JP3747607B2 - エキシマレーザ装置のエネルギー制御装置 - Google Patents

エキシマレーザ装置のエネルギー制御装置 Download PDF

Info

Publication number
JP3747607B2
JP3747607B2 JP36713397A JP36713397A JP3747607B2 JP 3747607 B2 JP3747607 B2 JP 3747607B2 JP 36713397 A JP36713397 A JP 36713397A JP 36713397 A JP36713397 A JP 36713397A JP 3747607 B2 JP3747607 B2 JP 3747607B2
Authority
JP
Japan
Prior art keywords
value
voltage command
pulse
energy
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36713397A
Other languages
English (en)
Other versions
JPH11191651A (ja
Inventor
知和 高橋
昇一 坂西
宏明 半井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP36713397A priority Critical patent/JP3747607B2/ja
Publication of JPH11191651A publication Critical patent/JPH11191651A/ja
Application granted granted Critical
Publication of JP3747607B2 publication Critical patent/JP3747607B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主に逐次移動型縮小投影露光装置(以下、ステッパと呼ぶ)の光源として用いられ、放電励起によりレーザ発振させるガスレーザ装置のエネルギー制御装置に関する。
【0002】
【従来の技術】
半導体のウェハ等を露光するステッパは、その露光量を一定に制御することが非常に重要である。このステッパ用の光源としては、最近の半導体回路の高集積密度の要求に対応するため、エキシマレーザ装置が広く用いられている。ところが、エキシマレーザ装置は、いわゆるパルス放電励起ガスレーザであるために、その発振するレーザ光の1パルス毎のパルスエネルギーに様々な要因によるばらつきが生じ、この結果露光量が安定しないという問題がある。このために、ステッパに用いられるエキシマレーザ装置では、このばらつきを小さくして露光量を一定値に安定化させることが大きな課題となっている。そして、この課題を解決するため、エキシマレーザ装置の1パルス毎のパルスエネルギーのばらつきがほぼ正規分布で近似されることから、所定の露光量を得るために複数回のパルス発振を連続して行う、いわゆる複数パルス露光による露光量制御を行うものがある。この複数パルス露光量制御によって、全体としての露光量ばらつきを所定値以下にでき、所望の露光量精度を得るようになっている。
【0003】
また、ステッパでは、露光と、ウェハが設置されたステージの移動とが交互に繰り返されるので、上記のエキシマレーザ装置はいわゆるバーストモードで運転されている。このバーストモードとは、レーザ光を所定回数連続してパルス発振させた後、所定時間パルス発振を休止させる運転を繰り返し行うことを言う。そして、このバーストモードでの運転時の特徴として、図11に示すように、所定時間休止した後の各連続パルス発振(以後、バースト発振と呼ぶ)の初期には発振が安定した状態となって比較的高いパルスエネルギーが得られるが、パルス発振を続けると、レーザガスの密度擾乱や、放電電極の表面の局所的な温度上昇等によって、徐々に各パルス発振が不安定となり、同図のA部で示すように出力パルスエネルギーが低下してゆく、いわゆるスパイキング現象が見られる。また、このスパイキング現象は、前記休止した時間が長くなるほど顕著となり、この現象の影響を受ける各バーストモード運転でのパルス数はレーザガスを励起させるための充電電圧を大きくするに従って多くなるという性質がある。
【0004】
このようにバーストモード運転でのエキシマレーザ装置では、前述したように1パルス毎のパルスエネルギーのばらつきが大きい上に、さらに、このスパイキング現象によるばらつきによって、各バースト発振時のトータル露光量のばらつきが著しく大きくなるという問題を引き起こしている。
【0005】
この問題を解決するために、本出願人は、例えば特開平7−106678号公報等によって、出力パルスエネルギーの大きさが充電電圧の大きさに比例するという性質を利用して、各バースト発振時の最初のパルスの充電電圧を小さくし、この後次第に各パルスの充電電圧を大きくして行くような制御により、スパイキング現象によるバースト発振初期のエネルギー上昇を防止する技術を開示している。この従来技術によると、図11に示した発振休止時間tsや、パワーロック電圧(レーザガスの劣化に応じて決定される充電電圧)などの各種パラメータを考慮して、バースト発振の各パルスエネルギーを所望の目標値にする充電電圧データを、バースト発振の各パルス毎に予め記憶するとともに、前回までに既に出力された各バースト発振の各パルス毎のエネルギー計測値を記憶し、このエネルギー計測値とパルスエネルギー目標値との比較結果に基づいて、前記記憶されている各パルスに対応する充電電圧データを補正するようにしている。この補正による制御を、以後スパイクキラー制御と呼ぶ。
【0006】
このような技術によると、各バースト発振において、発振開始時のスパイク領域に加えて、その後発振が安定化して来るプラトー領域及び定常領域(図11参照)でも、前記スパイクキラー制御を行うことになる。スパイク領域では前述のように休止時間の長さの影響を受けやすく、同じ充電電圧でも他の領域に比べて大きなパルスエネルギーが出力される。ところが、プラトー領域や定常領域では、休止時間の影響よりも、同じバースト発振内の直前までのパルス発振の影響(例えば、電極温度の上昇や、レーザガスの乱れ等)を強く受けていると考えられる。したがって、スパイク領域以外の領域では、前記スパイクキラー制御によるパルスエネルギーのばらつきの抑制効果が十分ではないという問題が発生する。
【0007】
このような問題を解決するために、同出願人は、特開平9−248682号公報によって以下のようなレーザ装置を提案している。すなわち、各バースト発振の初期のスパイク領域では、各パルス発振の際の充電電圧を、発振休止時間、同じバースト発振内でのパルスの順番、及び出力されたパルスエネルギーの計測値(モニタ値)に対応させて記憶すると共に、前記スパイク領域以降では、各パルス発振の際の充電電圧を、出力されたパルスエネルギーの計測値に対応させて記憶するようにし、前記各バースト発振を行う際には、前記スパイク領域では、前記記憶した過去のパルス発振のデータのうち、発振休止時間、及びバースト発振内のパルスの順番が等しく、かつ、今回のバースト発振のエネルギー目標値に近い前記出力パルスエネルギーの計測値とその時のパルスの充電電圧を少なくとも1組読み出し、この読み出した値に基づいて今回のパルス発振の際の充電電圧を演算し、この演算した充電電圧に基づいてパルス発振(前記スパイクキラー制御に相当)を行い(以後、このような制御を学習制御と呼ぶ)、前記スパイク領域以降の領域では、前記既に記憶した今回のバースト発振内で直前に出力されたパルスのパルスエネルギー計測値及びその時の充電電圧を読み出し、この読み出した値に基づいて今回のパルス発振の際の充電電圧を演算し、この演算した充電電圧に基づいてパルス発振(以後、毎パルス制御と呼ぶ)を行うようにしたレーザ装置が開示されている。
