JP3747382B2 - フェルール、該フェルールを利用した光導波路モジュール及びその製造方法 - Google Patents
フェルール、該フェルールを利用した光導波路モジュール及びその製造方法 Download PDFInfo
- Publication number
- JP3747382B2 JP3747382B2 JP16871095A JP16871095A JP3747382B2 JP 3747382 B2 JP3747382 B2 JP 3747382B2 JP 16871095 A JP16871095 A JP 16871095A JP 16871095 A JP16871095 A JP 16871095A JP 3747382 B2 JP3747382 B2 JP 3747382B2
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- ferrule
- optical
- waveguide
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Mechanical Coupling Of Light Guides (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Description
【0001】
【産業上の利用分野】
この発明は、光ファイバの一端を保持するフェルールと、該フェルールとは異なる材料から構成された基板上に光導波路を有する光部品としての導波路部品とを、少なくとも備えた光導波路モジュールに関し、特に、該基板材料との関係で優れた温度及び湿熱特性が得られるフェルール、このフェルール及び導波路型光部品を利用した光導波路モジュール及びその製造方法に関するものである。
【0002】
【従来の技術】
近年の光通信技術の発展にともない、所定波長の光を分岐あるいは合波する分岐素子、合分波素子等に対する需要が高まってきている。また、これらの光部品の高密度化の要求を満たすために、石英ガラス系の光平面導波回路(導波路部品)が用いられてきている。この平面光導波路は低い導波損失(光分岐等にともなう伝送損失)を有し、また光ファイバとの低損失な接続を可能にする。
【0003】
上記平面光導波路として、例えば、特開昭58−105111号公報には、火炎加水分解法(FHD法)などによりガラス膜を成膜した後、半導体技術の応用である反応性イオンエッチング法(RIE法)により回路パターンを形成し、クラッド部を成膜する手法によって得られる埋め込み型の石英系光導波路が開示されている。
【0004】
このような導波路部品を光部品(例えば、光導波路モジュール)に利用する場合、この導波路部品に作り込まれた光導波路に入出力用の光ファイバを接続する構成が一般的である。導波路部品と光ファイバとの接続には、例えばIEEE Photonic Technology Letters, vol.4, No.8, (1992), pp906-908 に示されているように、精密加工され、光ファイバが配列固定された石英系フェルールが用いられ、この石英系フェルール端面を紫外線硬化型接着剤を用いて上記導波路部品端面に接着固定する方法が一般に用いられている。
【0005】
また、例えば特開平6−51155号公報には、紫外線を透過する石英ガラスでフェルールを構成し、むらなくかつ短時間に上記フェルール端面と導波路部品端面を固化させることにより、作業時間を短縮しこれら各端面がずれる可能性を低減する技術が開示されている。
【0006】
【発明が解決しようとする課題】
光ファイバと導波路部品に作り込まれた光導波路とを光学的に接続する際に最も重要なことは、その接続部の位置ずれ(光ファイバのコア端面と、このコア端面に接着剤を介して対向する光導波路端面の位置ずれ)による伝送損失(以下、この接続部分の伝送損失を結合損失という)を小さくする必要があるということである。例えば、導波路部品に作り込まれた光導波路の径(コア径)は10μm以下であり、このような光導波路と光ファイバ(光ファイバのコア)との結合損失を0.3dB未満にするためには、接続部における位置ずれ量を1μm以内に抑えなければならない。一方、熱膨張係数の異なる材料でそれぞれ構成された導波路部品(特に、導波路基板)とフェルールを所定強度の接着剤により接着固定した光導波路モジュールの場合、使用環境の温度変動により上記接続部における各コア端面のずれが生じてしまう。
【0007】
そこで、苛酷な環境での使用が可能な光導波路モジュール(室内で使用する部品の温度特性仕様としては−10℃〜60℃の温度変動で10サイクル(48時間)が一般的であり、例えばBellcore社製TR−NWT−001209の温度特性仕様では、−40℃〜75℃の温度変動で42サイクル(336時間))を得るためには、上述のように光ファイバ端部を保持するフェルールを導波路基板の構成材料と熱膨張係数のほぼ等しい石英ガラスで構成し、所望の温度特性及び湿熱特性を得るのが一般的である。なお、図29は、モードフィールド径が10μmの単一モード光導波路について、該光導波路端面と光ファイバのコア端面との位置ずれ量と、その伝送損失との関係を示した図である。
【0008】
しかしながら、フェルールの製造技術のみに着目すると、上述の石英ガラスによってフェルールを製造する場合、上述の文献にも開示されているように、ガラスのような加工が困難な材料を1μm以内という高精度で加工する必要があり (光ファイバ用の位置固定溝の加工)、さらには光ファイバ端部を把持するために複数の構成部材により構成する必要がある(光ファイバの端部を上下2枚の石英ガラス板で挟み込む)。一方、例えばプラスチック材料によりフェルールを構成する場合、例えば"DEVELOPMENT OF 16-FIBER CONNECTORS FOR HIGH-SPEED LOW-LOSS CABLE CONNECTION" (INTERNATIONAL WIRE AND CABLE SYMPOSIUM PROCEEDINGS 1993, pp.244-249 )に示されているように、プラスチック成形により一工程で成形が可能で、かつ光ファイバ端部を挿入することでその設置位置を規定する貫通孔(連続する内壁を有する)もこのプラスチック成形時に高精度に作り込むことができる。このようにプラスチック材料によりフェルールを構成すると、光ファイバ端部の把持構造を得るために、複数の部材を用意して該ファイバ端部を把持させる必要はなく(プラスチック成形時に同時に光ファイバ端部の設置位置を精密に規定できる貫通孔が形成できるため、光ファイバの先端を位置決めした状態で上下から挟み込んで把持する必要はない)、また高精度の加工技術も必要としないため(貫通孔は各光ファイバごとに高精度に作り込まれるので、把持部材に光ファイバ用の位置固定溝を形成する等の精密加工は必要はない)、該プラスチック材料がフェルールの構成材料として適している。
【0009】
この発明は、上述の諸事情に鑑み、ガラス等の加工が困難な材料の代わりに低コストで、連続成形及び高精度加工が容易なプラスチック材料からなるフェルールを利用する一方、それぞれ熱膨張係数の異なる材料から構成された導波路部品(特に、導波路基板)とフェルールを備え、かつ苛酷な使用環境においても安定した温度特性、湿熱特性を有する光導波路モジュール及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1に係る光導波路モジュールは、第1の材料から構成された導波路基板上に、所定波長の光を伝搬する伝送路の少なくとも一部を構成する光導波路が設けられた導波路部品(第1の材料としては、例えばシリコン又は石英ガラスが適している)と、第2の材料から構成され、前記伝送路の少なくとも一部を構成する光ファイバの一端と前記光導波路の一端とを光学的に結合すべく、該光ファイバの一端を保持した状態(光ファイバ端部は連続する内壁を有する貫通孔に挿入された状態で設置されている)で、所定強度の接着剤によりその端面が前記導波路部品の端面に対向するよう固定された、フェルール(第2の材料としては、例えばプラスチック材料が適している)を備える。さらに、当該光導波路モジュールは、上記フェルールの貫通孔にその端部が挿入された状態で該フェルールに接着固定された入出力用の光ファイバを備えている。この構成により既存の伝送路からの信号光の分岐、あるいは該伝送路への合波を容易に実現する。なお、この光ファイバは、所定波長の光を伝搬するためのコアと、このコアを覆うクラッドから構成されるが、通常は、このクラッド表面をアクリレート樹脂で被覆するか、さらにはその表面をプラスチックで被覆した状態で利用に供される。また、この光ファイバは単芯ファイバには限定されず、複数の光ファイバ(各光ファイバはそれぞれ異なる色に着色されたアクリレート樹脂でコーティングされたものでもよい)をプラスチック材料で一体的に被覆したテープ型ファイバも含まれる。
【0011】
特に、苛酷な温度変動下(例えば−40℃〜+75℃の範囲での温度変動)においてもその結合損失が0.3dB以下である光導波路モジュールを実現すべく、上記導波路部品の基板部分を構成する第1の材料と、上記フェルールを構成し、上記第1の材料とは異なる第2の材料は、第1の材料の熱膨張係数と第2の材料の熱膨張係数との差をΔL、第1の材料の弾性率をE1、第2の材料の弾性率をE2とし、上記光ファイバのコア列の両端の間隔が3.75mm以下である場合、
|ΔL/(E1/E2)|<3.0×10−6(℃−1)…(1)
なる関係を満たしている。
【0012】
上記フェルールを構成するプラスチック材料は、所定量の石英フィラーが含有されたフェノール系エポキシ樹脂の場合、その熱膨張係数は10×10−6(℃−1)以下でよいが、さらに優れた温度特性を得るためには、その熱膨張係数を6×10−6(℃−1)以下とするのが好ましい。
【0013】
また、このフェノール系エポキシ樹脂に含まれる石英フィラーの含有量は、85重量%以上、95重量%以下であればよいが、さらに優れた湿熱特性を得るためには、その含有量を90重量%以上、95重量%以下とするのが好ましい。このとき、上述のフェノール系エポキシ樹脂の弾性率は5000(kg/mm2 )以下である。
【0014】
なお、上記光導波路端面と光ファイバ端面とを接着固定する接着剤は、その接着強度が石英ガラスに対して50(kg/cm2 )以上の紫外線硬化型、熱硬化型接着剤、あるいは双方の硬化性(光に反応して固化する性質と熱に反応して固化する性質)を兼ね備えた接着剤を使用する。
【0015】
次に、請求項10に係る発明は、上記請求項1に係る光導波路モジュールの製造方法であり、この製造方法では、まず、第1の材料から構成された導波路基板上に、所定波長の光を伝搬する伝送路の少なくとも一部を構成する光導波路が設けられた導波路部品と、該伝送路の少なくとも一部を構成する光ファイバ(入出力用光ファイバを含む)の端部を連続した内壁を有する貫通孔に挿入した状態で、接着剤により該光ファイバ端部に接着固定された、上記第1の材料とは異なる第2の材料から構成されたフェルールを用意する。このとき、上記光ファイバのコア列の両端の間隔が3.75mm以下である場合、導波路部品の導波路基板を構成する第1の材料(例えばシリコン又は石英ガラスが適している)に対するフェルールを構成する第2の材料(例えばプラスチック材料が適している)の上記実効熱膨張係数(|ΔL/(E1/E2)|)は、3.0×10−6(℃−1)未満である。
【0016】
そして、これら導波路部品の端面とフェルールの端面とを突き合せた状態で、石英ガラスに対して50(kg/cm2 )以上の接着強度を有する接着剤、例えば紫外線硬化型あるいは熱硬化型接着剤により接着し、この導波路部品の光導波路端面とフェルールの貫通孔でその端部の設置位置が規定された光ファイバのコア端面との位置合せ(アライメント)を行う。その後、この接着部分に紫外線を所定時間照射するか、あるいはこの接着部分を所定温度に加熱することにより上記接着剤を固化させる。
【0017】
なお、この発明に係るフェルールは、上述したように、所定量の石英フィラーが含有され、かつその熱膨張係数が10×10-6(℃-1)以下、好ましくは6×10-6(℃-1)以下のフェノール系エポキシ樹脂である。また、石英フィラーの含有量は、85重量%以上、95重量%以下であり、好ましくは90重量%以上、95重量%以下がよい。さらに、このフェルールを構成するプラスチック材料は、その弾性率が5000(kg/mm2 )以下のフェノール系エポキシ樹脂がよい。
【0018】
【作用】
シリコンまたは石英ガラスから構成された導波路基板とプラスチック材料から構成されたフェルールのように、異なる材料から構成される各構成部材を利用して当該光導波路モジュールを構成する場合、上記式(1)で示されるように導波路基板の構成材料に対するフェルール構成材料の実効熱膨張係数を3×10-6 (℃-1)未満とすることにより、温度変動に起因して生じる各コア端面のずれ量を1μm以下、すなわち結合損失を0.3dB以下に抑えることができる。少なくとも発明者らは上記導波路部品の一部を構成する石英ガラス基板に適応可能なフェルールを得るためには(上記条件を満たすためには)、少なくとも75重量%以上の石英フィラーを含有するプラスチック材料(熱膨張係数は3×10-6℃-1以上、10×10-6℃-1以下)により構成し、シリコン基板に適応可能なフェルールを得るためには、少なくとも85重量%以上の石英フィラーを含有するプラスチック材料(熱膨張係数は3×10-6℃-1以上、6×10-6℃-1以下)により構成する必要があることを確認した。このとき、上記構成の光導波路モジュールは良好な温度特性が得られることも確認した。
【0019】
一方、プラスチック材料に含有可能な石英フィラーの理論限界値は、工業材料1994年12月号(Vol.42、No.15、pp.112〜116)に96体積%であることが示されており、発明者らは、既に94重量%の石英フィラーが含有されたプラスチック・フェルールを得ている。さらに、石英ガラス製導波路基板とプラスチック・フェルールからなる光導波路モジュールについて、所定の条件下でその湿熱特性を評価したところ、該プラスチック材料に含有される石英フィラーの下限値が80重量%〜90重量%の間に存在することも確認している。また、石英フィラー含有量の理論限界値が96体積%であることから、フェルール構成材料としてのプラスチック材料の熱膨張係数の下限値は、3×10-6(℃-1)である(図19参照)。なお、体積%と重量%はほぼ一致する。
【0020】
したがって、シリコン基板及び石英ガラス基板のいずれを利用する場合でも、少なくとも85重量%〜95重量%の石英フィラーを含有するプラスチック材料をフェルール構成材料として適用することで、温度特性及び湿熱特性のいずれにおいても良好な光導波路モジュールが得られる。
【0021】
