層物の上下に配置
し、さらに熱圧縮して積層して本発明の両面金属張積層
板1が得られる。
After placing the thermoplastic resin films 3 on the upper and lower sides of the fiber cloth base material 2 and performing thermocompression bonding, the metal foils 4 lined with the thermoplastic resin film 5 in advance are placed on the upper and lower sides of the above-mentioned laminate, and further heat is applied. The double-sided metal-clad laminate 1 of the present invention is obtained by compressing and laminating.

【0029】熱可塑性樹脂フィルムを金属箔に裏打ちす
る際の条件は、330〜350℃、1〜10kg/cm
2 、5〜10分とすることが好ましい。
The conditions for lining the thermoplastic resin film on the metal foil are 330 to 350 ° C. and 1 to 10 kg / cm.
2 , preferably 5 to 10 minutes.

【0030】また、金属箔を圧縮する際には、前述と同
様の条件で行なうことができる。
The compression of the metal foil can be performed under the same conditions as described above.

【0031】得られた金属張積層板は、スルーホール穴
開け、無電解メッキ、電解メッキ、エッチングなどの通
常の後加工を経由して、回路基板化される。
The obtained metal-clad laminate is made into a circuit board through usual post-processing such as through-hole drilling, electroless plating, electrolytic plating, and etching.

【0032】以下、本発明の具体例を示して、本発明を
より詳細に説明する。 (実施例1)Dガラスフィラメント(日本電気硝子製、
8μm径)から、直径70μmのヤーンを作製し、これ
を用いて厚さ1mmの三次元織物を作製した。その空隙
率を測定すると、60体積%であった。この上下両面
に、弗素樹脂(東レ−オーエスシー社製、テトラフルオ
ロエチレン−パーフルオロアルキルビニルエーテル共重
合体、略称PFA)の200μm厚フィルム(製品名:
200PX)を用いて、400μm厚相当のPFAフィ
ルムを設置した。これを350℃、10kg/cm2
3時間成形して、ボイドレスの積層板を作製した。 (実施例2)実施例1と同様の三次元織物の上下両面
に、同様のPFAフィルムを設置した後、さらにこの上
下に、35μm厚のニッケルメッキ銅箔(福田金属箔粉
製)を設置した。なお、この銅箔のマット面には、厚さ
25μmのPFAフィルムを、350℃、10kg/c
2 、10minの条件で予め裏打ちしておいた。
Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention. (Example 1) D glass filament (manufactured by Nippon Electric Glass,
8 μm diameter), a yarn having a diameter of 70 μm was produced, and using this, a three-dimensional woven fabric having a thickness of 1 mm was produced. The porosity was measured and found to be 60% by volume. A 200 μm thick film (product name: tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, abbreviated as PFA) of fluororesin (Toray OSC Co., Ltd.) is formed on both upper and lower surfaces.
200 PX) was used to set a PFA film having a thickness of 400 μm. This was molded at 350 ° C. and 10 kg / cm 2 for 3 hours to produce a voidless laminate. (Example 2) After the same PFA films were placed on both upper and lower sides of the same three-dimensional fabric as in Example 1, 35 μm thick nickel-plated copper foil (made by Fukuda Metal Foil Powder) was placed on the upper and lower sides. . The matte surface of this copper foil was coated with a PFA film having a thickness of 25 μm at 350 ° C. and 10 kg / c.
It was previously lined under the condition of m 2 and 10 min.

【0033】続いて、実施例1と同様の条件で成形し
て、ボイドレスの両面金属張積層板を作製した。 (実施例3)実施例1と同様の三次元織物の上下両面
に、厚さ50μmのDガラスクロス(旭シュエーベル社
製)を一枚ずつ配置した後、さらにこの上下にこの40
0μm厚相当のPFAフィルムを配置し、実施例1と同
様の条件で成形してボイドレスの積層板を作製した。 (実施例4)実施例1と同様の三次元織物の上下両面
に、実施例3と同様のDガラスクロス及びPFAフィル
ムを順次配置した後、さらにこの上下に、35μm厚の
ニッケルメッキ銅箔(福田金属箔粉製)を設置した。な
お、この銅箔のマット面には、厚さ25μmのPFAフ
ィルムを、350℃、10kg/cm2 、10minの
条件で予め裏打ちしておいた。
Subsequently, molding was performed under the same conditions as in Example 1 to prepare a voidless double-sided metal-clad laminate. (Example 3) D glass cloth having a thickness of 50 µm (manufactured by Asahi Schwebel) was placed on each of the upper and lower sides of the same three-dimensional fabric as in Example 1, and then 40 times above and below this.
A PFA film having a thickness of 0 μm was arranged and molded under the same conditions as in Example 1 to produce a voidless laminate. (Example 4) After the same D glass cloth and PFA film as in Example 3 were sequentially arranged on the upper and lower sides of the same three-dimensional fabric as in Example 1, 35 μm thick nickel-plated copper foil ( Fukuda metal foil powder) was installed. The matte surface of this copper foil was preliminarily lined with a PFA film having a thickness of 25 μm under the conditions of 350 ° C., 10 kg / cm 2 , and 10 min.

【0034】続いて、実施例1と同様の条件で成形し
て、ボイドレスの両面金属張積層板を作製した。 (比較例1)弗素樹脂フィルム(東レ−オーエスシー社
製、テトラフルオロエチレン−パーフルオロアルキルビ
ニルエーテル、略称PFA)である25PX、50P
X、100PX及び125PXを適宜組み合わせて、厚
さ175μm相当のPFAフィルムを作製した。このP
FAフィルムと、厚さ50μmDガラスクロス(旭シュ
エーベル社製)16枚とを順に積層して、PFAフィル
ム/Dガラスクロス/PFAフィルム/Dガラスクロス
/PFAフィルムを含む層構成体を作製した。この層構
成体を、350℃、80kg/cm2 で2時間成形して
ボイドレスの積層板を得た。 (比較例2)比較例1と同様の層構成体の上下に、35
μm厚のニッケルメッキ銅箔(福田金属箔粉製)を設置
した。なお、この銅箔のマット面には、厚さ25μmの
PFAフィルムを、350℃、10kg/cm2 、10
minの条件で予め裏打ちしこれを、比較例1と同様の
条件で成形してボイドレスの両面金属張積層板を作製し
た。 (比較例3)PFAフィルムの1単位の厚さを150μ
mとし、1層に使用するDガラスクロスの枚数を14枚
とした以外は、比較例1と同様に積層して、層構成体を
作製した。この層構成体を、350℃、40kg/cm
2 で2時間成形してボイドレスの積層板を得た。 (比較例4)比較例3で得られた層構成体の上下に、比
較低2と同様のニッケルメッキ銅箔を配置し、350
℃、40kg/cm2 で2時間成形してボイドレスの両
面金属張積層板を得た。 (比較例5)上層及び下層のPFAフィルムの厚さを1
50μmとし、中層の樹脂フィルムの厚さを100μm
とした以外は、比較例1と同様に積層して、層構成体を
作製した。この層構成体を、350℃、120kg/c
2 で2時間成形してボイドレスの積層板を得た。 (比較例6)比較例5で得られた層構成体の上下に、比
較低2と同様のニッケルメッキ銅箔を配置し、350
℃、120kg/cm2 で2時間成形してボイドレスの
両面金属張積層板を得た。
Subsequently, molding was performed under the same conditions as in Example 1 to prepare a voidless double-sided metal-clad laminate. (Comparative Example 1) 25PX, 50P which is a fluororesin film (tetrafluoroethylene-perfluoroalkyl vinyl ether, abbreviated as PFA, manufactured by Toray OSC Co., Ltd.)
X, 100 PX and 125 PX were appropriately combined to prepare a PFA film having a thickness of 175 μm. This P
An FA film and 16 sheets of 50 μm thick D glass cloth (manufactured by Asahi Schebel) were laminated in order to prepare a layered structure containing PFA film / D glass cloth / PFA film / D glass cloth / PFA film. This layered structure was molded at 350 ° C. and 80 kg / cm 2 for 2 hours to obtain a voidless laminate. (Comparative Example 2) A layer structure similar to that of Comparative Example 1 was provided with 35
A μm thick nickel-plated copper foil (made by Fukuda Metal Foil Powder) was installed. The matte surface of this copper foil was coated with a PFA film having a thickness of 25 μm at 350 ° C., 10 kg / cm 2 , 10
It was lined in advance under the condition of min and was molded under the same conditions as in Comparative Example 1 to prepare a voidless double-sided metal-clad laminate. (Comparative Example 3) The thickness of one unit of the PFA film is 150 μm.
m, and the number of D glass cloths used for one layer was 14, and laminated in the same manner as in Comparative Example 1 to produce a layer structure. This layer structure is 350 ° C., 40 kg / cm
It was molded at 2 for 2 hours to obtain a voidless laminate. (Comparative Example 4) A nickel-plated copper foil similar to that of Comparative Example 2 was arranged on the upper and lower sides of the layer structure obtained in Comparative Example 3, and 350
Molding was conducted at 40 ° C. and 40 kg / cm 2 for 2 hours to obtain a voidless double-sided metal-clad laminate. (Comparative Example 5) The thickness of the upper and lower PFA films was set to 1
50μm, the thickness of the resin film of the middle layer is 100μm
A layer structure was prepared by laminating in the same manner as in Comparative Example 1 except that. This layer structure is heated at 350 ° C. and 120 kg / c.
It was molded at m 2 for 2 hours to obtain a voidless laminate. (Comparative Example 6) The same nickel-plated copper foil as Comparative Comparative 2 was placed on the upper and lower sides of the layer structure obtained in Comparative Example 5, and 350
Molding was performed at 120 ° C. and 120 kg / cm 2 for 2 hours to obtain a voidless double-sided metal-clad laminate.

【0035】以上の実施例1〜4及び比較例1〜6で作
製した積層板及び両面金属張積層板から試験片を切り出
し、基本特性を評価して表1及び表2にまとめた。
Test pieces were cut out from the laminates and double-sided metal-clad laminates prepared in Examples 1 to 4 and Comparative Examples 1 to 6 described above, and the basic properties were evaluated and summarized in Tables 1 and 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 表1及び表2から、本発明の積層板及び両面金属張積層
板は、比誘電率、誘電正接が比較例の値より低く、誘電
特性がさらに改善されたことがわかる。また、厚み方向
の線熱膨脹係数の低下は特に大きく、この値は、通常の
平織りの繊維布基材を複数枚積層して本発明で用いた三
次元織物と同等の厚さにしても、得ることができないこ
とがわかる。
[Table 2] From Table 1 and Table 2, it can be seen that the laminated sheet and the double-sided metal-clad laminated sheet of the present invention have lower relative permittivity and dielectric loss tangent than those of the comparative example, and the dielectric characteristics are further improved. Further, the decrease in the linear thermal expansion coefficient in the thickness direction is particularly large, and this value can be obtained even if a plurality of ordinary plain weave fiber cloth base materials are laminated to have a thickness equivalent to that of the three-dimensional woven fabric used in the present invention. It turns out that you can't.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
比誘電率及び誘電正接をいっそう低減させて誘電特性を
改善し、かつ厚み方向の線熱膨脹係数を低減したボイド
フリーのプリント配線基板が提供される。
As described above, according to the present invention,
(EN) A void-free printed wiring board having a further reduced dielectric constant and dielectric loss tangent, improved dielectric characteristics, and a reduced coefficient of linear thermal expansion in the thickness direction.

【0039】このような特性を有する基板は、高周波機
器として適しており、その産業上の利用効果は絶大であ
る。
The substrate having such characteristics is suitable as a high frequency device, and its industrial utilization effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の両面金属張積層板の断面を示す模式
図。
FIG. 1 is a schematic view showing a cross section of a double-sided metal-clad laminate of the present invention.

【図2】従来の両面金属張積層板の断面を示す模式図。FIG. 2 is a schematic view showing a cross section of a conventional double-sided metal-clad laminate.

【符号の説明】[Explanation of symbols]

1…両面金属張積層板,2…繊維布基材,3…熱可塑性
樹脂フィルム 4…金属箔,5…熱可塑性樹脂フィルム,7…両面金属
張積層板 8…繊維布基材,9…熱可塑性樹脂フィルム,10…金
属箔 11…熱可塑性樹脂フィルム。
DESCRIPTION OF SYMBOLS 1 ... Double-sided metal-clad laminated board, 2 ... Fiber cloth base material, 3 ... Thermoplastic resin film 4 ... Metal foil, 5 ... Thermoplastic resin film, 7 ... Double-sided metal-clad laminated board 8 ... Fiber cloth base material, 9 ... Heat Plastic resin film, 10 ... Metal foil 11 ... Thermoplastic resin film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多重織りで作製された三次元織物からな
る繊維布基材に熱可塑性樹脂を含浸してなる熱可塑性樹
脂プリント配線基板。
1. A thermoplastic resin printed wiring board obtained by impregnating a thermoplastic resin into a fiber cloth substrate made of a three-dimensional woven fabric produced by multiple weaving.
JP35418893A 1993-12-28 1993-12-28 Thermoplastic resin printed wiring board Pending JPH07202362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35418893A JPH07202362A (en) 1993-12-28 1993-12-28 Thermoplastic resin printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35418893A JPH07202362A (en) 1993-12-28 1993-12-28 Thermoplastic resin printed wiring board

Publications (1)

Publication Number Publication Date
JPH07202362A true JPH07202362A (en) 1995-08-04

Family

ID=18435883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35418893A Pending JPH07202362A (en) 1993-12-28 1993-12-28 Thermoplastic resin printed wiring board

Country Status (1)

Country Link
JP (1) JPH07202362A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179183A (en) * 1999-10-29 2003-06-27 Hitachi Ltd Semiconductor device and its manufacturing method
US6624504B1 (en) 1999-10-29 2003-09-23 Hitachi, Ltd. Semiconductor device and method for manufacturing the same
US6770547B1 (en) 1999-10-29 2004-08-03 Renesas Technology Corporation Method for producing a semiconductor device
US6822317B1 (en) 1999-10-29 2004-11-23 Renesas Technology Corporation Semiconductor apparatus including insulating layer having a protrusive portion
WO2005075724A1 (en) * 2004-02-09 2005-08-18 Asahi-Schwebel Co., Ltd. Double glass cloth, and prepreg and substrate for printed wiring board using the glass cloth
US11781004B2 (en) 2019-11-04 2023-10-10 3M Innovative Properties Company Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
US11866602B2 (en) 2018-06-12 2024-01-09 3M Innovative Properties Company Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods
US12018144B2 (en) 2018-06-12 2024-06-25 3M Innovative Properties Company Fluoropolymer coating compositions comprising amine curing agents, coated substrates and related methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179183A (en) * 1999-10-29 2003-06-27 Hitachi Ltd Semiconductor device and its manufacturing method
US6624504B1 (en) 1999-10-29 2003-09-23 Hitachi, Ltd. Semiconductor device and method for manufacturing the same
US6770547B1 (en) 1999-10-29 2004-08-03 Renesas Technology Corporation Method for producing a semiconductor device
US6822317B1 (en) 1999-10-29 2004-11-23 Renesas Technology Corporation Semiconductor apparatus including insulating layer having a protrusive portion
WO2005075724A1 (en) * 2004-02-09 2005-08-18 Asahi-Schwebel Co., Ltd. Double glass cloth, and prepreg and substrate for printed wiring board using the glass cloth
US11866602B2 (en) 2018-06-12 2024-01-09 3M Innovative Properties Company Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods
US12018144B2 (en) 2018-06-12 2024-06-25 3M Innovative Properties Company Fluoropolymer coating compositions comprising amine curing agents, coated substrates and related methods
US11781004B2 (en) 2019-11-04 2023-10-10 3M Innovative Properties Company Electronic telecommunications articles comprising crosslinked fluoropolymers and methods

Similar Documents

Publication Publication Date Title
CA1276758C (en) Process for making substrates for printed circuit boards
AU694564B2 (en) Foiled UD-prepreg and PWB laminate prepared therefrom
US6121171A (en) Composite film comprising low-dielectric resin and paraoriented aromatic polyamide
JP3119577B2 (en) Laminated board
WO2021031250A1 (en) Copper-clad laminated board, printed circuit board, and fabrication method for printed circuit board
JPH07202362A (en) Thermoplastic resin printed wiring board
JPH11288621A (en) Low dielectric constant insulating material and electric/ electronic equipment
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
JP3343722B2 (en) Method for producing composite prepreg and laminate
JPH05291711A (en) Board for high-frequency circuit use
JPS61100446A (en) Flexible printed wiring board
JPH05318640A (en) Laminated sheet
JPH09254331A (en) Laminated sheet
KR20230124159A (en) Flexible metal clad laminate, method for manufacturing the same, and flexible printed circuit board using the flexible metal clad laminate
JP2555819B2 (en) Composite laminate
JPH05185429A (en) Production of fluoroplastic prepreg
JPH06260765A (en) Multilayer wiring board and manufacture thereof
JPH05310957A (en) Fiber sheet and circuit substrate using the same
JPH06272135A (en) Woven fabric of glass yarn for multi-layer printed-wiring board and prepreg for multi-layer printed-wiring board
JPH06260764A (en) Multilayer wiring board and manufacture thereof
WO2002043081A1 (en) Electrical insulating plate, prepreg laminate and method for producing them
JPH05315716A (en) Electrical laminate plate
JPH0310836A (en) Production of laminated plate clad with copper
JP2003211568A (en) Glass cloth formed with conductor pattern, prepreg and multilayer board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Effective date: 20040707

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A02