【0008】
上記の従来技術によって、バーストモードで運転されるエキシマレーザ装置において、各バースト発振の初期のスパイキング現象が無くなるとともに、スパイク領域以降でもスパイクキラー制御(学習制御による)に代わる毎パルス制御によって各パルス発振の出力パルスエネルギーが一定に制御され、したがって、結果として露光量のばらつきが小さく抑制されている。
【0009】
【発明が解決しようとする課題】
ところで、ステッパ側の様々な要求によって、例えば図12に示すように、エネルギー目標値がバースト発振時に変更される場合がある。この変更されるタイミングの要求も様々であり、同図では、発振休止期間中に変更された場合(時刻t1)、学習制御時の各パルス発振間に変更される場合(時刻t2)、及び毎パルス制御時の各パルス発振間に変更される場合(時刻t3)を示している。このとき、時刻t1や時刻t2の場合では、学習制御時に、前回のバースト発振時に対してステップ状に変更されたエネルギー目標値が指令されたことに等しく、また、時刻t2の場合では毎パルス制御時に、直前のパルス発振のエネルギー目標値に対してステップ状に変更されたエネルギー目標値が指令されたことに等しくなる。
【0010】
しかしながら、上記特開平9−248682号公報に開示されたレーザ装置における制御装置の制御則は、前記学習制御時においても、あるいは毎パルス制御時においても共に、基本的には過去の制御時のエネルギー目標値と出力のパルスエネルギーの計測値との偏差に基づいて電圧指令値を演算して制御するものであるから、1種の積分要素を有していることになる。この制御則のために、前記ステップ状に変更されたエネルギー目標値に対して追従後れが発生し、エネルギー目標値と各パルスエネルギー値との誤差が生じる。したがって各バースト発振毎のトータルの露光量がばらつくという問題が発生している。
【0011】
本発明は、上記の問題点に着目してなされたものであり、バースト運転モードでのパルス発振において、エネルギー目標値の変更に対する追従性が良く、各パルスエネルギーの一定制御が可能なエキシマレーザ装置のエネルギー制御装置を提供することを目的としている。
【0012】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、請求項1に記載の発明は、所定時間の連続パルス発振と所定時間の休止とを交互に繰り返すバースト運転モードでパルス発振するとき、各連続パルス発振の初期の所定数のパルス発振に対して学習制御を行い、この学習制御の後は毎パルス制御を行い、前記学習制御時は、発振開始からi番目のパルス発振の際に、前回の連続パルス発振時のi番目パルスの電圧指令値Vi、及び、エネルギー目標値Edとこのi番目の電圧指令値Viに対応して発振したパルスのエネルギー計測値Eとの偏差値に応じて、今回のi番目の電圧指令値(Vi)を演算して出力し、また前記毎パルス制御時は、発振開始からI番目のパルス発振の際には、同一回の連続パルス発振内でのI−1番目のパルス発振の電圧指令値VI-1、及び、エネルギー目標値EdとこのI−1番目の電圧指令値VI-1に対応して発振したパルスのエネルギー計測値Eとの偏差値に応じて、今回のI番目の電圧指令値VIを演算して出力し、パルス発振させる出力制御部10を備え、前記電圧指令値Vi,VIに基づいて放電電圧を制御してレーザのパルスエネルギーを制御するエキシマレーザ装置のエネルギー制御装置において、前記出力制御部10は、前記エネルギー目標値Edの変更量に基づいて前記学習制御時及び毎パルス制御時に前記電圧指令値Vi,VIを補正して出力するようにしている。
【0013】
請求項1に記載の発明によると、エネルギー目標値の変更量に基づいて、学習制御時又は毎パルス制御時にエネルギー目標値とエネルギー計測値との偏差から求められた電圧指令値を補正している。すなわち、エネルギー目標値の変更量が大きい場合にはこの変更量に応じて前記電圧指令値の補正値を大きくし、小さい場合にはこの補正値を小さくする。したがって、変更されたエネルギー目標値に対応して補正された電圧指令値が直ちに出力されて発振が行われるので、エネルギー目標値が変更された直後の各パルス発振の際にエネルギー目標値への追従性が改善され、少ないパルス発振回数で、すなわち短時間でパルスエネルギーの誤差を小さくできる。これにより、トータルの露光量の精度を向上することができる。
【0014】
また、請求項2に記載の発明は、請求項1記載のエキシマレーザ装置のエネルギー制御装置において、前記出力制御部10が前記エネルギー目標値Edの変更量に基づいて行う前記電圧指令値Viの補正は、前記エネルギー目標値Edに対応する電圧指令値と所定の基準値E0に対応する電圧指令値との差値に応じて演算した電圧補正値ΔVを前記電圧指令値Viに加算する補正である。
【0015】
請求項2に記載の発明によると、エネルギー目標値の変更量を、エネルギー目標値と所定の基準値との差により規定しており、学習制御時及び毎パルス制御時には、エネルギー目標値に対応する電圧指令値、及び所定のエネルギー基準値に対応する電圧指令値が演算され、この両電圧指令値の差値に応じて演算された電圧補正値ΔVを、学習制御又は毎パルス制御によって演算された電圧指令値に加算して補正する。この補正された電圧指令値により発振が行われるので、エネルギー目標値が変更された直後の各パルス発振の際に、このエネルギー目標値に近いエネルギーを出力可能な電圧指令値によって直ちに発振できる。したがって、エネルギー目標値への追従性が改善され、少ないパルス発振回数で、すなわち短時間でパルスエネルギーの誤差を小さくできる。これにより、トータルの露光量の精度を向上することができる。
【0016】
また、請求項3に記載の発明は、請求項2記載のエキシマレーザ装置のエネルギー制御装置において、前記所定の基準値E0が一定値であることを特徴としている。
【0017】
請求項3に記載の発明によると、エネルギー目標値の変更量を求めるための所定の基準値を一定値としている。この一定の基準値は、例えば、当該エキシマレーザ装置の定格出力エネルギー値や、使用エネルギー範囲の中央値、あるいは、最小値などに設定することができる。これによって、請求項2に記載の作用及び効果に加えて、さらに、基準値が一定なので制御時の演算処理が容易となる。
【0018】
また、請求項4に記載の発明は、請求項1記載のエキシマレーザ装置のエネルギー制御装置において、前記出力制御部10が前記エネルギー目標値Edの変更量に基づいて行う前記電圧指令値Viの補正は、変更後のエネルギー目標値Edに対応する電圧指令値と変更直前のエネルギー目標値に対応する電圧指令値との差値を積算し、この積算値を電圧補正値ΔVとして前記電圧指令値Viに加算する補正である。
【0019】