特に、石英ガラス基板に対して上記フェルールの構成材料を、所定量の石英フィラーが含有され、かつその熱膨張係数が10×10-6(℃-1)以下のフェノール系エポキシ樹脂とすることで、また、シリコン基板に対して上記フェルールの構成材料を、所定量の石英フィラーが含有され、かつその熱膨張係数が6×10-6(℃-1)以下のフェノール系エポキシ樹脂とすることで、上述の室内で使用される部品の温度特性仕様(−10℃〜60℃の温度変動で10サイクル(48時間))、さらにはBellcore社製TR−NWT−001209の温度特性仕様(−40℃〜75℃の温度変動で42サイクル(336時間))を満足する光導波路モジュールが得られる。
【0022】
また、上記石英フィラーの含有量を、90重量%以上、95重量%以下に調整することにより、Bellcore社製TA−NWT−001221の湿熱特性仕様(75℃、90±5RH、500時間)を確実に満足する光導波路モジュールが得られる。
【0023】
【実施例】
以下、この発明の一実施例を図1乃至図29を用いて説明する。なお、図中同一部分には同一符号を付して説明を省略する。
【0024】
図1は、この発明に係る光導波路モジュールの組み立て工程を説明するための図であり、図2はこの発明に係る光導波路モジュール全体の構成を示す斜視図である。この発明に係る光導波路モジュールの製造方法では、まず、入出力用の光ファイバ4の端部を貫通孔に挿入した状態で接着剤5により接着固定されたフェルール3と、導波路基板上に所定波長の光を伝搬する光導波路(コア)を有する導波路部品1とを用意する。さらに、これらフェルール3と導波路部品1との十分な接着強度を得るため、補強部材2を用意する。なお、この補強部材2は、上記導波路部品1の上面1bに接着剤により接着固定される底面2bと、フェルール3の接着端面3cと対向する側面2aを有する。
【0025】
次に、この補強部材2が上面1bに既に接着固定されている導波路部品1の接着端面1aと、光ファイバ4の端部を保持したフェルール3の接着端面3cとをそれぞれ以下の各工程を順に行うことで光学研磨する。なお、補強部材2の接着面(側面)2aは上記導波路部品1の端面研磨の際に同時に研磨され、また光ファイバ4のコア端面も上記フェルール3の端面研磨の際に同時に研磨される。
【0026】
第1工程(粗研磨工程):800〜2000#の粗い研磨紙で各端面を露出させる
第2工程(中研磨工程):6〜9μmのダイヤモンド砥粒で各端面の表面傷を除去する
第3工程(仕上研磨工程):1〜3μmのダイヤモンド砥粒でさらに各端面の表面傷を除去する
第4工程(バフ研磨工程):0.3μm以下の酸化セシウム砥粒あるいは二酸化圭素砥粒で各端面の表面加工変質層を除去する
なお、これら研磨工程で、端面反射による光減衰量の低減等の必要に応じて、接着部13における光の伝搬方向(この方向はフェルール3への光ファイバ4の挿入方向と一致している)に対して、各端面の角度を90度からずらしてもよい。この場合の角度調整は、上記第1工程で行う。また、上述した研磨方法以外の研磨方法も知られているので、必要に応じてその研磨方法は選択する。
【0027】
続けて、上記導波路部品1の入出力端面1aとフェルールの接着端面3cを突き合せた状態で接着剤6により接着した後、導波路部品1に作り込まれた光導波路端面と光ファイバ4のコア端面のアライメントを行う。なお、この時光ファイバ4は既にフェルール3に所定強度の接着剤5により既に固定されている。また、補強部材2の底面2bと導波路部品1の上面1aとの間、補強部材2の接着面2a及び導波路部品1の接着面1aとフェルール3の接着面3cとの間は、石英ガラスに対して50kg/cm2 以上、好ましくは100kg/cm2 以上の接着強度を有する紫外線硬化型あるいは熱硬化型接着剤により接着されている。
【0028】
上記導波路部品1の光導波路端面と光ファイバ4のコア端面のアライメントは、例えば米国特許第4,744,619号公報に示されているように、導波路部品1を精密移動ステージで支持した状態で、該導波路部品1の光導波路の一方の入出力端面から所定波長の光を入射し、他方の入出力端に上記接着剤を介して光学的に接続されている光ファイバ4から出射された光の強度をモニタしながら行われる。すなわち、この出射光の光強度が最大になるよう導波路部品1あるいはフェルールを移動させ、アライメントを行っている。
【0029】
そして、上記導波路部品1の光導波路端面(導波路部品1の入出力端面の一部を構成している)と光ファイバ4のコア端面(フェルール3の接着端面3cの一部を構成している)のアライメントが完了した段階で、接着部に紫外線を照射するかあるいは所定温度に加熱することにより上記接着剤を固化させる。この一連の作業(接着部13における各端面の接着−アライメント−接着剤の固化)を上記導波路部品1の両入出力端面について行うことにより、図2に示すようなこの発明の第1の実施例に係る光導波路モジュールを得る。
【0030】
次に、フェルール3の構造を図3〜5を用いて説明する。図3は、このフェルール3の構造を示すための展開図である。図中、3aはフェルール3の上面、3bは側面、3cは前面(接着面)、3dは底面、3eは裏面(光ファイバ4が挿入される側)を示している。このフェルール3の上面3aには光ファイバ4の先端をフェルール3に予め窓310が設けられている。この窓310から見える台座部分330には光ファイバ4の先端を貫通孔340に挿入しやすくするため、予めガイド溝330aが設けられている。また、光ファイバ4の先端とフェルール3はこの台座部分で接着固定するため、この窓310は接着剤の投入口としても機能する。フェルール3の裏面3eには光ファイバ4の先端部分を該フェルール内部に挿入するための開口部320が設けられている。また、フェルール3の前面3c(導波路部品1の入出力端面1aに直接向い合う面)には、予め作り込まれた貫通孔340の開口部340aが位置する。
【0031】
なお、図4は図3に示した上記フェルール3のC−C線に沿った断面を示す図であり、光ファイバ4の先端部分は裏面3eから前面3cに向かって矢印Hの方向から当該フェルール内部に挿入される。また、図5は図4に示したフェルール断面図のうち、特に貫通孔340の断面を拡大表示した図であり、この図からも分るように貫通孔340の内部は光ファイバ4の先端部分を挿入しやすくするため、該光ファイバの直径よりもかやり大きな直径を有する部分340bと、該光ファイバ4の先端部分の設置位置のずれ(前面3cに対する水平方向の位置ずれ)を防止すべく該光ファイバ4の直径にほぼ一致した直径を有する部分340cから構成されている。
【0032】
既に述べたように、上記導波路部品1の基板を構成するのに適した第1の材料(例えばシリコン、石英ガラス等)と、フェルール3を構成するのに適した第2の材料(例えばプラスチック材料)とは異なっている。したがって、正確にアライメントと行って導波路部品1とフェルール3の接着固定を行ったとしても、例えば−40℃〜+75℃程度の温度変動が生じる環境においては各材料の熱膨張係数の差に起因して、導波路部品1の光導波路端面と光ファイバ4のコア端面との位置ずれが生じてしまう(結合損失が増大する)。
【0033】
そこで、この発明では、上述の温度変動下においてもその結合損失が0.3dB以下にすべく、上記フェルールを、上記導波路部品1の導波路基板に適した第1の材料に対する実効熱膨張係数|ΔL/(E1 /E2 )|の値が3×10-6℃-1未満である第2の材料で構成している。なお、上記実効熱膨張係数を示す式中ΔLは第1の材料の熱膨張係数と第2の材料の熱膨張係数の差、E1 は第1の材料の弾性率、E2 は第2の材料の弾性率である。
【0034】
特に、発明者らは、シリコン又は石英ガラスから構成された導波路基板と、その熱膨張係数が10×10-6℃-1以下のフェノール系エポキシ樹脂(所定量の石英フィラーを含む)、さらにはその熱膨張係数が6×10-6℃-1以下のフェノール系エポキシ樹脂(所定量の石英フィラーを含む)から構成されたフェルール3との組合わせにより、優れた温度特性を有する光導波路モジュールを得た。また、フェノール系エポキシ樹脂によりフェルール3を構成する場合、上記石英フィラーの含有量は、85重量%〜95重量%であることが好ましいが、さらに湿熱特性に優れた光導波路モジュールを得るためには、石英フィラーの含有量が90重量%〜95重量%であることがよいことも確認した。なお、これらフェノール系エポキシ樹脂の弾性率は5000kg/mm2 以下である。
【0035】
以上のような材料から構成されるフェルール3は、例えば"DEVELOPMENT OF 16-FIBER CONNECTORS FOR HIGH-SPEED LOW-LOSS CABLE CONNECTION" (INTERNATIONAL WIRE AND CABLE SYMPOSIUM PROCEEDINGS 1993, pp.244-249 )などに示されるように、プラスチック成形法により得られる。すなわち、所定形状の凹みを有する上下2枚の金型を用意し、フェルール3の貫通孔を形成するための金属製コアピンをこれら金型で挟み込んだ状態で、上記各金型の凹みによって定義されるキャビティ内に上述の樹脂を注入することにより得る。
【0036】
一方、このような材料で図3〜図5に示す構造を有するフェルール3と紫外線硬化型接着剤を利用して図2に示す光導波路モジュールを製造した場合、上述の特開平6−51155号公報でも指摘されているように、光導波路130端面と光ファイバ4のコア端面の位置ずれを生じることなく接着部13における各端面を均一に接着することが難しくなる。しかしながら、このような場合でも、このフェルール3に図6に示すようなガイドピン用の穴350を予め作り込むことにより、上述のアライメント作業を省略することができ、さらには接着剤の固化に長時間を要したとしても、導波路部品1の光導波路端面とフェルール3に保持されている光ファイバ4のコア端面との位置ずれを回避することも可能である。このガイドピン用の穴を有するプラスチック・フェルールの製造方法は、例えば、"HIGH FIBER COUNT OPTICAL CONNECTORS" (INTERNATIONAL WIRE AND CABLE SYMPOSIUM PROCEEDINGS 1993, pp.238-243 )などに開示されている。この場合、ガイドピン100の両端を、それぞれ導波路部品1(特に導波路基板)に設けられた穴とフェルール3に設けられた穴350にそれぞれ差込み、これら導波路部品1の接着端面1aとフェルール3の接着端面3cとを、上述の接着剤(石英ガラスに対して少なくとも50kg/cm2 以上の接着強度を有する紫外線硬化型あるいは熱硬化型接着剤)により接着することによりアライメント作業が不用となる。なお、このガイドピンを利用したアライメント方法は、例えば特開平2−125
208号公報、特開平5−333231号公報などに開示されている。また、図6に示したフェルール3のD−D線に沿った断面は、図4に示したフェルール断面と一致している。
【0037】
このフェルール3の貫通孔340にその端部が挿入された状態で保持される光ファイバ4は、一般に所定波長の光を伝搬するコアと、このコアを覆い、該コアの屈折率よりも低い屈折率を有するクラッドから構成されている。この実施例では、図7及び8に示されるような、複数の光ファイバをプラスチック被覆したテープ型ファイバを利用している。この場合、各裸ファイバ410(コア410aとクラッド410bから構成)は個々にアクリレート樹脂420によりされており、このようにアクリレート樹脂により被覆されたファイバを一列に束ねたリボン部分430はプラスチックで被覆して構成している。この光ファイバ4をフェルール3に接着固定する際は、該光ファイバ4の先端部分のプラスチック被覆430を剥がし(さらにはアクリレート被覆420も剥がし)、フェルール3の裏面3eに設けられた開口部320から各光ファイバに対応して設けられている貫通孔340に装着し、フェルール3の台座部330において接着剤5により接着固定する。なお、このフェルール3には、他の伝送路を構成する光ファイバを直接取り付けてもよく、また、予め他の伝送路との接続を考慮して、別途入出力用光ファイバを取り付けておいてもよい。いずれの場合も、該フェルール3に取り付けられた光ファイバは伝送路の一部を構成する。
【0038】
導波路部品1の構造を図9に示す。この図は図1に示した光導波路モジュールのA−A線に沿った導波路部品1の断面に相当する。この導波路部品1はシリコン又は石英ガラスから構成される導波路基板110、この導波路基板110上に形成された下側クラッド層120(ガラス材料層)、この下側クラッド層120上に所定形状に加工された光導波路130(コア、ガラス材料層)、及びこの光導波路130を覆う上側クラッド層140(ガラス材料層)を備えており、これらクラッド層120、140は光導波路130の屈折率よりも低い屈折率を有する。なお、当該光導波路モジュールに利用される導波路部品1の構造は図9に示すような埋め込み型導波路には限定されず、例えば光集積回路(オーム社発行、昭和60年2月25日、p.204)に開示されているような種々の構造の導波路部品(例えば、リッジ型導波路等)が適応可能である。
【0039】
このように、図9に示す断面構造の埋め込み型導波路部品1と上述の構造を有するフェルール3との接続部13の拡大した断面図を図10に示す。なお、この断面図は図2に示したB−B線に沿った断面と一致している。この図に示すように、導波路部品1の上面1bと補強部材2の底面2bとの間、導波路部品1の接着面1aとフェルール3の接着面3c(光ファイバ4のコア端面を含む面)との間、及び補強部材2の側面2aと上記フェルール3の接着面3cとの間は、それぞれ石英ガラスに対して50kg/cm2 以上の接着強度を有する紫外線硬化型あるいは熱硬化型接着剤6により接着固定されている。上述したアライメントは、フェルール3によってその先端が保持されている光ファイバ4のコア410aの端面と光導波路130の端面とを光の伝搬方向に一致させる作業であり、図中、11で示される領域は上記光ファイバ4と光導波路130とが光学的に接続される部位を示している。
【0040】
さらに、当該光導波路モジュールにおける導波路部品1とフェルール3との接続部13は図1及び2に示すように、補強部材2によって構造的に補強されているが、この補強構造はこの第1の実施例のみに限定されるものではなく、例えば図11及び12に示すように導波路部品1を支持部材10に固定することにより、フェルール3との接着部13の強度補強を行ってもよい。この支持部材10も導波路基板110と同じ材料、例えばシリコン又は石英ガラスから構成されている。なお、この図におけるF−F線に沿った導波路部品1の断面は、図9に示した埋め込み型導波路部品の断面と一致している。
【0041】
また、図12に示したこの発明の第2の実施例に係る光導波路モジュールの接続部13の構造を説明するため、図中G−G線に沿った断面図を図13に示す。この第2の実施例では導波路部品1と支持部材10は接着剤6により接着固定されており、この支持部材10の接着端面10aは、上述した導波路部品1の端面研磨の際に同時に研磨れれる。
【0042】
