JP3733062B2 - アナログ−デジタル変換回路 - Google Patents

アナログ−デジタル変換回路 Download PDF

Info

Publication number
JP3733062B2
JP3733062B2 JP2001384369A JP2001384369A JP3733062B2 JP 3733062 B2 JP3733062 B2 JP 3733062B2 JP 2001384369 A JP2001384369 A JP 2001384369A JP 2001384369 A JP2001384369 A JP 2001384369A JP 3733062 B2 JP3733062 B2 JP 3733062B2
Authority
JP
Japan
Prior art keywords
circuit
analog
operational amplifier
input
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001384369A
Other languages
English (en)
Other versions
JP2003188727A (ja
Inventor
教広 二改
健一 加藤
安行 木村
邦之 谷
淳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001384369A priority Critical patent/JP3733062B2/ja
Priority to CN02123364.0A priority patent/CN1285174C/zh
Priority to US10/173,124 priority patent/US6683554B2/en
Publication of JP2003188727A publication Critical patent/JP2003188727A/ja
Application granted granted Critical
Publication of JP3733062B2 publication Critical patent/JP3733062B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多段パイプライン(ステップフラッシュ)構成を有するアナログ−デジタル変換回路に関する。
【0002】
【従来の技術】
近年、ビデオ信号のデジタル処理技術の進歩に伴い、ビデオ信号処理用のアナログ−デジタル変換回路(A/Dコンバータ)の需要が大きくなっている。ビデオ信号処理用のアナログ−デジタル変換回路には高速変換動作が要求されるため、従来、2ステップフラッシュ(2ステップパラレル)方式が広く用いられていた。
【0003】
しかし、変換ビット数の増大に伴い、2ステップフラッシュ方式では十分な変換精度が得られなくなってきたため、多段パイプライン(ステップフラッシュ)構成を有するアナログ−デジタル変換回路が開発された。
【0004】
図23は特開平11−88172号公報に開示された従来のアナログ−デジタル変換回路を示すブロック図である。図23のアナログ−デジタル変換回路100は、10ビット4段パイプライン構成を有する。
【0005】
図23において、アナログ−デジタル変換回路100は、サンプルホールド回路2、1段目〜4段目の回路3〜6、複数のラッチ回路7および出力回路8から構成されている。
【0006】
1段目(初段)〜3段目の回路3,4,5は、サブA/Dコンバータ9、D/Aコンバータ10、演算増幅回路11、減算回路12および演算増幅回路13を備える。減算回路12および演算増幅回路13が減算増幅回路14を構成する。1段目の回路3内の演算増幅回路11の利得は1であり、1段目の回路3内の演算増幅回路13および2段目および3段目の回路4,5内の演算増幅回路11,13の利得は2である。4段目(最終段)の回路6は、サブA/Dコンバータ9のみを備える。
【0007】
1段目の回路3は4ビット構成、2〜4段目の回路4〜6はそれぞれ2ビット構成である。1〜3段目の回路3〜5において、サブA/Dコンバータ9およびD/Aコンバータ10のビット数(ビット構成)は同じに設定されている。
【0008】
【発明が解決しようとする課題】
ここで、上記のアナログ−デジタル変換回路100では、アナログ入力信号Vinの電圧レンジをVINp-p とすると、1段目の回路3内のサブA/Dコンバータ9のフルスケールレンジはアナログ入力信号の電圧レンジVINp-p と等しい。2〜4段目の回路4〜6内のサブA/Dコンバータ9のフルスケールレンジはそれぞれ1〜3段目の回路3〜5の減算増幅回路14の出力電圧レンジVINp-p /8と等しい。
【0009】
また、1段目の回路3内のD/Aコンバータ10のフルスケールレンジはサブA/Dコンバータ9と同様にアナログ入力信号Vinの電圧レンジVINp-p と等しい。2段目および3段目の回路4,5内のD/Aコンバータ10の電圧のフルスケールレンジは利得2を有する演算増幅回路11の出力電圧レンジとの整合を取るためにサブA/Dコンバータ9のフルスケールレンジの2倍のVINp-p /4となる。
【0010】
次に、図23のアナログ−デジタル変換回路1の動作を説明する。サンプルホールド回路2は、アナログ入力信号Vinをサンプリングして一定時間保持する。サンプルホールド回路2から出力されたアナログ入力信号Vinは、1段目の回路3へ転送される。
【0011】
1段目の回路3において、サブA/Dコンバータ9は、電圧レンジVINp-p のアナログ入力信号Vinに対してアナログ−デジタル変換を行う。ここで、サブA/Dコンバータ9のフルスケールレンジは、上記のようにVINp-p である。サブA/Dコンバータ9のアナログ−デジタル変換結果であるデジタル出力(29 ,28 ,27 ,26 )は、D/Aコンバータ10へ転送されるとともに、4つのラッチ回路7を介して出力回路8へ転送される。D/Aコンバータ10の正規出力電圧レンジは、次式のように表される。
【0012】
Figure 0003733062
一方、演算増幅回路11は、アナログ入力信号Vinをサンプリングして増幅および保持する。演算増幅回路11の出力電圧レンジは、次式のように表される。
【0013】
Figure 0003733062
減算増幅回路14は、演算増幅回路11から出力されたアナログ入力信号VinとD/Aコンバータ10のD/A変換結果とを減算して増幅する。減算増幅幅回路14の出力は、2段目の回路4へ転送される。1段目の減算増幅回路14の出力電圧レンジは、次式のように表される。
【0014】
Figure 0003733062
2段目の回路4においては、サブA/Dコンバータ9が、1段目の回路3の減算増幅回路14の出力に対してA/D変換を行う。サブA/Dコンバータ9のA/D変換結果は、D/Aコンバータ10へ転送されるとともに、3つのラッチ回路7を介して出力回路8へ転送される。これにより、2段目の回路4から中上位2ビットのデジタル出力(25 ,24 )が得られる。D/Aコンバータ10の正規出力電圧レンジは、次式のように表される。
【0015】
Figure 0003733062
一方、演算増幅回路11は、1段目の回路3の演算増幅回路13の出力を増幅する。演算増幅回路11の出力電圧レンジは次式のように表される。
【0016】
Figure 0003733062
減算増幅回路14は、演算増幅回路11の出力とD/Aコンバータ10のD/A変換結果とを減算して増幅する。減算増幅回路14の出力は、3段目の回路5へ転送される。2段目の減算増幅回路14の出力電圧のレンジは,次式のように表される。
【0017】
Figure 0003733062
3段目の回路5においては、2段目の回路3の減算増幅回路14の出力に対して2段目の回路4と同様の動作が行われる。それにより、3段目の回路5から中下位2ビットのデジタル出力(23 ,22 )が得られる。各部の出力電圧レンジは2段目の回路4と同様である。
【0018】
4段目の回路6においては、3段目の回路5の減算増幅回路14の出力に対してサブA/Dコンバータ9がA/D変換を行い、下位2ビットのデジタル出力(21 ,20 )が得られる。
【0019】
1段目〜4段目の回路3〜6のデジタル出力は、各ラッチ回路7を経て同時に出力回路8に到達する。すなわち、各ラッチ回路7は各回路3〜6のデジタル出力の同期をとるために設けられている。
【0020】
出力回路8は、アナログ入力信号Vinの10ビットのデジタル出力Doutを必要な場合はデジタル補正処理後パラレル出力する。
【0021】
このようにして、変換ビット数が増大し、電源電圧の減少に伴いLSB(Least Significant Bit)が小さくなっても、サブA/Dコンバータ9の分解能を向上させることができ、十分な変換精度が得られる。
【0022】
図24(a)は図23のアナログ−デジタル変換回路の減算増幅回路の構成を示す回路図、図24(b)は図24(a)の減算増幅回路の動作を説明するための図である。
【0023】
図24において、演算増幅器101の反転入力端子はノードnbに接続され、非反転入力端子は接地されている。また、演算増幅器101の出力端子はノードnoに接続されるとともにコンデンサ102を介して反転入力端子に接続されている。演算増幅器1の反転入力端子と非反転入力端子との間にはスイッチSW1が接続され、ノードnbとノードnaとの間にコンデンサ103が接続されている。ノードnaは、スイッチSW2を介してノードn1に接続され、かつスイッチSW3を介してノードn2に接続されている。これらのスイッチSW2,SW3は、通常CMOS(相補型金属酸化物半導体)電界効果トランジスタからなるCMOSスイッチにより構成される。
【0024】
ノードn1に電圧V1 が入力され、ノードn2に電圧V2 が入力され、ノードnoから電圧VO が出力される。
【0025】
ここで、図24(b)を参照しながら図24(a)の減算増幅回路の動作を説明する。なお、コンデンサ101の容量値をCとし、コンデンサ103の容量値をKCとし、接地電位をVG とする。Kは定数である。
【0026】
まず、スイッチSW1およびスイッチSW2をオンにし、スイッチSW3をオフにする。それにより、ノードnaの電圧はV1 となる。また、ノードnoの電圧は0となる。このとき、ノードnbの電荷Qaは次式のようになる。
【0027】
Qa=(VG −V1 )KC
次に、スイッチSW1をオフにした後、スイッチSW2をオフにし、かつスイッチSW3をオンにする。それにより、ノードnaの電圧はV2 となる。また、ノードnoの電圧はVO となる。このとき、ノードnbは仮想接地するため、ノードnbの電荷Qbは次式のようになる。
【0028】
Qb=(VG −V2 )KC+(VG −VO )C
ノードnbには電荷が抜け出る経路がないので、電荷保存則によりQa=Qbとなる。したがって、次式が成立する。
【0029】
(VG −V1 )KC=(VG −V2 )KC+(VG −VO )C
上式から、ノードnoの電圧VO は次式のようになる。
【0030】
O =VG +(V1 −V2 )K
このようにして、電圧V1 から電圧V2 が減算され、その減算値がK倍に増幅される。
【0031】
したがって、減算増幅回路は電圧V1 と電圧V2 との差をコンデンサ103とコンデンサ102との容量比で決まる利得によって出力する機能を有する。例えば、KC=C(K=1)に設定することにより、減算増幅回路に利得1倍のサンプルホールド機能を持たせることとなる。
【0032】
図25は図23のアナログ−デジタル変換回路において用いられるサブA/Dコンバータの構成を示す図である。
【0033】
図25の並列型アナログ−デジタルコンバータ9においては、複数のコンパレータ900が配置されている。複数のコンパレータ900の一方の入力端子にはアナログ入力電圧Vinが与えられ、他方の入力端子には高電位側基準電圧VRTと低電位側基準電圧VRBとの間の電圧を複数の抵抗Rで分圧することにより得られる基準電圧がそれぞれ与えられる。各コンパレータ900は、一方の入力端子の電圧と他方の入力端子の電圧とを比較する。複数のコンパレータ900の比較結果をエンコーダ910によってエンコードすることにより、デジタルコードDcodeを得ることができる。
【0034】
ところで、アナログ−デジタル変換回路に与えるアナログ入力信号の電圧レンジを変更する場合、またはアナログ−デジタル変換回路に与えるアナログ入力信号の方式を差動ダブルエンド入力とシングルエンド入力とで変更する場合には、アナログ−デジタル変換回路の仕様を変更する必要がある。
【0035】
ここで、差動ダブルエンド入力およびシングルエンド入力について説明する。図26(a),(b)は差動ダブルエンド入力およびシングルエンド入力におけるアナログ−デジタル変換を説明するための図である。横軸はアナログ入力電圧VINを示し、縦軸は出力されたデジタルコードDcodeを示す。
【0036】
図26(a)に示すように、差動ダブルエンド入力時においては、アナログ入力信号Vinの正側アナログ入力電圧Vin(+)および負側アナログ入力電圧Vin(−)が相補的に変化する。それにより、正側アナログ入力電圧Vin(+)と負側アナログ入力電圧Vin(−)との差分がアナログ入力信号Vinの電圧レンジVINp-pとなる。
【0037】
したがって、図26(a)に示すように、正側アナログ入力電圧Vin(+)が1.0Vから2.0の範囲で変化し、負側アナログ入力電圧Vin(−)が2.0Vから1.0Vの範囲で変化する場合、アナログ入力信号Vinの電圧レンジはVin(+)−Vin(−)の演算から2.0Vとなる。
【0038】
一方、図26(b)に示すように、シングルエンド入力時においては、正側アナログ入力電圧Vin(+)のみが変化する。それにより、正側アナログ入力電圧Vin(+)の電圧レンジがアナログ入力信号Vinの電圧レンジとなる。