請求項4に記載の発明によると、変更前後のエネルギー目標値に対応する電圧指令値の差値を変更の度に積算してゆく。この積算値は、発振開始からのトータルの変更量となる。そして、発振開始初期に所定のエネルギー値に対応する電圧テーブルを設定し、この電圧テーブルに基づいて学習制御した時、又は毎パルス制御時に、演算された電圧指令値に前記積算値を電圧補正値として加算し、レーザ電源部に出力すべき出力電圧指令値を求めている。したがって、エネルギー目標値が変更されても、この変更量に対応する電圧指令値の差値に基づいて補正された電圧指令値により発振が行われるので、直ちに変更後のエネルギー目標値に近いエネルギーを出力することができる。この結果、エネルギー目標値への追従性が改善され、少ないパルス発振回数で、すなわち短時間でパルスエネルギーの誤差を小さくできる。これにより、トータルの露光量の精度を向上することができる。
【0020】
また、請求項5に記載の発明は、請求項2,3又は4記載のエキシマレーザ装置のエネルギー制御装置において、前記出力制御部10は、前記電圧指令値Viとこの電圧指令値Viによる出力エネルギー値との入出力特性を表わすレーザ入出力特性逆関数23,24を記憶し、このレーザ入出力特性逆関数23,24によって前記エネルギー目標値Ed及び前記所定の基準値E0にそれぞれ対応する電圧指令値Viを求め、両電圧指令値Viの差値に応じて電圧補正値ΔVを求めて前記電圧指令値Viを補正している。
【0021】
請求項5に記載の発明によると、レーザ発振の入出力特性を表わした入出力特性逆関数を記憶しておき、この関数によって前記エネルギー目標値及び前記エネルギー基準値にそれぞれ対応する電圧指令値を求め、この電圧指令値に基づいて電圧補正値を演算して前記電圧指令値を補正している。したがって、電圧指令値と出力エネルギー値との入出力関係が非線型であっても、容易に電圧指令値の補正値を求めることが可能となる。この結果、種々の入出力特性を有するエキシマレーザ装置においても、エネルギー目標値の変更量に応じて電圧指令値を補正することが容易に可能となり、露光量のばらつきを小さくして露光量制御の精度を向上させることができる。
【0022】
【発明の実施の形態】
以下に、図面を参照して実施形態を詳細に説明する。
図1は、本発明に係わるエキシマレーザ装置のエネルギー制御装置が用いられるステッパの構成例を示したブロック構成図である。同図において、エキシマレーザ装置1のレーザチャンバ2の内部には、レーザガスが封入されている。また、レーザチャンバ2の内部に配設された図示しない電極に、レーザ電源8から所定の放電電圧が印加され、この電極間で放電が行われる。この放電で励起された前記レーザガスによりレーザ発振が行われ、発振したレーザ光はリアミラー6とフロントミラー7とを有する光共振器により共振し、フロントミラー7からレーザ光4として出射される。このレーザ光4はビームスプリッタ3を透過してステッパ30に導かれると共に、レーザ光4の一部はビームスプリッタ3でサンプリングされて出力モニタ部のエネルギーセンサ5に入射され、エネルギーセンサ5によりレーザ光4の1パルス当たりのエネルギー、つまりパルスエネルギーが計測される。このエネルギー計測値Eは、出力制御部10にフィードバックされている。
【0023】
また、縮小投影露光装置としてのステッパ30は露光制御装置31を備えており、露光制御装置31は取り込んだ前記レーザ光4を露光対象のウェハに照射したり、このウェハが搭載されたステージを逐次所定距離ずつ移動させるのを制御している。そして、この露光制御装置31は、所望の露光量を得るために、前記出力制御部10に、発振パルスの1パルス当たりのエネルギー目標値Edを出力し、また、各パルス発振のタイミングを指令するトリガ信号TR、及び、各バースト発振内のトータル発振パルス数imを出力している。
【0024】
出力制御部10は、出力するパルスエネルギーがこのエネルギー目標値Edに等しくなるように、後述する所定の制御アルゴリズムにより、エネルギー目標値Edと前記エネルギー計測値Eとの偏差値に基づいて各パルス毎に電圧指令値Vを演算し、レーザ電源部8に前記演算した電圧指令値Vを出力する。これにより、所定の放電電圧で放電されてレーザ光4が発振される。なお、出力制御部10は、例えばマイクロコンピュータなどのコンピュータ装置を主体にして構成することができる。
【0025】
図2は、前記出力制御部10の内部の基本的な制御機能構成をイメージ的に表わす制御ブロック図を示している。
同図において、電圧テーブル学習制御部11は、各バースト発振時の初期のスパイク領域(図11参照)において、学習制御によってスパイクキラー制御を行うものである。すなわち、予め所定のエネルギー目標値に対応する電圧指令値のテーブル(電圧テーブルと言う)を記憶しておき、バースト発振の先頭パルスからi番目のパルス発振の際には、前回のバースト発振の際、i番目のパルス発振の時にエネルギー目標値Edi-とこのエネルギー目標値Edi-に対応して計測されたエネルギー値Eとの偏差値に基づいて算出した電圧指令値Viを学習値として更新し記憶しておいた前記電圧テーブルから、この電圧指令値Viを読み出す。なお、最初のバースト発振の際、すなわち、それまでに1回も学習されてないときには、前記予め記憶しておいた初期の電圧テーブルが参照される。
【0026】
そして、この後、この電圧指令値Viと、後述するように今回のエネルギー目標値Edの変更量(例えばエネルギーの基準値E0に対する変更量)に基づいて求められた電圧補正値ΔVとを加算した今回の(つまり、i番目のパルス発振時の)出力電圧指令値VOiがレーザ電源部8に出力される。
次に、電圧テーブル学習制御部11は、前回のバースト発振と同様にして、今回のエネルギー目標値Edと、このとき発振したパルスのエネルギー計測値Eとの偏差値に基づいて、i番目のパルス発振時の前記電圧指令値Viを更新し(これを学習と言う。)、前記電圧テーブルに記憶する。この学習した電圧指令値Viは、上記のように次回のバースト発振の際に参照されて出力されるようになっている。
【0027】
毎パルス制御部12は、前記スパイク領域以降の各パルス発振の際に、各パルスエネルギーのばらつきを小さくする制御を行うものである。すなわち、毎パルス制御部12は、バースト発振の先頭からi番目のパルス発振の際に、同一のバースト発振内における直前の、つまり(i−1)番目のパルス発振の時にエネルギー目標値Edとエネルギー計測値Eとの偏差値に基づいて更新されている電圧指令値Vi-1(詳細は、後述する)を今回の電圧指令値Viとして出力している。そして、出力した今回の電圧指令値Viと前記電圧補正値ΔVとを加算した今回の(つまり、i番目のパルス発振時の)出力電圧指令値VOiがレーザ電源部8に出力される。毎パルス制御部12は、このとき発振したパルスの今回のエネルギー目標値Edとエネルギー計測値Eとの偏差値に基づいて、毎パルス制御部12が求めたi番目のパルス発振の前記電圧指令値Viを更新し、この更新した電圧指令値Viを記憶する。なお、この記憶した電圧指令値Viが同一バースト発振の次のパルス発振時に出力されるので、基本的にはフィードバック制御を行っていることになる。
【0028】