さらに、上記導波路部品1に作り込まれる、種々の光導波路130の形状を図14〜図16に示す。なお、これらの図は上側クラッド層140が取り除かれた導波路部品1を上方から見た状態を示している。このように、導波路部品1に作り込まれる光導波路130の形状としては、1対多(図14)、多対多(図15)、あるいは2対多(図16)等の種々の態様における光通信(光分岐、光結合機能を含む)を実現するための光導波路パターンがある。
【0043】
当該光導波路モジュールは、当然のことながら光通信システムの一部として機能する。したがって、当該光導波路モジュールは図17に示すように、他の伝送路20a、20bとの光学的な結合を容易に実現するため、入出力用光ファイバ4を備えている。この場合、当該光導波路モジュールは、上述の導波路部品1と、この導波路部品1と接着固定されたフェルール3と、このフェルール3の貫通孔340にその先端が挿入された状態で接着剤5により接着固定された入出力用光ファイバ4(この実施例では多芯のテープ型ファイバ)を備えている。特に、各入出力用光ファイバ4の他端は、他の伝送路20a,20bとの光学的な結合を可能にするため、別のフェルール30に接着剤50により接着固定されている。なお、これら伝送路20a、20bは、それぞれ光信号を伝搬させるための光ファイバ210、220を備えているが、この他、送信器、光増幅器、光合分波器、受信器等の要素を含んで構成されている。
【0044】
以上のように他の伝送路20a、20bに光学的に結合された光導波路モジュールは、伝送路の一部を構成する。また、このように伝送路の一部として設置された光導波路モジュールは、その接続部13を保護するため、例えば、特開昭62−73210号公報に開示されているように、所定形状のケースに収納される。また、この光導波路モジュールは、欧州特許公開公報第0422445A1号に開示されているように、樹脂モールドして保護してもよい。
【0045】
次に、導波路部品1の一部を構成する導波路基板110とフェルール3のそれぞれを構成する材料、特に、これらの材料の熱膨張係数及び弾性率を中心に説明する。
【0046】
まず、導波路部品1と光ファイバ4の先端部分を保持するフェルール3の接続部13の各材料の熱膨張に起因する結合損失の変動について説明する。なお、ここでは光導波路130に起因する損失変動(光分岐等に起因する伝送損失)を考えなくてすむよう、シリコン(Si)基板上に250μmのピッチで8本の直線光導波路(コア径:7μm×7μm、比屈折率差:0.3%)が形成された平面導波路部品を用意した。この導波路部品における光導波路形状を図18に示す。このシリコン基板を有する導波路部品1と熱膨張係数の異なるプラスチック材料から構成されたフェルール3を用意し、このフェルール3で保持されている光ファイバのコアを光導波路13にと対向させて調芯した後、紫外線硬化型接着剤で固定して数種類の試料(特性比較用の光導波路モジュール)を制作した。接着剤の強度不足による変動は極力避けるべく、接着剤の破断強度は石英ガラスに対して100Kg/cm2 以上のものを用いた。なお、接着強度としては少なくとも50Kg/cm2 あればよい。
【0047】
表1に、作成したフェルール3に使用した材料及びその物性値を示す。
【0048】
【表1】
【0049】
この表1に示したプラスチック1〜4の物性値を図19及び図20に示す。特に、図19において、横軸は含有される石英フィラーの量(重量%、図中、wt%で示す)、縦軸はプラスチック材料の熱膨張係数(/℃)の関係を示し、図20は、含有される石英フィラーの量(重量%、図中、wt%で示す)、縦軸はプラスチック材料の弾性率(kg/mm2 )を示す。これらの図から分るように、石英フィラーの含有量が増加するとプラスチック材料の熱膨張係数が下がる一方、その弾性率は増加する傾向がある。また、図21は、含有される石英フィラーの量(重量%)に対する上記各プラスチック材料の実効熱膨張係数|ΔL/(E1 /E2 )|を示している。なお、図中の曲線501(●印でプロット)はシリコン(Si)に対する各プラスチック材料の実効熱膨張係数を示し、曲線502(○印でプロット)は石英ガラス(SiO2 )に対する各プラスチック材料の実効熱膨張係数を示す。また、上記実効熱膨張係数を示す関係式中、ΔLはシリコン又は石英ガラス(導波路基板の構成材料)と各プラスチック材料(フェルールの構成材料)の熱膨張係数の差、E1 はシリコン又は石英ガラスの弾性率、E2 は各プラスチック材料の弾性率である。したがって、この図から、シリコン基板に対して上記実効熱膨張係数を3×10-6℃-1未満にするプラスチック材料を得るためには、石英フィラーを85重量%以上含有させる必要があり、また、石英ガラス基板に対して上記実効熱膨張係数を3×10-6℃-1未満にするプラスチック材料を得るためには、石英フィラーを75重量%以上含有させる必要があることが分る。
【0050】
なお、石英フィラーを75重量%以上を含有するプラスチック材料の熱膨張率は10×10-6℃-1以下となり、石英フィラーを85重量%以上を含有するプラスチック材料の熱膨張係数は6×10-6℃-1以下となる。一方、先にも述べたように石英フィラーの含有量の理論限界値は96体積%(重量%とほぼ一致)であるので、上記各プラスチック材料の熱膨張係数は3×10-6℃-1以上である(図19参照)。
【0051】
温度変動による損失の変化は、図22に示す測定系を用いて評価した。測定される光導波路モジュール123は環境装置200内の恒温槽250に収容されており、LED230から一定強度の光を一方の入出力用光ファイバ(光導波路の入力側端面に光学的に接続されてる)に供給しつつ、光導波路を通過してさらに他方の入出力用光ファイバ(光導波路130の出力端面に光学的に接続されている)を通過した光の強度を光パワーメータ220で測定することにより、温度変動に起因する結合損失の変動量を測定する。なお、この光パワーメータ220はパーソナルコンピュータ210によって制御されている。恒温槽250内の温度は、図23に示すような変化をするよう温度制御手段によって調整される。この温度制御手段240もパーソナルコンピュータ210によって制御されている。すなわち、温度は−40℃から+75℃の間で変化し、変化速度は±1.5℃/minである。表2に、導波路部品とフェルールとの結合損失について、上記の温度変化による変動量を示す。
【0052】
なお、この測定のために用意した試料は、各材料組合わせごとにそれぞれ4個ずつである。
【0053】
【表2】
【0054】
導波路基板110とフェルール3の構成材料が同一の場合(例えば、Si/Si:基板材料がシリコンでフェルール材料もシリコンとした場合)は温度変動による熱膨張の大きさに差がないため理想的であるが、このような場合には結合損失の変動量は概ね0.1dB未満になるはずである。かかる場合の一例として表2に示した「Si/Si」の場合には、結合損失の変動量は0.08dBとなっている。また、材料間の熱膨張係数の差が大きい場合、例えば表2に示した「Si/プラスチック1」の場合には、当然のことながら結合損失の変動量が著しく大きくなることがわかる。
【0055】
この結合損失の変動量に基づいて計算によって得られる光導波路1と光ファイバ4のコアの位置ずれ量を、熱膨張係数との関係で示したグラフを図24に示す。この図24においては、位置ずれ量の計算値をプロットした線分を503で示し、実験値をプロットした線分を504で示している。この図からも分るように、実際の位置ずれ量は計算から得られる値よりも小さくなる。これは、導波路基板材料とフェルール材料の両方の弾性変形によって相対的に位置ずれ量が小さくなることに起因すると考えられる。
【0056】
弾性変形に起因して位置ずれ量が抑制される割り合いは、導波路基板110の構成材料と、この導波路部品1に接続されるフェルール3も構成材料との弾性率の比で決まる。そこで、これら導波路基板110とフェルール3の各構成材料の弾性率の比を考慮して計算される位置ずれ量を図25に示す。この図25においては、位置ずれ量の計算値をプロットした線分を505で示し、実験値をプロットした線分を506で示している。このように弾性変形を考慮することにより、計算から得られる位置ずれ量は実際の値とよく一致するようになる。なお、図25において横軸は、上述した実効熱膨張係数(導波路基板材料とフェルール構成材料の各熱膨張係数の差と、導波路基板材料の弾性率及びフェルール材料の弾性率の比との比である)である。
【0057】
以上の検討結果より、導波路基板110を構成する材料とは熱膨張係数の異なる材料を用いてフェルール3を構成する場合でも、各材料の弾性変形を活用すれば実際の位置ずれを小さくすることが可能であることがわかる。したがって、図29に示した関係により、位置ずれ量が1μm程度であれば、結合損失の変動量が0.3dB程度に抑えることが可能となる。
【0058】
位置ずれの許容量は、フェルール3に保持された光ファイバ4(この実施例では多芯テープ型ファイバ)の各コアの間隔にもよる。例えば、コアが250μmピッチで16芯並んだものについては、両端のコアの間隔は3.75mmになり、例えば100℃の温度差がある環境下で位置ずれ量を1μm以内に抑えるためには、既に言及している条件が満足されることが必要になる。すなわち、導波路基板110の構成材料の熱膨張係数とフェルール3の構成材料の熱膨張係数との差をΔL、導波路基板110の構成材料の弾性率をE1 、フェルール3の構成材料の弾性率をE2 としたときに、導波路基板110の構成材料に対するフェルール3の構成材料の実効熱膨張係数|ΔL/(E1 /E2 )|の値を、3.0×10-6℃-1未満とする必要がある。望ましくは、2.7×10-6℃-1未満とするのがよい。
【0059】
導波路部品1の一部を構成する導波路基板110の構成材料としてはシリコン又は石英ガラスを用いるのが一般的である。そして、この導波路基板上に埋め込み型の石英ガラス系導波路を形成したものは、光ファイバとの結合損失が低く内部における伝送損失も小さいため、現在開発が盛んに進められている。これらの材料の物性は、前述の表1に示されている。
【0060】
一方、フェルール3を製造する際によく使用される材料として、石英ガラスフィラーを含有させたフェノール系エポキシ樹脂がある。この材料の熱膨張係数はフィラーの含有量等を変えることによって変えることができ、また、この含有量の調整によりエポキシ樹脂の弾性率は1500〜5000Kg/mm2 範囲で調整可能となる。導波路基板1をシリコンまたは石英ガラスで構成する場合を想定し、その弾性率が上述の実効熱膨張係数の範囲内にある材料を用いてフェルール3を製造するとすれば、この材料の熱膨張係数は10×10-6℃-1以下とする必要がある。
【0061】
また、この検討結果より、前述のフェノール系エポキシ樹脂だけでなく、その他の樹脂でも弾性率が十分小さければ、例えば500Kg/mm2 以下であれば熱膨張係数が比較的大きい材料(例えば20×10-6℃-1)であっても、温度変動に起因するコアの位置ずれを十分抑制できることがわかる。例えば、導波路基板110を石英ガラスで製造する場合に、フェルール3を構成する材料の弾性率が50Kg/mm2 以下であるとして、この材料の熱膨張係数と石英ガラスの熱膨張係数との差が4×10-4℃-1程度あったとしても、実際の弾性変形を考慮した実効的な熱膨張の差は3×10-6℃-1未満となる。この程度の熱膨張差を有する樹脂としては、例えば、ICI社製のLCR305がある。
【0062】
このような樹脂を利用してフェルール3を構成したが場合に予測される問題としては、材料自体の弾性率が低いため、アライメント時の治具等への固定によって弾性変形が生じ、コアの位置がずれていまう可能性があるということである。なお、このような場合には、ハンドリング手法を改良することにより(例えば、治具への面固定)、解決できると考える。
【0063】
以上の検討に基づいて製造した複数の光導波路モジュールについて、以下詳細に説明する。
【0064】
試料1
この試料1において、フェルール3の構成材料としては、熱膨張係数が6.0×10-6℃-1、弾性率が2500Kg/mm2 のフェノール系エポキシ樹脂材料を用いた。この材料のシリコンに対する実効的な熱膨張係数は2.25×10-6℃-1である。また、導波路部品1は、シリコン基板110上にFHD法とRIE法を組み合わせて形成した8分岐のシングルモード光導波路130を形成したものとした。製造した光導波路130の導波路形状を図26に示す。次に、1芯の光ファイバを保持したフェルール3(該光ファイバの先端部分は接着剤により該フェルールに固定されている)と、8芯の光ファイバを250μmピッチに配列固定したテープ型ファイバを保持したフェルール3(該テープ型ファイバの先端部分は接着剤により該フェルールに固定されている)とをそれぞれ導波路部品1の入出力端面1a、1cに接続して試料1の光導波路モジュールを5個作成した。なお、アライメントは既に説明した方法により行われている。また、導波路部品1と各フェルール3の接着に使用した接着剤には、石英ガラスに対して100kg/cm2 以上の接着強度を有する紫外線硬化型接着剤に熱硬化性触媒を添加して熱硬化性を付与したものを使用した。
【0065】
以上のようにして得られた光導波路モジュール(試料1)の挿入損失は平均で10.1dBで過剰損失(光導波路130内における分岐損失等を含めた合計の伝送損失)は1.1dBであった。また、これら試料1の光導波路モジュールを図22に示す測定系を用いて−40℃〜75℃の温度範囲において、図23に示す温度変化パターンにより測定した。なお、測定光としては波長1.3μmの光を使用した。このような測定を行った結果、試料1の各光導波路モジュールは、結合損失の平均変動量が0.2dB、最大変動量でも0.3dBと良好な温度特性を有することを確認した。
【0066】
試料2
次に、上記試料1のフェルールとは異なる物性値を有するプラスチック材料を利用して製作した試料2の光導波路モジュールの場合について説明する。
【0067】
この試料2において、フェルール3の構成材料としては、熱膨張係数が4.5×10-6℃-1、弾性率が3300Kg/mm2 のフェノール系エポキシ樹脂材料を用いた。この材料のシリコンに対する実効的な熱膨張係数は1.74×10-6℃-1である。また、導波路部品1は、シリコン基板110上にFHD法とRIE法を組み合わせて形成した8分岐のシングルモード光導波路130を形成したものとした。製造した光導波路130の導波路形状を図26に示す。次に、1芯の光ファイバを保持したフェルール3(該光ファイバの先端部分は接着剤により該フェルールに固定されている)と、8芯の光ファイバを250μmピッチに配列固定したテープ型ファイバを保持したフェルール3(該テープ型ファイバの先端部分は接着剤により該フェルールに固定されている)とをそれぞれ導波路部品1の入出力端面1a、1cに接続して試料2の光導波路モジュールを5個作成した。なお、アライメントは既に説明した方法により行われている。また、導波路部品1と各フェルール3の接着に使用した接着剤には、石英ガラスに対して100kg/cm2 以上の接着強度を有する紫外線硬化型接着剤に熱硬化性触媒を添加して熱硬化性を付与したものを使用した。
【0068】
以上のようにして得られた光導波路モジュール(試料2)の挿入損失は平均で10.0dBで過剰損失は1.0dBであった。また、これら試料2の光導波路モジュールを図22に示す測定系を用いて−40℃〜75℃の温度範囲において、図23に示す温度変化パターンにより測定した。なお、測定光としては波長1.3μmの光を使用した。このような測定を行った結果、試料2の各光導波路モジュールは、結合損失の平均変動量が0.2dB、最大変動量でも0.25dBと良好な温度特性を有することを確認した。
【0069】
試料3
次に、石英ガラス基板により構成される導波路部品1に以下のプラスチック・フェルール3を接着固定した光導波路モジュールについて説明する。
【0070】
この試料3において、フェルール3の構成材料としては、熱膨張係数が4.5×10-6℃-1、弾性率が3300Kg/mm2 のフェノール系エポキシ樹脂材料を用いた。この材料の石英ガラスに対する実効的な熱膨張係数は1.89×10-6℃-1である。また、導波路部品1は、石英ガラス基板110上にFHD法とRIE法を組み合わせて形成した8分岐のシングルモード光導波路130を形成したものとした。製造した光導波路130の導波路形状を図26に示す。次に、1芯の光ファイバを保持したフェルール3(該光ファイバの先端部分は接着剤により該フェルールに固定されている)と、8芯の光ファイバを250μmピッチに配列固定したテープ型ファイバを保持したフェルール3(該テープ型ファイバの先端部分は接着剤により該フェルールに固定されている)とをそれぞれ導波路部品1の入出力端面1a、1cに接続して試料3の光導波路モジュールを5個作成した。なお、アライメントは既に説明した方法により行われている。また、導波路部品1と各フェルール3の接着に使用した接着剤は、石英ガラスに対して100kg/cm2 以上の接着強度を有する紫外線硬化型接着剤を使用した。
【0071】
以上のようにして得られた光導波路モジュール(試料3)の挿入損失は平均で10.6dBで過剰損失は1.6dBであった。また、これら試料2の光導波路モジュールを図22に示す測定系を用いて−40℃〜75℃の温度範囲において、図23に示す温度変化パターンにより測定した。なお、測定光としては波長1.3μmの光を使用した。このような測定を行った結果、試料3の各光導波路モジュールは、結合損失の平均変動量が0.11dB、最大変動量でも0.18dBと良好な温度特性を有することを確認した。この試料3の温度特性は、上述した試料1及び2に場合と比較してさらに優れた結果となっているが、これは導波路基板110として石英ガラスを使用したことにより、該導波路基板110と導波路ガラス層(120、130、140)に加わる応力が低減したためと考えられる。
【0072】
以上の結果から、これら試料1〜3はいずれも上述の室内で使用する部品の温度特性仕様(−10℃〜60℃の温度変動で10サイクル(48時間))、さらにはBellcore社製TR−NWT−001209の温度特性仕様(−40℃〜75℃の温度変動で42サイクル(336時間))を満たしている。
【0073】
次に、比較例について説明する。この比較例におけるフェルールの構成材料は熱膨張係数が15.2×10-6℃-1で、弾性率が2000Kg/mm2 のプラスチック材料とした。この材料のシリコン(基板材料)に対する実効的な熱膨張係数は6.6×10-6℃-1であり、3.0×10-6℃-1を超えている。前述の例と同様に、8分岐の光導波路130を有する導波路部品1と上記プラスチック材料から構成されたフェルールとを接着固定して5個の光導波路モジュールを製作した。この場合の室温における挿入損失は10.0dB、過剰損失は1.0dBとなり、低い損失特性を示した。ところが、この光導波路モジュールを先の例と同様の温度が変動する環境下に置いたところ、損失変動量は、最大で0.8dBとなり、先の例と比較して2倍以上となった。これは、温度変動による熱膨張のためにコアの位置ずれが大きくなったことによると考えられる。
【0074】
次に、この発明に係る光導波路モジュールの湿熱特性について説明する。先にも言及したように、フェルール3の構成材料として適しているプラスチック材料に含有可能な石英フィラーの理論限界値は、工業材料1994年12月号(Vol.42、No.15、pp.112〜116)に96体積%であることが示されている。図27は、球形フィラーによる充填モデルを模式的に示した概念図であり、最大径の1次球600aによって形成される隙間に順次、2次球600b、3次球600c、4次球600dが充填されている。したがって、上記理論値96体積%はフィラーの間隙にプラスチック等の樹脂を埋め込むことが出来る限界値を意味する。
【0075】
発明者らは、石英フィラーの含有量が70重量%、80重量%、90重量%、94重量%であるフェノール系エポキシ樹脂によりフェルール3を用意し、それぞれを石英ガラス基板110を有する1×8分岐の導波路部品1に接着固定して試料となる光導波路モジュールを製作した。これら各光導波路モジュールを温度75℃、相対湿度(RH)95%の環境下でその湿熱特性を測定したところ(Bellcore社製TA−NWT−001221の湿熱特性仕様は75℃、90±5RH、500時間)、各光導波路モジュールについて図28に示す結果を得た。この結果からも分るように、特に、石英フィラー含有量が90重量%〜95重量%の材料を利用したフェルールの場合、良好な結果が得られた。なお、伝送損失が大きな試料はその接着部13で剥離が生じていることが確認された。
【0076】
【発明の効果】
以上のようにこの発明によれば、フェルールの構成材料として、ガラス等の加工が困難な材料の代わりに、低コストかつ連続成形可能なプラスチック材料であって熱膨張係数及び弾性率が導波路基板の構成材料との間に一定の関係を有する材料を用いたので、温度変動に対する十分な特性を有する光導波路モジュールが得ることができる。
【0077】
また、上記プラスチック材料への石英フィラー含有量を調節することにより、さらに湿熱特性にも優れた光導波路モジュールが得られる。
【図面の簡単な説明】
【図1】この発明の第1の実施例に係る光導波路モジュールの組み立て工程を説明するための図である。
【図2】この発明の第1の実施例に係る光導波路モジュールの構造を示す斜視図である。
【図3】フェルールの構造を説明するための、該フェルールの展開図である。
【図4】図3に示されたフェルールの、C−C線に沿った断面構造を示す図である。
【図5】図4に示されたフェルール断面の要部拡大図である。
【図6】この発明における光導波路モジュールのアライメント方法を説明するための図である。
【図7】テープ型ファイバの先端部分の構造を説明するための斜視図である。
【図8】図7に示されたテープ型ファイバの、E−E線に沿った断面構造を示した図である。
【図9】図1及び2に示された導波路部品の、A−A線に沿った断面構造を示す図である。
【図10】図2に示された光導波路モジュールの、B−B線に沿った断面構造を示す図である。
【図11】この発明の第2の実施例に係る光導波路モジュールの組み立て工程を説明するための図である。
【図12】この発明の第2の実施例に係る光導波路モジュールの構造を示す斜視図である。
【図13】図12に示された光導波路モジュールの、G−G線に沿った断面構造を示す図である。
【図14】導波路部品に作り込まれる導波路パターンを示す図である(その1)。
【図15】導波路部品に作り込まれる導波路パターンを示す図である(その2)。
【図16】導波路部品に作り込まれる導波路パターンを示す図である(その3)。
【図17】この発明に係る光導波路モジュールを備えた光通信システムの全体構成を示す図である。
【図18】実験用試料として製作した導波路部品の導波路パターンを示す図である。
【図19】フェルールの構成材料(プラスチック)の物性値として、石英フィラー含有量(重量%)と熱膨張係数(/℃)の関係を示した図である。
【図20】フェルールの構成材料(プラスチック)の物性値として、石英フィラー含有量(重量%)と弾性率(kg/mm2 )の関係を示した図である。
【図21】フェルールの構成材料(プラスチック)の物性値として、石英フィラー含有量(重量%)と実効熱膨張係数(|ΔL/(E1 /E2 )|)の関係を示した図である。
【図22】この発明に係る光導波路モジュールの温度特性を測定するための測定系の構成を示す図である。
【図23】図22に示された測定系での温度変動パターンを示す図である。
【図24】導波路基板の構成材料及びフェルールの構成材料における熱膨張係数の差(計算値と実測値)と、これらを用いて構成された光導波路モジュールの接着部におけるコア位置ずれ量との関係を示す図である。
【図25】導波路基板の構成材料に対するフェルールの構成材料の実効熱膨張係数(計算値と実測値)と、これらを用いて構成された光導波路モジュールの接着部におけるコア位置ずれ量との関係を示す図である。
【図26】この発明に係る光導波路モジュールの実施例として、製作した導波路部品の導波路パターンを示す図である。
【図27】石英フィラーの充填モデルを模式的に示した概念図である。
【図28】この発明に係る光導波路モジュールの湿熱特性を測定した結果を示す図である。
【図29】光ファイバと光導波路との位置ずれに起因する結合損失を示した図である。
【符号の説明】
1…導波路基板、3…フェルール、4…入出力用光ファイバ(テープ型ファイバ)、6…接着剤、110…導波路基板、130…光導波路、410…光ファイバ、410a…コア、600a、600b、600c、600d…石英フィラー。
【産業上の利用分野】
この発明は、光ファイバの一端を保持するフェルールと、該フェルールとは異なる材料から構成された基板上に光導波路を有する光部品としての導波路部品とを、少なくとも備えた光導波路モジュールに関し、特に、該基板材料との関係で優れた温度及び湿熱特性が得られるフェルール、このフェルール及び導波路型光部品を利用した光導波路モジュール及びその製造方法に関するものである。
【0002】
【従来の技術】
近年の光通信技術の発展にともない、所定波長の光を分岐あるいは合波する分岐素子、合分波素子等に対する需要が高まってきている。また、これらの光部品の高密度化の要求を満たすために、石英ガラス系の光平面導波回路(導波路部品)が用いられてきている。この平面光導波路は低い導波損失(光分岐等にともなう伝送損失)を有し、また光ファイバとの低損失な接続を可能にする。
【0003】
上記平面光導波路として、例えば、特開昭58−105111号公報には、火炎加水分解法(FHD法)などによりガラス膜を成膜した後、半導体技術の応用である反応性イオンエッチング法(RIE法)により回路パターンを形成し、クラッド部を成膜する手法によって得られる埋め込み型の石英系光導波路が開示されている。
【0004】
このような導波路部品を光部品(例えば、光導波路モジュール)に利用する場合、この導波路部品に作り込まれた光導波路に入出力用の光ファイバを接続する構成が一般的である。導波路部品と光ファイバとの接続には、例えばIEEE Photonic Technology Letters, vol.4, No.8, (1992), pp906-908 に示されているように、精密加工され、光ファイバが配列固定された石英系フェルールが用いられ、この石英系フェルール端面を紫外線硬化型接着剤を用いて上記導波路部品端面に接着固定する方法が一般に用いられている。
【0005】
また、例えば特開平6−51155号公報には、紫外線を透過する石英ガラスでフェルールを構成し、むらなくかつ短時間に上記フェルール端面と導波路部品端面を固化させることにより、作業時間を短縮しこれら各端面がずれる可能性を低減する技術が開示されている。
【0006】
【発明が解決しようとする課題】
光ファイバと導波路部品に作り込まれた光導波路とを光学的に接続する際に最も重要なことは、その接続部の位置ずれ(光ファイバのコア端面と、このコア端面に接着剤を介して対向する光導波路端面の位置ずれ)による伝送損失(以下、この接続部分の伝送損失を結合損失という)を小さくする必要があるということである。例えば、導波路部品に作り込まれた光導波路の径(コア径)は10μm以下であり、このような光導波路と光ファイバ(光ファイバのコア)との結合損失を0.3dB未満にするためには、接続部における位置ずれ量を1μm以内に抑えなければならない。一方、熱膨張係数の異なる材料でそれぞれ構成された導波路部品(特に、導波路基板)とフェルールを所定強度の接着剤により接着固定した光導波路モジュールの場合、使用環境の温度変動により上記接続部における各コア端面のずれが生じてしまう。
【0007】
そこで、苛酷な環境での使用が可能な光導波路モジュール(室内で使用する部品の温度特性仕様としては−10℃〜60℃の温度変動で10サイクル(48時間)が一般的であり、例えばBellcore社製TR−NWT−001209の温度特性仕様では、−40℃〜75℃の温度変動で42サイクル(336時間))を得るためには、上述のように光ファイバ端部を保持するフェルールを導波路基板の構成材料と熱膨張係数のほぼ等しい石英ガラスで構成し、所望の温度特性及び湿熱特性を得るのが一般的である。なお、図29は、モードフィールド径が10μmの単一モード光導波路について、該光導波路端面と光ファイバのコア端面との位置ずれ量と、その伝送損失との関係を示した図である。
【0008】
しかしながら、フェルールの製造技術のみに着目すると、上述の石英ガラスによってフェルールを製造する場合、上述の文献にも開示されているように、ガラスのような加工が困難な材料を1μm以内という高精度で加工する必要があり (光ファイバ用の位置固定溝の加工)、さらには光ファイバ端部を把持するために複数の構成部材により構成する必要がある(光ファイバの端部を上下2枚の石英ガラス板で挟み込む)。一方、例えばプラスチック材料によりフェルールを構成する場合、例えば"DEVELOPMENT OF 16-FIBER CONNECTORS FOR HIGH-SPEED LOW-LOSS CABLE CONNECTION" (INTERNATIONAL WIRE AND CABLE SYMPOSIUM PROCEEDINGS 1993, pp.244-249 )に示されているように、プラスチック成形により一工程で成形が可能で、かつ光ファイバ端部を挿入することでその設置位置を規定する貫通孔(連続する内壁を有する)もこのプラスチック成形時に高精度に作り込むことができる。このようにプラスチック材料によりフェルールを構成すると、光ファイバ端部の把持構造を得るために、複数の部材を用意して該ファイバ端部を把持させる必要はなく(プラスチック成形時に同時に光ファイバ端部の設置位置を精密に規定できる貫通孔が形成できるため、光ファイバの先端を位置決めした状態で上下から挟み込んで把持する必要はない)、また高精度の加工技術も必要としないため(貫通孔は各光ファイバごとに高精度に作り込まれるので、把持部材に光ファイバ用の位置固定溝を形成する等の精密加工は必要はない)、該プラスチック材料がフェルールの構成材料として適している。
【0009】
この発明は、上述の諸事情に鑑み、ガラス等の加工が困難な材料の代わりに低コストで、連続成形及び高精度加工が容易なプラスチック材料からなるフェルールを利用する一方、それぞれ熱膨張係数の異なる材料から構成された導波路部品(特に、導波路基板)とフェルールを備え、かつ苛酷な使用環境においても安定した温度特性、湿熱特性を有する光導波路モジュール及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1に係る光導波路モジュールは、第1の材料から構成された導波路基板上に、所定波長の光を伝搬する伝送路の少なくとも一部を構成する光導波路が設けられた導波路部品(第1の材料としては、例えばシリコン又は石英ガラスが適している)と、第2の材料から構成され、前記伝送路の少なくとも一部を構成する光ファイバの一端と前記光導波路の一端とを光学的に結合すべく、該光ファイバの一端を保持した状態(光ファイバ端部は連続する内壁を有する貫通孔に挿入された状態で設置されている)で、所定強度の接着剤によりその端面が前記導波路部品の端面に対向するよう固定された、フェルール(第2の材料としては、例えばプラスチック材料が適している)を備える。さらに、当該光導波路モジュールは、上記フェルールの貫通孔にその端部が挿入された状態で該フェルールに接着固定された入出力用の光ファイバを備えている。この構成により既存の伝送路からの信号光の分岐、あるいは該伝送路への合波を容易に実現する。なお、この光ファイバは、所定波長の光を伝搬するためのコアと、このコアを覆うクラッドから構成されるが、通常は、このクラッド表面をアクリレート樹脂で被覆するか、さらにはその表面をプラスチックで被覆した状態で利用に供される。また、この光ファイバは単芯ファイバには限定されず、複数の光ファイバ(各光ファイバはそれぞれ異なる色に着色されたアクリレート樹脂でコーティングされたものでもよい)をプラスチック材料で一体的に被覆したテープ型ファイバも含まれる。
【0011】
特に、苛酷な温度変動下(例えば−40℃〜+75℃の範囲での温度変動)においてもその結合損失が0.3dB以下である光導波路モジュールを実現すべく、上記導波路部品の基板部分を構成する第1の材料と、上記フェルールを構成し、上記第1の材料とは異なる第2の材料は、第1の材料の熱膨張係数と第2の材料の熱膨張係数との差をΔL、第1の材料の弾性率をE1、第2の材料の弾性率をE2とし、上記光ファイバのコア列の両端の間隔が3.75mm以下である場合、
|ΔL/(E1/E2)|<3.0×10−6(℃−1)…(1)
なる関係を満たしている。
【0012】
上記フェルールを構成するプラスチック材料は、所定量の石英フィラーが含有されたフェノール系エポキシ樹脂の場合、その熱膨張係数は10×10−6(℃−1)以下でよいが、さらに優れた温度特性を得るためには、その熱膨張係数を6×10−6(℃−1)以下とするのが好ましい。
【0013】
また、このフェノール系エポキシ樹脂に含まれる石英フィラーの含有量は、85重量%以上、95重量%以下であればよいが、さらに優れた湿熱特性を得るためには、その含有量を90重量%以上、95重量%以下とするのが好ましい。このとき、上述のフェノール系エポキシ樹脂の弾性率は5000(kg/mm2 )以下である。
【0014】
なお、上記光導波路端面と光ファイバ端面とを接着固定する接着剤は、その接着強度が石英ガラスに対して50(kg/cm2 )以上の紫外線硬化型、熱硬化型接着剤、あるいは双方の硬化性(光に反応して固化する性質と熱に反応して固化する性質)を兼ね備えた接着剤を使用する。
【0015】
次に、請求項10に係る発明は、上記請求項1に係る光導波路モジュールの製造方法であり、この製造方法では、まず、第1の材料から構成された導波路基板上に、所定波長の光を伝搬する伝送路の少なくとも一部を構成する光導波路が設けられた導波路部品と、該伝送路の少なくとも一部を構成する光ファイバ(入出力用光ファイバを含む)の端部を連続した内壁を有する貫通孔に挿入した状態で、接着剤により該光ファイバ端部に接着固定された、上記第1の材料とは異なる第2の材料から構成されたフェルールを用意する。このとき、上記光ファイバのコア列の両端の間隔が3.75mm以下である場合、導波路部品の導波路基板を構成する第1の材料(例えばシリコン又は石英ガラスが適している)に対するフェルールを構成する第2の材料(例えばプラスチック材料が適している)の上記実効熱膨張係数(|ΔL/(E1/E2)|)は、3.0×10−6(℃−1)未満である。
【0016】
そして、これら導波路部品の端面とフェルールの端面とを突き合せた状態で、石英ガラスに対して50(kg/cm2 )以上の接着強度を有する接着剤、例えば紫外線硬化型あるいは熱硬化型接着剤により接着し、この導波路部品の光導波路端面とフェルールの貫通孔でその端部の設置位置が規定された光ファイバのコア端面との位置合せ(アライメント)を行う。その後、この接着部分に紫外線を所定時間照射するか、あるいはこの接着部分を所定温度に加熱することにより上記接着剤を固化させる。
【0017】
なお、この発明に係るフェルールは、上述したように、所定量の石英フィラーが含有され、かつその熱膨張係数が10×10-6(℃-1)以下、好ましくは6×10-6(℃-1)以下のフェノール系エポキシ樹脂である。また、石英フィラーの含有量は、85重量%以上、95重量%以下であり、好ましくは90重量%以上、95重量%以下がよい。さらに、このフェルールを構成するプラスチック材料は、その弾性率が5000(kg/mm2 )以下のフェノール系エポキシ樹脂がよい。
【0018】
【作用】
シリコンまたは石英ガラスから構成された導波路基板とプラスチック材料から構成されたフェルールのように、異なる材料から構成される各構成部材を利用して当該光導波路モジュールを構成する場合、上記式(1)で示されるように導波路基板の構成材料に対するフェルール構成材料の実効熱膨張係数を3×10-6 (℃-1)未満とすることにより、温度変動に起因して生じる各コア端面のずれ量を1μm以下、すなわち結合損失を0.3dB以下に抑えることができる。少なくとも発明者らは上記導波路部品の一部を構成する石英ガラス基板に適応可能なフェルールを得るためには(上記条件を満たすためには)、少なくとも75重量%以上の石英フィラーを含有するプラスチック材料(熱膨張係数は3×10-6℃-1以上、10×10-6℃-1以下)により構成し、シリコン基板に適応可能なフェルールを得るためには、少なくとも85重量%以上の石英フィラーを含有するプラスチック材料(熱膨張係数は3×10-6℃-1以上、6×10-6℃-1以下)により構成する必要があることを確認した。このとき、上記構成の光導波路モジュールは良好な温度特性が得られることも確認した。
【0019】
一方、プラスチック材料に含有可能な石英フィラーの理論限界値は、工業材料1994年12月号(Vol.42、No.15、pp.112〜116)に96体積%であることが示されており、発明者らは、既に94重量%の石英フィラーが含有されたプラスチック・フェルールを得ている。さらに、石英ガラス製導波路基板とプラスチック・フェルールからなる光導波路モジュールについて、所定の条件下でその湿熱特性を評価したところ、該プラスチック材料に含有される石英フィラーの下限値が80重量%〜90重量%の間に存在することも確認している。また、石英フィラー含有量の理論限界値が96体積%であることから、フェルール構成材料としてのプラスチック材料の熱膨張係数の下限値は、3×10-6(℃-1)である(図19参照)。なお、体積%と重量%はほぼ一致する。
【0020】
したがって、シリコン基板及び石英ガラス基板のいずれを利用する場合でも、少なくとも85重量%〜95重量%の石英フィラーを含有するプラスチック材料をフェルール構成材料として適用することで、温度特性及び湿熱特性のいずれにおいても良好な光導波路モジュールが得られる。
【0021】
特に、石英ガラス基板に対して上記フェルールの構成材料を、所定量の石英フィラーが含有され、かつその熱膨張係数が10×10-6(℃-1)以下のフェノール系エポキシ樹脂とすることで、また、シリコン基板に対して上記フェルールの構成材料を、所定量の石英フィラーが含有され、かつその熱膨張係数が6×10-6(℃-1)以下のフェノール系エポキシ樹脂とすることで、上述の室内で使用される部品の温度特性仕様(−10℃〜60℃の温度変動で10サイクル(48時間))、さらにはBellcore社製TR−NWT−001209の温度特性仕様(−40℃〜75℃の温度変動で42サイクル(336時間))を満足する光導波路モジュールが得られる。
【0022】
また、上記石英フィラーの含有量を、90重量%以上、95重量%以下に調整することにより、Bellcore社製TA−NWT−001221の湿熱特性仕様(75℃、90±5RH、500時間)を確実に満足する光導波路モジュールが得られる。
【0023】
【実施例】
以下、この発明の一実施例を図1乃至図29を用いて説明する。なお、図中同一部分には同一符号を付して説明を省略する。
【0024】
図1は、この発明に係る光導波路モジュールの組み立て工程を説明するための図であり、図2はこの発明に係る光導波路モジュール全体の構成を示す斜視図である。この発明に係る光導波路モジュールの製造方法では、まず、入出力用の光ファイバ4の端部を貫通孔に挿入した状態で接着剤5により接着固定されたフェルール3と、導波路基板上に所定波長の光を伝搬する光導波路(コア)を有する導波路部品1とを用意する。さらに、これらフェルール3と導波路部品1との十分な接着強度を得るため、補強部材2を用意する。なお、この補強部材2は、上記導波路部品1の上面1bに接着剤により接着固定される底面2bと、フェルール3の接着端面3cと対向する側面2aを有する。
【0025】
次に、この補強部材2が上面1bに既に接着固定されている導波路部品1の接着端面1aと、光ファイバ4の端部を保持したフェルール3の接着端面3cとをそれぞれ以下の各工程を順に行うことで光学研磨する。なお、補強部材2の接着面(側面)2aは上記導波路部品1の端面研磨の際に同時に研磨され、また光ファイバ4のコア端面も上記フェルール3の端面研磨の際に同時に研磨される。
【0026】
第1工程(粗研磨工程):800〜2000#の粗い研磨紙で各端面を露出させる
第2工程(中研磨工程):6〜9μmのダイヤモンド砥粒で各端面の表面傷を除去する
第3工程(仕上研磨工程):1〜3μmのダイヤモンド砥粒でさらに各端面の表面傷を除去する
第4工程(バフ研磨工程):0.3μm以下の酸化セシウム砥粒あるいは二酸化圭素砥粒で各端面の表面加工変質層を除去する
なお、これら研磨工程で、端面反射による光減衰量の低減等の必要に応じて、接着部13における光の伝搬方向(この方向はフェルール3への光ファイバ4の挿入方向と一致している)に対して、各端面の角度を90度からずらしてもよい。この場合の角度調整は、上記第1工程で行う。また、上述した研磨方法以外の研磨方法も知られているので、必要に応じてその研磨方法は選択する。
【0027】
続けて、上記導波路部品1の入出力端面1aとフェルールの接着端面3cを突き合せた状態で接着剤6により接着した後、導波路部品1に作り込まれた光導波路端面と光ファイバ4のコア端面のアライメントを行う。なお、この時光ファイバ4は既にフェルール3に所定強度の接着剤5により既に固定されている。また、補強部材2の底面2bと導波路部品1の上面1aとの間、補強部材2の接着面2a及び導波路部品1の接着面1aとフェルール3の接着面3cとの間は、石英ガラスに対して50kg/cm2 以上、好ましくは100kg/cm2 以上の接着強度を有する紫外線硬化型あるいは熱硬化型接着剤により接着されている。
【0028】
上記導波路部品1の光導波路端面と光ファイバ4のコア端面のアライメントは、例えば米国特許第4,744,619号公報に示されているように、導波路部品1を精密移動ステージで支持した状態で、該導波路部品1の光導波路の一方の入出力端面から所定波長の光を入射し、他方の入出力端に上記接着剤を介して光学的に接続されている光ファイバ4から出射された光の強度をモニタしながら行われる。すなわち、この出射光の光強度が最大になるよう導波路部品1あるいはフェルールを移動させ、アライメントを行っている。
【0029】
そして、上記導波路部品1の光導波路端面(導波路部品1の入出力端面の一部を構成している)と光ファイバ4のコア端面(フェルール3の接着端面3cの一部を構成している)のアライメントが完了した段階で、接着部に紫外線を照射するかあるいは所定温度に加熱することにより上記接着剤を固化させる。この一連の作業(接着部13における各端面の接着−アライメント−接着剤の固化)を上記導波路部品1の両入出力端面について行うことにより、図2に示すようなこの発明の第1の実施例に係る光導波路モジュールを得る。
【0030】
次に、フェルール3の構造を図3〜5を用いて説明する。図3は、このフェルール3の構造を示すための展開図である。図中、3aはフェルール3の上面、3bは側面、3cは前面(接着面)、3dは底面、3eは裏面(光ファイバ4が挿入される側)を示している。このフェルール3の上面3aには光ファイバ4の先端をフェルール3に予め窓310が設けられている。この窓310から見える台座部分330には光ファイバ4の先端を貫通孔340に挿入しやすくするため、予めガイド溝330aが設けられている。また、光ファイバ4の先端とフェルール3はこの台座部分で接着固定するため、この窓310は接着剤の投入口としても機能する。フェルール3の裏面3eには光ファイバ4の先端部分を該フェルール内部に挿入するための開口部320が設けられている。また、フェルール3の前面3c(導波路部品1の入出力端面1aに直接向い合う面)には、予め作り込まれた貫通孔340の開口部340aが位置する。
【0031】
なお、図4は図3に示した上記フェルール3のC−C線に沿った断面を示す図であり、光ファイバ4の先端部分は裏面3eから前面3cに向かって矢印Hの方向から当該フェルール内部に挿入される。また、図5は図4に示したフェルール断面図のうち、特に貫通孔340の断面を拡大表示した図であり、この図からも分るように貫通孔340の内部は光ファイバ4の先端部分を挿入しやすくするため、該光ファイバの直径よりもかやり大きな直径を有する部分340bと、該光ファイバ4の先端部分の設置位置のずれ(前面3cに対する水平方向の位置ずれ)を防止すべく該光ファイバ4の直径にほぼ一致した直径を有する部分340cから構成されている。
【0032】
既に述べたように、上記導波路部品1の基板を構成するのに適した第1の材料(例えばシリコン、石英ガラス等)と、フェルール3を構成するのに適した第2の材料(例えばプラスチック材料)とは異なっている。したがって、正確にアライメントと行って導波路部品1とフェルール3の接着固定を行ったとしても、例えば−40℃〜+75℃程度の温度変動が生じる環境においては各材料の熱膨張係数の差に起因して、導波路部品1の光導波路端面と光ファイバ4のコア端面との位置ずれが生じてしまう(結合損失が増大する)。
【0033】
そこで、この発明では、上述の温度変動下においてもその結合損失が0.3dB以下にすべく、上記フェルールを、上記導波路部品1の導波路基板に適した第1の材料に対する実効熱膨張係数|ΔL/(E1 /E2 )|の値が3×10-6℃-1未満である第2の材料で構成している。なお、上記実効熱膨張係数を示す式中ΔLは第1の材料の熱膨張係数と第2の材料の熱膨張係数の差、E1 は第1の材料の弾性率、E2 は第2の材料の弾性率である。
【0034】
特に、発明者らは、シリコン又は石英ガラスから構成された導波路基板と、その熱膨張係数が10×10-6℃-1以下のフェノール系エポキシ樹脂(所定量の石英フィラーを含む)、さらにはその熱膨張係数が6×10-6℃-1以下のフェノール系エポキシ樹脂(所定量の石英フィラーを含む)から構成されたフェルール3との組合わせにより、優れた温度特性を有する光導波路モジュールを得た。また、フェノール系エポキシ樹脂によりフェルール3を構成する場合、上記石英フィラーの含有量は、85重量%〜95重量%であることが好ましいが、さらに湿熱特性に優れた光導波路モジュールを得るためには、石英フィラーの含有量が90重量%〜95重量%であることがよいことも確認した。なお、これらフェノール系エポキシ樹脂の弾性率は5000kg/mm2 以下である。
【0035】
以上のような材料から構成されるフェルール3は、例えば"DEVELOPMENT OF 16-FIBER CONNECTORS FOR HIGH-SPEED LOW-LOSS CABLE CONNECTION" (INTERNATIONAL WIRE AND CABLE SYMPOSIUM PROCEEDINGS 1993, pp.244-249 )などに示されるように、プラスチック成形法により得られる。すなわち、所定形状の凹みを有する上下2枚の金型を用意し、フェルール3の貫通孔を形成するための金属製コアピンをこれら金型で挟み込んだ状態で、上記各金型の凹みによって定義されるキャビティ内に上述の樹脂を注入することにより得る。
【0036】
一方、このような材料で図3〜図5に示す構造を有するフェルール3と紫外線硬化型接着剤を利用して図2に示す光導波路モジュールを製造した場合、上述の特開平6−51155号公報でも指摘されているように、光導波路130端面と光ファイバ4のコア端面の位置ずれを生じることなく接着部13における各端面を均一に接着することが難しくなる。しかしながら、このような場合でも、このフェルール3に図6に示すようなガイドピン用の穴350を予め作り込むことにより、上述のアライメント作業を省略することができ、さらには接着剤の固化に長時間を要したとしても、導波路部品1の光導波路端面とフェルール3に保持されている光ファイバ4のコア端面との位置ずれを回避することも可能である。このガイドピン用の穴を有するプラスチック・フェルールの製造方法は、例えば、"HIGH FIBER COUNT OPTICAL CONNECTORS" (INTERNATIONAL WIRE AND CABLE SYMPOSIUM PROCEEDINGS 1993, pp.238-243 )などに開示されている。この場合、ガイドピン100の両端を、それぞれ導波路部品1(特に導波路基板)に設けられた穴とフェルール3に設けられた穴350にそれぞれ差込み、これら導波路部品1の接着端面1aとフェルール3の接着端面3cとを、上述の接着剤(石英ガラスに対して少なくとも50kg/cm2 以上の接着強度を有する紫外線硬化型あるいは熱硬化型接着剤)により接着することによりアライメント作業が不用となる。なお、このガイドピンを利用したアライメント方法は、例えば特開平2−125
208号公報、特開平5−333231号公報などに開示されている。また、図6に示したフェルール3のD−D線に沿った断面は、図4に示したフェルール断面と一致している。
【0037】
このフェルール3の貫通孔340にその端部が挿入された状態で保持される光ファイバ4は、一般に所定波長の光を伝搬するコアと、このコアを覆い、該コアの屈折率よりも低い屈折率を有するクラッドから構成されている。この実施例では、図7及び8に示されるような、複数の光ファイバをプラスチック被覆したテープ型ファイバを利用している。この場合、各裸ファイバ410(コア410aとクラッド410bから構成)は個々にアクリレート樹脂420によりされており、このようにアクリレート樹脂により被覆されたファイバを一列に束ねたリボン部分430はプラスチックで被覆して構成している。この光ファイバ4をフェルール3に接着固定する際は、該光ファイバ4の先端部分のプラスチック被覆430を剥がし(さらにはアクリレート被覆420も剥がし)、フェルール3の裏面3eに設けられた開口部320から各光ファイバに対応して設けられている貫通孔340に装着し、フェルール3の台座部330において接着剤5により接着固定する。なお、このフェルール3には、他の伝送路を構成する光ファイバを直接取り付けてもよく、また、予め他の伝送路との接続を考慮して、別途入出力用光ファイバを取り付けておいてもよい。いずれの場合も、該フェルール3に取り付けられた光ファイバは伝送路の一部を構成する。
【0038】
導波路部品1の構造を図9に示す。この図は図1に示した光導波路モジュールのA−A線に沿った導波路部品1の断面に相当する。この導波路部品1はシリコン又は石英ガラスから構成される導波路基板110、この導波路基板110上に形成された下側クラッド層120(ガラス材料層)、この下側クラッド層120上に所定形状に加工された光導波路130(コア、ガラス材料層)、及びこの光導波路130を覆う上側クラッド層140(ガラス材料層)を備えており、これらクラッド層120、140は光導波路130の屈折率よりも低い屈折率を有する。なお、当該光導波路モジュールに利用される導波路部品1の構造は図9に示すような埋め込み型導波路には限定されず、例えば光集積回路(オーム社発行、昭和60年2月25日、p.204)に開示されているような種々の構造の導波路部品(例えば、リッジ型導波路等)が適応可能である。
【0039】
このように、図9に示す断面構造の埋め込み型導波路部品1と上述の構造を有するフェルール3との接続部13の拡大した断面図を図10に示す。なお、この断面図は図2に示したB−B線に沿った断面と一致している。この図に示すように、導波路部品1の上面1bと補強部材2の底面2bとの間、導波路部品1の接着面1aとフェルール3の接着面3c(光ファイバ4のコア端面を含む面)との間、及び補強部材2の側面2aと上記フェルール3の接着面3cとの間は、それぞれ石英ガラスに対して50kg/cm2 以上の接着強度を有する紫外線硬化型あるいは熱硬化型接着剤6により接着固定されている。上述したアライメントは、フェルール3によってその先端が保持されている光ファイバ4のコア410aの端面と光導波路130の端面とを光の伝搬方向に一致させる作業であり、図中、11で示される領域は上記光ファイバ4と光導波路130とが光学的に接続される部位を示している。
【0040】
さらに、当該光導波路モジュールにおける導波路部品1とフェルール3との接続部13は図1及び2に示すように、補強部材2によって構造的に補強されているが、この補強構造はこの第1の実施例のみに限定されるものではなく、例えば図11及び12に示すように導波路部品1を支持部材10に固定することにより、フェルール3との接着部13の強度補強を行ってもよい。この支持部材10も導波路基板110と同じ材料、例えばシリコン又は石英ガラスから構成されている。なお、この図におけるF−F線に沿った導波路部品1の断面は、図9に示した埋め込み型導波路部品の断面と一致している。
【0041】
また、図12に示したこの発明の第2の実施例に係る光導波路モジュールの接続部13の構造を説明するため、図中G−G線に沿った断面図を図13に示す。この第2の実施例では導波路部品1と支持部材10は接着剤6により接着固定されており、この支持部材10の接着端面10aは、上述した導波路部品1の端面研磨の際に同時に研磨れれる。
【0042】
さらに、上記導波路部品1に作り込まれる、種々の光導波路130の形状を図14〜図16に示す。なお、これらの図は上側クラッド層140が取り除かれた導波路部品1を上方から見た状態を示している。このように、導波路部品1に作り込まれる光導波路130の形状としては、1対多(図14)、多対多(図15)、あるいは2対多(図16)等の種々の態様における光通信(光分岐、光結合機能を含む)を実現するための光導波路パターンがある。
【0043】
当該光導波路モジュールは、当然のことながら光通信システムの一部として機能する。したがって、当該光導波路モジュールは図17に示すように、他の伝送路20a、20bとの光学的な結合を容易に実現するため、入出力用光ファイバ4を備えている。この場合、当該光導波路モジュールは、上述の導波路部品1と、この導波路部品1と接着固定されたフェルール3と、このフェルール3の貫通孔340にその先端が挿入された状態で接着剤5により接着固定された入出力用光ファイバ4(この実施例では多芯のテープ型ファイバ)を備えている。特に、各入出力用光ファイバ4の他端は、他の伝送路20a,20bとの光学的な結合を可能にするため、別のフェルール30に接着剤50により接着固定されている。なお、これら伝送路20a、20bは、それぞれ光信号を伝搬させるための光ファイバ210、220を備えているが、この他、送信器、光増幅器、光合分波器、受信器等の要素を含んで構成されている。
【0044】
以上のように他の伝送路20a、20bに光学的に結合された光導波路モジュールは、伝送路の一部を構成する。また、このように伝送路の一部として設置された光導波路モジュールは、その接続部13を保護するため、例えば、特開昭62−73210号公報に開示されているように、所定形状のケースに収納される。また、この光導波路モジュールは、欧州特許公開公報第0422445A1号に開示されているように、樹脂モールドして保護してもよい。
【0045】
次に、導波路部品1の一部を構成する導波路基板110とフェルール3のそれぞれを構成する材料、特に、これらの材料の熱膨張係数及び弾性率を中心に説明する。
【0046】
まず、導波路部品1と光ファイバ4の先端部分を保持するフェルール3の接続部13の各材料の熱膨張に起因する結合損失の変動について説明する。なお、ここでは光導波路130に起因する損失変動(光分岐等に起因する伝送損失)を考えなくてすむよう、シリコン(Si)基板上に250μmのピッチで8本の直線光導波路(コア径:7μm×7μm、比屈折率差:0.3%)が形成された平面導波路部品を用意した。この導波路部品における光導波路形状を図18に示す。このシリコン基板を有する導波路部品1と熱膨張係数の異なるプラスチック材料から構成されたフェルール3を用意し、このフェルール3で保持されている光ファイバのコアを光導波路13にと対向させて調芯した後、紫外線硬化型接着剤で固定して数種類の試料(特性比較用の光導波路モジュール)を制作した。接着剤の強度不足による変動は極力避けるべく、接着剤の破断強度は石英ガラスに対して100Kg/cm2 以上のものを用いた。なお、接着強度としては少なくとも50Kg/cm2 あればよい。
【0047】
表1に、作成したフェルール3に使用した材料及びその物性値を示す。
【0048】
【表1】
【0049】
この表1に示したプラスチック1〜4の物性値を図19及び図20に示す。特に、図19において、横軸は含有される石英フィラーの量(重量%、図中、wt%で示す)、縦軸はプラスチック材料の熱膨張係数(/℃)の関係を示し、図20は、含有される石英フィラーの量(重量%、図中、wt%で示す)、縦軸はプラスチック材料の弾性率(kg/mm2 )を示す。これらの図から分るように、石英フィラーの含有量が増加するとプラスチック材料の熱膨張係数が下がる一方、その弾性率は増加する傾向がある。また、図21は、含有される石英フィラーの量(重量%)に対する上記各プラスチック材料の実効熱膨張係数|ΔL/(E1 /E2 )|を示している。なお、図中の曲線501(●印でプロット)はシリコン(Si)に対する各プラスチック材料の実効熱膨張係数を示し、曲線502(○印でプロット)は石英ガラス(SiO2 )に対する各プラスチック材料の実効熱膨張係数を示す。また、上記実効熱膨張係数を示す関係式中、ΔLはシリコン又は石英ガラス(導波路基板の構成材料)と各プラスチック材料(フェルールの構成材料)の熱膨張係数の差、E1 はシリコン又は石英ガラスの弾性率、E2 は各プラスチック材料の弾性率である。したがって、この図から、シリコン基板に対して上記実効熱膨張係数を3×10-6℃-1未満にするプラスチック材料を得るためには、石英フィラーを85重量%以上含有させる必要があり、また、石英ガラス基板に対して上記実効熱膨張係数を3×10-6℃-1未満にするプラスチック材料を得るためには、石英フィラーを75重量%以上含有させる必要があることが分る。
【0050】
なお、石英フィラーを75重量%以上を含有するプラスチック材料の熱膨張率は10×10-6℃-1以下となり、石英フィラーを85重量%以上を含有するプラスチック材料の熱膨張係数は6×10-6℃-1以下となる。一方、先にも述べたように石英フィラーの含有量の理論限界値は96体積%(重量%とほぼ一致)であるので、上記各プラスチック材料の熱膨張係数は3×10-6℃-1以上である(図19参照)。
【0051】
温度変動による損失の変化は、図22に示す測定系を用いて評価した。測定される光導波路モジュール123は環境装置200内の恒温槽250に収容されており、LED230から一定強度の光を一方の入出力用光ファイバ(光導波路の入力側端面に光学的に接続されてる)に供給しつつ、光導波路を通過してさらに他方の入出力用光ファイバ(光導波路130の出力端面に光学的に接続されている)を通過した光の強度を光パワーメータ220で測定することにより、温度変動に起因する結合損失の変動量を測定する。なお、この光パワーメータ220はパーソナルコンピュータ210によって制御されている。恒温槽250内の温度は、図23に示すような変化をするよう温度制御手段によって調整される。この温度制御手段240もパーソナルコンピュータ210によって制御されている。すなわち、温度は−40℃から+75℃の間で変化し、変化速度は±1.5℃/minである。表2に、導波路部品とフェルールとの結合損失について、上記の温度変化による変動量を示す。
【0052】
なお、この測定のために用意した試料は、各材料組合わせごとにそれぞれ4個ずつである。
【0053】
【表2】
【0054】