【0039】
したがって、図26(b)に示すように、正側アナログ入力電圧Vin(+)が1.0Vから2.0Vの範囲で変化する場合、アナログ入力信号の電圧レンジは1.0Vとなる。
【0040】
すなわち、差動ダブルエンド入力方式のアナログ入力信号Vinの電圧レンジを2VINp-p とすると、シングルエンド入力方式のアナログ入力信号Vinの電圧レンジはVINp-p となる。
【0041】
このように、差動ダブルエンド入力方式とシングルエンド入力方式とでは、各アナログ入力電圧の変化の範囲が同じであっても、アナログ入力信号の電圧レンジが異なることになる。
【0042】
上記の従来のアナログ−デジタル変換回路では、アナログ入力信号の電圧レンジの変更を行う場合、またはアナログ入力信号の入力方式の変更を行う場合に、回路構成を再設計する必要がある。
【0043】
本発明の目的は、回路構成の再設計を行うことなくアナログ入力信号の電圧レンジの変更または差動ダブルエンド入力とシングルエンド入力との間の入力方式の変更を容易に行うことができるパイプライン型アナログ−デジタル変換回路を提供することである。
【0044】
【課題を解決するための手段および発明の効果】
(1)第1の発明
第1の発明に係るアナログ−デジタル変換回路は、複数段の回路からなる多段パイプライン構成を有し、最終段の回路を除く各段の回路は、入力されたアナログ信号をデジタル信号に変換するアナログ−デジタル変換器と、アナログ−デジタル変換器から出力されるデジタル信号をアナログ信号に変換するデジタル−アナログ変換器と、入力されるアナログ信号とデジタル−アナログ変換器から出力されるアナログ信号との差分を増幅する第1の演算増幅回路とを備え、最終段の回路は、入力されたアナログ信号をデジタル信号に変換するアナログ−デジタル変換器を含み、最終段の回路を除く少なくとも1段の回路が、フルスケールレンジを複数段に切り替える切り替え手段を有するアナログ−デジタル変換器、フルスケールレンジを複数段に切り替える切り替え手段を有するデジタル−アナログ変換器および利得を複数段に切り替える切り替え手段を有する第1の演算増幅回路のうち少なくとも1つを含み、および/または最終段の回路がフルスケールレンジを複数段に切り替える切り替え手段を有するアナログ−デジタル変換器を含むものである。
【0045】
本発明に係るアナログ−デジタル変換回路においては、最終段の回路を除く少なくとも1段の回路が、フルスケールレンジを複数段に切り替える切り替え手段を有するアナログ−デジタル変換器、フルスケールレンジを複数段に切り替える切り替える切り替え手段を有するデジタル−アナログ変換器および利得を複数段に切り替える切り替え手段を有する第1の演算増幅回路のうち少なくとも1つを含み、および/または最終段の回路がフルスケールレンジを複数段に切り替える切り替え手段を有するアナログ−デジタル変換器を含むので、アナログ−デジタル変換回路のフルスケールレンジ、デジタル−アナログ変換器のフルスケールレンジおよび第1の演算増幅回路の利得のうち少なくとも1つを切り替えることができる。
【0046】
それにより、差動ダブルエンド入力方式をシングルエンド入力方式に変更することによりアナログ入力信号の電圧レンジが変更されても、回路構成の再設計が不要となる。また、シングルエンド入力のアナログ入力信号の電圧レンジを変更する場合または差動ダブルエンド入力のアナログ入力信号の電圧レンジを変更する場合にも、回路構成の再設計が不要となる。
【0047】
したがって、回路構成の再設計を行うことなくアナログ入力信号の電圧レンジの変更または差動ダブルエンド入力とシングルエンド入力との間の入力方式の変更を容易に行うことができる。
【0048】
その結果、アナログ−デジタル変換回路の開発期間の短縮化を図ることができるとともに、電圧レンジの最適化を最適化することにより低消費電力化を容易に行うことができる。
【0049】
(2)第2の発明
第2の発明に係るアナログ−デジタル変換回路は、第1の発明に係るアナログ−デジタル変換回路の構成において、最終段の回路を除く各段の回路は、入力されたアナログ信号を増幅して第1の演算増幅回路に与える第2の演算増幅回路をさらに含み、最終段の回路を除く少なくとも1段の回路の第2の演算増幅回路は、利得を複数段に切り替える切り替え手段を有するものである。
【0050】
この場合、少なくとも1段の回路の第2の演算増幅回路の利得を複数段に切り替えることにより、回路構成の再設計を行うことなくアナログ入力信号の電圧レンジの変更または差動ダブルエンド入力とシングルエンド入力との間の入力方式の変更を容易に行うことが可能となる。
【0051】
(3)第3の発明
第3の発明に係るアナログ−デジタル変換回路は、第1または第2の発明に係るアナログ−デジタル変換回路の構成において、最終段の回路を除く少なくとも1段の回路の第1の演算増幅回路は、利得を複数段に切り替える切り替え手段を有するものである。
【0052】
この場合、少なくとも1段の回路の第1の演算増幅回路の利得を複数段に切り替えることにより、回路構成の再設計を行うことなくアナログ入力信号の電圧レンジの変更または差動ダブルエンド入力とシングルエンド入力との間の入力方式の変更を容易に行うことが可能となる。
【0053】
(4)第4の発明
第4の発明に係るアナログ−デジタル変換回路は、第1〜第3のいずれかの発明に係るアナログ−デジタル変換回路の構成において、少なくとも1段の回路のアナログ−デジタル変換器は、フルスケールレンジを複数段に切り替える切り替え手段を有するものである。
【0054】
この場合、少なくとも1段の回路のアナログ−デジタル変換器のフルスケールレンジを複数段に切り替え可能ることにより、回路構成の再設計を行うことなくアナログ入力信号の電圧レンジの変更または差動ダブルエンド入力とシングルエンド入力との間の入力方式の変更を容易に行うことが可能となる。
【0055】
(5)第5の発明
第5の発明に係るアナログ−デジタル変換回路は、第1〜第4のいずれかの発明に係るアナログ−デジタル変換回路の構成において、最終段の回路を除く少なくとも1段の回路のデジタル−アナログ変換器は、フルスケールレンジを複数段に切り替える切り替え手段を有するものである。
【0056】
この場合、少なくとも1段の回路のデジタル−アナログ変換器のフルスケールレンジを複数段に切り替えることにより、回路構成の再設計を行うことなくアナログ入力信号の電圧レンジの変更または差動ダブルエンド入力とシングルエンド入力との間の入力方式の変更を容易に行うことが可能となる。
【0057】
(6)第6の発明
第6の発明に係るアナログ−デジタル変換回路は、第2の発明に係るアナログ−デジタル変換回路の構成において、少なくとも1段の回路の第2の演算増幅回路は、入力容量、帰還容量および演算増幅器を有し、入力されたアナログ信号を入力容量の値および帰還容量の値により定まる利得で増幅し、切り替え手段は、入力容量の値および帰還容量の値の少なくとも一方を可変に設定する可変部を含むものである。
【0058】
この場合、入力されたアナログ信号が入力容量の値および帰還容量の値により定まる利得で増幅される。したがって、演算増幅器の入力容量の値および帰還容量の値の少なくとも一方を変更することにより、第2の演算増幅回路の利得を容易に切り替えることができる。
【0059】
(7)第7の発明
第7の発明に係るアナログ−デジタル変換回路は、第6の発明に係るアナログ−デジタル変換回路の構成において、可変部は、入力容量または帰還容量の一部を切り離された状態または短絡された状態に切り替える切り替え部を含むものである。
【0060】
この場合、切り替え部により入力容量または帰還容量の一部を切り離された状態または短絡された状態に切り替えることにより、演算増幅器の入力容量または帰還容量を変更することができる。それにより、第2の演算増幅回路の利得を容易に切り替えることができる。
【0061】
(8)第8の発明
第8の発明に係るアナログ−デジタル変換回路は、第3の発明に係るアナログ−デジタル変換回路の構成において、少なくとも1段の回路の第1の演算増幅回路は、入力容量、帰還容量および演算増幅器を有し、入力されたアナログ信号を入力容量の値および帰還容量の値により定まる利得で増幅し、切り替え手段は、入力容量の値および帰還容量の値の少なくとも一方を可変に設定する可変部を含むものである。
【0062】
この場合、入力されたアナログ信号が入力容量の値および帰還容量の値により定まる利得で増幅される。したがって、演算増幅器の入力容量の値および帰還容量の値の少なくとも一方を変更することにより、第1の演算増幅回路の利得を容易に切り替えることができる。
【0063】
(9)第9の発明
第9の発明に係るアナログ−デジタル変換回路は、第8の発明に係るアナログ−デジタル変換回路の構成において、可変部は、入力容量または帰還容量の一部を切り離された状態または短絡された状態に切り替える切り替え部を含むものである。
【0064】
この場合、切り替え部により入力容量または帰還容量の一部を切り離された状態または短絡された状態に切り替えることより、演算増幅器の入力容量または帰還容量を変更することができる。それにより、第1の演算増幅回路の利得を容易に切り替えることができる。
【0065】
(10)第10の発明
第10の発明に係るアナログ−デジタル変換回路は、第9の発明に係るアナログ−デジタル変換回路の構成において、帰還容量は、演算増幅器の入力端子と出力端子との間に並列または直列に設けられた第1および第2の容量を含み、切り替え部は、第2の容量に直列または並列に接続されたものである。
【0066】
切り替え部を接続状態にすると、演算増幅器の入力端子と出力端子との間に第1および第2の容量が並列または直列に接続される。それにより、帰還容量が増加または減少する。また、切り替え部を遮断状態にすると、演算増幅器の入力端子と出力端子との間に第1の容量のみが接続される。それにより、帰還容量が減少または増加する。
【0067】
(11)第11の発明
第11の発明に係るアナログ−デジタル変換回路は、第10の発明に係るアナログ−デジタル変換回路の構成において、切り替え部は、演算増幅器の出力端子に接続されたものである。
【0068】
第2の容量が切り替え部よりも出力側に接続されている場合、切り替え部が遮断状態に設定されても、第2の容量の寄生容量が充電される。それにより、利得の設定時に、寄生容量を考慮する必要が生じ、寄生容量のばらつきにより利得がばらつくことになる。ここでは、切り替え部が第2の容量よりも出力側に接続されることにより、切り替え部が遮断状態に設定された場合に切り替え部により第2の容量が出力端子から寄生容量とともに切り離される。したがって、利得の設定時に第2の容量の寄生容量を考慮する必要がなくなり、寄生容量のばらつきによる利得のばらつきがなくなる。
【0069】
(12)第12の発明
第12の発明に係るアナログ−デジタル変換回路は、第9の発明に係るアナログ−デジタル変換回路の構成において、入力容量は、演算増幅器の入力端子に並列または直列に設けられたものである。
【0070】
切り替え部を接続状態にすると、演算増幅器の入力端子に第1および第2の容量が並列または直列に接続される。それにより、入力容量が増加または減少する。また、切り替え部を遮断状態にすると、演算増幅器の入力端子に第1の容量のみが接続される。それにより、入力容量が減少または増加する。
【0071】
(13)第13の発明
第13の発明に係るアナログ−デジタル変換回路は、第12の発明に係るアナログ−デジタル変換回路の構成において、切り替え部は、第2の容量の入力側に接続されたものである。
【0072】
第2の容量が切り替え部よりも入力側に接続されている場合、切り替え部が遮断状態に設定されても、第2の容量の寄生容量が充電される。それにより、利得の設定時に、寄生容量を考慮する必要が生じ、寄生容量のばらつきにより利得がばらつくことになる。ここでは、切り替え部が第2の容量よりも入力側に接続されることにより、切り替え部が遮断状態に設定された場合に切り替え部により第2の容量が入力信号を受けるノードから寄生容量とともに切り離される。したがって、利得の設定時に第2の容量の寄生容量を考慮する必要がなくなり、寄生容量のばらつきによる利得のばらつきがなくなる。
【0073】
(14)第14の発明
第14の発明に係るアナログ−デジタル変換回路は、第4の発明に係るアナログ−デジタル変換回路の構成において、少なくとも1段の回路のアナログ−デジタル変換器は、複数の基準電圧を発生する基準電圧発生回路と、基準電圧発生回路により発生された複数の基準電圧を入力されたアナログ信号と比較する複数の比較器とを含み、切り替え手段は、基準電圧発生回路により発生される複数の基準電圧を可変に設定する可変部を含むものである。
【0074】
この場合、基準電圧発生回路により発生される基準電圧を変更することにより、基準電圧の電圧レンジを変更することができる。それにより、アナログ−デジタル変換器のフルスケールレンジを容易に切り替えることができる。
【0075】
(15)第15の発明
第15の発明に係るアナログ−デジタル変換回路は、第5の発明に係るアナログ−デジタル変換回路の構成において、最終段の回路を除く少なくとも1段の回路のデジタル−アナログ変換器は、基準電圧を発生する基準電圧発生回路と、共通の端子に接続される複数の容量と、基準電圧発生回路と複数の容量との間に接続され、入力されるデジタル信号に応じて基準電圧発生回路により発生された基準電圧を複数の容量にそれぞれ与える複数のスイッチとを含み、切り替え手段は、基準電圧発生回路により発生される基準電圧を可変に設定する可変部を含むものである。
【0076】
この場合、基準電圧発生回路により発生される基準電圧を変更することにより、基準電圧の電圧レンジを変更することができる。それにより、デジタル−アナログ変換器のフルスケールレンジを容易に切り替えることができる。
【0077】
【発明の実施の形態】
(1)第1の実施の形態