セレクタ13は、現在の制御処理がスパイク領域に対するものか、あるいはこれ以降の領域かを判断し、スパイク領域での制御時には電圧テーブル学習制御部11から出力された電圧指令値Viを選択して出力し、この領域以降の制御時には毎パルス制御部12から出力された電圧指令値Viを選択して出力する。
また、電圧補正部20は所定の基準値E0と今回のエネルギー目標値Ediとを比較し、このエネルギー変更量に対応する電圧指令値の変更量に基づいて、電圧補正値ΔVを演算している。各パルス発振毎に、発振する前にこの電圧補正値ΔVを演算している。そして、前述のように、この演算した電圧補正値ΔVと前記セレクタ13により選択された電圧指令値Viとが加算され、今回のi番目の出力電圧指令値VOiとしてレーザ電源部8に出力される。
【0029】
図3〜図5に基づいて、第1の実施形態を説明する。
図3は、本実施形態における出力制御部10内の制御ブロック図の概要説明図である。同図において、説明を簡潔にするために、前記電圧テーブル学習制御部11及び毎パルス制御部12はまとめて一つのブロックで表わされており、また前記セレクタ13は省略されている。電圧補正部20は、前記基準値E0として所定の一定値が設定された基準値設定ブロック21を有しており、エネルギー目標値Edと基準値E0との差値ΔE(つまり、エネルギー目標値Edの変化量に対応する)に基づいて次の数1により電圧補正値ΔVを演算する。
【数1】
電圧補正値ΔV=K×ΔE
ここで、Kは、レーザ電源部8への電圧指令値(本実施形態では、出力電圧指令値VOiに相当する)とパルスエネルギーとの関係を表わすレーザ入出力特性から決まる係数である。例えば、レーザの入出力特性が図4に示すような直線で近似できる場合、係数Kはこの直線の傾きの逆数で表わされる。
【0030】
次に、図5に示す本実施形態に係わる制御フローチャートの一例に基づいて、出力制御部10の動作を説明する。ここでは、各バースト発振の開始前にトータル発振パルス数imが露光制御装置31から指令されるものとする。また、以下のフローチャートでは、各処理のステップ番号にSを付して表わす。
【0031】
まずS1で、予め、スパイク領域でスパイク制御を行うべきパルス数isを設定するとともに、第1回目バースト発振時の初期のこの設定されたパルス数isのパルス発振で出力すべき電圧指令パターン(初期スパイク制御パターン)の電圧テーブル、及びエネルギーの基準値E0を設定する。なお、この基準値E0としては例えば定格エネルギー値や、出力可能なエネルギー範囲内の使用範囲の中央値や最小値等の一定値に設定することができ、このとき、前記電圧テーブルの各電圧指令は基準値Eoに対応させている。次に、S2で、露光制御装置31から今回のバースト発振の際のトータル発振パルス数imを入力するとともに、発振パルス数のカウンタ値iを初期化、つまり、ここではリセットする。そして、S3から以降、各パルス発振処理を開始する。
【0032】
S3では、露光制御装置31から出力されたエネルギー目標値Edを取り込む。なお、このエネルギー目標値Edは割り込み処理によって露光制御装置31から入力するようになっており、このステップで取り込まれる。この後、S6でカウンタ値iを1インクリメントする。
【0033】
つぎに、S7で、現在のパルス発振処理がスパイク領域か(カウンタ値iが前記パルス数is以下か)否かをチェックし、スパイク領域のときは、S10で電圧テーブル学習制御部11は前記電圧テーブルの中からカウンタ値iに相当するパルス順番iの電圧指令値Viを読み出す。そして、S11で、電圧補正部20はエネルギー目標値Edと基準値E0との差値ΔEに応じた電圧補正値ΔVを前記数1により演算し出力する。つぎにS12では、前記読み出された電圧指令値Viとこの電圧補正値ΔVとを加算して今回の出力電圧指令値VOiを求める。この後、S13でこの求めた出力電圧指令値VOiをレーザ電源部8に出力し、レーザ発振を実行する。なお、出力電圧指令値VOiを出力した後、レーザ電源部8が所定の放電電圧に充電される所定時間後に発振指令をレーザ電源部8に出力することにより、前記レーザ発振が実行される。次に、S14で、この発振時のエネルギー計測値Eiをエネルギーセンサ5から入力し、S15で、前記エネルギー目標値Edとこの入力したエネルギー計測値Eiとの偏差値に基づいて以下の数2によって前記i番目の電圧指令値Viの更新を行う。そして、S16では、更新された電圧指令値Viにより前記電圧テーブルの記憶値を更新する。この後、S3に戻って以上の学習制御処理を繰り返す。
【数2】
Vi←Vi+C1(Ed−Ei)
ただし、C1は電圧テーブル学習制御部11に記憶されている学習制御時のフィードバックゲインを示している。
【0034】
前記S7でスパイク領域でないとき、すなわちカウンタ値iが前記パルス数isよりも大きくなったときには、これ以降毎パルス制御処理を実行する。すなわち、S20で、同一バースト内の直前のパルス発振の電圧指令値Vi-1を所定の記憶部から読み出し、今回の毎パルス制御部12の電圧指令値Viとして出力する。なお、スパイク領域からプラトー領域に入った時点では、直前のスパイク領域での学習制御時に更新した最終の電圧指令値Vi-1を読み出し、これを今回の電圧指令値Viとして出力するようにしており、これによってスパイク制御からの毎パルス制御へ移行しても電圧指令値Viの大きな変化が生じなくなる。つぎにS21で、電圧補正部20は今回のエネルギー目標値Edと基準値E0との差値ΔEに応じた電圧補正値ΔVを前記数1により演算し出力する。そしてS22で、前記電圧指令値Viとこの電圧補正値ΔVとを加算して今回の出力電圧指令値VOiを求める。この後、S23でこの求めた出力電圧指令値VOiをレーザ電源部8に出力し、レーザ発振を実行する。次に、S24で、この発振時のエネルギー計測値Eiをエネルギーセンサ5から入力し、S25で、前記今回のエネルギー目標値Edとこの入力したエネルギー計測値Eiとの偏差値に基づいて、以下の数3によりi番目のパルスの前記電圧指令値Viを更新し、所定の記憶部に記憶する。そして、S26で、1バーストが終了したか否かをチェックし、終了したときS2に戻り、終了してないときはS3に戻って以上の毎パルス制御処理を繰り返す。ここで、1バーストが終了したか否かのチェックは、カウンタ値iがトータル発振パルス数imより大きいか否かにより行うことができる。
【数3】
Vi←Vi+C2(Ed−Ei)
ただし、C2は毎パルス制御部12に記憶されている毎パルス制御時のフィードバックゲインを示している。
【0035】
以上説明したように、本実施形態によれば、レーザ電源部8への電圧指令値とこれに対応する出力エネルギーとの関係を表わすレーザ入出力特性が直線で表わされる,すなわち線形であると仮定し、この入出力特性に基づいて、エネルギー目標値Edと基準値E0との差値ΔEによって、エネルギー目標値Edが変更されたときの変更量に相当する電圧指令値の電圧補正値ΔVを演算している。そして、電圧テーブル学習制御部11及び毎パルス制御部12により求められた電圧指令値Viに上記電圧補正値ΔVを加算して、レーザ電源部8への出力電圧指令値VOiを算出している。この出力電圧指令値VOiは、図6に示すように、基準値Eoに対応した前記電圧指令値Viに対して、前記エネルギー目標値の変更量に相当する電圧補正量(同図の斜線部)だけシフトしたものと等価となる。したがって、この補正により求めた出力電圧指令値VOiは変更後のエネルギー目標値Edに非常に近いパルスエネルギーで発振させることができる。これにより、発振休止時間の間でも、学習制御の領域でも、あるいは毎パルス制御の領域でも、エネルギー目標値Edの変更に対する追従性が改善され、短時間でエネルギー目標値Edに収束させることが可能となる。この結果、エネルギー目標値Edの変更があっても、各パルスエネルギーのばらつきが非常に小さくなり、トータルの露光量を所定の目標値に精度良く制御することができる。