導波路基板110とフェルール3の構成材料が同一の場合(例えば、Si/Si:基板材料がシリコンでフェルール材料もシリコンとした場合)は温度変動による熱膨張の大きさに差がないため理想的であるが、このような場合には結合損失の変動量は概ね0.1dB未満になるはずである。かかる場合の一例として表2に示した「Si/Si」の場合には、結合損失の変動量は0.08dBとなっている。また、材料間の熱膨張係数の差が大きい場合、例えば表2に示した「Si/プラスチック1」の場合には、当然のことながら結合損失の変動量が著しく大きくなることがわかる。
【0055】
この結合損失の変動量に基づいて計算によって得られる光導波路1と光ファイバ4のコアの位置ずれ量を、熱膨張係数との関係で示したグラフを図24に示す。この図24においては、位置ずれ量の計算値をプロットした線分を503で示し、実験値をプロットした線分を504で示している。この図からも分るように、実際の位置ずれ量は計算から得られる値よりも小さくなる。これは、導波路基板材料とフェルール材料の両方の弾性変形によって相対的に位置ずれ量が小さくなることに起因すると考えられる。
【0056】
弾性変形に起因して位置ずれ量が抑制される割り合いは、導波路基板110の構成材料と、この導波路部品1に接続されるフェルール3も構成材料との弾性率の比で決まる。そこで、これら導波路基板110とフェルール3の各構成材料の弾性率の比を考慮して計算される位置ずれ量を図25に示す。この図25においては、位置ずれ量の計算値をプロットした線分を505で示し、実験値をプロットした線分を506で示している。このように弾性変形を考慮することにより、計算から得られる位置ずれ量は実際の値とよく一致するようになる。なお、図25において横軸は、上述した実効熱膨張係数(導波路基板材料とフェルール構成材料の各熱膨張係数の差と、導波路基板材料の弾性率及びフェルール材料の弾性率の比との比である)である。
【0057】
以上の検討結果より、導波路基板110を構成する材料とは熱膨張係数の異なる材料を用いてフェルール3を構成する場合でも、各材料の弾性変形を活用すれば実際の位置ずれを小さくすることが可能であることがわかる。したがって、図29に示した関係により、位置ずれ量が1μm程度であれば、結合損失の変動量が0.3dB程度に抑えることが可能となる。
【0058】
位置ずれの許容量は、フェルール3に保持された光ファイバ4(この実施例では多芯テープ型ファイバ)の各コアの間隔にもよる。例えば、コアが250μmピッチで16芯並んだものについては、両端のコアの間隔は3.75mmになり、例えば100℃の温度差がある環境下で位置ずれ量を1μm以内に抑えるためには、既に言及している条件が満足されることが必要になる。すなわち、導波路基板110の構成材料の熱膨張係数とフェルール3の構成材料の熱膨張係数との差をΔL、導波路基板110の構成材料の弾性率をE1 、フェルール3の構成材料の弾性率をE2 としたときに、導波路基板110の構成材料に対するフェルール3の構成材料の実効熱膨張係数|ΔL/(E1 /E2 )|の値を、3.0×10-6℃-1未満とする必要がある。望ましくは、2.7×10-6℃-1未満とするのがよい。
【0059】
導波路部品1の一部を構成する導波路基板110の構成材料としてはシリコン又は石英ガラスを用いるのが一般的である。そして、この導波路基板上に埋め込み型の石英ガラス系導波路を形成したものは、光ファイバとの結合損失が低く内部における伝送損失も小さいため、現在開発が盛んに進められている。これらの材料の物性は、前述の表1に示されている。
【0060】
一方、フェルール3を製造する際によく使用される材料として、石英ガラスフィラーを含有させたフェノール系エポキシ樹脂がある。この材料の熱膨張係数はフィラーの含有量等を変えることによって変えることができ、また、この含有量の調整によりエポキシ樹脂の弾性率は1500〜5000Kg/mm2 範囲で調整可能となる。導波路基板1をシリコンまたは石英ガラスで構成する場合を想定し、その弾性率が上述の実効熱膨張係数の範囲内にある材料を用いてフェルール3を製造するとすれば、この材料の熱膨張係数は10×10-6℃-1以下とする必要がある。
【0061】
また、この検討結果より、前述のフェノール系エポキシ樹脂だけでなく、その他の樹脂でも弾性率が十分小さければ、例えば500Kg/mm2 以下であれば熱膨張係数が比較的大きい材料(例えば20×10-6℃-1)であっても、温度変動に起因するコアの位置ずれを十分抑制できることがわかる。例えば、導波路基板110を石英ガラスで製造する場合に、フェルール3を構成する材料の弾性率が50Kg/mm2 以下であるとして、この材料の熱膨張係数と石英ガラスの熱膨張係数との差が4×10-4℃-1程度あったとしても、実際の弾性変形を考慮した実効的な熱膨張の差は3×10-6℃-1未満となる。この程度の熱膨張差を有する樹脂としては、例えば、ICI社製のLCR305がある。
【0062】
このような樹脂を利用してフェルール3を構成したが場合に予測される問題としては、材料自体の弾性率が低いため、アライメント時の治具等への固定によって弾性変形が生じ、コアの位置がずれていまう可能性があるということである。なお、このような場合には、ハンドリング手法を改良することにより(例えば、治具への面固定)、解決できると考える。
【0063】
以上の検討に基づいて製造した複数の光導波路モジュールについて、以下詳細に説明する。
【0064】
試料1
この試料1において、フェルール3の構成材料としては、熱膨張係数が6.0×10-6℃-1、弾性率が2500Kg/mm2 のフェノール系エポキシ樹脂材料を用いた。この材料のシリコンに対する実効的な熱膨張係数は2.25×10-6℃-1である。また、導波路部品1は、シリコン基板110上にFHD法とRIE法を組み合わせて形成した8分岐のシングルモード光導波路130を形成したものとした。製造した光導波路130の導波路形状を図26に示す。次に、1芯の光ファイバを保持したフェルール3(該光ファイバの先端部分は接着剤により該フェルールに固定されている)と、8芯の光ファイバを250μmピッチに配列固定したテープ型ファイバを保持したフェルール3(該テープ型ファイバの先端部分は接着剤により該フェルールに固定されている)とをそれぞれ導波路部品1の入出力端面1a、1cに接続して試料1の光導波路モジュールを5個作成した。なお、アライメントは既に説明した方法により行われている。また、導波路部品1と各フェルール3の接着に使用した接着剤には、石英ガラスに対して100kg/cm2 以上の接着強度を有する紫外線硬化型接着剤に熱硬化性触媒を添加して熱硬化性を付与したものを使用した。
【0065】
以上のようにして得られた光導波路モジュール(試料1)の挿入損失は平均で10.1dBで過剰損失(光導波路130内における分岐損失等を含めた合計の伝送損失)は1.1dBであった。また、これら試料1の光導波路モジュールを図22に示す測定系を用いて−40℃〜75℃の温度範囲において、図23に示す温度変化パターンにより測定した。なお、測定光としては波長1.3μmの光を使用した。このような測定を行った結果、試料1の各光導波路モジュールは、結合損失の平均変動量が0.2dB、最大変動量でも0.3dBと良好な温度特性を有することを確認した。
【0066】
試料2
次に、上記試料1のフェルールとは異なる物性値を有するプラスチック材料を利用して製作した試料2の光導波路モジュールの場合について説明する。
【0067】
この試料2において、フェルール3の構成材料としては、熱膨張係数が4.5×10-6℃-1、弾性率が3300Kg/mm2 のフェノール系エポキシ樹脂材料を用いた。この材料のシリコンに対する実効的な熱膨張係数は1.74×10-6℃-1である。また、導波路部品1は、シリコン基板110上にFHD法とRIE法を組み合わせて形成した8分岐のシングルモード光導波路130を形成したものとした。製造した光導波路130の導波路形状を図26に示す。次に、1芯の光ファイバを保持したフェルール3(該光ファイバの先端部分は接着剤により該フェルールに固定されている)と、8芯の光ファイバを250μmピッチに配列固定したテープ型ファイバを保持したフェルール3(該テープ型ファイバの先端部分は接着剤により該フェルールに固定されている)とをそれぞれ導波路部品1の入出力端面1a、1cに接続して試料2の光導波路モジュールを5個作成した。なお、アライメントは既に説明した方法により行われている。また、導波路部品1と各フェルール3の接着に使用した接着剤には、石英ガラスに対して100kg/cm2 以上の接着強度を有する紫外線硬化型接着剤に熱硬化性触媒を添加して熱硬化性を付与したものを使用した。
【0068】
以上のようにして得られた光導波路モジュール(試料2)の挿入損失は平均で10.0dBで過剰損失は1.0dBであった。また、これら試料2の光導波路モジュールを図22に示す測定系を用いて−40℃〜75℃の温度範囲において、図23に示す温度変化パターンにより測定した。なお、測定光としては波長1.3μmの光を使用した。このような測定を行った結果、試料2の各光導波路モジュールは、結合損失の平均変動量が0.2dB、最大変動量でも0.25dBと良好な温度特性を有することを確認した。
【0069】
試料3
次に、石英ガラス基板により構成される導波路部品1に以下のプラスチック・フェルール3を接着固定した光導波路モジュールについて説明する。
【0070】
この試料3において、フェルール3の構成材料としては、熱膨張係数が4.5×10-6℃-1、弾性率が3300Kg/mm2 のフェノール系エポキシ樹脂材料を用いた。この材料の石英ガラスに対する実効的な熱膨張係数は1.89×10-6℃-1である。また、導波路部品1は、石英ガラス基板110上にFHD法とRIE法を組み合わせて形成した8分岐のシングルモード光導波路130を形成したものとした。製造した光導波路130の導波路形状を図26に示す。次に、1芯の光ファイバを保持したフェルール3(該光ファイバの先端部分は接着剤により該フェルールに固定されている)と、8芯の光ファイバを250μmピッチに配列固定したテープ型ファイバを保持したフェルール3(該テープ型ファイバの先端部分は接着剤により該フェルールに固定されている)とをそれぞれ導波路部品1の入出力端面1a、1cに接続して試料3の光導波路モジュールを5個作成した。なお、アライメントは既に説明した方法により行われている。また、導波路部品1と各フェルール3の接着に使用した接着剤は、石英ガラスに対して100kg/cm2 以上の接着強度を有する紫外線硬化型接着剤を使用した。
【0071】
以上のようにして得られた光導波路モジュール(試料3)の挿入損失は平均で10.6dBで過剰損失は1.6dBであった。また、これら試料2の光導波路モジュールを図22に示す測定系を用いて−40℃〜75℃の温度範囲において、図23に示す温度変化パターンにより測定した。なお、測定光としては波長1.3μmの光を使用した。このような測定を行った結果、試料3の各光導波路モジュールは、結合損失の平均変動量が0.11dB、最大変動量でも0.18dBと良好な温度特性を有することを確認した。この試料3の温度特性は、上述した試料1及び2に場合と比較してさらに優れた結果となっているが、これは導波路基板110として石英ガラスを使用したことにより、該導波路基板110と導波路ガラス層(120、130、140)に加わる応力が低減したためと考えられる。
【0072】
以上の結果から、これら試料1〜3はいずれも上述の室内で使用する部品の温度特性仕様(−10℃〜60℃の温度変動で10サイクル(48時間))、さらにはBellcore社製TR−NWT−001209の温度特性仕様(−40℃〜75℃の温度変動で42サイクル(336時間))を満たしている。
【0073】
次に、比較例について説明する。この比較例におけるフェルールの構成材料は熱膨張係数が15.2×10-6℃-1で、弾性率が2000Kg/mm2 のプラスチック材料とした。この材料のシリコン(基板材料)に対する実効的な熱膨張係数は6.6×10-6℃-1であり、3.0×10-6℃-1を超えている。前述の例と同様に、8分岐の光導波路130を有する導波路部品1と上記プラスチック材料から構成されたフェルールとを接着固定して5個の光導波路モジュールを製作した。この場合の室温における挿入損失は10.0dB、過剰損失は1.0dBとなり、低い損失特性を示した。ところが、この光導波路モジュールを先の例と同様の温度が変動する環境下に置いたところ、損失変動量は、最大で0.8dBとなり、先の例と比較して2倍以上となった。これは、温度変動による熱膨張のためにコアの位置ずれが大きくなったことによると考えられる。
【0074】
次に、この発明に係る光導波路モジュールの湿熱特性について説明する。先にも言及したように、フェルール3の構成材料として適しているプラスチック材料に含有可能な石英フィラーの理論限界値は、工業材料1994年12月号(Vol.42、No.15、pp.112〜116)に96体積%であることが示されている。図27は、球形フィラーによる充填モデルを模式的に示した概念図であり、最大径の1次球600aによって形成される隙間に順次、2次球600b、3次球600c、4次球600dが充填されている。したがって、上記理論値96体積%はフィラーの間隙にプラスチック等の樹脂を埋め込むことが出来る限界値を意味する。
【0075】
発明者らは、石英フィラーの含有量が70重量%、80重量%、90重量%、94重量%であるフェノール系エポキシ樹脂によりフェルール3を用意し、それぞれを石英ガラス基板110を有する1×8分岐の導波路部品1に接着固定して試料となる光導波路モジュールを製作した。これら各光導波路モジュールを温度75℃、相対湿度(RH)95%の環境下でその湿熱特性を測定したところ(Bellcore社製TA−NWT−001221の湿熱特性仕様は75℃、90±5RH、500時間)、各光導波路モジュールについて図28に示す結果を得た。この結果からも分るように、特に、石英フィラー含有量が90重量%〜95重量%の材料を利用したフェルールの場合、良好な結果が得られた。なお、伝送損失が大きな試料はその接着部13で剥離が生じていることが確認された。
【0076】
【発明の効果】
以上のようにこの発明によれば、フェルールの構成材料として、ガラス等の加工が困難な材料の代わりに、低コストかつ連続成形可能なプラスチック材料であって熱膨張係数及び弾性率が導波路基板の構成材料との間に一定の関係を有する材料を用いたので、温度変動に対する十分な特性を有する光導波路モジュールが得ることができる。
【0077】
また、上記プラスチック材料への石英フィラー含有量を調節することにより、さらに湿熱特性にも優れた光導波路モジュールが得られる。
【図面の簡単な説明】
【図1】この発明の第1の実施例に係る光導波路モジュールの組み立て工程を説明するための図である。
【図2】この発明の第1の実施例に係る光導波路モジュールの構造を示す斜視図である。
【図3】フェルールの構造を説明するための、該フェルールの展開図である。
【図4】図3に示されたフェルールの、C−C線に沿った断面構造を示す図である。
【図5】図4に示されたフェルール断面の要部拡大図である。