図1は本発明の第1の実施の形態におけるパイプライン型アナログ−デジタル変換回路の構成を示すブロック図である。図1のアナログ−デジタル変換回路は、10ビット4段パイプライン構成を有する。
【0078】
図1において、アナログ−デジタル変換回路1は、サンプルホールド回路2、1段目〜4段目の回路3〜6、複数のラッチ回路7および出力回路8から構成されている。
【0079】
1段目(初段)の回路3は、切り替え可能なフルスケールレンジを有するサブA/Dコンバータ9a、D/Aコンバータ10、切り替え可能な利得を有する演算増幅回路11a、減算回路12および演算増幅回路13を備える。減算回路12および演算増幅回路13が減算増幅回路14を構成する。2段目および3段目の回路4,5は、サブA/Dコンバータ9、D/Aコンバータ10、演算増幅回路11、減算回路12および演算増幅回路13を備える。減算回路12および演算増幅回路13が減算増幅回路14を構成する。4段目(最終段)の回路6は、サブA/Dコンバータ9のみを備える。
【0080】
図1のパイプライン型アナログ−デジタル変換回路1が図20の従来のアナログ−デジタル変換回路100と異なるのは、1段目の回路3に切り替え可能なフルスケールレンジを有するサブA/Dコンバータ9aおよび切り替え可能な利得を有する演算増幅回路11aが用いられる点である。
【0081】
ここでは、1段目の回路3内のサブA/Dコンバータ9のフルスケールレンジは、アナログ入力信号の電圧レンジがVINp-p のときに、それと等しい電圧レンジVINp-p に切り替えられ、アナログ入力信号の電圧レンジがVINp-p /2のときには、それと等しい電圧レンジVINp-p /2に切り替えられる。また、1段目の回路3内の演算増幅回路11aの利得は、アナログ入力信号の電圧レンジがVINp-p のときには1倍に切り替えられ、アナログ入力信号の電圧レンジがVINp-p /2のときには2倍に切り替えられる。
【0082】
1段目〜3段目の回路3〜5内のD/Aコンバータ10のフルスケールレンジは固定され、2段目〜4段目の回路4〜6内のサブA/Dコンバータ9のフルスケールレンジは固定されている。また、1段目の回路3内の演算増幅回路13および2段目および3段目の回路3,4内の演算増幅回路11,13の利得は2である。
【0083】
1段目の回路3は4ビット構成、2〜4段目の回路4〜6はそれぞれ2ビット構成である。1〜3段目の回路3〜5において、サブA/Dコンバータ9,9aおよびD/Aコンバータ10のビット数(ビット構成)は同じに設定されている。
【0084】
アナログ入力信号の電圧レンジがVINp-p の場合における図1のアナログ−デジタル変換回路1の動作および各部の電圧レンジは、図20のアナログ−デジタル変換回路100と同様である。
【0085】
ここでは、アナログ入力信号の電圧レンジがVINp-p /2の場合における図1のアナログ−デジタル変換回路1の動作および各部の出力電圧レンジについて説明する。
【0086】
サンプルホールド回路2は、アナログ入力信号Vinをサンプリングして一定時間保持する。サンプルホールド回路2から出力されたアナログ入力信号Vinは、1段目の回路3へ転送される。
【0087】
1段目の回路3において、サブA/Dコンバータ9aは電圧レンジVINp-p /2のアナログ入力信号Vinに対してアナログ−デジタル変換を行う。このときのサブA/Dコンバータ9aのフルスケールレンジは、上記のようにVINp-p /2に切り替えられている。
【0088】
サブA/Dコンバータ9aのA/D変換結果である上位4ビットのデジタル出力(29 ,28 ,27 ,26 )は、D/Aコンバータ10へ転送されるとともに、4つのラッチ回路7を介して出力回路8へ転送される。D/Aコンバータ10は、サブA/Dコンバータ9aのA/D変換結果である上位4ビットのデジタル出力をアナログ信号に変換する。
【0089】
D/Aコンバータ10のフルスケールレンジはVINp-p に固定されているので、D/Aコンバータ10の正規出力電圧レンジは、次式のように表される。
【0090】
Figure 0003733062
一方、演算増幅回路11aは、アナログ入力信号Vinをサンプリングして増幅および保持する。上記のように、アナログ入力信号の電圧レンジがVINp-p /2の場合には利得は2倍に切り替えられるので、演算増幅回路11aの出力電圧レンジは次式のように表される。
【0091】
Figure 0003733062
減算増幅回路14は、演算増幅回路11aから出力されたアナログ入力信号VinとD/Aコンバータ10のD/A変換結果とを減算して増幅する。減算増幅回路14の出力は、2段目の回路4へ転送される。
【0092】
1段目の減算増幅回路14の出力電圧レンジは、次式のように表される。
Figure 0003733062
2段目の回路4においては、サブA/Dコンバータ9が、1段目の回路3の減算増幅回路14の出力に対してA/D変換を行う。サブA/Dコンバータ9のA/D変換結果は、D/Aコンバータ10へ転送されるとともに、3つのラッチ回路7を介して出力回路8へ転送される。これにより、2段目の回路4から中上位2ビットのデジタル出力(25 ,24 )が得られる。
【0093】
一方、演算増幅回路11は、1段目の回路3の減算増幅回路14の出力を増幅する。減算増幅回路14は、演算増幅回路11の出力とD/Aコンバータ10のD/A変換結果とを減算して増幅する。減算増幅回路14の出力は、3段目の回路5へ転送される。
【0094】
3段目の回路5においては、2段目の回路4の減算増幅回路14の出力に対して2段目の回路4と同様の動作が行われる。それにより、3段目の回路5から中下位2ビットのデジタル出力(23 ,22 )が得られる。
【0095】
4段目の回路6においては、3段目の回路5の減算増幅回路14の出力に対してサブA/Dコンバータ9がA/D変換を行い、下位2ビットのデジタル出力(21 ,20 )が得られる。
【0096】
1段目〜4段目の回路3〜6のデジタル出力は、各ラッチ回路7を経て同時に出力回路8に到達する。すなわち、各ラッチ回路7は各回路3〜6のデジタル出力の同期をとるために設けられている。
【0097】
出力回路8は、アナログ入力信号Vinの10ビットのデジタル出力Doutを必要な場合はデジタル補正処理後パラレル出力する。
【0098】
上記のように、アナログ入力信号の電圧レンジがVINp-p /2の場合には、1段目の回路3の演算増幅回路11aの利得および1段目の回路3のサブA/Dコンバータ9aのフルスケールレンジを切り替えることにより、1段目の回路3の減算増幅回路14から2段目の回路5へ与えられる出力信号の電圧レンジは、アナログ入力信号の電圧レンジがVINp-p の場合と同様に、VINp-p /8となる。それにより、アナログ入力信号Vinの電圧レンジが半分になったにもかかわらず、アナログ入力信号の電圧レンジは半分になる前と同じデジタル出力が得られる。
【0099】
したがって、回路設計の変更を行うことなく、アナログ入力信号の電圧レンジの変更に対応したアナログ−デジタル変換回路を提供することができる。
【0100】
本実施の形態によれば、回路構成を変更することなく、差動ダブルエンド入力方式のアナログ−デジタル変換回路をシングルエンド入力方式のアナログ−デジタル変換回路に変更することができる。
【0101】
図2(a),(b)は図1のアナログ−デジタル変換回路1をそれぞれ差動ダブルエンド入力方式およびシングルエンド入力方式に切り替える場合の設定を示す図である。
【0102】
図2(a)に示すように、差動ダブルエンド入力時には、演算増幅回路11aの利得を1倍に切り替え、サブA/Dコンバータ9aのフルスケールレンジを2VINp-p に切り替える。本例では、差動ダブルエンド入力のアナログ入力信号Vinの正側アナログ入力電圧Vin(+)は1.0Vから2.0Vの範囲で変化し、負側アナログ入力電圧Vin(−)は2.0Vから1.0Vの範囲で変化する。アナログ入力信号Vinの電圧レンジは、次式のようになる。
【0103】
2VINp-p ={Vin(+)−Vin(−)}の最大値−{Vin(+)−Vin(−)}の最小値=2.0[V]
この場合、サブA/Dコンバータ9aの正側基準電圧Vref(+)は1.0Vから2.0Vの範囲で変化し、負側基準電圧Vref(−)は2.0Vから1.0Vの範囲で変化する。
【0104】
図2(b)に示すように、シングルエンド入力時には、演算増幅回路11aの利得を2倍に切り替え、サブA/Dコンバータ9aのフルスケールレンジをVINp-p に切り替える。本例では、シングルエンド入力のアナログ入力信号Vinの正側アナログ入力電圧Vin(+)は1.0Vから2.0Vの範囲で変化し、負側アナログ入力電圧Vin(−)は1.5Vで一定である。アナログ入力信号Vinの電圧レンジは、次式のようになる。
【0105】
VINp-p ={Vin(+)−Vin(−)}の最大値−{Vin(+)−Vin(−)}の最小値=1.0[V]
この場合、サブA/Dコンバータ9aの正側基準電圧Vref(+)は1.0Vから2.0Vの範囲で変化し、負側基準電圧Vref(−)は1.5Vで一定である。
【0106】
このように、図1のアナログ−デジタル変換回路1においては、差動ダブルエンド入力方式をシングルエンド入力方式に変更することによりアナログ入力信号の電圧レンジが1/2になっても、回路構成の再設計が不要となる。
【0107】
また、シングルエンド入力のアナログ入力信号の電圧レンジを1/2に変更する場合、および差動ダブルエンド入力のアナログ入力信号の電圧レンジを1/2に変更する場合にも、回路構成の再設計が不要となる。
【0108】
このようにして、同一のLSI(大規模集積回路)において、アナログ入力信号、演算増幅回路の出力、D/A変換回路の出力および減算増幅回路の出力の電圧レンジをプログラマブルに変更することができる。その結果、開発期間の短縮化を図ることができるとともに、低消費電力化を行うことも可能である。
【0109】
(2)第2の実施の形態
図3は本発明の第2の実施の形態におけるパイプライン型アナログ−デジタル変換回路の構成を示すブロック図である。図3のアナログ−デジタル変換回路1も、10ビット4段パイプライン構成を有する。
【0110】
図3において、アナログ−デジタル変換回路1は、サンプルホールド回路2、1段目〜4段目の回路3〜6、複数のラッチ回路7および出力回路8から構成されている。
【0111】
1段目の回路3は4ビット構成、2〜4段目の回路4〜6はそれぞれ2ビット構成である。1〜3段目の回路3〜5において、サブA/Dコンバータ9,9bおよびD/Aコンバータ10,10bのビット数(ビット構成)は同じに設定されている。
【0112】
1段目(初段)の回路3は、サブA/Dコンバータ9、D/Aコンバータ10、演算増幅回路11、減算回路12および切り替え可能な利得を有する演算増幅回路13aを備える。減算回路12および演算増幅回路13aが減算増幅回路14aを構成する。
【0113】
2段目および3段目の回路4,5は、切り替え可能なフルスケールレンジを有するサブA/Dコンバータ9b、切り替え可能なフルスケールレンジを有するD/Aコンバータ10b、演算増幅回路11、減算回路12および演算増幅回路13を備える。減算回路12および演算増幅回路13が減算増幅回路14を構成する。4段目(最終段)の回路6は、切り替え可能なフルスケールレンジを有するサブA/Dコンバータ9bのみを備える。
【0114】
ここでは、2段目〜4段目のサブA/Dコンバータ9bが、図20の2段目〜4段目のサブA/Dコンバータ9の2倍の精度を有するものとする。以下、2段目〜4段目に2倍の精度を有するサブA/Dコンバータ9bを用いた場合のアナログ−デジタル変換回路1の再設計について説明する。
【0115】
1段目の回路3内の減算増幅回路14aの利得は1倍と2倍とに切り替え可能である。また、2段目〜4段目の回路4〜6内のサブA/Dコンバータ9bのフルスケールレンジはVINp-p /8とVINp-p /16とに切り替え可能である。さらに、2段目および3段目の回路4,5内のD/Aコンバータ10bのフルスケールレンジはVINp-p /4とVINp-p /8とに切り替え可能である。
【0116】
ここでは、1段目の回路3内の減算増幅回路14aの利得を1倍に切り替える。また、2段目〜4段目の回路4〜6内のサブA/Dコンバータ9bのフルスケールレンジをVINp-p /16に切り替え、2段目および3段目の回路4,5内のD/Aコンバータ10bのフルスケールレンジをVINp-p /8に切り替える。1段目の回路3内のサブA/Dコンバータ9のフルスケールレンジはVINp-p である。また、2段目および3段目の回路3,4内の演算増幅回路11,13の利得は2である。
【0117】
ここでは、アナログ入力信号の電圧レンジがVINp-pの場合における図1のアナログ−デジタル変換回路1の動作および各部の出力電圧レンジについて説明する。
【0118】
サンプルホールド回路2は、アナログ入力信号Vinをサンプリングして一定時間保持する。サンプルホールド回路2から出力されたアナログ入力信号Vinは、1段目の回路3へ転送される。
【0119】
1段目の回路3において、サブA/Dコンバータ9は電圧レンジVINp-pのアナログ入力信号Vinに対してアナログ−デジタル変換を行う。このときのサブA/Dコンバータ9のフルスケールレンジはVINp-p である。
【0120】
サブA/Dコンバータ9のA/D変換結果である上位4ビットのデジタル出力(29 ,28 ,27 ,26 )は、D/Aコンバータ10へ転送されるとともに、4つのラッチ回路7を介して出力回路8へ転送される。D/Aコンバータ10は、サブA/Dコンバータ9のA/D変換結果である上位4ビットのデジタル出力をアナログ信号に変換する。
【0121】
D/Aコンバータ10のフルスケールレンジは固定されているので、D/Aコンバータ10の正規出力電圧レンジは、次式のように表される。