【0036】
次に、図7〜図8に基づいて、第2実施形態を説明する。本実施形態は、レーザ入出力特性が直線以外の所定の非線型関数で表わされる場合を示している。
図7は、本実施形態における出力制御部10内の制御ブロック図の概要説明図を示している。同図では図3における構成と同一のものに同じ符号を付け、ここでの説明を省く。
電圧補正部20は、基準値E0として所定の一定値が設定された基準値設定ブロック21と、レーザ入出力特性逆関数23,24とを有している。このレーザ入出力特性逆関数23,24は例えば図8で示すようなパルスエネルギーと電圧指令値Viとの非線型な関係を表わした関数であり、パルスエネルギー値からこれに対応する電圧指令値Viを求めることができる。基準値設定ブロック21で設定された基準値E0はレーザ入出力特性逆関数23に入力されて対応する電圧指令値V1iに変換され、またエネルギー目標値Edはレーザ入出力特性逆関数24に入力されて対応する電圧指令値V2iに変換される。そして、この電圧指令値V2iと電圧指令値V1iとの差値により電圧補正値ΔVが算出され、この電圧補正値ΔVは電圧テーブル学習制御部11又は毎パルス制御部12によって求められた電圧指令値Viに加算され、出力電圧指令値VOiとしてレーザ電源部8に出力される。
【0037】
この実施形態における出力制御部10の制御フローチャートは、前記図5に示したフローチャートと略同じとなる。ただし、S11及びS21での電圧補正値ΔVの演算時には、以下のようにレーザ入出力特性の非線型性を考慮している。すなわち、電圧補正部20において、エネルギー目標値Edからレーザ入出力特性逆関数24により電圧指令値V2iを算出し、また基準値E0からレーザ入出力特性逆関数23により電圧指令値V1iを算出し、これらの電圧指令値V2iと電圧指令値V1iとの差値に基づいて電圧補正値ΔVを求める。
【0038】
これによって、例えば定格エネルギー値に設定されている基準値E0に対してエネルギー目標値Edが変更されても、この変更量に相当する電圧補正値を前記レーザ入出力特性に応じて適切に、かつ、非線型の入出力特性であっても容易に求めることができる。また、この電圧補正値を、電圧テーブル学習制御部11及び毎パルス制御部12で求めた電圧指令値Viに加算し、この加算値を出力電圧指令値VOiとしてレーザ電源部8に出力するので、上記のようなエネルギー目標値Edの変更に対する出力電圧指令値VOiの追従性が改善され、よって短時間でエネルギー目標値Edに収束させることができる。
【0039】
次に、図9及び図10に基づいて第3実施形態を説明する。本実施形態は、基準値E0として所定の一定値を設定するのではなく、目標値が変更されたときの直前のエネルギー目標値Edを設定する例である。
図9は本実施形態における出力制御部10内の制御ブロック図の概要説明図であり、同図では図7における構成と同一のものに同じ符号を付け、ここでの説明を省く。電圧補正部20は、基準値設定ブロック28、入出力特性逆関数23、24及び積分器27を備えている。基準値設定ブロック28は、エネルギー目標値Edが変更されたときに、その変更の直前のエネルギー目標値Edを基準値E0として記憶し、その基準値E0を次に変更されるまで記憶して入出力特性逆関数23に出力する。なお、第1回目のバースト発振の際の基準値E0、すなわち基準値Eoの初期値は、例えば前実施形態で説明したような所定の一定値に設定されており、電圧テーブルはこの所定値に対応する電圧指令値の初期スパイク制御パターンを記憶している。
【0040】
いま、パルス発振の現在の(i番目のパルスとする)エネルギー目標値EdをEnとし、その前に変更されたときのエネルギー目標値EdをEn-1とすると、現在のエネルギー目標値Enは入出力特性逆関数24により電圧指令値Vnに変換され、また基準値E0(ここでは、エネルギー目標値En-1)は入出力特性逆関数23により電圧指令値Vn-1に変換される。この電圧指令値Vnと電圧指令値Vn-1との差値は積分器27により積算され、この積算値は電圧補正値ΔVとして出力される。そして、前実施形態同様に、電圧補正値ΔVは電圧テーブル学習制御部11及び毎パルス制御部12によって求められた電圧指令値Viに加算されて出力電圧指令値VOiとしてレーザ電源部8に出力される。
【0041】
次に、図10に示す本実施形態に係わる制御フローチャート例に基づいて、出力制御部10の動作を説明する。なお前記図5と同様に、各バースト発振の開始前にトータル発振パルス数imを露光制御装置31から指令されるものとし、図5と同じ処理内容のステップは同一のステップ番号を付して表わす。
まずS1で、予め、スパイク領域でスパイク制御を行うべきパルス数isを設定するとともに、第1回目バースト発振時の初期のこの設定されたパルス数isのパルス発振で出力すべき電圧指令パターン(初期スパイク制御パターン)の電圧テーブル(通常は、基準値E0に対応する電圧指令値Viのパルス順番毎のテーブルとする)、及び、初期のエネルギー基準値E0及び初期のエネルギー目標値Ed0(通常は基準値E0とする)を設定する。次に、S2で、露光制御装置31から今回のバースト発振の際のトータル発振パルス数imを入力するとともに、発振パルス数のカウンタ値iを初期化する。そして、S3から以降、各パルス発振処理を開始する。
【0042】
S3で、露光制御装置31から割り込み処理で入力したエネルギー目標値Edを取り込み、S4で、このエネルギー目標値Edが変更されたか否かを判断する。ここで、この入力したエネルギー目標値Edがこれまでのエネルギー目標値Ed0と等しくないときに、変更されたと判断することができる。そして、変更されたときには、S5で、基準値E0をこの変更以前のエネルギー目標値Ed0によって更新し、また新しいエネルギー目標値Ed0を前記入力したエネルギー目標値Edによって更新し、S6へ処理を移行する。変更されてないときには、そのままS6へ移行する。つぎに、S6でカウンタ値iを1インクリメントする。
【0043】
つぎに、S7で、現在のパルス発振処理がスパイク領域か、すなわちカウンタ値iがパルス数is以下か否かをチェックし、スパイク領域のときは、S10以降以下のような学習制御処理を実行する。すなわち、S10で、電圧テーブル学習制御部11は前記電圧テーブルの中からカウンタ値iに相当するパルス順番iの電圧指令値Viを読み出す。つぎに、S11で、電圧補正部20は、エネルギー目標値Ed0に対応する電圧指令値をレーザ入出力逆関数24により求め、また基準値E0に対応する電圧指令値をレーザ入出力逆関数23により求め、この求めた両電圧指令値の差値を積分器27により積算し、この積算値を電圧補正値ΔVとして出力する。このとき、エネルギー目標値Ed0が基準値E0に対して変更されていれば、電圧補正値ΔVは初期のエネルギー基準値(所定の一定値)に対するトータルの変更量に対応する電圧指令値の差分を表わしていることになる。
【0044】
この後、S12で、前記読み出された電圧指令値Viとこの電圧補正値ΔVとを加算して今回の出力電圧指令値VOiを求め、S13で、この出力電圧指令値VOiをレーザ電源部8に出力し、所定時間後にレーザ発振を実行する。次に、S14で、この発振により出力されたパルスエネルギーの計測値Eiをエネルギーセンサ5から入力し、S15で、前記エネルギー目標値Ed(つまりエネルギー目標値Ed0)とこの入力したエネルギー計測値Eiとの差値に基づいて前記数2により前記i番目の電圧指令値Viの更新を行う。そして、S16では、この更新された電圧指令値Viにより前記電圧テーブルの記憶値を更新する。これによって、次回のバースト発振時のパルスエネルギーの精度が改善される。この後、S3に戻って以上の学習制御処理を繰り返す。
【0045】
前記S7でスパイク領域でないときには、以下の毎パルス制御処理を実行する。すなわち、S20で、毎パルス制御部12は同一バースト内の直前のパルス発振の電圧指令値Vi-1を所定の記憶部から読み出し、今回の毎パルス制御部12の電圧指令値Viとして出力する。なお、スパイク領域からプラトー領域に入った時点では、前述と同様の理由により、このスパイク領域での学習制御時に求められた前記電圧テーブルの最終の(i-1番目の)電圧指令値Vi-1を読み出し、これを今回の電圧指令値Viとして出力するようにしている。そして、S21で、電圧補正部20において、エネルギー目標値Ed0に対応する電圧指令値をレーザ入出力逆関数24により求め、基準値E0に対応する電圧指令値をレーザ入出力逆関数23により求め、この求めた両電圧指令値の差値を積分器27により積算し、この積算値を電圧補正値ΔVとして出力する。この積算値は、前記同様、トータル変更量に対応する電圧指令値の差分を表わしている。
【0046】
つぎに、S22で、前記電圧指令値Viとこの電圧補正値ΔVとを加算して今回の出力電圧指令値VOiを求める。この後、S23でこの演算した出力電圧指令値VOiをレーザ電源部8に出力し、所定時間後にレーザ発振を実行する。次に、S24で、この発振により出力されたエネルギー値Eiをエネルギーセンサ5から入力し、S25で、前記エネルギー目標値Ed(つまりエネルギー目標値Ed0)とこの入力したエネルギー値Eiとの差値に基づいて、前記数3によりi番目の毎パルス制御時の前記電圧指令値Viを更新し、所定の記憶部に記憶する。そして、S26で1バーストが終了したか否かをチェックし、終了したときS2に戻り、終了してないときはS3に戻って以上の毎パルス制御処理を繰り返す。ここで、1バーストが終了したか否かのチェックは、前記同様にカウンタ値iがトータル発振パルス数imより大きいか否かにより行う。
【0047】
以上説明したように、本実施形態によれば、エネルギー目標値Edが変更されたとき、変更前後のエネルギー目標値Ed(上記フローチャートでは、基準値E0とエネルギー目標値Ed0)に対応するレーザ電源部8への電圧指令値をレーザ入出力特性逆関数により求め、この両電圧指令値の差値の積算値を電圧補正値ΔVとしている。この積算値は、第1回目のバースト発振の1番目のパルス発振時から積算されたエネルギー目標値Edのトータル変更量を表わしているので、前記実施形態における所定の一定値の基準値(本実施形態では、基準値E0の初期値に等しい)に対する変更量と等価である。そして、電圧テーブル学習制御部11及び毎パルス制御部12により求められた電圧指令値Viに上記電圧補正値ΔVを加算している。したがって、所定のエネルギー値に対するエネルギー目標値Edの変更量に相当する電圧指令値の差分によって前記電圧指令値Viを補正していることになる。よって、この補正により求めた出力電圧指令値VOiは変更後のエネルギー目標値Edに近いエネルギーを発振させることができるので、変更されたエネルギー目標値Edに短時間で追従させることが可能となる。この結果、エネルギー目標値Edの変更があっても、発振するパルスエネルギーのばらつきが非常に小さくなり、トータルの露光量を所定の目標値に精度良く制御することができる。
【0048】
このように、本発明に係わるエキシマレーザ装置のエネルギー制御装置によると、エネルギー目標値Edの変更量に応じて、レーザ電源部8に出力する電圧指令値の電圧補正値ΔVを求め、電圧テーブル学習制御部11及び毎パルス制御部12により求められた電圧指令値Viに上記電圧補正値ΔVを加算して出力電圧指令値VOiを算出している。したがって、バースト発振の休止期間中に、あるいは、学習制御中や毎パルス制御中にエネルギー目標値Edが変更されても、このエネルギー目標値Edに追従性良く出力電圧指令値を出力してパルス発振することができる。この結果、各パルスエネルギーのエネルギー目標値Edに対する精度が非常に安定して向上するので、トータルの露光量のばらつきを小さくすることができる。
【0049】
なお、これまでの説明では、露光制御装置によって各回のバースト発振開始前に設定されたトータルパルス数imに発振パルス数が達したか否かによって、各回のバースト発振の終了を判断しており、また、この次に新しいトータルパルス数imが設定された直後の最初のパルス発振時点から所定数のパルス数までをスパイク領域と判断している。しかしながら、本発明においてはこのような判断方法に限定するものではなく、例えば、各パルス発振を行う毎に露光制御装置から発振トリガ信号TRを入力し、このトリガ信号TRの受信間隔時間を計測して各パルス発振の間隔時間を測定し、この測定した間隔時間が所定の休止時間をオーバーしたときに、バースト発振の終了と判断するとともに、この後の最初のトリガ信号TRを受信した時点からを次回の新しいバースト発振のスパイク領域と判断するようにしてもよい。
【図面の簡単な説明】
【図1】本発明に係わるエキシマレーザ装置のエネルギー制御装置が用いられるステッパの構成例を示したブロック構成図である。
【図2】出力制御部内の基本的な制御機能構成をイメージ的に表わす制御ブロック図を示す。
【図3】第1実施形態における出力制御部内の制御ブロック図の概要説明図である。
【図4】レーザの入出力特性が線形で表わされる例を示す。
【図5】第1実施形態に係わる出力制御部の制御フローチャート例を示す。
【図6】本発明に係わるエネルギー目標値変更時の電圧補正量の説明図である。
【図7】第2実施形態における出力制御部内の制御ブロック図の概要説明図である。
【図8】レーザの入出力特性が非線型である例を示す。
【図9】第3実施形態における出力制御部内の制御ブロック図の概要説明図である。
【図10】第3実施形態に係わる制御フローチャート例を示す。
【図11】従来技術に係わる所定時間の発振休止と所定時間の連続パルス発振とを交互に繰り返すバースト発振時のパルスエネルギーの変化の説明図である。
【図12】バースト発振でのエネルギー目標値変更の説明図である。
【符号の説明】
1 エキシマレーザ装置
4 レーザ光
5 エネルギーセンサ
8 レーザ電源部
10 出力制御部
11 電圧テーブル学習制御部
11、12 毎パルス制御部
20 電圧補正部
21,28 基準値設定ブロック
23,24 レーザ入出力特性逆関数
27 積分器
30 ステッパ
Vi 電圧指令値
ΔV 電圧補正値
VOi 出力電圧指令値
Ed エネルギー目標値
E エネルギー計測値
Eo 基準値

Claims (5)

  1. 所定時間の連続パルス発振と所定時間の休止とを交互に繰り返すバースト運転モードでパルス発振するとき、各連続パルス発振の初期の所定数のパルス発振に対して学習制御を行い、この学習制御の後は毎パルス制御を行い、前記学習制御時は、発振開始からi番目のパルス発振の際に、前回の連続パルス発振時のi番目パルスの電圧指令値(Vi)、及び、エネルギー目標値(Ed)とこのi番目の電圧指令値(Vi)に対応して発振したパルスのエネルギー計測値(E) との偏差値に応じて、今回のi番目の電圧指令値(Vi)を演算して出力し、また前記毎パルス制御時は、発振開始からI番目のパルス発振の際には、同一回の連続パルス発振内でのI−1番目のパルス発振の電圧指令値(VI-1)、及び、エネルギー目標値(Ed)とこのI−1番目の電圧指令値(VI-1)に対応して発振したパルスのエネルギー計測値(E) との偏差値に応じて、今回のI番目の電圧指令値(VI)を演算して出力し、パルス発振させる出力制御部(10)を備え、前記電圧指令値(Vi),(VI)に基づいて放電電圧を制御してレーザのパルスエネルギーを制御するエキシマレーザ装置のエネルギー制御装置において、
    前記出力制御部(10)は、前記エネルギー目標値(Ed)の変更量に基づいて前記学習制御時及び毎パルス制御時に前記電圧指令値(Vi),(VI)を補正して出力することを特徴とするエキシマレーザ装置のエネルギー制御装置。
  2. 請求項1記載のエキシマレーザ装置のエネルギー制御装置において、
    前記出力制御部(10)が前記エネルギー目標値(Ed)の変更量に基づいて行う前記電圧指令値(Vi)の補正は、前記エネルギー目標値(Ed)に対応する電圧指令値と所定の基準値(E0)に対応する電圧指令値との差値に応じて演算した電圧補正値( ΔV)を前記電圧指令値(Vi)に加算する補正であることを特徴とするエキシマレーザ装置のエネルギー制御装置。
  3. 請求項2記載のエキシマレーザ装置のエネルギー制御装置において、
    前記所定の基準値(E0)が一定値であることを特徴とするエキシマレーザ装置のエネルギー制御装置。
  4. 請求項1記載のエキシマレーザ装置のエネルギー制御装置において、
    前記出力制御部(10)が前記エネルギー目標値(Ed)の変更量に基づいて行う前記電圧指令値(Vi)の補正は、変更後のエネルギー目標値(Ed)に対応する電圧指令値と変更直前のエネルギー目標値に対応する電圧指令値との差値を積算し、この積算値を電圧補正値( ΔV)として前記電圧指令値(Vi)に加算する補正であることを特徴とするエキシマレーザ装置のエネルギー制御装置。
  5. 請求項2,3又は4記載のエキシマレーザ装置のエネルギー制御装置において、
    前記出力制御部(10)は、前記電圧指令値(Vi)とこの電圧指令値(Vi)による出力エネルギー値との入出力特性を表わすレーザ入出力特性逆関数(23,24) を記憶し、このレーザ入出力特性逆関数(23,24) によって前記エネルギー目標値(Ed)及び前記所定の基準値(E0)にそれぞれ対応する電圧指令値(Vi)を求め、両電圧指令値(Vi)の差値に応じて電圧補正値( ΔV)を求めて前記電圧指令値(Vi)を補正することを特徴とするエキシマレーザ装置のエネルギー制御装置。
JP36713397A 1997-12-25 1997-12-25 エキシマレーザ装置のエネルギー制御装置 Expired - Lifetime JP3747607B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36713397A JP3747607B2 (ja) 1997-12-25 1997-12-25 エキシマレーザ装置のエネルギー制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36713397A JP3747607B2 (ja) 1997-12-25 1997-12-25 エキシマレーザ装置のエネルギー制御装置

Publications (2)

Publication Number Publication Date
JPH11191651A JPH11191651A (ja) 1999-07-13
JP3747607B2 true JP3747607B2 (ja) 2006-02-22

Family

ID=18488548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36713397A Expired - Lifetime JP3747607B2 (ja) 1997-12-25 1997-12-25 エキシマレーザ装置のエネルギー制御装置

Country Status (1)

Country Link
JP (1) JP3747607B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765044B2 (ja) * 1998-01-20 2006-04-12 株式会社小松製作所 エキシマレーザ装置のエネルギー制御装置
KR20140142856A (ko) * 2013-06-05 2014-12-15 삼성디스플레이 주식회사 레이저 장치 및 이를 이용한 결정화 방법
JP7416811B2 (ja) * 2019-09-11 2024-01-17 ギガフォトン株式会社 レーザ装置、及び電子デバイスの製造方法
CN113783099B (zh) * 2021-04-15 2024-02-20 北京科益虹源光电技术有限公司 基于深度gru的准分子激光器剂量控制方法及装置
CN116960712A (zh) * 2022-04-18 2023-10-27 北京科益虹源光电技术有限公司 准分子激光器能量掉点检测方法及装置

Also Published As

Publication number Publication date
JPH11191651A (ja) 1999-07-13

Similar Documents

Publication Publication Date Title
US7830934B2 (en) Multi-chamber gas discharge laser bandwidth control through discharge timing
US5463650A (en) Apparatus for controlling output of an excimer laser device
JP5647700B2 (ja) Duv光源の能動スペクトル制御
KR101811742B1 (ko) 광 대역폭 제어 방법 및 장치
US7277464B2 (en) Method and apparatus for controlling the output of a gas discharge laser system
US8428092B2 (en) High-power laser unit wherein laser output can be accurately corrected
JPH11289119A (ja) パルスレーザの発光タイミング制御装置
JP3747607B2 (ja) エキシマレーザ装置のエネルギー制御装置
CN111357156B (zh) 光刻系统带宽控制
JP2012506634A (ja) 2チャンバガス放電レーザにおけるレーザ制御の方法及び装置
JP3879889B2 (ja) インジェクションロック型狭帯域化パルスレーザ装置
JP2007294498A (ja) パルスレーザ装置及びパルスレーザビーム生成方法
JP3763436B2 (ja) エキシマレーザ装置のエネルギー制御装置及びその制御方法
JP3957517B2 (ja) レーザ装置及びその制御方法
JP2006216867A (ja) レーザ発振器の出力補正方法およびレーザ発振器
JP3722200B2 (ja) 放電励起ガスレーザ装置の出力制御方法及び放電励起ガスレーザ装置
JP3765044B2 (ja) エキシマレーザ装置のエネルギー制御装置
JPH06169123A (ja) レーザ装置の出力制御装置
JP3739877B2 (ja) エキシマレーザ装置
JP2008028317A (ja) レーザ装置
JP2019149400A (ja) レーザ光源装置及びレーザ光調整方法
JPH10173274A (ja) エキシマレーザ装置
JP2779569B2 (ja) レーザ装置の出力制御装置
JPH09107146A (ja) レーザ光の出力制御装置
JP2001320118A (ja) レーザ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term