【図6】この発明における光導波路モジュールのアライメント方法を説明するための図である。
【図7】テープ型ファイバの先端部分の構造を説明するための斜視図である。
【図8】図7に示されたテープ型ファイバの、E−E線に沿った断面構造を示した図である。
【図9】図1及び2に示された導波路部品の、A−A線に沿った断面構造を示す図である。
【図10】図2に示された光導波路モジュールの、B−B線に沿った断面構造を示す図である。
【図11】この発明の第2の実施例に係る光導波路モジュールの組み立て工程を説明するための図である。
【図12】この発明の第2の実施例に係る光導波路モジュールの構造を示す斜視図である。
【図13】図12に示された光導波路モジュールの、G−G線に沿った断面構造を示す図である。
【図14】導波路部品に作り込まれる導波路パターンを示す図である(その1)。
【図15】導波路部品に作り込まれる導波路パターンを示す図である(その2)。
【図16】導波路部品に作り込まれる導波路パターンを示す図である(その3)。
【図17】この発明に係る光導波路モジュールを備えた光通信システムの全体構成を示す図である。
【図18】実験用試料として製作した導波路部品の導波路パターンを示す図である。
【図19】フェルールの構成材料(プラスチック)の物性値として、石英フィラー含有量(重量%)と熱膨張係数(/℃)の関係を示した図である。
【図20】フェルールの構成材料(プラスチック)の物性値として、石英フィラー含有量(重量%)と弾性率(kg/mm2 )の関係を示した図である。
【図21】フェルールの構成材料(プラスチック)の物性値として、石英フィラー含有量(重量%)と実効熱膨張係数(|ΔL/(E1 /E2 )|)の関係を示した図である。
【図22】この発明に係る光導波路モジュールの温度特性を測定するための測定系の構成を示す図である。
【図23】図22に示された測定系での温度変動パターンを示す図である。
【図24】導波路基板の構成材料及びフェルールの構成材料における熱膨張係数の差(計算値と実測値)と、これらを用いて構成された光導波路モジュールの接着部におけるコア位置ずれ量との関係を示す図である。
【図25】導波路基板の構成材料に対するフェルールの構成材料の実効熱膨張係数(計算値と実測値)と、これらを用いて構成された光導波路モジュールの接着部におけるコア位置ずれ量との関係を示す図である。
【図26】この発明に係る光導波路モジュールの実施例として、製作した導波路部品の導波路パターンを示す図である。
【図27】石英フィラーの充填モデルを模式的に示した概念図である。
【図28】この発明に係る光導波路モジュールの湿熱特性を測定した結果を示す図である。
【図29】光ファイバと光導波路との位置ずれに起因する結合損失を示した図である。
【符号の説明】
1…導波路基板、3…フェルール、4…入出力用光ファイバ(テープ型ファイバ)、6…接着剤、110…導波路基板、130…光導波路、410…光ファイバ、410a…コア、600a、600b、600c、600d…石英フィラー。
Claims (18)
- 第1の材料から構成された導波路基板上に、所定波長の光を伝搬する伝送路の少なくとも一部を構成する光導波路が設けられた導波路部品と、
前記第1材料とは異なる第2の材料から構成され、前記伝送路の少なくとも一部を構成する光ファイバの一端と前記光導波路の一端とを光学的に結合すべく該光ファイバ端部の設置位置を規定する貫通孔が設けられ、該光ファイバの一端を保持した状態で、所定強度の接着剤によりその端面が前記導波路部品の端面に対向するよう固定されたフェルールであって、
前記第2の材料は、前記導波路基板を構成する第1の材料に対し、該第1の材料の熱膨張係数と該第2の材料の熱膨張係数との差をΔL、該第1の材料の弾性率をE1、該第2の材料の弾性率をE2とし、前記光ファイバのコア列の両端の間隔が3.75mm以下である場合、
|ΔL/(E1/E2)|<3.0×10−6(℃−1)
なる関係を満たすフェルールと、
を備えた光導波路モジュール。 - 前記第1の材料は、シリコン又は石英ガラスであることを特徴とする請求項1記載の光導波路モジュール。
- 前記第2の材料は、プラスチック材料であることを特徴とする請求項1又は2記載の光導波路モジュール。
- 前記プラスチック材料は、所定量の石英フィラーが含有され、かつその熱膨張係数が10×10−6(℃−1)以下のフェノール系エポキシ樹脂であることを特徴とする請求項3記載の光導波路モジュール。
- 前記プラスチック材料は、所定量の石英フィラーが含有され、かつその熱膨張係数が6×10−6(℃−1)以下のフェノール系エポキシ樹脂であることを特徴とする請求項3記載の光導波路モジュール。
- 前記石英フィラーの含有量は、85重量%以上、95重量%以下であることを特徴とする請求項4又は5記載の光導波路モジュール。
- 前記石英フィラーの含有量は、90重量%以上、95重量%以下であることを特徴とする請求項4又は5記載の光導波路モジュール。
- 前記プラスチック材料は、所定量の石英フィラーが含有され、かつその弾性率が5000(kg/mm2)以下のフェノール系エポキシ樹脂であることを特徴とする請求項3〜7のいずれか一項記載の光導波路モジュール。
- 前記光導波路端面と前記光ファイバ端面とを接着固定する接着剤は、少なくとも紫外線硬化型あるいは熱硬化型接着剤であって、その接着強度が石英ガラスに対して50(kg/cm2)以上であることを特徴とする請求項1〜8のいずれか一項記載の光導波路モジュール。
- 第1の材料から構成された導波路基板上に、所定波長の光を伝搬する伝送路の少なくとも一部を構成する光導波路が設けられた導波路部品の端面と、該伝送路の少なくとも一部を構成する光ファイバ端部を貫通孔に挿入した状態で、該光ファイバ端部に接着固定され、かつ前記第1材料とは異なる第2の材料から構成されたフェルールの端面とを、それぞれ突き合せた状態で所定強度の接着剤により接着し、
前記光導波路端面と前記フェルールに保持された光ファイバのコア端面との位置合せを行った後、前記接着剤を固化させる、光導波路モジュールの製造方法であって、
前記フェルールを構成する第2の材料は、前記導波路基板を構成する第1の材料に対し、該第1の材料の熱膨張係数と該第2の材料の熱膨張係数との差をΔL、該第1の材料の弾性率をE1、該第2の材料の弾性率をE2とし、前記光ファイバのコア列の両端の間隔が3.75mm以下である場合、
|ΔL/(E1/E2)|<3.0×10−6(℃−1)
なる関係を満していることを特徴とする光導波路モジュールの製造方法。 - 前記第1の材料は、シリコン又は石英ガラスであることを特徴とする請求項10に記載の光導波路モジュールの製造方法。
- 前記第2の材料は、プラスチック材料であることを特徴とする請求項10又は11に記載の光導波路モジュールの製造方法。
- 前記プラスチック材料は、所定量の石英フィラーが含有され、かつその熱膨張係数が10×10−6(℃−1)以下のフェノール系エポキシ樹脂であることを特徴とする請求項12に記載の光導波路モジュールの製造方法。
- 前記プラスチック材料は、所定量の石英フィラーが含有され、かつその熱膨張係数が6×10−6(℃−1)以下のフェノール系エポキシ樹脂であることを特徴とする請求項12に記載の光導波路モジュールの製造方法。
- 前記石英フィラーの含有量は、85重量%以上、95重量%以下であることを特徴とする請求項13又は14に記載の光導波路モジュールの製造方法。
- 前記石英フィラーの含有量は、90重量%以上、95重量%以下であることを特徴とする請求項13又は14に記載の光導波路モジュールの製造方法。
- 前記プラスチック材料は、所定量の石英フィラーが含有され、かつその弾性率が5000(kg/mm2)以下のフェノール系エポキシ樹脂であることを特徴とする請求項12〜16のいずれか一項記載の光導波路モジュールの製造方法。
- 前記接着剤は、少なくとも紫外線硬化型あるいは熱硬化型接着剤であって、その接着強度が石英ガラスに対して50(kg/cm2)以上であることを特徴とする請求項10〜17のいずれか一項記載の光導波路モジュールの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16871095A JP3747382B2 (ja) | 1994-07-21 | 1995-07-04 | フェルール、該フェルールを利用した光導波路モジュール及びその製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16949694 | 1994-07-21 | ||
JP6-169496 | 1994-07-21 | ||
JP16871095A JP3747382B2 (ja) | 1994-07-21 | 1995-07-04 | フェルール、該フェルールを利用した光導波路モジュール及びその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005291905A Division JP3778214B2 (ja) | 1994-07-21 | 2005-10-05 | フェルール |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0886934A JPH0886934A (ja) | 1996-04-02 |
JP3747382B2 true JP3747382B2 (ja) | 2006-02-22 |
Family
ID=26492311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16871095A Expired - Fee Related JP3747382B2 (ja) | 1994-07-21 | 1995-07-04 | フェルール、該フェルールを利用した光導波路モジュール及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3747382B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4244998B2 (ja) | 2006-02-08 | 2009-03-25 | 日本電気硝子株式会社 | 光ファイバ固定用毛細管の製造方法 |
US20220260786A1 (en) * | 2019-06-20 | 2022-08-18 | Nippon Telegraph And Telephone Corporation | Optical Fiber Guide Structure and Optical Fiber Connecting Structure |
WO2021230292A1 (ja) * | 2020-05-13 | 2021-11-18 | 住友電気工業株式会社 | 光配線部品 |
-
1995
- 1995-07-04 JP JP16871095A patent/JP3747382B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0886934A (ja) | 1996-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5625730A (en) | Optical waveguide module having waveguide substrate made of predetermined material and ferrule made of material different from that of waveguide substrate | |
EP0644442B1 (en) | Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device | |
CA1255485A (en) | Connecting waveguides | |
US6466707B1 (en) | Phasar athermalization using a slab waveguide | |
US6314228B1 (en) | Optical waveguide component and a method of producing the same | |
EP0634679B1 (en) | Coupling structure of optical fibers and optical waveguides | |
CA2074860C (en) | Method of reinforcing optical fiber coupler | |
US6496624B1 (en) | Optical waveguide device for optical wiring and manufacturing method therefor | |
JP3029428B2 (ja) | 光配線用光導波路素子及びその製造方法 | |
EP0646814B1 (en) | Multi-fiber type optical cable coupler and process for production thereof | |
US20110194819A1 (en) | Connector component for optical fiber, manufacturing method thereof and optical member | |
JPH05281428A (ja) | 光インターコネクションボード及び光導波路 | |
JP7372578B2 (ja) | 光モジュール | |
JP3747382B2 (ja) | フェルール、該フェルールを利用した光導波路モジュール及びその製造方法 | |
US10338325B1 (en) | Nanofiller in an optical interface | |
US7620278B2 (en) | Optical waveguide device | |
JP3778214B2 (ja) | フェルール | |
JP3450068B2 (ja) | 光導波路の結合構造 | |
JPH05107425A (ja) | 光フアイバ付光波回路 | |
JP3161656B2 (ja) | 光ファイバアレイの製造方法 | |
US20230358965A1 (en) | Optical Module | |
WO2021106163A1 (ja) | 光ファイバアレイ | |
Ishii et al. | Multiple 32-fiber array connection to silica waveguides on Si | |
KAWAJIRI et al. | A Multi-Channel 90< cd0216b. gif> Optical Deflection Device Using Optical Waveguides | |
JPH11258459A (ja) | 光ファイバコネクタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |