JP5202775B2 - Prepreg, metal-clad laminate and use thereof - Google Patents

Prepreg, metal-clad laminate and use thereof Download PDF

Info

Publication number
JP5202775B2
JP5202775B2 JP2000151827A JP2000151827A JP5202775B2 JP 5202775 B2 JP5202775 B2 JP 5202775B2 JP 2000151827 A JP2000151827 A JP 2000151827A JP 2000151827 A JP2000151827 A JP 2000151827A JP 5202775 B2 JP5202775 B2 JP 5202775B2
Authority
JP
Japan
Prior art keywords
weight
prepreg
thermosetting resin
thickness
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000151827A
Other languages
Japanese (ja)
Other versions
JP2001329080A (en
Inventor
雅一 茂木
拓也 羽崎
憲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000151827A priority Critical patent/JP5202775B2/en
Publication of JP2001329080A publication Critical patent/JP2001329080A/en
Application granted granted Critical
Publication of JP5202775B2 publication Critical patent/JP5202775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、剛性率が高く、かつ厚み方向での絶縁信頼性に優れ、更にレーザー加工性が良好なプリント配線板用の、プリプレグ及び積層板に関する。本発明で使用するガラスクロスを熱硬化性樹脂組成物の補強基材として用いたプリプレグから得られる積層板は、プリント配線板の製造工程の生産性に有効な、高い剛性を有し、かつ厚み方向での高い絶縁信頼性を保持し、加えてレーザー加工性に優れることから、プラスチックパッケージ用プリント配線板材料として好適である。特に薄物用として好適である。
【0002】
【従来の技術】
電子機器用のプリント配線板材料として、ガラスクロスに、エポキシ樹脂系、BT(ビスマレイミド−トリアジン)樹脂系等の熱硬化性樹脂を、含浸、加熱乾燥して得られるプリプレグ、該プリプレグを、加熱硬化した積層板、該積層板と該プリプレグとを組み合わせ、加熱硬化した多層板が、広く使用されている。近年、電子機器のコンパクト化の進展に伴い、プリント配線板に対する高密度化の要求が更に高まり、これに対応するため、プリント配線板材料については、薄型化、多層化の傾向が急増している。
【0003】
例えば、プラスチックパッケージ用プリント配線板分野の場合、絶縁層厚みは、従来、両面銅張り積層板では、200〜400μmが主流であり、また多層板では、100〜200μmの内層コア材と100μmのプリプレグが主流であった。しかし最近では、実装されるメモリー等のプラスチックパッケージの小型、薄型化が急速に進む現状に適応するため、両面銅張り積層板では、60〜150μm、多層板では、60〜150μmの内層コア材と30〜60μmのプリプレグの適用が強く要望されている。このようなプリント配線板材料の薄型化要求に伴い、特にプリント配線板の製造工程での生産性に有効な、腰が強く、剛性の高い材料や厚み方向の絶縁信頼性の確保が不可欠となっている。
【0004】
【発明が解決しようとする課題】
現在、一般に使用されているガラスクロスのうち、厚さ150μm以下、特に100μm以下のガラスクロスを用いたプリプレグ1枚の構成の積層板の場合、全般に腰が弱く、剛性が低いことから、研磨工程、エッチング工程、メッキ工程等のラインでの巻き込みといった問題や、表裏のレジスト量のアンバランスに起因する反りが大きい等の不具合が生ずる等の問題があった。
また、厚さ100μmのガラスクロス(2116タイプ)では、厚み当たりの重量の関係から、ガラスクロスの空隙率が比較的少ないため、このクロスを用いたプリプレグ1枚の構成の絶縁層でも、厚み方向の絶縁信頼性不良という問題点は、ほとんど認められなかった。これに対し、薄物用に使用されている厚さ60μmのガラスクロス(1080タイプ)では、厚み当たりの重量が2116タイプよりも少ないことから、ガラスクロスの空隙率が大きくなる。このため、このクロスを用いたプリプレグ1枚構成の絶縁層では、厚み方向の絶縁信頼性を確保することは困難であった。
本発明は、剛性が高く、厚み方向に高い絶縁信頼性を有する、薄物用に適したプリント配線板材料の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明者らは種々検討を行った結果、特定のガラスクロスを熱硬化性組成物の補強基材に使用したプリプレグを用いることで、得られる積層板は、剛性率が高いため腰が強く、また厚み方向の絶縁信頼性が高くなり、加えてレーザー加工性に優れることから、薄物用のプリント配線材料用に適用されたとき、プラスチックパッケージ用材料として好適であることを見い出し、本発明を完成するに至った。即ち、本発明は、ガラスクロスの厚みが、20〜60μmであり、ガラスクロスの重量をW(g/m2)、 ガラスクロスの厚みをt(μm)、縦糸の打ち込み本数をX(本),横糸の打ち込み本数をY(本)とした時、W/tの値が0.95〜1.25で、Y/Xの値が0.95〜1.05であるガラスクロス(I)を、熱硬化性樹脂組成物(II)の補強基材として使用することを特徴とするプリプレグを提供する。本発明はさらに該プリプレグを2枚以上使用し、硬化して得られる金属張り積層板、及び該プリプレグと金属張り積層板を使用するプラスチックパッケージ用プリント配線板材料を提供する。
【0006】
【発明実施の形態】
本発明に使用されるガラスクロス(I)としては、ガラスクロスの厚みが、20〜60μmであり、ガラスクロスの重量をW(g/m2)、ガラスクロスの厚みをt(μm)、縦糸の打ち込み本数をX(本),横糸の打ち込み本数をY(本)とした時、W/tの値が0.95〜1.25で、Y/Xの値が0.95〜1.05のガラスクロスであれば、特に限定されるものではない。
上記値を満足するガラスクロスのスタイルの代表的な例としては、いずれも旭シェーベル(株)の商品名で、5052MS(厚み:45μm、重量:48g/m2、打ち込み本数:縦糸;53〜54本、横糸;53〜54本)、6843MS(厚み:50μm、重量:54g/m2、打ち込み本数:縦糸;59〜60本、横糸;59〜60本)、6909MS(厚み:30μm、重量:30g/m2、打ち込み本数:縦糸;69〜70本、横糸;69〜70本)などが挙げられる。W/tの値が0.95未満では、厚み当たりのガラス繊維量が不足するため、空隙率が増加し、剛性率が低下し、Y/Xの値が上記範囲外では、縦方向と横方向の剛性率の差が大きくなり、好ましくない。
【0007】
使用するガラスクロス(I)の材質は、各種の電気絶縁材料用に用いられている、周知の材質のものが使用可能である。その具体例としては、Eガラス、Sガラス、Dガラス、Nガラス、クォーツなどが挙げられ、材質及びスタイルは、目的とする成形物の用途や性能により適宜選択され、必要に応じて1種もしくは、2種以上の材質及びスタイルを適宜組み合わせて使用することも可能である。またシランカップリング剤などで表面処理を施したものは、吸湿耐熱性の面からも好適である。ガラスクロスに対する熱硬化性樹脂組成物(II)の付着量は、プリプレグ段階の樹脂含有率(無機充填剤を含む)で、30〜80重量%の範囲である。
【0008】
本発明において使用される熱硬化性樹脂組成物(II)は、電気絶縁材料用に使用されている熱硬化性樹脂(III)をベースにした組成物であれば、特に限定されるものではない。熱硬化性樹脂(III)の代表的な例としては、シアン酸エステル樹脂、ビスマレイミドーシアン酸エステル樹脂、エポキシ樹脂、多官能マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂などが挙げられ、目的に応じて1種もしくは2種以上を適宜組み合わせて使用することも可能である。より好適なものとしては、シアン酸エステル樹脂、またはエポキシ樹脂を必須成分として含有する熱硬化性樹脂が挙げられる。
【0009】
本発明の熱硬化性樹脂(III)の好適な態様であるシアン酸エステル樹脂とは、1分子中に2個以上のシアナト基を有する化合物であれば、特に限定されるものではない。その具体例としては、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類などが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。また、これらシアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する重量平均分子量500〜5,000 のプレポリマーが好適に使用される。プレポリマーの製法としては、上記のシアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラートなど、第三級アミン類などの塩、炭酸ナトリウムなどの塩類などを触媒として重合させることにより得られる。
【0010】
本発明の熱硬化性樹脂(III)のもう1つの好のましい態様であるエポキシ樹脂とは、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されるものではない。その具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、リン含有エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ポリオール型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエンなどの二重結合をエポキシ化したポリエポキシ化合物、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応によって得られるポリグリシジル化合物などが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。
【0011】
本発明の熱硬化性樹脂組成物(II)には、剛性率やレーザー加工性を、更に高めるため、無機充填剤(IV)を含有させることが好ましい。使用される無機充填剤(IV)は、高分子材料に一般に使用されている無機充填剤であれば、特に限定されるものではない。その代表的な例としては、天然シリカ、焼成シリカ、アモルファスシリカ、ホワイトカーボン、チタンホワイト、アエロジル、カオリン、クレー、タルク、焼成カオリン、焼成クレー、焼成タルク、ウオラストナイト、天然マイカ、合成マイカ、マグネシア、アルミナ、パーライト、水酸化アルミニウム、水酸化マグネシウム、酸化モリブデン、モリブデン酸亜鉛、ホウ酸亜鉛、錫酸亜鉛、ガラス短繊維、ガラス微粉末、中空ガラスなどが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。より好適な無機充填剤としては、水酸化アルミニウム、焼成タルク、ガラス短繊維、ガラス微粉末が挙げられ、その平均粒子径は、50μm以下が好ましい。無機充填剤(IV)の添加量は、熱硬化性樹脂(III)100重量部に対し、10〜200重量部、好ましくは20〜150重量部である。
【0012】
本発明の熱硬化性樹脂組成物(II)には、必要に応じて、熱硬化性樹脂(III)の硬化剤、硬化促進剤を併用する。これらは、熱硬化性樹脂(III)の硬化剤、硬化促進剤に一般に使用されるものであれば、特に限定されるものではない。これらの代表例としては、シアン酸エステル樹脂の場合は、有機金属塩、イミダゾール類、第3級アミンなどが、エポキシ樹脂の場合は、アミン化合物、フェノール化合物、酸無水物、イミダゾール類、第3級アミンなどが挙げられる。
【0013】
本発明の熱硬化性樹脂組成物(II)には、所期の特性が損なわれない範囲において、所望に応じ、種々の化合物を配合することも可能である。これらは、周知であり、一般に使用されているものであれば、特に限定されない。化合物の代表例としては、不飽和ポリエステルなどの重合性二重結合含有モノマー類及びそのプレポリマー類、ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、スチレン-イソプレンゴム、ブチルゴム、フッ素ゴム、天然ゴムなどの低分子量液状〜高分子量のエラストマー類、ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイドなどの高分子量プレポリマー若しくはオリゴマー、ポリウレタン、シリコーン系化合物等が例示され、1種もしくは2種以上を適宜混合して使用することも可能であり、必要により、反応基を有する化合物の場合は、硬化剤や硬化促進剤が適宜配合される。
【0014】
本発明の熱硬化性樹脂組成物(II)には、所期の特性が損なわれない範囲において、有機系難燃剤やその他の添加剤などの併用も可能である。これらは、周知であり、一般に使用されているものであれば、特に限定されない。有機系難燃剤としては、リン酸エステル、リン酸メラミンなどのリン含有化合物、メラミンやベンゾグアナミン変性などの窒素含有化合物などが例示され、その他添加剤としては、ベンゾトリアゾールなどの紫外線吸収剤、ヒンダートフェノール、スチレン化フエノールなどの酸化防止剤、チオキサントン系などの光重合開始剤、スチルベン誘導体などの蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、、光沢剤、重合禁止剤、チクソ性付与剤などが、所望に応じ、適宜組み合わせて使用することも可能である。
【0015】
本発明において、必要に応じて、有機溶剤を使用するが、その種類としては、熱硬化性樹脂(III)と相溶するものであれば、特に限定されるものではない。その代表例としては、アセトン、メチルエチルケトン、メチルセルソルブ、プロピレングリコールメチルエーテル及びそのアセテート、トルエン、キシレン、ジメチルホルムアミドなどが挙げられる。単独もしくは2種以上を適宜混合して使用することも可能である。基材への含浸性を重視する場合は、沸点120〜200℃程度の溶剤を併用することが好適である。
【0016】
本発明のガラスクロス(I)に、熱硬化性樹脂(III)並びに、より好適には無機系充填剤(IV)を含有させた熱硬化性樹脂組成物(II)を、含浸または塗布させた後、通常100〜200℃の乾燥機中で、1〜30分加熱させる方法などにより、半硬化(Bステージ化)して、本発明のプリプレグを製造する。
【0017】
本発明の金属箔張り積層板は、前述の本発明のプリプレグを用いて積層成形したものである。具体的には本発明のプリプレグを適宜、2枚以上を重ね、所望によりその片面もしくは両面に、銅やアルミニウムなどの金属箔を配置した構成で、積層成形することにより製造する。使用する金属箔は、電気絶縁材料用途に用いられているものであれば特に限定はされない。成形条件としては、通常の電気絶縁材料用積層板及び多層板の手法が適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度:100〜280℃、圧力:2〜100kg/cm2,加熱時間:0.05〜10時間の範囲が一般的である。また、本発明のプリプレグと別途作成した内層用の配線板を組み合わせ、積層成形することにより、多層板を製造する。
【0018】
【実施例】
実施例1
2,2-ビス(4-シアナトフェニル)プロパン 40重量部、ビス(4-マレイミドフェニル)メタン 10重量部を150℃で、4時間反応し、プレポリマー化を行った後、メチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解、これにビスフェノールA型エポキシ樹脂(「エピコート1001」、エポキシ当量:480、油化シェルエポキシ製) 40重量部、クレゾールノボラック型エポキシ樹脂(「ESCN220H」、エポキシ当量:215、住友化学製) 10重量部、オクチル酸亜鉛 0.02重量部を配合し、溶解混合した後、水酸化アルミニウム(「CL303」、平均粒子径:3μm、住友化学製) 50重量部を加え、均一に混合したワニスを得た。
【0019】
このワニスを、メチルエチルケトンで希釈し、厚さ:45μm、重量:48g/m2、打ち込み本数:縦糸;54本、横糸;54本のガラスクロス(「5052MS」:旭シェーベル製)に含浸塗工し、150℃で6分間加熱乾燥して、樹脂含有量(含無機充填剤、以下同様)53重量%、ゲル化時間 120秒(at170℃)のプリプレグ(A)を得た。このプリプレグ(A)を2枚重ね、厚さ 12μmの電解銅箔を上下に配置し、圧力 20kg/ cm2、温度 200℃で、2時間プレス成形を行い、厚さ 0.1mmの両面銅張積層板を得た。
【0020】
比較例1
ガラスクロスとして2116タイプ(「258」、厚さ:100μm、重量:108g/m2、打ち込み本数:縦糸;62本、横糸;58本、旭シェーベル製)を使用する以外は、実施例1と同様に行い、樹脂含有量48重量%、ゲル化時間120秒のプリプレグ(B)を得た。このプリプレグ(B)を1枚使用し、実施例1と同様にして、厚さ 0.1mmの両面銅張積層板を得た。
【0021】
実施例2
2,2-ビス(4-シアナトフェニル)プロパン42重量部、ビス(4-マレイミドフェニル)メタン18重量部を150℃で、5時間反応し、プレポリマー化を行った後、メチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解、これにブロム化ビスフェノールA系エポキシ樹脂(「エピクロン152」、エポキシ当量:360、大日本インキ製)40重量部、オクチル酸亜鉛 0.02重量部を配合し、溶解混合した後、Eガラス粉末(「PFA−101」,平均粒子径:10μm、日東紡製)100重量部を加え、均一に混合したワニスを得た。
このワニスを、メチルエチルケトンで希釈し、実施例1と同様のガラスクロス(「5052MS」)に含浸塗工し、150℃で6分間加熱乾燥して、樹脂含有量 56重量%、ゲル化時間 120秒のプリプレグ(C)を得た。このプリプレグ(C)を3枚重ね、実施例1と同様にして、厚さ 0.15mmの両面銅張積層板を得た。
【0022】
比較例2
実施例2において、Eガラス粉末を使用せずにワニスを得、ガラスクロスとして1500タイプ(「1500」、厚さ:150μm、重量:164g/m2、打ち込み本数:縦糸;49本、横糸;42本、旭シェーベル製)を使用する以外は、実施例2と同様に行い、樹脂含有量 43重量%、ゲル化時間 120秒のプリプレグ(D)を得た。このプリプレグ(D)を1枚使用し、実施例1と同様にして、厚さ0.15mmの両面銅張積層板を得た。
【0023】
実施例3
ブロム化ビスフェノールA系エポキシ樹脂(「エピコート5046」、エポキシ当量:480、油化シェルエポキシ製) 90重量部、クレゾールノボラック型エポキシ樹脂(「ESCN220H」)10重量部、ジシアンジアミド3重量部、2-エチル-4-メチルイミダゾール 0.06重量部をメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した後、焼成タルク(「BST」、平均粒子径:4μm、日本タルク製)30重量部を加え、均一に混合したワニスを得た。
これをメチルエチルケトンで希釈し、厚さ:30μm、重量:30g/m2、打ち込み本数:縦糸;69本、横糸;69本のガラスクロス(「6909MS」、旭シェーベル製)に含浸塗工し、160℃で5分間乾燥して、樹脂含有量 60重量%、ゲル化時間120秒のプリプレグ(E)を得た。このプリプレグ(E)を、2枚重ね、厚さ12μmの電解銅箔を上下に配置し、圧力 20kg/cm2、温度170℃で、2時間プレス成形を行い、厚さ 0.08mmの両面銅張積層板を得た。これとは別に、このプリプレグ(E)を310X310mmの寸法に切断後、2枚を重ね、その上面に鉄粉(「Fe−S」、福田金属箔粉製)0.05mgを、均一になるように分散した後、厚さ 18μmの電解銅箔を上下に配置し、同様にプレス成形を行い、Z方向の絶縁性試験用の金属異物入り両面銅張積層板を得た。
【0024】
比較例3
ガラスクロスとして1080タイプ(「1080」、厚さ:57μm、重量:48g/m2、打ち込み本数:縦糸;60本、横糸;47本、旭シェーベル製)を使用する以外は、実施例3と同様に行い、樹脂含有量 60重量%、ゲル化時間 120秒のプリプレグ(F)を得た。
このプリプレグ(F)を1枚使用し、実施例3と同様にして、厚さ 0.08mmの両面銅張積層板を得た。これとは別に、このプリプレグ(F)を310X310mmの寸法に切断後、1枚使用し、その上面に鉄粉(Fe−S)0.05mgを、均一になるように分散した後、実施例3と同様に、プレス成形を行い、Z方向の絶縁性試験用の金属異物入り両面銅張積層板を得た。
【0025】
実施例、及び比較例で得られた両面銅張積層板の評価結果を下記の表に示した。
【0026】

Figure 0005202775
【0027】
(評価方法)
・銅箔接着力 :長さ100mm、幅10mmに銅箔を残した試験片(100x25mm)の銅箔の引き剥がし強度。(JIS C 6481に準拠)
・半田耐熱性 :両面銅箔付き試験片(25x25mm)を、260℃ の半田に1分間フロートし、外観の異常の有無で判定。(JIS C 6481に準拠)
・剛性率 :DMA法による貯蔵弾性率。(JIS C 6481のガラス転移点測定法に準拠)
・たわみ量 :銅箔をエッチングした試験片(80X20mm)を2枚重ね、端部20mmを治具に固定、固定部と反対側端部に2gの分銅を乗せ、水平から垂れ下がる距離を測定。
・ライントラブル率:銅張り積層板(405mmx510mm)100枚を、エッチングライン(長さ3m、速度1.5m/min.)を通した際、搬送ロール部分に、積層板が巻き付いた割合。
・レーザー加工性 :銅張り積層板の表裏面に、レーザーシート(LSE30、LSE90、三菱ガス化学製)を貼りつけ、炭酸ガスレーザーを使用し、孔径0.1mmのスルーホール孔加工を実施、発生する銅箔のバリを除去するため、ソフトエッチング処理法にて、銅箔厚みが3μmになるまでエッチング処理した後、100孔について真円度(最大径/最小径)を測定した時の最大値。(値が1に近い方ほど孔形状が良好)
Z方向絶縁不良率:銅張り積層板(300X300mm)10枚の片面に、それぞれ縦、横8本づつ、3mm幅のスリットを形成、各々36分割としたサンプルを使用し、合計360ヶ所における表裏の電気絶縁性(50V印可)を測定した時のショート割合。
【0028】
【発明の効果】
本発明によれば、剛性率が高く、かつ厚み方向での絶縁信頼性に優れ、更にレーザー加工性が良好なプリント配線板用の、薄物用のプリプレグ及び金属張り積層板が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prepreg and a laminate for a printed wiring board having high rigidity, excellent insulation reliability in the thickness direction, and good laser processability. The laminated board obtained from the prepreg using the glass cloth used in the present invention as the reinforcing base material of the thermosetting resin composition has high rigidity and is effective for productivity in the production process of the printed wiring board, and has a thickness. It is suitable as a printed wiring board material for plastic packages because it maintains high insulation reliability in the direction and is excellent in laser processability. It is particularly suitable for thin objects.
[0002]
[Prior art]
As a printed wiring board material for electronic equipment, a glass cloth is impregnated with a thermosetting resin such as epoxy resin or BT (bismaleimide-triazine) resin, and is heated and dried. The prepreg is heated. A cured laminated board, and a multilayer board obtained by combining the laminated board and the prepreg and heat-cured are widely used. In recent years, with the progress of downsizing of electronic devices, the demand for higher density of printed wiring boards has further increased, and in order to respond to this, the trend of thinner and multilayered printed wiring board materials has increased rapidly. .
[0003]
For example, in the case of the printed wiring board for plastic packages, the insulation layer thickness is conventionally 200 to 400 μm for double-sided copper-clad laminates, and 100 to 200 μm inner layer core material and 100 μm prepreg for multilayer boards. Was the mainstream. However, recently, in order to adapt to the current rapid progress of miniaturization and thinning of plastic packages such as mounted memory, inner layer core material of 60 to 150 μm for double-sided copper-clad laminates and 60 to 150 μm for multilayer plates Application of a prepreg of 30 to 60 μm is strongly demanded. With such demands for thinner printed wiring board materials, it is indispensable to ensure firm and rigid materials and insulation reliability in the thickness direction, which is particularly effective for productivity in the manufacturing process of printed wiring boards. ing.
[0004]
[Problems to be solved by the invention]
In the case of a laminated sheet of a single prepreg using a glass cloth having a thickness of 150 μm or less, particularly 100 μm or less, among the glass cloths that are generally used at present, polishing is generally difficult due to low stiffness and low rigidity. There were problems such as entrainment in a line such as a process, an etching process, a plating process, etc., and problems such as the occurrence of problems such as large warpage due to imbalance of resist amounts on the front and back sides.
Further, in the case of a glass cloth having a thickness of 100 μm (2116 type), since the porosity of the glass cloth is relatively small due to the weight per thickness, the insulating layer having a single prepreg using this cloth also has a thickness direction. The problem of poor insulation reliability was hardly recognized. On the other hand, the glass cloth having a thickness of 60 μm (1080 type) used for thin objects has a smaller weight per thickness than the 2116 type, and therefore the porosity of the glass cloth is increased. For this reason, it has been difficult to ensure insulation reliability in the thickness direction in an insulating layer having a single prepreg structure using this cloth.
An object of the present invention is to provide a printed wiring board material having high rigidity and high insulation reliability in the thickness direction and suitable for thin objects.
[0005]
[Means for Solving the Problems]
As a result of various studies, the inventors have used a prepreg in which a specific glass cloth is used as a reinforcing base material for a thermosetting composition, and the resulting laminate has a high rigidity and has a high stiffness. In addition, the insulation reliability in the thickness direction is increased, and in addition, the laser processability is excellent, so that it is suitable as a material for plastic packaging when applied to printed wiring materials for thin objects, and the present invention is completed. It came to do. That is, in the present invention, the thickness of the glass cloth is 20 to 60 μm, the weight of the glass cloth is W (g / m 2 ), the thickness of the glass cloth is t (μm), and the number of warp yarns is X (pieces) A glass cloth (I) having a W / t value of 0.95 to 1.25 and a Y / X value of 0.95 to 1.05 when the number of driven weft yarns is Y (pieces). A prepreg characterized by being used as a reinforcing base material for a thermosetting resin composition (II) is provided. The present invention further provides a metal-clad laminate obtained by curing using two or more of the prepregs, and a printed wiring board material for a plastic package using the prepreg and the metal-clad laminate.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the glass cloth (I) used in the present invention, the thickness of the glass cloth is 20 to 60 μm, the weight of the glass cloth is W (g / m 2 ), the thickness of the glass cloth is t (μm), and the warp When the number of driven yarns is X (pieces) and the number of weft yarns driven is Y (pieces), the value of W / t is 0.95 to 1.25 and the value of Y / X is 0.95 to 1.05. The glass cloth is not particularly limited.
As typical examples of glass cloth styles that satisfy the above values, all are trade names of Asahi Shovel Co., Ltd., 5052MS (thickness: 45 μm, weight: 48 g / m 2 , number of driven: warp yarns; 53-54 Book, weft: 53-54), 6843MS (thickness: 50 μm, weight: 54 g / m 2 , number of driven: warp: 59-60, weft: 59-60), 6909 MS (thickness: 30 μm, weight: 30 g) / M 2 , the number of driven-in yarns: warp; 69 to 70, weft; 69 to 70). When the value of W / t is less than 0.95, the amount of glass fiber per thickness is insufficient, so that the porosity is increased and the rigidity is decreased. When the value of Y / X is outside the above range, the vertical direction and the horizontal direction are reduced. The difference in the rigidity of the direction becomes large, which is not preferable.
[0007]
As the material of the glass cloth (I) to be used, known materials used for various types of electrical insulating materials can be used. Specific examples thereof include E glass, S glass, D glass, N glass, quartz, and the like, and the material and style are appropriately selected depending on the intended use and performance of the molded article, and one or more types are selected as necessary. Two or more kinds of materials and styles can be used in appropriate combination. Those subjected to surface treatment with a silane coupling agent or the like are also suitable from the viewpoint of moisture absorption heat resistance. The adhesion amount of the thermosetting resin composition (II) to the glass cloth is in the range of 30 to 80% by weight in terms of the resin content (including the inorganic filler) at the prepreg stage.
[0008]
The thermosetting resin composition (II) used in the present invention is not particularly limited as long as it is a composition based on the thermosetting resin (III) used for the electrical insulating material. . Representative examples of the thermosetting resin (III) include cyanate ester resin, bismaleimide-cyanate ester resin, epoxy resin, polyfunctional maleimide resin, unsaturated group-containing polyphenylene ether resin, etc. Accordingly, it is possible to use one or two or more in appropriate combination. More preferable examples include a thermosetting resin containing a cyanate ester resin or an epoxy resin as an essential component.
[0009]
The cyanate ester resin which is a preferred embodiment of the thermosetting resin (III) of the present invention is not particularly limited as long as it is a compound having two or more cyanato groups in one molecule. Specific examples thereof include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolak and cyanogen halide. It is also possible to mix and use as appropriate. Further, a prepolymer having a weight average molecular weight of 500 to 5,000 having a triazine ring formed by trimerization of cyanate groups of these cyanate ester compounds is preferably used. As a prepolymer production method, the above-mentioned cyanate ester monomers are polymerized using, for example, acids such as mineral acids and Lewis acids; salts of tertiary amines such as sodium alcoholate, salts such as sodium carbonate and the like as catalysts. Is obtained.
[0010]
The epoxy resin which is another preferable embodiment of the thermosetting resin (III) of the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. . Specific examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, polyfunctional phenol type epoxy resin, halogenated bisphenol A type epoxy. Resin, halogenated phenol novolac type epoxy resin, phosphorus-containing epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, polyol type epoxy resin, alicyclic epoxy resin; polyepoxy compound with epoxidized double bond such as butadiene, Examples thereof include polyglycidyl compounds obtained by the reaction of hydroxyl group-containing silicon resins and epichlorohydrin, and one or two or more kinds can be used as appropriate.
[0011]
The thermosetting resin composition (II) of the present invention preferably contains an inorganic filler (IV) in order to further increase the rigidity and laser processability. The inorganic filler (IV) to be used is not particularly limited as long as it is an inorganic filler generally used for polymer materials. Typical examples include natural silica, calcined silica, amorphous silica, white carbon, titanium white, aerosil, kaolin, clay, talc, calcined kaolin, calcined clay, calcined talc, wollastonite, natural mica, synthetic mica, Examples include magnesia, alumina, pearlite, aluminum hydroxide, magnesium hydroxide, molybdenum oxide, zinc molybdate, zinc borate, zinc stannate, short glass fibers, fine glass powder, and hollow glass. It is also possible to mix them as appropriate. More suitable inorganic fillers include aluminum hydroxide, calcined talc, short glass fiber, and fine glass powder, and the average particle size is preferably 50 μm or less. The amount of the inorganic filler (IV) added is 10 to 200 parts by weight, preferably 20 to 150 parts by weight with respect to 100 parts by weight of the thermosetting resin (III).
[0012]
In the thermosetting resin composition (II) of the present invention, a curing agent and a curing accelerator for the thermosetting resin (III) are used in combination, if necessary. These are not particularly limited as long as they are generally used for the curing agent and curing accelerator of the thermosetting resin (III). Typical examples of these include organic metal salts, imidazoles, and tertiary amines in the case of cyanate ester resins, and amine compounds, phenolic compounds, acid anhydrides, imidazoles, and the like in the case of epoxy resins. A class amine etc. are mentioned.
[0013]
In the thermosetting resin composition (II) of the present invention, various compounds can be blended as desired within a range that the desired properties are not impaired. These are not particularly limited as long as they are well known and commonly used. Typical examples of the compound include polymerizable double bond-containing monomers such as unsaturated polyester and prepolymers thereof, polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastomers such as polymers, polyisoprene, styrene-isoprene rubber, butyl rubber, fluororubber, natural rubber, polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin , MBS resin, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepoly such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide Examples of such compounds include oligomers, oligomers, polyurethanes, silicone compounds, and the like, and one or more compounds may be used as appropriate. In the case of a compound having a reactive group, if necessary, a curing agent or curing accelerator may be used. An agent is appropriately blended.
[0014]
The thermosetting resin composition (II) of the present invention can be used in combination with an organic flame retardant and other additives as long as the desired properties are not impaired. These are not particularly limited as long as they are well known and commonly used. Examples of organic flame retardants include phosphorus-containing compounds such as phosphate esters and melamine phosphate, nitrogen-containing compounds such as melamine and benzoguanamine modified, and other additives include ultraviolet absorbers such as benzotriazole, hinders Antioxidants such as phenol and styrenated phenol, photopolymerization initiators such as thioxanthone, fluorescent whitening agents such as stilbene derivatives, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants , Leveling agents, brighteners, polymerization inhibitors, thixotropic agents, and the like can be used in appropriate combinations as desired.
[0015]
In the present invention, an organic solvent is used as necessary, but the type thereof is not particularly limited as long as it is compatible with the thermosetting resin (III). Representative examples thereof include acetone, methyl ethyl ketone, methyl cellosolve, propylene glycol methyl ether and its acetate, toluene, xylene, dimethylformamide and the like. It is also possible to use alone or in combination of two or more. When emphasizing the impregnation property to the base material, it is preferable to use a solvent having a boiling point of about 120 to 200 ° C. in combination.
[0016]
The glass cloth (I) of the present invention was impregnated or coated with a thermosetting resin (III) and more preferably a thermosetting resin composition (II) containing an inorganic filler (IV). Thereafter, the prepreg of the present invention is produced by semi-curing (B-stage) by a method of heating for 1 to 30 minutes, usually in a dryer at 100 to 200 ° C.
[0017]
The metal foil-clad laminate of the present invention is formed by lamination using the above-described prepreg of the present invention. Specifically, two or more prepregs according to the present invention are suitably laminated and laminated and molded in a configuration in which a metal foil such as copper or aluminum is disposed on one or both sides as desired. The metal foil to be used is not particularly limited as long as it is used for electrical insulating materials. As the molding conditions, the usual laminates for electrical insulating materials and multilayer boards can be applied. For example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., temperature: 100-280 ° C., pressure: 2-100 kg / cm 2 , heating time: 0.05-10 hours are common. It is. Moreover, a multilayer board is manufactured by combining the prepreg of this invention and the wiring board for inner layers produced separately, and carrying out lamination molding.
[0018]
【Example】
Example 1
After prepolymerization by reacting 40 parts by weight of 2,2-bis (4-cyanatophenyl) propane and 10 parts by weight of bis (4-maleimidophenyl) methane at 150 ° C. for 4 hours, methyl ethyl ketone and dimethylformamide 40 parts by weight of bisphenol A type epoxy resin ("Epicoat 1001", epoxy equivalent: 480, manufactured by Yuka Shell Epoxy), cresol novolac type epoxy resin ("ESCN220H", epoxy equivalent: 215, Sumitomo) (Chemical) 10 parts by weight and 0.02 part by weight of zinc octylate were mixed, dissolved and mixed, and then 50 parts by weight of aluminum hydroxide (“CL303”, average particle size: 3 μm, manufactured by Sumitomo Chemical Co., Ltd.) was added uniformly. A mixed varnish was obtained.
[0019]
This varnish was diluted with methyl ethyl ketone, thickness: 45 μm, weight: 48 g / m 2 , number of driven: warp; 54, weft; 54 glass cloths (“5052MS”: manufactured by Asahi Shovel). And dried by heating at 150 ° C. for 6 minutes to obtain a prepreg (A) having a resin content (inorganic filler, the same applies hereinafter) of 53% by weight and a gel time of 120 seconds (at 170 ° C.). Two sheets of this prepreg (A) are stacked, 12μm thick electrolytic copper foil is placed on top and bottom, press molding is performed at a pressure of 20kg / cm 2 and a temperature of 200 ° C for 2 hours, and both sides are copper-clad with a thickness of 0.1mm. A laminate was obtained.
[0020]
Comparative Example 1
Example 2 except that 2116 type (“258”, thickness: 100 μm, weight: 108 g / m 2 , number of driven: warp yarn: 62 yarns, weft yarn: 58 yarns, manufactured by Asahi Shovel) is used as the glass cloth. To obtain a prepreg (B) having a resin content of 48% by weight and a gelation time of 120 seconds. One prepreg (B) was used, and a double-sided copper clad laminate having a thickness of 0.1 mm was obtained in the same manner as in Example 1.
[0021]
Example 2
After reacting 42 parts by weight of 2,2-bis (4-cyanatophenyl) propane and 18 parts by weight of bis (4-maleimidophenyl) methane at 150 ° C. for 5 hours to effect prepolymerization, methyl ethyl ketone and dimethylformamide Into this mixed solvent, 40 parts by weight of brominated bisphenol A epoxy resin (“Epiclon 152”, epoxy equivalent: 360, manufactured by Dainippon Ink) and 0.02 parts by weight of zinc octylate were mixed and dissolved. Then, 100 parts by weight of E glass powder (“PFA-101”, average particle size: 10 μm, manufactured by Nittobo) was added to obtain a uniformly mixed varnish.
This varnish was diluted with methyl ethyl ketone, impregnated and coated on the same glass cloth (“5052MS”) as in Example 1, heated and dried at 150 ° C. for 6 minutes, resin content 56% by weight, gelation time 120 seconds. Of prepreg (C) was obtained. Three prepregs (C) were stacked, and a double-sided copper clad laminate having a thickness of 0.15 mm was obtained in the same manner as in Example 1.
[0022]
Comparative Example 2
In Example 2, varnish was obtained without using E glass powder, and 1500 types of glass cloth (“1500”, thickness: 150 μm, weight: 164 g / m 2 , number of driven: warp; 49, weft; 42 The prepreg (D) having a resin content of 43% by weight and a gelation time of 120 seconds was obtained except that this product (manufactured by Asahi Shovel) was used. One prepreg (D) was used, and a double-sided copper clad laminate having a thickness of 0.15 mm was obtained in the same manner as in Example 1.
[0023]
Example 3
90 parts by weight of brominated bisphenol A-based epoxy resin (“Epicoat 5046”, epoxy equivalent: 480, made by oiled shell epoxy), 10 parts by weight of cresol novolac type epoxy resin (“ESCN220H”), 3 parts by weight of dicyandiamide, 2-ethyl After dissolving 0.06 part by weight of -4-methylimidazole in a mixed solvent of methyl ethyl ketone and dimethylformamide, 30 parts by weight of calcined talc (“BST”, average particle size: 4 μm, manufactured by Nippon Talc) was added and mixed uniformly. A varnish was obtained.
This was diluted with methyl ethyl ketone, thickness: 30 μm, weight: 30 g / m 2 , number of driven: warp yarns: 69 yarns, weft yarns: 69 glass cloths (“6909MS”, manufactured by Asahi Shovel), 160 Drying at 5 ° C. for 5 minutes gave a prepreg (E) having a resin content of 60% by weight and a gelation time of 120 seconds. Two sheets of this prepreg (E) are stacked, and 12μm thick electrolytic copper foil is placed one above the other, press-molded for 2 hours at a pressure of 20kg / cm 2 and a temperature of 170 ° C, and 0.08mm thick double-sided copper A tension laminate was obtained. Separately, after cutting this prepreg (E) to a size of 310 × 310 mm, two sheets are stacked, and 0.05 mg of iron powder (“Fe-S”, made by Fukuda Metal Foil Powder) is made uniform on the upper surface. Then, 18 μm-thick electrolytic copper foils were placed one above the other and press-molded in the same manner to obtain a double-sided copper-clad laminate containing metallic foreign objects for an insulation test in the Z direction.
[0024]
Comparative Example 3
Example 3 except that 1080 type glass cloth (“1080”, thickness: 57 μm, weight: 48 g / m 2 , number of driven: warp thread: 60 threads, weft thread: 47 threads, manufactured by Asahi Shovel) The prepreg (F) having a resin content of 60% by weight and a gelation time of 120 seconds was obtained.
One prepreg (F) was used, and a double-sided copper clad laminate having a thickness of 0.08 mm was obtained in the same manner as in Example 3. Separately, after cutting this prepreg (F) to a size of 310 × 310 mm, one sheet was used, and 0.05 mg of iron powder (Fe—S) was uniformly dispersed on the upper surface thereof. In the same manner as described above, press molding was performed to obtain a double-sided copper-clad laminate containing metal foreign objects for an insulation test in the Z direction.
[0025]
The evaluation results of the double-sided copper clad laminates obtained in Examples and Comparative Examples are shown in the following table.
[0026]
Figure 0005202775
[0027]
(Evaluation method)
Copper foil adhesive strength: The peel strength of the copper foil of a test piece (100 × 25 mm) in which the copper foil remains in a length of 100 mm and a width of 10 mm. (Conforms to JIS C 6481)
-Solder heat resistance: Float a test piece with double-sided copper foil (25 x 25 mm) on solder at 260 ° C for 1 minute, and determine whether there is any abnormal appearance. (Conforms to JIS C 6481)
・ Rigidity: Storage modulus by DMA method. (Conforms to JIS C 6481 glass transition point measurement method)
-Deflection amount: Stack two test pieces (80X20mm) etched copper foil, fix the end 20mm to the jig, place 2g weight on the end opposite to the fixed part, and measure the distance hanging from the horizontal.
-Line trouble rate: The rate at which 100 sheets of copper-clad laminate (405 mm x 510 mm) passed through the etching line (length 3 m, speed 1.5 m / min.) Around the transport roll.
・ Laser workability: Laser sheets (LSE30, LSE90, manufactured by Mitsubishi Gas Chemical) are attached to the front and back surfaces of a copper-clad laminate, and through-hole drilling with a hole diameter of 0.1 mm is performed using a carbon dioxide laser. The maximum value when roundness (maximum diameter / minimum diameter) is measured for 100 holes after etching until the copper foil thickness is 3 μm by the soft etching method to remove burrs on the copper foil. . (The closer the value is to 1, the better the hole shape)
Z-direction insulation failure rate: Copper-clad laminate (300X300mm) on each side of 10 sheets, 3mm wide slits were formed on each side, 8mm in width and 8mm in width. Percentage of short when measuring electrical insulation (50V applied).
[0028]
【Effect of the invention】
According to the present invention, there are provided a thin prepreg and a metal-clad laminate for a printed wiring board having a high rigidity, excellent insulation reliability in the thickness direction, and good laser processability.

Claims (4)

ガラスクロスの厚みが20〜60μmであり、ガラスクロスの重量をW(g/m)、厚みをt(μm)、縦糸の打ち込み本数をX(本),横糸の打ち込み本数をY(本)とした時、W/tの値が0.95〜1.25であり、Y/Xの値が0.95〜1.05であるガラスクロス(I)を、熱硬化性樹脂組成物(II)の補強基材として使用するプリプレグであって、熱硬化性樹脂組成物(II)が熱硬化性樹脂(III)と無機充填剤(IV)を必須成分として含有し、且つ無機充填剤(IV)が天然シリカ、焼成シリカ、アモルファスシリカ、タルク、焼成タルク、水酸化アルミニウム、ガラス短繊維、ガラス微粉末および中空ガラスから選ばれるいずれか一種または二種以上であり、該無機充填剤(IV)の含有量が、該熱硬化性樹脂(III)100重量部に対し、20〜150重量部であることを特徴とするプリプレグ。The thickness of the glass cloth is 20 to 60 μm, the weight of the glass cloth is W (g / m 2 ), the thickness is t (μm), the number of warp threads is X (line), and the number of weft threads is Y (line) When the glass cloth (I) having a W / t value of 0.95 to 1.25 and a Y / X value of 0.95 to 1.05 is used as a thermosetting resin composition (II ) As a reinforcing base material, wherein the thermosetting resin composition (II) contains the thermosetting resin (III) and the inorganic filler (IV) as essential components, and the inorganic filler (IV) ) Is one or more selected from natural silica, calcined silica, amorphous silica, talc, calcined talc, aluminum hydroxide, short glass fiber, fine glass powder and hollow glass , and the inorganic filler (IV) Content of the thermosetting resin III) relative to 100 parts by weight, the prepreg, characterized in that 20 to 150 parts by weight. 熱硬化性樹脂(III)が、シアン酸エステル樹脂またはエポキシ樹脂を必須成分として含有することを特徴とする請求項1記載のプリプレグ。The prepreg according to claim 1, wherein the thermosetting resin (III) contains a cyanate ester resin or an epoxy resin as an essential component. 請求項1または2に記載のプリプレグを2枚以上使用し、硬化して得られることを特徴とする片面又は両面金属張り積層板。A single-sided or double-sided metal-clad laminate obtained by curing using two or more prepregs according to claim 1 or 2 . 請求項1〜項のいずれかに記載のプリプレグまたは積層板を使用することを特徴とするプラスチックパッケージ用プリント配線板材料。The printed wiring board material for plastic packages using the prepreg or laminated board in any one of Claims 1-3 .
JP2000151827A 2000-05-23 2000-05-23 Prepreg, metal-clad laminate and use thereof Expired - Lifetime JP5202775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151827A JP5202775B2 (en) 2000-05-23 2000-05-23 Prepreg, metal-clad laminate and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151827A JP5202775B2 (en) 2000-05-23 2000-05-23 Prepreg, metal-clad laminate and use thereof

Publications (2)

Publication Number Publication Date
JP2001329080A JP2001329080A (en) 2001-11-27
JP5202775B2 true JP5202775B2 (en) 2013-06-05

Family

ID=18657320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151827A Expired - Lifetime JP5202775B2 (en) 2000-05-23 2000-05-23 Prepreg, metal-clad laminate and use thereof

Country Status (1)

Country Link
JP (1) JP5202775B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322588A (en) * 2001-04-25 2002-11-08 Nitto Shinko Kk Method for manufacturing masking material and masking material
EP1473329A4 (en) * 2002-02-06 2006-05-31 Sekisui Chemical Co Ltd Resin composition
JP2004059643A (en) * 2002-07-25 2004-02-26 Mitsubishi Gas Chem Co Inc Prepreg and laminated plate
JP4180450B2 (en) * 2003-06-26 2008-11-12 住友ベークライト株式会社 Transparent composite sheet
TWI309606B (en) 2003-11-12 2009-05-11 Mitsui Chemicals Inc Resin composition, prepreg and laminate using the composition
JP2008028302A (en) * 2006-07-25 2008-02-07 Sumitomo Bakelite Co Ltd Multi-layer circuit board and semiconductor device using it
JP5191148B2 (en) * 2007-03-16 2013-04-24 旭化成イーマテリアルズ株式会社 Prepreg and its manufacturing method
JP5747817B2 (en) * 2009-02-25 2015-07-15 三菱瓦斯化学株式会社 Prepreg and laminate
JP5056787B2 (en) * 2009-03-31 2012-10-24 住友ベークライト株式会社 Laminated board, multilayer printed wiring board, and semiconductor device
JP5569270B2 (en) * 2010-09-06 2014-08-13 住友ベークライト株式会社 Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2012146990A (en) * 2012-02-22 2012-08-02 Sumitomo Bakelite Co Ltd Multilayer circuit board, method of manufacturing the same, and semiconductor device
JP2013007061A (en) * 2012-10-10 2013-01-10 Asahi Kasei E-Materials Corp Prepreg and method of producing the same
US10791626B2 (en) * 2013-09-09 2020-09-29 Mitsubishi Gas Chemcial Company, Inc. Prepreg, metal foil-clad laminate, and printed wiring board

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825519B2 (en) * 1989-02-20 1998-11-18 三井化学株式会社 Composition for laminated material
JPH04263933A (en) * 1991-02-18 1992-09-18 Mitsubishi Gas Chem Co Inc Manufacture of metal foil clad laminated sheet having smooth surface
JPH05245970A (en) * 1992-03-05 1993-09-24 Mitsubishi Gas Chem Co Inc Production of continuous copper clad laminated sheet excellent in appearance
JPH05318650A (en) * 1992-05-15 1993-12-03 Toshiba Chem Corp Copper plated laminated sheet
JP3435496B2 (en) * 1992-07-29 2003-08-11 鐘淵化学工業株式会社 Curable flame-retardant resin composition, prepreg produced therefrom and laminate for flame-retardant electricity
JP3539447B2 (en) * 1995-04-10 2004-07-07 三菱瓦斯化学株式会社 Manufacturing method of laminated board
JP3748939B2 (en) * 1996-04-04 2006-02-22 株式会社東芝 Laminate for superconducting equipment and method for manufacturing the same
JPH09293971A (en) * 1996-04-26 1997-11-11 Matsushita Electric Works Ltd Manufacture of multilayer board
JPH10335833A (en) * 1997-06-03 1998-12-18 Toshiba Chem Corp Multilayered wiring board and adhesive film
JPH11114956A (en) * 1997-10-14 1999-04-27 Shin Kobe Electric Mach Co Ltd Glass fiber woven fabric for prepreg, the prepreg, and laminate
JPH11204686A (en) * 1998-01-13 1999-07-30 Mitsubishi Gas Chem Co Inc Semiconductor plastic package
JP3858429B2 (en) * 1997-12-19 2006-12-13 日東紡績株式会社 Glass woven fabric substrate for printed wiring board and laminated board for printed wiring board
JP2000061678A (en) * 1998-08-20 2000-02-29 Mitsubishi Gas Chem Co Inc Method for forming through hole by laser beam
JPH11323099A (en) * 1998-05-20 1999-11-26 Sumitomo Metal Ind Ltd Resin composition suitable for buildup substrate
JP2000077847A (en) * 1998-08-28 2000-03-14 Hitachi Chem Co Ltd Manufacture of multilayered printed wiring board
JP2000073181A (en) * 1998-08-28 2000-03-07 Multi:Kk Improvement of adhesiveness of resin to copper surface and adhesiveness improver
JP2000119422A (en) * 1998-10-14 2000-04-25 Mitsubishi Gas Chem Co Inc Prepreg and laminate
JP2000124342A (en) * 1998-10-19 2000-04-28 Mitsubishi Gas Chem Co Inc Manufacture of metal-plate containing printed wiring board
JP3402222B2 (en) * 1998-10-27 2003-05-06 松下電工株式会社 Manufacturing method of metal foil with resin
JP4341086B2 (en) * 1998-10-28 2009-10-07 日立化成工業株式会社 Prepreg for printed wiring board
JP4200595B2 (en) * 1999-06-29 2008-12-24 日東紡績株式会社 Glass fiber fabric

Also Published As

Publication number Publication date
JP2001329080A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
TWI605078B (en) Resin composition, prepreg using the resin composition, and laminate
TWI600700B (en) Prepreg and laminate
JP4843944B2 (en) Resin composition and prepreg and laminate using the same
TWI572651B (en) Resin composition, prepreg and laminate
JP5692062B2 (en) Method for storing resin solution, and method for producing prepreg and laminate
JP5202775B2 (en) Prepreg, metal-clad laminate and use thereof
JP2004182850A (en) Prepreg having excellent balance of characteristics and laminated sheet
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2004175925A (en) Prepreg and laminate
JP6761572B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2015151483A (en) Resin sheet, metal foil clad laminate sheet and printed wiring board
JP2017052884A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6531910B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6593739B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6844298B2 (en) Manufacturing method of prepreg, laminated board, printed wiring board, coreless board, semiconductor package and coreless board
JP6618036B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6817529B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, resin composite sheet and printed wiring board
JP2017200966A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP4674340B2 (en) Prepreg and metal foil-clad laminate
JP6350891B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
JP6774035B2 (en) Resin sheet, metal foil laminated board and printed wiring board
JP2017145270A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet and printed wiring board
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2002194121A (en) Prepreg and metal foil clad laminated plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110802

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R151 Written notification of patent or utility model registration

Ref document number: 5202775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

EXPY Cancellation because of completion of term