【0122】
Figure 0003733062
一方、演算増幅回路11は、アナログ入力信号Vinをサンプリングして増幅および保持する。演算増幅回路11の利得は1倍であるので、演算増幅回路11の出力電圧レンジは次式のように表される。
【0123】
Figure 0003733062
減算増幅回路14aは、演算増幅回路11から出力されたアナログ入力信号VinとD/Aコンバータ10のD/A変換結果とを減算して増幅する。減算増幅回路14aの出力は、2段目の回路4へ転送される。
【0124】
1段目の減算増幅回路14aの利得は1に切り替えられているので、1段目の減算増幅回路14aの出力電圧レンジは、次式のように表される。
【0125】
Figure 0003733062
2段目の回路4においては、サブA/Dコンバータ9bが、1段目の回路3の減算増幅回路14aの出力に対してA/D変換を行う。サブA/Dコンバータ9bのA/D変換結果は、D/Aコンバータ10bへ転送されるとともに、3つのラッチ回路7を介して出力回路8へ転送される。
【0126】
この場合、サブA/Dコンバータ9bは、図20のサブA/Dコンバータ9の2倍の精度を有するので、図20のサブA/Dコンバータ9の半分のフルスケールレンジVINp-p /16で2段目の回路4から中上位2ビットのデジタル出力(25 ,24 )が得られる。
【0127】
D/Aコンバータ10bは、サブA/Dコンバータ9bのA/D変換結果である中上位2ビットのデジタル出力をアナログ信号に変換する。
【0128】
D/Aコンバータ10bのフルスケールレンジは図20のD/Aコンバータ10の半分のVINp-p /8に切り替えられているので、D/Aコンバータ10bの正規出力電圧レンジは、次式のように表される。
【0129】
Figure 0003733062
一方、演算増幅回路11は、1段目の回路3の減算増幅回路14aの出力を増幅する。上記のように、1段目の回路3の減算増幅回路14aの利得は1に切り替えられているので、演算増幅回路11aの出力電圧レンジは次式のように表される。
【0130】
Figure 0003733062
減算増幅回路14は、演算増幅回路11の出力とD/Aコンバータ10bのD/A変換結果とを減算して増幅する。減算増幅回路14の出力は、3段目の回路5へ転送される。
【0131】
2段目の減算増幅回路14の出力電圧レンジは、次式のように表される。
Figure 0003733062
3段目の回路5においては、2段目の回路4の減算増幅回路14の出力に対して2段目の回路4と同様の動作が行われる。この場合、サブA/Dコンバータ9bは、図20のサブA/Dコンバータ9の2倍の精度を有するので、図20のサブA/Dコンバータ9の半分のフルスケールレンジVINp-p /16で3段目の回路5から中下位2ビットのデジタル出力(23 ,22 )が得られる。各部の出力電圧レンジは、2段目の回路4と同様である。
【0132】
4段目の回路6においては、3段目の回路5の減算増幅回路14の出力に対してサブA/Dコンバータ9bがA/D変換を行う。この場合、サブA/Dコンバータ9bは、図20のサブA/Dコンバータ9の2倍の精度を有するので、図20のサブA/Dコンバータ9の半分のフルスケールレンジVINp-p /16で4段目の回路6から下位2ビットのデジタル出力(21 ,20 )が得られる。
【0133】
1段目〜4段目の回路3〜6のデジタル出力は、各ラッチ回路7を経て同時に出力回路8に到達する。すなわち、各ラッチ回路7は各回路3〜6のデジタル出力の同期をとるために設けられている。
【0134】
出力回路8は、アナログ入力信号Vinの10ビットのデジタル出力Doutを必要な場合はデジタル補正処理後パラレル出力する。
【0135】
上記のように、図3のアナログ−デジタル変換回路1では、2倍の精度を有するサブA/Dコンバータ9bを用いることにより、2段目以降の回路4〜6の各部の電圧レンジが図20のアナログ−デジタル変換回路100の半分になったにもかかわらず、電圧レンジが半分になる前と同じデジタル出力が得られる。
【0136】
この場合、電圧レンジを2倍の精度を有するサブA/Dコンバータ9bに最適化して半分に設定することにより、各段の回路3〜6を流れる電流の交流成分が減少する。それにより、回路設計の変更を行うことなく、電圧レンジを最適化することにより消費電流が低減化されたアナログ−デジタル変換回路を提供することができる。
【0137】
(3)各部の回路構成
図4は図1のアナログ−デジタル変換回路1における演算増幅回路11aの構成の第1の例を示す回路図である。
【0138】
図4の演算増幅回路11aは、演算増幅器110、容量値切り替え回路111,112、コンデンサ113,114およびスイッチ115〜122を含む。スイッチ115〜122は、例えばMOS(金属酸化物半導体)トランジスタにより構成される。
【0139】
演算増幅器110の反転入力端子と反転出力端子との間にフィードバック容量として容量値切り替え回路111が接続され、非反転入力端子と非反転出力端子との間にフィードバック容量として容量値切り替え回路112が接続されている。また、演算増幅器110の反転入力端子に入力容量としてコンデンサ113が接続され、非反転入力端子に入力容量としてコンデンサ114が接続されている。
【0140】
正側アナログ入力電圧Vin(+)および中間基準電圧VRT1がそれぞれスイッチ115,116を介してコンデンサ113に与えられる。また、負側アナログ入力電圧Vin(−)および中間基準電圧VRT1がそれぞれスイッチ117,118を介してコンデンサ114に与えられる。演算増幅器110の反転入力端子、反転出力端子、非反転入力端子および非反転出力端子は、それぞれスイッチ119,120,121,122を介して接地されている。
【0141】
ここで、コンデンサ113,114の容量値をそれぞれCAとし、容量値切り替え回路111,112の容量値をそれぞれCBとすると、演算増幅器110の反転出力端子の正側アナログ出力電圧Vo(+)および非反転出力端子の負側アナログ出力電圧Vo(−)は次式のようになる。
【0142】
Figure 0003733062
したがって、容量値切り替え回路111,112の容量値CBを切り替えることにより、演算増幅回路11aの利得を切り替えることができる。
【0143】
図5は図1のアナログ−デジタル変換回路1における演算増幅回路11aの構成の第2の例を示す回路図である。
【0144】
図5の演算増幅回路11aは、演算増幅器110、コンデンサ123,124、容量値切り替え回路125,126およびスイッチ115〜122を含む。
【0145】
演算増幅器110の反転入力端子と反転出力端子との間にフィードバック容量としてコンデンサ123が接続され、非反転入力端子と非反転出力端子との間にフィードバック容量としてコンデンサ124が接続されている。また、演算増幅器110の反転入力端子に入力容量として容量値切り替え回路125が接続され、非反転入力端子に入力容量として容量値切り替え回路126が接続されている。
【0146】
正側アナログ入力電圧Vin(+)および中間基準電圧VRT1がそれぞれスイッチ115,116を介して容量値切り替え回路125に与えられる。また、負側アナログ入力電圧Vin(−)および中間基準電圧VRT1がそれぞれスイッチ117,118を介して容量値切り替え回路126に与えられる。演算増幅器110の反転入力端子、反転出力端子、非反転入力端子および非反転出力端子は、それぞれスイッチ119,120,121,122を介して接地されている。
【0147】
ここで、容量値切り替え回路125,126の容量値をそれぞれCCとし、コンデンサ123,124の容量値をそれぞれCDとすると、演算増幅器110の反転出力端子の正側アナログ出力電圧Vo(+)および非反転出力端子の負側アナログ出力電圧Vo(−)は次式のようになる。
【0148】
Figure 0003733062
したがって、容量値切り替え回路125,126の容量値CCを切り替えることにより、演算増幅回路11aの利得を切り替えることができる。
【0149】
図6〜図11は演算増幅回路11aの具体的な回路構成の第1〜第6の例を示す回路図である。
【0150】
図6〜図11において、コンデンサCa,Cb,Ccの各々は等しい容量値Cを有するものとする。また、mを任意の正の整数とする。
【0151】
図6の例では、演算増幅器110の反転入力端子と反転出力端子との間にm個のコンデンサCaの並列回路とスイッチSaとが直列に接続され、かつm個のコンデンサCaの並列回路が接続されている。ここで、mは任意の正の整数である。同様に、演算増幅器110の非反転入力端子と非反転出力端子との間にm個のコンデンサCaの並列回路とスイッチSaとが直列に接続され、かつm個のコンデンサCaの並列回路が接続されている。また、演算増幅器110の反転入力端子に2m個のコンデンサCbが接続され、非反転入力端子に2m個のコンデンサCbが接続されている。
【0152】
正側アナログ入力電圧Vin(+)がそれぞれスイッチS1を介して反転入力端子側の2m個のコンデンサCbに与えられる。また、負側アナログ入力電圧Vin(−)がそれぞれスイッチS1を介して非反転入力端子側のコンデンサCbに与えられる。高電位側基準電圧VRTがそれぞれスイッチS2を介して反転入力端子側のm個のコンデンサCbおよび非反転入力端子側のm個のコンデンサCbに与えられ、低電位側基準電圧VRBがそれぞれスイッチS2を介して非反転入力端子側のm個のコンデンサCbおよび非反転入力端子側のm個のコンデンサCbに与えられる。
【0153】
本例では、入力容量の値は2mCである。スイッチSaをオンにすると、フィードバック容量の値が2mCとなり、スイッチSaをオフにすると、フィードバック容量の値がmCとなる。したがって、差動ダブルエンド入力時には、スイッチSaをオンに切り替えることにより利得が1倍となり、シングルエンド入力時には、スイッチSaをオフに切り替えることにより利得が2倍となる。
【0154】
図7の例では、演算増幅器110の反転入力端子と反転出力端子との間に2m個のコンデンサCaの並列回路と2m個のコンデンサCcの並列回路とが直列に接続され、かつコンデンサCcに並列にスイッチSaが接続されている。同様に、演算増幅器110の非反転入力端子と非反転出力端子との間に2m個のコンデンサCaの並列回路と2m個のコンデンサCcの並列回路とが直列に接続され、かつコンデンサCcに並列にスイッチSaが接続されている。図7の演算増幅回路11aの他の部分の構成は、図6の演算増幅回路11aと同様である。
【0155】
本例では、入力容量の値は2mCである。スイッチSaをオンにすると、フィードバック容量の値が2mCとなり、スイッチSaをオフにすると、フィードバック容量の値がmCとなる。したがって、差動ダブルエンド入力時には、スイッチSaをオンに切り替えることにより利得が1倍となり、シングルエンド入力時には、スイッチSaをオフに切り替えることにより利得が2倍となる。
【0156】
図8の例では、演算増幅器110の反転入力端子と反転出力端子との間に2m個のコンデンサCaの並列回路と2m個のコンデンサCcの並列回路とが直列に接続され、かつコンデンサCaに並列にスイッチSaが接続されている。同様に、演算増幅器110の非反転入力端子と非反転出力端子との間に2m個のコンデンサCaの並列回路と2m個のコンデンサCcの並列回路とが直列に接続され、かつコンデンサCaに並列にスイッチSaが接続されている。図8の演算増幅回路11aの他の部分の構成は、図6の演算増幅回路11aと同様である。
【0157】
本例では、入力容量の値は2mCである。スイッチSaをオンにすると、フィードバック容量の値が2mCとなり、スイッチSaをオフにすると、フィードバック容量の値がmCとなる。したがって、差動ダブルエンド入力時には、スイッチSaをオンに切り替えることにより利得が1倍となり、シングルエンド入力時には、スイッチSaをオフに切り替えることにより利得が2倍となる。
【0158】
図9の例では、演算増幅器110の反転入力端子と反転出力端子との間にm個のコンデンサCaの並列回路が接続されている。同様に、演算増幅器110の非反転入力端子と非反転出力端子との間にm個のコンデンサCaの並列回路が接続されている。また、演算増幅器110の反転入力端子に2m個のコンデンサCbが接続され、非反転入力端子に2m個のコンデンサCbが接続されている。
【0159】
正側アナログ入力電圧Vin(+)がそれぞれスイッチS1,S1aを介して反転入力端子側の2m個のコンデンサCbに与えられる。また、負側アナログ入力電圧Vin(−)がそれぞれスイッチS1,S1aを介して非反転入力端子側のコンデンサCbに与えられる。高電位側基準電圧VRTがそれぞれスイッチS2,S2aを介して反転入力端子側のm個のコンデンサCbおよび非反転入力端子側のm個のコンデンサCbに与えられ、低電位側基準電圧VRBがそれぞれスイッチS2,S2aを介して非反転入力端子側のm個のコンデンサCbおよび非反転入力端子側のm個のコンデンサCbに与えられる。
【0160】
本例では、フィードバック容量の値はmCである。スイッチS1a,S2aをオンにすると、入力容量の値が2mCとなり、スイッチS1a,S2aをオフにすると、入力容量の値がmCとなる。したがって、差動ダブルエンド入力時には、スイッチS1a,S2aを常にオフにすることにより利得が1倍となり、シングルエンド入力時には、スイッチS1a,S2aをスイッチS1,S2と同様にスイッチング動作することにより利得が2倍となる。
【0161】
図10の例では、演算増幅器110の反転入力端子と反転出力端子との間にm個のコンデンサCaの並列回路が接続されている。同様に、演算増幅器110の非反転入力端子と非反転出力端子との間にm個のコンデンサCaの並列回路が接続されている。また、演算増幅器110の反転入力端子に2m個のコンデンサCcの並列回路が接続され、コンデンサCcの並列回路に2m個のコンデンサCbが接続され、コンデンサCcに並列にスイッチSaが接続されている。また、非反転入力端子に2m個のコンデンサCcの並列回路が接続され、コンデンサCcの並列回路に2m個のコンデンサCbが接続され、コンデンサCcに並列にスイッチSaが接続されている。図10の演算増幅回路11aの他の部分の構成は、図6の演算増幅回路11aと同様である。
【0162】
本例では、フィードバック容量の値はmCである。スイッチSaをオンにすると、入力容量の値が2mCとなり、スイッチSaをオフにすると、入力容量の値がmCとなる。したがって、差動ダブルエンド入力時には、スイッチSaをオフにすることにより利得が1倍となり、シングルエンド入力時には、スイッチSaをオンにすることにより利得が2倍となる。
【0163】
図11の例では、演算増幅器110の反転入力端子と反転出力端子との間にm個のコンデンサCaの並列回路が接続されている。同様に、演算増幅器110の非反転入力端子と非反転出力端子との間にm個のコンデンサCaの並列回路が接続されている。また、演算増幅器110の反転入力端子に2m個のコンデンサCcの並列回路が接続され、コンデンサCcの並列回路に2m個のコンデンサCbが接続され、コンデンサCbに並列にスイッチSaが接続されている。また、非反転入力端子に2m個のコンデンサCcの並列回路が接続され、コンデンサCcの並列回路に2m個のコンデンサCbが接続され、コンデンサCbに並列にスイッチSaが接続されている。図11の演算増幅回路11aの他の部分の構成は、図6の演算増幅回路11aの構成と同様である。
【0164】
本例では、フィードバック容量の値はmCである。スイッチSaをオンにすると、入力容量の値が2mCとなり、スイッチSaをオフにすると、入力容量の値がmCとなる。したがって、差動ダブルエンド入力時には、スイッチSaをオフにすることにより利得が1倍となり、シングルエンド入力時には、スイッチSaをオンにすることにより利得が2倍となる。
【0165】
図6〜図11の演算増幅回路11aにおいて、上記のように、スイッチSaはMOSトランジスタにより構成される。それにより、スイッチSaが接続されるノードにはMOSトランジスタの拡散容量が付加され、スイッチSaのオン時にはゲート容量が付加される。演算増幅器110の反転入力端子または非反転入力端子に容量が付加されると、演算増幅回路11aの動作速度が低下する。
【0166】
図6および図7の例では、スイッチSaが演算増幅器110の反転出力端子および非反転出力端子に接続されている。それにより、演算増幅回路11aの動作速度が低下しない。したがって、図6および図7の例が好ましい。
【0167】
また、スイッチSaがコンデンサに並列に接続された場合、スイッチSaのオン時にオン抵抗が存在するため、コンデンサの容量を完全に切り離すことができない。
【0168】
図6の例では、スイッチSaがコンデンサCaに直列に接続されかつスイッチSaが演算増幅器110の反転出力端子および非反転出力端子に接続されている。それにより、スイッチSaのオン時に、コンデンサCaの容量を完全に切り離すことができる。したがって、図6の例が最も好ましい。
【0169】
また、図9の例では、スイッチS1a,S2aがコンデンサCbよりも入力側に接続されている。逆に、コンデンサCbがスイッチS1a,S2aよりも入力側に接続されている場合、スイッチS1a,S2aがオフ状態に設定されても、コンデンサCbの寄生容量が充電される。それにより、利得の設定時に、寄生容量を考慮する必要が生じ、寄生容量のばらつきにより利得がばらつくことになる。図9の例のように、スイッチS1a,S2aがコンデンサCbよりも入力側に接続されることにより、スイッチS1a,S2aがオフ状態に設定された場合にスイッチS1a,S2aによりコンデンサCbが寄生容量とともに切り離される。したがって、図9の例では、利得の設定時にコンデンサCbの寄生容量を考慮する必要がなくなり、寄生容量のばらつきによる利得のばらつきがなくなる。
【0170】
図12は図1のアナログ−デジタル変換回路1におけるサブA/Dコンバータ9aの構成の第1の例を示す回路図、図13は図12のサブA/Dコンバータ9aに用いられるコンパレータの構成を示す回路図である。
【0171】
図12において、サブA/Dコンバータ9aは、基準電圧を発生する基準電圧発生回路92,93a,93bおよび複数のコンパレータ90を備える。
【0172】
基準電圧発生回路92は、直列に接続された複数の抵抗Rからなる。基準電圧発生回路93aは、直列に接続された複数の抵抗Rからなる。基準電圧発生回路93bは、直列に接続された複数の抵抗R1からなる。複数の抵抗Rは等しい抵抗値を有し、複数の抵抗R1は等しい抵抗値を有する。
【0173】
基準電圧発生回路92は、高電位側基準電圧VRTを受けるノードN91と低電位側基準電圧VRBを受けるノードN92との間に接続されている。基準電圧発生回路93aは、高電位側基準電圧VRTを受けるノードN93と低電位側基準電圧VRBを受けるノードN94との間に、スイッチS24,S25を介して接続されている。基準電圧発生回路93bは、高電位側基準電圧VRTを受けるノードN93と低電位側基準電圧VRBを受けるノードN94との間に接続されている。基準電圧発生回路93aの中間ノードN95と基準電圧発生回路93bの中間ノードN96との間には、スイッチS26が接続されている。
【0174】
基準電圧発生回路92の抵抗R間の接続点にそれぞれ異なる基準電圧が生成される。同様に、基準電圧発生回路93aの抵抗R間の接続点にそれぞれ異なる基準電圧が生成される。ここでは、基準電圧発生回路92により得られる異なる基準電圧を正側基準電圧Vref(+)と呼ぶ。基準電圧発生回路93aにより得られる異なる基準電圧を負側基準電圧Vref(−)と呼ぶ。
【0175】
基準電圧発生回路93bの中間ノードN96には、高電位側基準電圧VRTと低電位側基準電圧VRBとの中間の電圧である中間基準電圧VRT1(=(VRT−VRB)/2)が生成される。
【0176】
図13に示すように、各コンパレータ90は、演算増幅器91、コンデンサC1,C2およびスイッチS13〜S18を含む。演算増幅器91の反転入力端子と反転出力端子との間にスイッチS13が接続され、非反転入力端子と非反転出力端子との間にスイッチS14が接続されている。また、演算増幅器91の反転入力端子にはコンデンサC1が接続され、非反転入力端子にはコンデンサC2が接続されている。コンデンサC1にはスイッチS15,S16が接続され、コンデンサC2にはスイッチS17,S18が接続されている。なお、図12では、各コンパレータ90のスイッチS13,S14の図示を省略している。
【0177】
正側アナログ入力電圧Vin(+)および正側基準電圧Vref(+)がそれぞれスイッチS15,S16を介してコンデンサC1に与えられる。また、負側アナログ入力電圧Vin(−)および負側基準電圧Vref(−)がそれぞれスイッチS17,S18を介してコンデンサC2に与えられる。
【0178】
初期状態では、スイッチS13,S14,S15,S17がオンし、スイッチS16,S18がオフしている。次に、スイッチS13,S14をオフした後、スイッチS15,S17をオフし、スイッチS16,S18をオンする。スイッチS13,S14をオフした時点で、演算増幅器91の反転入力端子および非反転入力端子がフローティング状態となっているので、反転入力端子の電圧が(Vin(+)−Vref(+))遷移し、非反転入力端子の電圧が(Vin(−)−Vref(−))遷移する。結果的に、差動アナログ入力電圧(Vin(+)−Vin(−))と差動基準電圧(Vref(+)−Vref(−))とが比較され、比較結果に応じて正側アナログ出力電圧Vout(+)および負側アナログ出力電圧Vout(−)が変化する。
【0179】
図12の複数のコンパレータ90の比較結果をエンコーダ950によってエンコードすることにより、デジタルコードDcodeを得ることができる。
【0180】
図12のサブA/Dコンバータ9aにおいて、差動ダブルエンド入力時には、スイッチS24,S25をオンし、スイッチS26をオフする。それにより、各コンパレータ90のコンデンサC2にスイッチS18を介して基準電圧発生回路93aによりそれぞれ異なる負側基準電圧Vref(−)が与えられる。シングルエンド入力時には、スイッチS24,S25をオフし、スイッチS26をオンにする。それにより、各コンパレータ90のコンデンサC2にスイッチS18を介して基準電圧発生回路93bにより中間基準電圧VRT1が与えられる。
【0181】
このようにして、サブA/Dコンバータ9aにおいて、フルスケールレンジが切り替えられる。
【0182】
なお、基準電圧発生回路93bを設けずに、スイッチS26を基準電圧発生回路93aの中間ノードN95と基準電圧発生回路92の中間ノードとの間に接続してもよい。
【0183】
図14は図1のアナログ−デジタル変換回路1におけるサブA/Dコンバータ9aの構成の第2の例を示す回路図、図15は図14のサブA/Dコンバータ9aに用いられるコンパレータの構成を示す回路図である。
【0184】
図14において、基準電圧発生回路93aの中間ノードN95と基準電圧発生回路93bの中間ノードN96との間には、図12のスイッチS26が接続されていない。
【0185】
図15に示すように、各コンパレータ90は、演算増幅器91、コンデンサC1,C2およびスイッチS13〜S18を含み、さらにスイッチS21,S22を含む。スイッチS21の一端はコンデンサC1に接続され、スイッチS21の他端は開放されている。スイッチS22の一端はコンデンサC2に接続され、他端は図14の基準電圧発生回93bの中間ノードN96に接続されている。図15のコンパレータ90の他の部分の構成は、図13のコンパレータ90の構成と同様である。
【0186】
基準電圧発生回93bにより中間基準電圧VRT1がスイッチS22を介してコンデンサC2に与えられる。
【0187】
差動ダブルエンド入力時の図15のコンパレータ90の動作は、図13のコンパレータ90の動作と同様である。このとき、スイッチS21,S22は常時オフしている。シングルエンド入力時には、スイッチS18の代わりにスイッチS22を動作させる。このとき、スイッチS21は常時オフしている。
【0188】
図14のサブA/Dコンバータ9aにおいて、差動ダブルエンド入力時には、スイッチS24,S25をオンする。このとき、スイッチS21,S22は常時オフにする。それにより、各コンパレータ90のコンデンサC2にスイッチS18を介して基準電圧発生回路93aによりそれぞれ異なる負側基準電圧Vref(−)が与えられる。シングルエンド入力時には、スイッチS24,S25をオフし、スイッチS18の代わりにスイッチS22を動作させる。このとき、スイッチS21は常時オフしている。それにより、各コンパレータ90のコンデンサC2にスイッチS22を介して基準電圧発生回路93bにより中間基準電圧VRT1が与えられる。
【0189】
このようにして、サブA/Dコンバータ9aにおいて、フルスケールレンジが切り替えられる。
【0190】
なお、各コンパレータ90にスイッチS21を設けなくてもよいが、コンパレータ90の回路構成の対称性を確保するためには、スイッチS21を設けることが好ましい。
【0191】
図16は図3のアナログ−デジタル変換回路1における2段目の回路4内のサブA/Dコンバータ9bの回路図である。図16のサブA/Dコンバータ9bは全並列比較(フラッシュ)方式サブA/Dコンバータである。
【0192】
サブA/Dコンバータ9bは、基準電圧を発生する基準電圧発生回路94,95および複数個のコンパレータ90から構成される。基準電圧発生回路94,95の各々は、抵抗R2、2n個の抵抗Rおよび抵抗R3からなる。抵抗R2,R3はそれぞれ抵抗Rのn倍の抵抗値を有する。抵抗R2、2n個の抵抗Rおよび抵抗R3は、高電位側基準電圧VRT2を受けるノードN97と低電位側基準電圧VRB2を受けるノードN98との間に接続されている。抵抗R2の両端にはスイッチS28が接続され、抵抗R3の両端にはスイッチS29が接続されている。
【0193】
基準電圧発生回路94の抵抗R間の接続点にそれぞれ異なる基準電圧が生成される。同様に、基準電圧発生回路95の抵抗R間の接続点にそれぞれ異なる基準電圧が生成される。ここでは、基準電圧発生回路94により得られる異なる基準電圧を正側基準電圧Vref(+)と呼ぶ。基準電圧発生回路95により得られる異なる基準電圧を負側基準電圧Vref(−)と呼ぶ。
【0194】
正側アナログ入力電圧Vin(+)および正側基準電圧Vref(+)がそれぞれスイッチS15,S16を介して各コンパレータ90のコンデンサC1に与えられる。また、負側アナログ入力電圧Vin(−)および負側基準電圧Vref(−)がそれぞれスイッチS17,S18を介して各コンパレータ90のコンデンサC2に与えられる。図16のコンパレータ90の構成および動作は、図13のコンパレータ90の構成および動作と同様である。
【0195】
ここで、高電位側基準電圧VRT2と低電位側基準電圧VRB2との差はVINp-p /8に設定される。基準電圧発生回路95,96のスイッチS28,S29がオフの場合には、フルスケールレンジはVINp-p /16である。また、スイッチS28,S29をオンにすると、フルスケールレンジはVINp-p /8となる。このようにして、サブA/Dコンバータ9bでは、フルスケールレンジを1倍と2倍とに切り替えることができる。
【0196】
図17は図3のアナログ−デジタル変換回路1における2段目の回路4内のD/Aコンバータ10の回路図である。図17のD/Aコンバータ10は容量アレイ方式D/Aコンバータである。
【0197】
D/Aコンバータ10は、基準電圧を発生する基準電圧発生回路96、アレイ状に接続されたそれぞれ複数個の正側のスイッチS51,S52、複数個の負側のスイッチS53,S54、複数個の正側コンデンサC50、および複数個の負側コンデンサC51から構成される。
【0198】
基準電圧発生回路96は、抵抗R4、複数個の抵抗Rおよび抵抗R5からなる。抵抗R4,R5は、複数個の抵抗Rの合計の抵抗値の半分の抵抗値を有する。抵抗R4、複数個の抵抗Rおよび抵抗R5は、高電位側基準電圧VRT3を受けるノードN101と低電位側基準電圧VRB3を受けるノードN102との間に直列に接続されている。抵抗R4の両端にはスイッチS30が接続され、抵抗R5の両端にはスイッチS31が接続されている。
【0199】
コンデンサC50,C51はすべて同じ容量値を有する。コンデンサC50の一方の端子(以下、出力端子と呼ぶ)N111からは差動正側出力電圧VDA(+)が生成され、コンデンサC51の一方の端子(以下、出力端子という)N112からは差動負側出力電圧VDA(−)が生成される。なお、各コンデンサC50,C51の他方の端子を入力端子と呼ぶ。
【0200】
各スイッチS51の一方の端子は抵抗R4と抵抗Rとの間のノードN103に接続され、他方の端子はコンデンサC50の入力端子に接続されている。各スイッチS52の一方の端子は抵抗R5と抵抗Rとの間のノードN104に接続され、他方の端子はコンデンサC50の入力端子に接続されている。各スイッチS53の一方の端子は抵抗R4と抵抗Rとの間のノードN103に接続され、他方の端子はコンデンサC51の入力端子に接続されている。各スイッチS54の一方の端子は抵抗R5と抵抗Rとの間のノードN104に接続され、他方の端子はコンデンサC51の入力端子に接続されている。
【0201】
スイッチS51,S52,S53,S54は、図16のサブA/Dコンバータ9bのコンパレータ90の出力レベルに従ってオンオフ動作する。同じコンパレータ90の出力信号を受ける4個のスイッチS51,S52,S53,S54が4連スイッチを構成する。例えば、1つのコンパレータ90の出力がハイレベルの場合、4連スイッチのスイッチS51,S54がオンし、スイッチS52,S53がオフする。逆に、1つのコンパレータ90の出力がローレベルの場合、4連スイッチのスイッチS51,S54がオフし、スイッチS52,S53がオンする。
【0202】
サブA/Dコンバータ9bの複数のコンパレータ90の出力レベルに応じて複数のスイッチS51,S52,S53,S54がオンオフ動作し、出力端子N111,N112に差動正側出力電圧VDA(+)および差動負側出力電圧VDA(−)が得られる。
【0203】
ここで、高電位側基準電圧VRT3と低電位側基準電圧VRB3との差はVINp-p /4に設定される。基準電圧発生回路96のスイッチS30,S31がオフの場合には、フルスケールレンジはVINp-p /8である。スイッチS30,S31をオンにすると、フルスケールレンジはVINp-p /4となる。このようにして、D/Aコンバータ10bでは、フルスケールレンジを1倍と2倍とに切り替えることができる。
【0204】
図18は図3のアナログ−デジタル変換回路1における減算増幅回路14aの構成の第1の例を示す回路図である。
【0205】
図18の減算増幅回路14aは、演算増幅器130、容量値切り替え回路131,132、コンデンサ133,134およびスイッチ135〜138を含む。スイッチは、例えばMOS(金属酸化物半導体)トランジスタにより構成される。
【0206】
演算増幅器130の反転入力端子と反転出力端子との間にフィードバック容量として容量値切り替え回路131が接続され、非反転入力端子と非反転出力端子との間にフィードバック容量として容量値切り替え回路132が接続されている。また、演算増幅器130の反転入力端子に入力容量としてコンデンサ133が接続され、非反転入力端子に入力容量としてコンデンサ134が接続されている。
【0207】
図3の演算増幅回路11から出力される正側アナログ出力電圧Vo(+)およびD/Aコンバータ10bから出力される差動正側出力電圧VDA(+)がそれぞれスイッチ135,136を介してコンデンサ133に与えられる。また、演算増幅回路11から出力される負側アナログ出力電圧Vo(−)およびD/Aコンバータ10bから出力される差動正側出力電圧VDA(−)がそれぞれスイッチ137,138を介してコンデンサ134に与えられる。演算増幅器130の反転入力端子、反転出力端子、非反転入力端子および非反転出力端子は、それぞれスイッチ139,140,141,142を介して接地されている。
【0208】
図18の減算増幅回路14aの動作は、図4の演算増幅回路11aの動作と同様である。演算増幅器130の反転出力端子および非反転出力端子からは次段の回路4へ与えられる正側アナログ入力電圧Vin(+)および負側アナログ入力電圧Vin(−)が得られる。
【0209】
ここで、容量値切り替え回路131,132の容量値を切り替えることにより、減算増幅回路14aの利得を切り替えることができる。
【0210】
図19は図3のアナログ−デジタル変換回路1における減算増幅回路14aの構成の第2の例を示す回路図である。
【0211】
図19の減算増幅回路14aは、演算増幅器130、コンデンサ139,140、容量値切り替え回路141,142およびスイッチ135〜140を含む。
【0212】
演算増幅器130の反転入力端子と反転出力端子との間にフィードバック容量としてコンデンサ139が接続され、非反転入力端子と非反転出力端子との間にフィードバック容量としてコンデンサ140が接続されている。また、演算増幅器130の反転入力端子に入力容量として容量値切り替え回路141が接続され、非反転入力端子に入力容量として容量値切り替え回路142が接続されている。
【0213】
図3の演算増幅回路11から出力される正側アナログ出力電圧Vo(+)およびD/Aコンバータ10bから出力される差動正側出力電圧VDA(+)がそれぞれスイッチ135,136を介して容量値切り替え回路141に与えられる。また、演算増幅回路11から出力される負側アナログ出力電圧Vo(−)およびD/Aコンバータ10bから出力される差動正側出力電圧VDA(−)がそれぞれスイッチ137,138を介して容量値切り替え回路142に与えられる。演算増幅器130の反転入力端子、反転出力端子、非反転入力端子および非反転出力端子は、それぞれスイッチ139,140,141,142を介して接地されている。
【0214】
図19の減算増幅回路14aの動作は、図5の演算増幅回路11aの動作と同様である。演算増幅器130の反転出力端子および非反転出力端子からは次段の回路4へ与えられる正側アナログ入力電圧Vin(+)および負側アナログ入力電圧Vin(−)が得られる。
【0215】
ここで、容量値切り替え回路141,142の容量値を切り替えることにより、減算増幅回路14aの利得を切り替えることができる。
【0216】
上記の実施の形態のスイッチSa,S1a,S2a,S24,S25,S26,S28,S29,S30,S31は、例えばMOS(金属酸化物半導体)電界効果トランジスタにより形成される。
【0217】
上記実施の形態では、切り替え手段の切り替え部としてスイッチSa,S1a,S2a,S24,S25,S26,S28,S29,S30,S31を用いている。この場合には、製造時または使用時にスイッチSa,S1a,S2a,S24,S25,S26,S28,S29,S30,S31をオンまたはオフに切り替えることができる。切り替え手段の切り替え部はスイッチに限定されない。例えば、切り替え部としてレーザにより溶断可能なヒューズを用いてもよく、切り替え部として最上層金属のパターニング用マスク切り替え部を用いてもよい。
【0218】
図20は切り替え部の他の例を示す回路図である。図20の例では、図6の演算増幅回路11aのスイッチSaの代わりにヒューズFaを用いている。ヒューズFaは、例えばポリシリコンからなり、レーザにより溶断可能である。製造時に、ヒューズFaをレーザを用いて溶断するか否かにより演算増幅回路11aの利得を切り替えることができる。
【0219】
図21および図22は切り替え部のさらに他の例を示す図であり、上部に平面図を示し、下部に断面図を示す。
【0220】
容量形成部C500において、下層金属LM1,LM2によりコンデンサの電極501,502が形成されている。また、下層金属LM1により電極507,508が形成されている。さらに、最上層金属UMにより、所定間隔で電極512,513が形成されかつ所定間隔で電極514,515が形成されている。電極501はスルーホール503内の金属を介して電極512に接続され、電極502はスルーホール504内の金属を介して電極514に接続されている。また、電極507はスルーホール505内の金属を介して電極512に接続され、電極508はスルーホール506内の金属を介して電極515に接続されている。
【0221】
例えば、507は図6の演算増幅器110の反転入力端子に接続され、電極508は図6の演算増幅器110の反転出力端子に接続される。
【0222】
電極501,502により容量形成部C500が形成され、電極512,513間および電極514,515間によりマスク切り替え部MSWがそれぞれ形成される。容量形成ブロックC500は、例えば図6のコンデンサCaに相当する。
【0223】
製造時に、マスク切り替え部MSW上に配置するマスクのパターンを変更することにより、電極512,513間および電極514,515間を接続状態および遮断状態に切り替えることができる。
【0224】
図21に示すように、電極512,513間および電極514,515間に最上層金属UMにより金属層510,511が形成されるようなマスクを用いることにより、電極512,513間および電極514,515間を接続することができる。
【0225】
図22に示すように、電極512,513間および電極514,515間に最上層金属UMにより金属層が形成されないようなマスクを用いることにより、電極512,513間および電極514,515間を遮断することができる。
【0226】
図21および図22の例では、容量形成部C500の両方の端子にマスク切り替え部をそれぞれ設けることにより、容量形成部C500を演算増幅器から完全に切り離すことができる。
【0227】
なお、本発明は、上記実施の形態に限定されず、アナログ−デジタル変換回路の任意の段の回路において、切り替え可能な利得を有する演算増幅回路、切り替え可能な利得を有する減算増幅回路、切り替え可能なフルスケールレンジを有するサブA/Dコンバータおよび切り替え可能なフルスケールレンジを有するD/Aコンバータのうち少なくとも1つを用いてもよい。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態におけるパイプライン型アナログ−デジタル変換回路の構成を示すブロック図である。
【図2】図1のアナログ−デジタル変換回路をそれぞれ差動ダブルエンド入力方式およびシングルエンド入力方式に切り替える場合の設定を示す図である。
【図3】本発明の第2の実施の形態におけるパイプライン型アナログ−デジタル変換回路の構成を示すブロック図である。
【図4】図1のアナログ−デジタル変換回路における演算増幅回路の構成の第1の例を示す回路図である。
【図5】図1のアナログ−デジタル変換回路における演算増幅回路の構成の第2の例を示す回路図である。
【図6】演算増幅回路の具体的な回路構成の第1の例を示す回路図である。
【図7】演算増幅回路の具体的な回路構成の第2の例を示す回路図である。
【図8】演算増幅回路の具体的な回路構成の第3の例を示す回路図である。
【図9】演算増幅回路の具体的な回路構成の第4の例を示す回路図である。
【図10】演算増幅回路の具体的な回路構成の第5の例を示す回路図である。
【図11】演算増幅回路の具体的な回路構成の第6の例を示す回路図である。
【図12】図1のアナログ−デジタル変換回路におけるサブA/Dコンバータの構成の第1の例を示す回路図である。
【図13】図12のサブA/Dコンバータに用いられるコンパレータの構成を示す回路図である。
【図14】図1のアナログ−デジタル変換回路におけるサブA/Dコンバータの構成の第2の例を示す回路図である。
【図15】図14のサブA/Dコンバータに用いられるコンパレータの構成を示す回路図である。
【図16】図3のアナログ−デジタル変換回路における2段目の回路内のサブA/Dコンバータの回路図である。
【図17】図3のアナログ−デジタル変換回路における2段目の回路内のD/Aコンバータの回路図である。
【図18】図3のアナログ−デジタル変換回路における減算増幅回路の構成の第1の例を示す回路図である。
【図19】図3のアナログ−デジタル変換回路における減算増幅回路の構成の第2の例を示す回路図である。
【図20】切り替え手段の切り替え部の他の例を示す回路図である。
【図21】切り替え手段の切り替え部のさらに他の例を示す平面図および断面図である。
【図22】切り替え手段の切り替え部のさらに他の例を示す平面図および断面図である。
【図23】従来のアナログ−デジタル変換回路を示すブロック図である。
【図24】図23のアナログ−デジタル変換回路の減算増幅回路の構成を示す回路図およびその減算増幅回路の動作を説明するための図である。
【図25】図23のアナログ−デジタル変換回路において用いられるサブA/Dコンバータの構成を示す図である。
【図26】差動ダブルエンド入力およびシングルエンド入力におけるアナログ−デジタル変換を説明するための図である。
【符号の説明】
1 アナログ−デジタル変換回路
3〜6 1段目〜4段目の回路
9,9a,9b サブA/Dコンバータ
10,10b D/Aコンバータ
11,13,13a 演算増幅回路
12 減算回路
14,14a 減算増幅回路
VRT,VRT2,VRT3 高電位側基準電圧
VRB,VRB2,VRB3 低電位側基準電圧
VRT1 中間基準電圧
Sa,S1a,S1b,S24,S25,S26,S26,S28,S29,S30,S31 スイッチ

Claims (15)

  1. 複数段の回路からなる多段パイプライン構成を有し、
    最終段の回路を除く各段の回路は、
    入力されたアナログ信号をデジタル信号に変換するアナログ−デジタル変換器と、
    前記アナログ−デジタル変換器から出力されるデジタル信号をアナログ信号に変換するデジタル−アナログ変換器と、
    入力されるアナログ信号と前記デジタル−アナログ変換器から出力されるアナログ信号との差分を増幅する第1の演算増幅回路とを備え、
    最終段の回路は、入力されたアナログ信号をデジタル信号に変換するアナログ−デジタル変換器を含み、
    最終段の回路を除く少なくとも1段の回路が、フルスケールレンジを複数段に切り替える切り替え手段を有するアナログ−デジタル変換器、フルスケールレンジを複数段に切り替える切り替え手段を有するデジタル−アナログ変換器および利得を複数段に切り替える切り替え手段を有する第1の演算増幅回路のうち少なくとも1つを含み、および/または最終段の回路がフルスケールレンジを複数段に切り替える切り替え手段を有するアナログ−デジタル変換器を含むことを特徴とするアナログ−デジタル変換回路。
  2. 最終段の回路を除く各段の回路は、入力されたアナログ信号を増幅して前記第1の演算増幅回路に与える第2の演算増幅回路をさらに含み、
    最終段の回路を除く少なくとも1段の回路の前記第2の演算増幅回路は、利得を複数段に切り替える切り替え手段を有することを特徴とする請求項1記載のアナログ−デジタル変換回路。
  3. 最終段の回路を除く少なくとも1段の回路の前記第1の演算増幅回路は、利得を複数段に切り替える切り替え手段を有することを特徴とする請求項1または2記載のアナログ−デジタル変換回路。
  4. 少なくとも1段の回路の前記アナログ−デジタル変換器は、フルスケールレンジを複数段に切り替える切り替え手段を有することを特徴とする請求項1〜3のいずれかに記載のアナログ−デジタル変換回路。
  5. 最終段の回路を除く少なくとも1段の回路の前記デジタル−アナログ変換器は、フルスケールレンジを複数段に切り替える切り替え手段を有することを特徴とする請求項1〜4のいずれかに記載のアナログ−デジタル変換回路。
  6. 前記少なくとも1段の回路の前記第2の演算増幅回路は、入力容量、帰還容量および演算増幅器を有し、入力されたアナログ信号を前記入力容量の値および前記帰還容量の値により定まる利得で増幅し、
    前記切り替え手段は、前記入力容量の値および前記帰還容量の値の少なくとも一方を可変に設定する可変部を含むことを特徴とする請求項2記載のアナログ−デジタル変換回路。
  7. 前記可変部は、前記入力容量または前記帰還容量の一部を切り離された状態または短絡された状態に切り替える切り替え部を含むことを特徴とする請求項6記載のアナログ−デジタル変換回路。
  8. 前記少なくとも1段の回路の前記第1の演算増幅回路は、入力容量、帰還容量および演算増幅器を有し、入力されたアナログ信号を前記入力容量の値および前記帰還容量の値により定まる利得で増幅し、
    前記切り替え手段は、前記入力容量の値および前記帰還容量の値の少なくとも一方を可変に設定する可変部を含むことを特徴とする請求項3記載のアナログ−デジタル変換回路。
  9. 前記可変部は、前記入力容量または前記帰還容量の一部を切り離された状態または短絡された状態に切り替える切り替え部を含むことを特徴とする請求項8記載のアナログ−デジタル変換回路。
  10. 前記帰還容量は、前記演算増幅器の入力端子と出力端子との間に並列または直列に設けられた第1および第2の容量を含み、
    前記切り替え部は、前記第2の容量に直列または並列に接続されたことを特徴とする請求項9記載のアナログ−デジタル変換回路。
  11. 前記切り替え部は、前記演算増幅器の出力端子に接続されたことを特徴とする請求項10記載のアナログ−デジタル変換回路。
  12. 前記入力容量は、前記演算増幅器の入力端子に並列または直列に設けられた第1および第2の容量を含み、
    前記切り替え部は、前記第2の容量に直列または並列に接続されたことを特徴とする請求項9記載のアナログ−デジタル変換回路。
  13. 前記切り替え部前は、前記第2の容量の入力側に接続されたことを特徴とする請求項12記載のアナログ−デジタル変換回路。
  14. 少なくとも1段の回路の前記アナログ−デジタル変換器は、複数の基準電圧を発生する基準電圧発生回路と、前記基準電圧発生回路により発生された複数の基準電圧を入力されたアナログ信号と比較する複数の比較器とを含み、
    前記切り替え手段は、前記基準電圧発生回路により発生される複数の基準電圧を可変に設定する可変部を含むことを特徴とする請求項4記載のアナログ−デジタル変換回路。
  15. 最終段の回路を除く少なくとも1段の回路の前記デジタル−アナログ変換器は、基準電圧を発生する基準電圧発生回路と、共通の端子に接続される複数の容量と、前記基準電圧発生回路と前記複数の容量との間に接続され、入力されるデジタル信号に応じて前記基準電圧発生回路により発生された基準電圧を前記複数の容量にそれぞれ与える複数のスイッチとを含み、
    前記切り替え手段は、前記基準電圧発生回路により発生される基準電圧を可変に設定する可変部を含むことを特徴とする請求項5記載のアナログ−デジタル変換回路。
JP2001384369A 2001-06-18 2001-12-18 アナログ−デジタル変換回路 Expired - Fee Related JP3733062B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001384369A JP3733062B2 (ja) 2001-12-18 2001-12-18 アナログ−デジタル変換回路
CN02123364.0A CN1285174C (zh) 2001-06-18 2002-06-18 模-数转换电路
US10/173,124 US6683554B2 (en) 2001-06-18 2002-06-18 Analog-to-digital conversion circuit having increased conversion speed and high conversion accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384369A JP3733062B2 (ja) 2001-12-18 2001-12-18 アナログ−デジタル変換回路

Publications (2)

Publication Number Publication Date
JP2003188727A JP2003188727A (ja) 2003-07-04
JP3733062B2 true JP3733062B2 (ja) 2006-01-11

Family

ID=27594114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384369A Expired - Fee Related JP3733062B2 (ja) 2001-06-18 2001-12-18 アナログ−デジタル変換回路

Country Status (1)

Country Link
JP (1) JP3733062B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882830B2 (ja) * 2004-06-24 2007-02-21 ソニー株式会社 信号処理装置、信号処理方法
JP4654998B2 (ja) * 2005-11-08 2011-03-23 株式会社デンソー サンプルホールド回路およびマルチプライングd/aコンバータ
KR102509819B1 (ko) * 2015-11-04 2023-03-14 삼성전자주식회사 신호 처리 장치 및 신호 처리 방법
US10264988B2 (en) * 2016-02-23 2019-04-23 The Charles Stark Draper Laboratory, Inc. Apparatus and method for recording neural signals in the presence of artifacts

Also Published As

Publication number Publication date
JP2003188727A (ja) 2003-07-04

Similar Documents

Publication Publication Date Title
US6683554B2 (en) Analog-to-digital conversion circuit having increased conversion speed and high conversion accuracy
KR100824793B1 (ko) 기준 전압을 스스로 공급하는 파이프라인 구조의 아날로그디지털 컨버터
US7030804B2 (en) Switched-capacitor circuit and pipelined A/D converter
US20060044172A1 (en) Semiconductor integrated circuit device
US6900749B2 (en) Analog-to-digital conversion circuit
US7224306B2 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
JP2007189519A (ja) アナログ/デジタル変換回路
US7304598B1 (en) Shared amplifier circuit
US8159383B2 (en) Switched capacitor circuit and pipelined analog-to-digital conversion circuit with the switched capacitor circuit
US6229472B1 (en) A/D converter
JP4811339B2 (ja) A/d変換器
US7598896B2 (en) A/D converter with noise cancel function
JP5051265B2 (ja) A/d変換器および信号処理回路
US7088277B2 (en) Analog-to-digital converter having cyclic configuration
CN111200437B (zh) A/d转换器
US6859158B2 (en) Analog-digital conversion circuit
US6008749A (en) Mask programmable low power voltage/current-mode ADC
JP3733062B2 (ja) アナログ−デジタル変換回路
JP4681622B2 (ja) Ad変換器
JP3942383B2 (ja) アナログ−デジタル変換回路
KR101122734B1 (ko) 캐패시터의 직렬연결을 이용한 멀티플라잉 디지털 아날로그 변환기와 이를 포함하는 파이프라인 아날로그 디지털 변환기
JP3851305B2 (ja) アナログ−デジタル変換回路
JP3540598B2 (ja) 演算増幅回路およびアナログ−デジタル変換回路
JPH11112305A (ja) 電圧比較器、演算増幅器、アナログ−デジタル変換器およびアナログ−デジタル変換回路
KR101228827B1 (ko) 축차근사형 아날로그/디지탈 변환기

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051014

R151 Written notification of patent or utility model registration

Ref document number: 3733062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees