JP3727151B2 - Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum - Google Patents

Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum Download PDF

Info

Publication number
JP3727151B2
JP3727151B2 JP23993897A JP23993897A JP3727151B2 JP 3727151 B2 JP3727151 B2 JP 3727151B2 JP 23993897 A JP23993897 A JP 23993897A JP 23993897 A JP23993897 A JP 23993897A JP 3727151 B2 JP3727151 B2 JP 3727151B2
Authority
JP
Japan
Prior art keywords
less
drum
cold
strength
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23993897A
Other languages
Japanese (ja)
Other versions
JPH1180886A (en
Inventor
章男 登坂
誠 荒谷
恵次 西村
昌利 荒谷
厚 荻野
安功 加藤
至 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Container Co Ltd
Original Assignee
JFE Steel Corp
JFE Container Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP23993897A priority Critical patent/JP3727151B2/en
Application filed by JFE Steel Corp, JFE Container Co Ltd filed Critical JFE Steel Corp
Priority to CA 2270916 priority patent/CA2270916A1/en
Priority to KR1019997003932A priority patent/KR20000068896A/en
Priority to EP98941704A priority patent/EP0943696A4/en
Priority to CN98801678A priority patent/CN1092714C/en
Priority to PCT/JP1998/003956 priority patent/WO1999011835A1/en
Priority to CNB021085110A priority patent/CN1162566C/en
Publication of JPH1180886A publication Critical patent/JPH1180886A/en
Application granted granted Critical
Publication of JP3727151B2 publication Critical patent/JP3727151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼製高強度ドラム缶に係り、鋼製ドラム缶用素材として好適な冷延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
鋼製ドラム缶は大きく2種に大別される。1つはJIS Z 1600に鋼製オープンドラムとして規定されているオープン型ドラムであり、他の1つはJIS Z 1601に液体用鋼製ドラムとして規定されている密封型ドラムである。これらのドラム缶は、天板、地板および胴板から構成されており、さらに天板には大小各1個の口金(栓)が設けられている。また、これらドラム缶の容量は 200リットル〜20リットルまでの、オープン型では1種〜5種、密封型では1種〜4種に分類されている。
【0003】
オープン型ドラムは、粉体、固体あるいは塗料、接着剤、合成樹脂製品等の粘性を有する液体を保管、運搬する容器として、また、密閉型ドラムは石油製品、化学製品等の各種液体を保管、運搬する容器として使用されている。
オープン型ドラムは、鋼板を円筒状に曲げ成形しシーム溶接して接合した胴体と円盤状の地板を巻き締めた容器で、開放された上面にガスケットを装着した着脱可能な天板を置き、バンドをはめボルトまたはレバーを用いて胴体に締めつけて使用する。一方、密閉型ドラムは、シーム溶接により接合した胴体の両端に円盤状の地板および円盤状の天板を巻き締めて製造される。さらに、通常これらドラム缶の外面には化成処理、塗装が、内面にも必要により化成処理、塗装が施される。
【0004】
ドラム缶には製缶の形状精度および溶接部、接合部、巻き締め部の健全性が要求され、JIS 規格には気密試験(水圧試験)、落下試験、積み重ね試験等を実施することが規定されている。
さらに、実際に使用するに際し、缶体には種々の応力が、様々な形態で負荷されるため、これら応力負荷に対し、実用上問題となる変形を生じないように缶体が高い室温強度を有することが要求されている。
【0005】
ドラム缶素材として使用できる鋼板は、JIS G 3131に規定される熱間圧延軟鋼板および鋼帯、あるいはJIS G 3141に規定される冷間圧延鋼板あるいは鋼帯とされている。また、使用する鋼板の板厚はドラム缶の種類、級別に応じ1.6mm 〜0.5mm までの範囲に規定されている。例えば、密封型ドラムの容量 200リットルの1種H級の場合には、胴板、天板、地板とも板厚1.6mm の鋼板を使用することが決められている。
【0006】
従来はドラム缶用鋼板としては、加工性を重視して、低炭素アルミキルド箱焼鈍材が用いられていた。その典型的鋼組成は、0.05〜0.10%C−0.2 〜0.5 %Mn−〜0.05%Si−0.04〜0.10%Al−0.0015〜0.0030%Nである。しかし、その後、鋼板の製造プロセスが連続化を志向し、より高生産効率の設備である連続焼鈍設備による、連続焼鈍材が広範囲に適用されるようになった。連続焼鈍材の鋼組成は上記低炭素アルミキルド箱焼鈍材とほとんど同一のものが使用されてきた。現在では、この低炭素アルミキルド鋼連続焼鈍材が、わが国、欧米においても主流となっている。ドラム缶用に製造されている素材の引張特性の一例としては板厚1.0 〜1.2mm で、降伏応力(YS):23kgf/mm2 、引張強度(TS):35kgf/mm2 、伸び(EL):42%程度である。また、一部の板厚の厚いドラム缶材には熱延材も適用されるが、その割合は低い。
【0007】
最近、缶製造コストを低減するために、ドラム缶用素材の板厚を薄くしようとする試みがなされてきた。しかし、素材の板厚減少に伴う缶体強度の低下を補償するためには素材の高強度化を図る必要がある。また、ドラム缶は1回のみの使用ではなく、一度内容物を入れて使用されたのち内部を洗浄して再度あるいは再々度、平均的には4〜5回繰り返して使用されるのが一般的である。再使用するに当たっては、内面の付着物や外面の塗装を除去するために、通常、ショットブラスト処理を行う。このショットブラスト処理により缶体に発生する変形量が大きい場合には、そのドラム缶は積み重ねができず、再生利用に不適となる。したがって、このショットブラスト処理による缶体の変形量の大小は再生利用を決定する一つの因子となっている。
【0008】
本発明者らがさらに詳しく調査した結果、このショットブラスト処理による缶体の変形は、単に使用する鋼板の室温強度のみを増加して防止しうるものではないことが新たに判明した。
すなわち、ショットブラスト処理の前に、缶体を約800 ℃に加熱する焼却処理が実施される場合があり、その後、缶体が完全に冷却しないうちにショットブラスト処理を行う場合が多い。本発明者らは、上記したショットブラスト処理による缶体の変形量が少ないことに加えて、高温加熱時の変形や200 〜500 ℃でのショットブラスト処理による変形が少ないことが再生利用を決定する重要な因子となっていることを新たに知見した。このようなことから、缶体が200 ℃以上における高い高温強度を有することも要求されている。
【0009】
また、素材の高強度化にともない、成形性、溶接性、接合性(巻き締め性)等のドラム缶の製缶時に素材に要求される特性を全て満足させるのが困難であった。例えば、合金元素の固溶による高強度化の方法や加工硬化、析出硬化による高強度化の方法では、延性の低下が著しく、成形性や巻き締め性が劣化し、缶体落下試験での損傷が大きくなる。また、合金元素の固溶、組織の微細化や低温変態生成物の増加による強化方法では、溶接部の強度低下や加工性の劣化を生じやすく、割れ発生などで気密性が低下するなどの問題があり、さらに鋼板各部における材質の均一性にも問題があった。
【0010】
高強度鋼板を適用したドラム缶としては、例えば特開昭56-77039号公報には、冷間圧延により降伏点が70〜100kg/mm2 とした未焼鈍の0.4 〜0.9mm 厚冷延鋼板を缶胴板素材として、缶胴部と天板、地板との接続に供される加工部のみに熱処理を行い軟質化して成形性を確保するドラム缶の製造方法が提案されている。しかしながら、この技術では、800 ℃での焼却処理時に缶体が焼鈍され、再生利用が著しく制御され、さらに、未焼鈍のため歪が発生したり、熱処理による表面酸化被膜の生成に加えて、加工部のみを熱処理するため工程が複雑となり大量生産に適さないなどの問題があり、実用化するまでに至っていない。
【0011】
このように、ドラム缶用として素材に要求される特性をすべて満足する適切な鋼板の高強度化の方法がなく、素材の薄肉化は達成できていないのが現状である。
【0012】
【発明が解決しようとする課題】
本発明は、上記した問題を有利に解決し、薄肉化が達成でき軽量で低コストで、しかも再生利用回数を増加できるドラム缶を製造するために、ドラム缶用素材として、伸び35%以上を有し成形性、溶接性、巻き締め性に優れかつ製缶後高強度を有する延性および焼付け硬化性に優れたドラム缶用冷延鋼板およびその製造方法を提案することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記した課題を解決するために鋼板組成、製造方法について種々検討した結果、ドラム缶成形時には比較的低強度で、その後の塗装・焼付け工程で顕著な強度上昇が期待できる鋼板をドラム缶素材として利用すれば、優れた製缶性と高強度化をともに満足できることに想到し、ドラム缶用素材として、従来、積極的に利用されていなかった固溶Nによる強化を利用した鋼板を使用することにより、従来材と同等の溶接性、溶接部の成形性を示し、しかも製缶後歪時効硬化により高い缶強度を有するドラム缶とすることができることを見いだした。しかも、従来にない高い高温強度を示すドラム缶となり、缶体を内外から加熱するような特殊な用途にも使用できることも新たに見いだした。一方、従来のように、固溶Cによる強化のみを利用した鋼板では、延性の低下が著しくドラム缶用素材としては不適であるという知見も得た。
【0014】
本発明は上記した知見に基づいて構成されたものである。
すなわち、本発明は、重量%で、C:0.10%以下、Si:0.20%以下、Mn:1.0 %以下、P:0.04%以下、S:0.03%以下、Al:0.150 %以下、N:0.0050〜0.0200%を含有し、残部がFeおよび不可避的不純物からなることを特徴とするドラム缶用冷延鋼板である。
【0015】
また、本発明は、重量%で、C:0.10%以下、Si:0.20%以下、Mn:1.0 %以下、P:0.04%以下、S:0.03%以下、Al:0.150 %以下、N:0.0050〜0.0200%を含有し、残部がFeおよび不可避的不純物からなり、かつ前記N含有量のうち、固溶Nとして0.0010%以上含有することを特徴とする伸び35%以上を有し延性および焼付け硬化性に優れたドラム缶用冷延鋼板である。
【0016】
また、本発明は、重量%で、C:0.10%以下、Si:0.20%以下、Mn:1.0 %以下、P:0.04%以下、S:0.03%以下、Al:0.150 %以下、N:0.0050〜0.0200%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、加熱し仕上圧延温度を800 ℃以上とする熱間圧延加工を施し、該熱間圧延加工終了後2sec 以内に強制冷却を開始し、巻取り温度:650 ℃以下で巻取り、熱延板としたのち、該熱延板を酸洗し、ついで冷間圧延により冷延板とし、該冷延板に再結晶温度以上で焼鈍を行い、あるいはさらに調質圧延を施すことを特徴とする延性および焼付け硬化性に優れたドラム缶用冷延鋼板の製造方法である。
【0017】
また、本発明は、上記した組成の冷延鋼板を胴板、天板および地板のうちの少なくとも1つに用いたことを特徴とする鋼製高強度ドラム缶である。
【0018】
【発明の実施の形態】
まず、本発明の鋼板の化学組成の限定理由について説明する。
C:0.10%以下
Cは、基地中に固溶し鋼板強度を増加させるが、0.10%を超えると炭化物を形成し延性を劣化させるとともに、溶接部の硬化が顕著になり、ドラム缶製缶時のフランジ成形工程において割れが多発し、また、ドラム缶の強度試験として特徴的な落下試験において、巻締め部が破断して漏れを生じ不良となる危険性が大きい。このため、本発明では成形性の観点からC含有量の上限を0.10%とした。なお、さらに成形性の観点からはC含有量は0.02%以上0.08%以下とするのが好ましい。
【0019】
Si:0.20%以下
Siは、強化元素として有用であるが、多量に含有すると冷間圧延性、表面処理性、耐食性が劣化する。このため、Si含有量は0.20%以下に限定した。なお、とくに耐食性が要求される用途に用いる場合にはSi含有量は0.10%以下に限定するのが好ましい。
【0020】
Mn:1.0 %以下
Mnは、Sによる熱間割れを防止する元素であり、S含有量に応じて添加する。また、Mnは結晶粒を微細化する作用を有しており、Mnの添加は材質上好ましい。しかし、多量に添加すると、耐食性が劣化する傾向となるうえ、鋼板を硬質化させ冷間圧延性を劣化させる。さらにMnの多量添加は溶接性、溶接部の成形性をも劣化させる傾向となるため、Mn含有量は1.0 %以下に制限した。なお、良好な耐食性、成形性が要求される場合にはMn含有量は0.60%以下とするのが好適である。
【0021】
P:0.04%以下
Pは、鋼を著しく硬質化させ、ドラム缶製造時のフランジ加工性やネック加工性を劣化させるとともに、耐食性を著しく劣化させる。また、Pは鋼中で偏析する傾向が強く、溶接部の脆化をもたらす。このようなことからPは0.04%以下に制限した。なお、好ましくは0.02%以下である。
【0022】
S:0.03%以下
Sは、鋼中では主として介在物として存在するため、鋼板の伸びを減少させ、さらに耐食性を低下させるため、できるだけ低減するのが好ましいが、0.03%までは許容できる。なお、良好な加工性が要求される場合には0.015 %以下とするのが望ましい。
【0023】
Al:0.150 %以下
Alは、脱酸元素として添加され鋼の清浄度を向上させる有用な元素であり、さらに組織を微細化させる作用も有しており、積極的に添加する。しかし、Al含有量が0.15%を超えると鋼板表面性状が劣化し、固溶N量が顕著に低減する。このため、Al含有量は0.15%以下に限定した。なお、材質の安定性という観点からは0.010 〜0.080 %の範囲が好ましい。
【0024】
N:0.0050〜0.0200%
Nは、鋼中に固溶し鋼板の室温強度および高温強度を増加させる作用を有している。本発明では、所定量の固溶Nを確保し固溶強化により鋼板の強度を増加させる。このためには、N含有量は少なくとも0.0050%以上とする必要がある。しかし、0.0200%を超えて含有すると鋼板の内部欠陥発生率が増加し、さらに鋳造時の割れ発生が顕著となる。このため、N含有量は0.0050〜0.0200%の範囲に限定した。なお、製造工程全体を考慮し、材質の安定・歩留り向上という観点からは0.0070〜0.0170%の範囲が好適である。
【0025】
さらに、Nはドラム缶の製缶時に要求される溶接性、溶接部の加工性を全く阻害せず、鋼板強度の増加に有効に寄与する。また、Nはドラム缶の缶体強度の向上に対し、通常の固溶強化以上の効果を示し、「歪時効硬化」を起こしているといえる。本発明の範囲内のN含有量であれば、シーム溶接部硬さの顕著な増加は認められない。
【0026】
残部はFeおよび不可避的不純物からなるが、不可避的不純物は、Cu:0.2 %以下、Ni:0.2 %以下、Cr:0.2 %以下、Mo:0.2 %以下、Nb:0.02%以下、Ti:0.02%以下、B:0.0010%以下の範囲に制限するのが好ましい。これら元素が含有されることにより鋼板強度は増加するが、溶接性、溶接部の加工性および化成処理性が著しく劣化するため、ドラム缶への適用は極めて困難となり、上記範囲に限定する。
【0027】
つぎに、鋼板の製造条件の限定理由について説明する。
上記した組成の溶鋼を転炉、電気炉等通常公知の溶製方法で溶製し、連続鋳造法、造塊法、薄スラブ鋳造法等公知の方法で、スラブに凝固させ鋼素材とするのが好ましい。これら公知の鋳造方法のなかでもマクロ偏析を防止するため連続鋳造法が好ましい。
【0028】
鋼素材を、加熱し熱間圧延を施す。
素材の加熱温度は、とくに限定しないが、材質均一化のため1000〜1300℃の範囲とするのが好適である。1300℃を超えると結晶粒が粗大化し、伸び特性が劣化する。また、1000℃未満では、変形抵抗が高くなり圧延荷重が増加して熱間圧延が困難となる。
【0029】
熱間圧延の仕上圧延温度を800 ℃以上とする。
仕上圧延温度を800 ℃以上とすることにより、均一で微細な熱延板組織が得られ、これにより最終製品の組織も均一微細化が図れる。さらに、熱延板段階で固溶Nを安定して確保でき、最終製品での機械的特性も安定する。仕上圧延温度が800 ℃未満では、均一微細な組織が得られない。一方、仕上圧延温度が1000℃を超えると、仕上圧延中のスケールに起因した疵の発生が顕著となり、表面の健全性が要求されるドラム缶用としては好ましくない。なお、材質の均一性から仕上圧延温度は820 〜920 ℃の範囲が好ましい。
【0030】
熱間圧延加工終了後2sec 以内に強制冷却を開始する。
圧延終了後、速やかに強制冷却を開始する。強制冷却の開始は、圧延終了後2sec 以内とするのが、最終製品の常温強度、高温強度を向上させるために有効である。強制冷却は、水冷あるいはミスト冷却とするのが好ましく、冷却速度として50℃/s以上が好ましい。圧延後強制冷却することにより、圧延歪により促進され易いAlN の析出を防止することができ、冷延・焼鈍工程を経ても有効に固溶Nを確保できる下地ができる。さらに、圧延後強制冷却することにより、結晶粒の成長が抑制され熱延板組織の均一微細化が達成される。
【0031】
なお、鋼板エッジ部の過冷却を防止するため、エッジ部には直接水がかからないように、冷却中のマスキングを行うのが好ましい。これにより、ドラム缶の製缶時におけるフランジ加工性、巻締め部の健全性が確保できる。
巻取り温度は650 ℃以下とする。
巻取り温度を650 ℃以下とすることにより、熱延板中の固溶Nを確保し、最終製品で所定量以上(0.0010%以上)の固溶Nを得ることができる。しかし、巻取り温度が400 ℃未満となると、熱延板形状が悪化し、さらに鋼板幅方向の硬度差が大きくなり冷間圧延後の鋼板形状を悪化させる恐れがある。このため、巻取り温度は650 ℃以下好ましくは400 ℃以上とするのがよい。
【0032】
熱延板は酸洗し、ついで冷間圧延により冷延板とする。
熱延板の酸洗条件はとくに規定する必要はなく表面スケールが除去できればよく、通常公知の方法、例えば、塩酸、硫酸等の酸で表面スケールを除去する。
熱延板を所定の板厚の冷延板とするために冷間圧延を施すが、本発明では冷間圧下率等圧延条件をとくに限定する必要はないが、冷間圧下率は最終板形状の改善、組織の微細化の点から40〜85%の範囲とするのが好ましい。
【0033】
冷延板は再結晶温度以上の温度で焼鈍される。
焼鈍は再結晶温度以上の温度で行う。ここでは、再結晶温度は再結晶終了温度を意味する。焼鈍を再結晶終了温度未満で実施すると、組織が未再結晶組織となる。未再結晶組織は、強度は高いが延性が低く、また、高温に晒された場合に急激に軟化する傾向を示すため、高温に晒される用途、例えば、溶接組立を行うドラム缶等の用途には不適となる。さらに、鋼板の幅方向、長手方向で材質のばらつきが大きくなる。このため、冷延板の焼鈍は再結晶終了温度以上の温度で実施するものとする。なお、固溶N量の確保のために、加熱温度に60sec 以下の時間保持することが好ましい。
【0034】
なお、焼鈍サイクルは、単純な加熱冷却サイクルとし、とくに過時効処理を施す必要はない。しかし、過時効処理を行ってもとくに材質の変化はみられないため、過時効を行うヒートサイクルの連続焼鈍設備を利用してもよい。
なお、冷延焼鈍板の表面を清浄とするため、必要に応じ、焼鈍後酸洗を行ってもよい。
【0035】
焼鈍済みの冷延鋼板はさらに調質圧延を施される。
調質圧延は、降伏点伸びを消滅、あるいは軽減し、さらに鋼板表面粗度の調整および原板の形状性の改善のために実施する。調質圧延の圧下率は5%以下とするのが好ましい。圧下率が5%を超えると鋼板の延性が劣化する。なお、表面粗度の調整のためには1%以上5%以下とするのが好ましい。
【0036】
調質圧延済みの鋼板は、必要に応じ、表面処理を施してもよい。施される表面処理としては、錫めっき、クロムめっき、ニッケルめっき、ニッケル・クロムめっき、亜鉛めっき等のめっき、各種合金めっき、化成処理など通常の冷延鋼板に適用される表面処理がいずれも好適に適用できるのは言うまでもない。また、冷延後、連続溶融亜鉛めっきラインで、溶融亜鉛めっき処理を施される溶融亜鉛めっき鋼板としてもよい。また、これらのめっき後あるいは、直接、塗装あるいは有機樹脂フィルムを貼って製缶してもなんら問題はない。
【0037】
上記した製造条件に従い製造した冷延鋼板は、35%以上の高い伸びを示し、さらに、0.0010%以上の固溶N量を含有しており、該冷延鋼板を用いて製缶したドラム缶は、従来の鋼板を用いた場合にくらべ、製缶後に塗装・焼付け工程を施すことにより、焼付け硬化により高い常温強度と、高温域(具体的には300 〜800 ℃)での高い高温強度を有するドラム缶となる。なお、製缶後の缶強度を安定して高強度とするためには、固溶N量は0.0015〜0.0100%の範囲とするのが好ましい。固溶N量の調整は、鋼素材の全N量と熱延(冷延)焼鈍条件の組合せで行うのが好ましい。
【0038】
なお、本発明でいう固溶N量とは、鋼中の全N量から臭素エステルによる溶解による析出N分析法で得られた析出N量を差し引いたN量をいう。
ドラム缶の製缶を安定して行うためには缶素材の延性が重要な因子であり、伸び値が35%以上の鋼板であれば、安定した製缶が可能である。伸び値の測定は引張試験により行うが、試験片の採取方向はドラム缶成形時に円周方向となる方向とする。
【0039】
また、本発明の冷延鋼板は、5kgf/mm2 以上の時効指数を示す鋼板である。さらに、ドラム缶体として、局部変形に対する高い抵抗力、高温でのより高い強度を得るためには好ましくは7kgf/mm2 以上の時効指数を有する鋼板が望ましい。時効指数の調整は、主として固溶N量を調整して行うのが望ましい。本発明の冷延鋼板を素材として用いることにより、成形工程と塗装−焼付け工程を経たのち、高い常温強度と高温強度を有するドラム缶が得られる。また、本発明鋼板は、特別な促進時効処理を施さなくても室温における1日程度の自然時効により十分硬化し、塗装後焼付け条件の微妙な変動にも鈍感であり、安定した缶体強度が確保できる。この点は、従来の固溶Cのみを利用する場合に比べて有利な点である。
【0040】
なお、時効指数の測定方法は、製品鋼板から採取した引張試験片に7.5 %の引張予歪を与え除荷し、100 ℃×60min の時効を行ったのち、再度引張試験を行い変形応力を求め、時効前の変形応力と時効後の降伏応力の差を時効指数とする。なお、従来通常に用いられる2%予歪を付加して、170 ℃で20min 時効する方法では、ドラム缶体の強度と対応しなかった。この理由は不明であるが、Nによる歪時効硬化を利用していることが1つの要因と思われる。
【0041】
ドラム缶は、胴板、天板、地板から構成されている。本発明の冷延鋼板を素材として天板、地板をプレス加工し、胴板を曲げ成形し、その両端部を重ねシーム溶接あるいは突合わせ溶接により接合し缶胴部とし、缶胴部の両端に地板(および天板)を巻締めにより装着してドラム缶を形成する。地板のみを巻き締めたオープンタイプと、天板も巻き締めたクローズタイプがある。ドラム缶に成形したのち、化成処理、塗装−焼付け工程を施す。本発明の冷延鋼板を用いたドラム缶では、塗装後の焼き付け工程で、強度が大きく増加し、従来にはない高い缶体強度を示すようになる。本発明の冷延鋼板をドラム缶体の胴板、天板、地板の少なくとも1つに適用することにより、缶体強度増加の効果が得られる。
【0042】
【実施例】
(実施例1)
表1に示す化学組成の鋼を転炉で溶製し、連続鋳造法で260 mm厚のスラブ(鋼素材)とした。ついで、これらスラブを表2に示す条件で熱間圧延を施し、圧延終了後0.1 〜1.5secで水冷を開始し、表2に示す温度で巻取り、熱延板とした。ついで、これら熱延板を酸洗・冷間圧延により1.21mm厚の冷延板とした。これら冷延板に表2に示す条件で連続焼鈍を行い、ついで調質圧延を施し最終仕上板厚を1.2mm 厚とした。
【0043】
これら冷延鋼板について、引張特性(常温および500 ℃における引張強さ、0.5 %変形応力で代替する)、時効指数を求めた。なお、時効指数の測定方法は、製品鋼板から採取した引張試験片に7.5 %の引張予歪を与え除荷したのち、100 ℃×60min の時効を行い、再度引張試験を行い降伏応力を求め、時効前の降伏応力と時効後の降伏応力の差を時効指数とした。
【0044】
その結果を表3に示す。
【0045】
【表1】

Figure 0003727151
【0046】
【表2】
Figure 0003727151
【0047】
【表3】
Figure 0003727151
【0048】
本発明範囲の鋼板(本発明例 No.1〜 No.3 )は、40%以上の伸びを示し、延性の低下を伴うことなく常温強度、および500 ℃における高温強度が増加している。また、本発明例は時効指数も5kg/mm2以上を有し、本発明範囲を外れる比較例(No.4)にくらべ高い時効性を有していることがわかる。
また、組成が本発明範囲をはずれる比較例(No.5〜 No.7 )は、伸びが低く 延性が劣化している。
【0049】
ついで、これら鋼板から天板、地板をプレス加工し、胴板を曲げ成形し両端部をシーム溶接して缶胴部とし、缶胴部の両端に天板、地板を巻き締めにより装着し容量 200リットルの密封型ドラムとした。なお、外面にはメラミン塗装を施し、内面にはリン酸亜鉛による化成処理を施し、塗装後焼付け処理(180 ℃)を施した。製缶に際し、製缶時の加工性、溶接性等を調査し製缶性とした。
【0050】
また、これらドラム缶について、内部に水を充填し、1.2mの高さから落下させ漏れおよび変形量を調査する落下試験を実施した。なお、落下試験における変形量は、比較例(No.4)の変形量を1.00とし、比較例に対する比で示している。
また、再生利用試験として、これらドラム缶に、ドラム缶再生処理に相当する処理(800 ℃にて5min 保持後、200 ℃まで冷却し、ショットブラスト処理する)を複数回実施した。なお、ショットブラストはスチールショットを用い、ショット条件は一定とした。各処理を実施後、缶体の歪量を測定し、その値が基準地以上となる処理回数を再生利用限界回数として求めた。
【0051】
これらの結果を缶体特性として表3に示す。
表3から、本発明例は、製缶性も問題なく、落下試験において漏れを生じることもなく、さらに落下試験における変形量も比較例にくらべ減少し、缶体の高強度化が達成されていることがわかる。また、本発明例の再生利用限界回数は、比較例にくらべ、増加しており、このことからも本発明例のドラム缶は缶体強度が増加していることがわかる。
【0052】
さらに、比較のため、缶成形ののち、焼付け処理を行わず、直ちに落下試験を実施した場合と、焼付け処理を行った場合について落下後の変形量を比較した。その結果、本発明の範囲を外れる比較例では、焼付け処理により、たかだか3%程度の変形量の改善であったが、本発明例では、20%程度の顕著な変形量の改善が確認された。このことから、本発明鋼板が優れた焼付け硬化特性を有し、缶体強度の上昇に有効に寄与してていることがわかる。
【0053】
また、本発明鋼板は、ドラム缶に成形後促進時効処理を施さなくても室温における1日程度の自然時効により完全な焼付け時の時効による強度上昇の80%以上十分硬化することが確認されており、塗装後焼付け条件の微妙な変動にも鈍感であり、安定したドラム缶体強度が確保できる。
さらに、本発明の鋼板で構成されたドラム缶は、概ね100 ℃以上で数分加熱されれば、完全時効状態(210 ℃×20分の時効を経た状態)の95%以上の缶体強度が得られ、それ以上の温度上昇に対しても変化率は小さい。従って、本発明鋼を用いたドラム缶であれば、塗装・焼付け条件が100 ℃(この温度では焼付け自体は不十分であるが)以上に加熱されれば、所望する缶強度が確保でき、操業の温度変動などに対しても安定して缶体強度が確保される。
【0054】
しかし、従来鋼で構成されたドラム缶ではそのような低温度、短時間の焼付けでは十分な缶強度を安定して確保することができなかった。概ね、170 ℃±10℃にて20分の焼付けが必須である。
また、油類を充填し、−40℃の低温で上記した落下試験を実施したが、常温における試験結果と同様な結果が得られた。
(実施例2)
0.035 wt%C−0.01wt%Si−0.35wt%Mn−0.008wt %P−0.005wt %S−0.035wt %Alを基本組成としてN含有量を表4に示すように0.0020〜0.0150wt%の範囲で変化した鋼素材(スラブ)を用い、表4に示す条件で熱間圧延を施し、圧延終了後水冷し、表4に示す温度で巻取り熱延板とした。製品板での固溶N量を変化させるため、熱延加熱条件、圧延仕上条件を変化させて熱延板とした。ついで、これら熱延板を酸洗・冷間圧延により冷延板とした。これら冷延板に表4に示す条件で連続焼鈍(均熱時間40sec 一定)を行い、ついで調質圧延を施し最終仕上板厚を1.0mm 厚とした。
【0055】
これら冷延鋼板から胴板、天板、地板を加工し、胴板を曲げ成形し両端部をシーム溶接して缶胴部とし、缶胴部の両端に天板、地板を巻き締めにより装着し容量200lの密封型ドラムとした。なお、外面にはメラミン塗装を施し、内面にはリン酸亜鉛による化成処理を施し、塗装後焼付け処理(150 ℃)を施した。
これらドラム缶について、常温(30℃)および300 ℃で、ドラム缶外部から、円周方向の圧縮応力となるように集中荷重を負荷して、その際生じる缶体の変形量を測定した。さらに、実施例1と同様に再生利用試験を実施した。その結果を表4に示す。
【0056】
【表4】
Figure 0003727151
【0057】
本発明範囲の鋼板を用いたドラム缶(本発明例 No.8 〜 No.14)では、荷重負荷により生じる変形量が、比較例に比べ高温および常温とも著しく減少することがわかる。また、缶体再生利用試験における限界回数も比較例に比べて著しく増加している。
なお、ドラム缶内部の圧力を高くした場合の缶体の変形量についても、測定したが外部からの圧縮応力負荷に比べ大きな相違はみられず、本発明例のドラム缶の変形量が比較例の変形量にくらべ少ない傾向は同様に確認できた。
【0058】
また、ドラム缶の用途によっては、内容物の温度が高い状態(概ね70℃程度)で充填され、完全に冷えきらない条件で蓋をされる場合がある。その場合には、冷却過程で缶内部が負圧になり、缶体が十分な強度を有していないと、大気圧による座屈現象を起こすことが知られている。座屈を生ずる圧力(大気圧に対して負圧)を調査したところ、同一の製缶条件で比較して、本発明鋼を使用したドラム缶は、従来鋼を使用したドラム缶に比して、約10%程度高い強度が得られ、より高い温度あるいはより不利な条件での充填が行われた場合でも缶体の座屈現象を起こしにくく、より高効率の充填が可能となり、大気圧力による缶体の形状不良も発生しにくくなる。
【0059】
このように、35%以上の伸び値を有し、さらに固溶N量を0.0010wt%以上含む本発明の冷延鋼板をドラム缶素材として、缶を製造すれば、製缶性の低下もなく、常温および高温の缶体強度の増加が図れ、その結果再生利用回数の増加が期待できる。
ここでは、容量 200リットルの密封型ドラムについてのみ説明したが、オープン型のドラム缶、さらに小容量のドラム缶に対して適用しても同様の効果があることはいうまでもない。
【0060】
【発明の効果】
本発明によれば、製缶性の低下を伴うことなく、ドラム缶の強度増加が達成でき、内容物保管に対する信頼性が向上し、さらに再生利用回数の大幅な増加が見込めなど産業上格段の効果が期待できる。さらに、鋼板の薄肉化が達成でき、製缶コストの低減にも寄与できるという効果もある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel high-strength drum, and more particularly to a cold-rolled steel sheet suitable as a steel drum can material and a method for manufacturing the same.
[0002]
[Prior art]
Steel drums are roughly divided into two types. One is an open type drum defined as a steel open drum in JIS Z 1600, and the other is a sealed drum defined as a steel drum for liquids in JIS Z 1601. These drums are composed of a top plate, a base plate, and a body plate, and each top plate is provided with a cap (plug) of one size. The capacity of these drums is classified into 200 to 20 liters, 1 to 5 types for the open type and 1 to 4 types for the sealed type.
[0003]
Open drum is a container for storing and transporting liquids with viscosity such as powder, solid or paint, adhesive, synthetic resin products, etc. Sealed drum stores various liquids such as petroleum products and chemical products. Used as a container for transportation.
An open-type drum is a container in which a body made by bending a steel plate into a cylindrical shape and joined by seam welding and a disk-shaped ground plate are tightened. A removable top plate with a gasket is placed on the open upper surface, and a band Fasten to the fuselage using the fitting bolt or lever. On the other hand, a sealed drum is manufactured by winding a disk-shaped ground plate and a disk-shaped top plate around both ends of a body joined by seam welding. Further, the outer surface of these drums is usually subjected to chemical conversion treatment and coating, and the inner surface is also subjected to chemical conversion treatment and coating as necessary.
[0004]
Drum cans require shape accuracy of the cans and soundness of welded parts, joints, and tightened parts, and JIS standards stipulate that airtight tests (water pressure tests), drop tests, stack tests, etc. are performed. Yes.
Further, since various stresses are applied to the can body in various forms during actual use, the can body has a high room temperature strength so as not to cause a practically problematic deformation against the stress load. It is required to have.
[0005]
The steel plate that can be used as the drum material is a hot rolled mild steel plate and steel strip specified in JIS G 3131, or a cold rolled steel plate or steel strip specified in JIS G 3141. In addition, the thickness of the steel sheet to be used is specified in the range of 1.6 mm to 0.5 mm depending on the type and class of the drum. For example, in the case of Class 1 H class with a sealed drum capacity of 200 liters, it is decided to use steel plates with a plate thickness of 1.6 mm for the body plate, top plate, and ground plate.
[0006]
Conventionally, low carbon aluminum killed box annealed materials have been used as steel plates for drums with emphasis on workability. Its typical steel composition is 0.05-0.10% C-0.2-0.5% Mn--0.05% Si-0.04-0.10% Al-0.0015-0.0030% N. However, since then, the manufacturing process of steel sheets has been aimed at continuation, and continuous annealing materials with continuous annealing equipment, which is equipment with higher production efficiency, have been widely applied. The steel composition of the continuously annealed material has been almost the same as that of the low carbon aluminum killed box annealed material. At present, this low-carbon aluminum killed steel continuous annealing material has become mainstream in Japan, Europe and America. An example of tensile properties of the material being manufactured for drum plate thickness 1.0 ~1.2mm, yield stress (YS): 23kgf / mm 2 , a tensile strength (TS): 35kgf / mm 2 , elongation (EL): About 42%. In addition, hot-rolled material is also applied to some thick drums, but the ratio is low.
[0007]
Recently, attempts have been made to reduce the thickness of the drum can material in order to reduce can manufacturing costs. However, it is necessary to increase the strength of the material in order to compensate for the decrease in the strength of the can that accompanies a decrease in the thickness of the material. In addition, drums are not used only once, but are generally used after the contents are put in once and the inside is washed again or again, and on average, 4 to 5 times repeatedly. is there. In re-use, shot blasting is usually performed to remove deposits on the inner surface and paint on the outer surface. When the amount of deformation generated in the can body by this shot blasting process is large, the drum cans cannot be stacked and become unsuitable for recycling. Therefore, the amount of deformation of the can body by this shot blasting is one factor that determines the recycling.
[0008]
As a result of further investigation by the present inventors, it was newly found that the deformation of the can body by this shot blasting treatment cannot be prevented by merely increasing the room temperature strength of the steel sheet used.
That is, before the shot blasting process, an incineration process of heating the can body to about 800 ° C. may be performed, and then the shot blasting process is often performed before the can body is completely cooled. In addition to the small deformation amount of the can body due to the above-described shot blasting treatment, the present inventors determine that the deformation is not caused by the deformation during high-temperature heating or the shot blasting treatment at 200 to 500 ° C. I found out that it was an important factor. For this reason, it is also required that the can body has high high temperature strength at 200 ° C. or higher.
[0009]
In addition, as the strength of the material has increased, it has been difficult to satisfy all of the properties required for the material such as formability, weldability, and bondability (winding property) when making a drum can. For example, in the method of increasing the strength by solid solution of alloy elements, the method of increasing the strength by work hardening and precipitation hardening, the ductility is remarkably lowered, the formability and the tightening property are deteriorated, and the damage in the can drop test Becomes larger. In addition, in the strengthening method by solid solution of alloy elements, refinement of structure and increase of low-temperature transformation products, the strength of welded parts and workability are liable to deteriorate, and the airtightness decreases due to the occurrence of cracks, etc. There was also a problem in the uniformity of the material in each part of the steel sheet.
[0010]
As a drum can to which a high-strength steel plate is applied, for example, JP-A-56-77039 discloses an unannealed 0.4 to 0.9 mm thick cold-rolled steel plate having a yield point of 70 to 100 kg / mm 2 by cold rolling. As a body plate material, a drum can manufacturing method has been proposed in which only a processed portion provided for connection between a can body portion, a top plate, and a base plate is heat-treated to be softened to ensure formability. However, with this technique, the can body is annealed during the incineration process at 800 ° C., and recycling is remarkably controlled. In addition, distortion occurs due to unannealing, and in addition to the formation of a surface oxide film by heat treatment, Since only the part is heat-treated, the process becomes complicated and there is a problem that it is not suitable for mass production, and has not yet been put into practical use.
[0011]
As described above, there is no method for increasing the strength of an appropriate steel sheet that satisfies all the characteristics required for a material for use in a drum can, and the material thickness cannot be achieved.
[0012]
[Problems to be solved by the invention]
The present invention advantageously solves the above-mentioned problems, has a stretch of 35% or more as a drum can material, in order to manufacture a drum can that can achieve thinning, can be reduced in weight and cost, and can be reused more frequently. It is an object of the present invention to propose a cold-rolled steel sheet for drums that has excellent formability, weldability, and tightness, has high strength after canning and has excellent bake hardenability, and a method for producing the same.
[0013]
[Means for Solving the Problems]
As a result of various studies on the steel plate composition and manufacturing method in order to solve the above-mentioned problems, the present inventors have found a steel plate that has a relatively low strength when forming a drum can and can expect a significant increase in strength in the subsequent painting and baking process. We thought that if we can use it as a drum can material, we will be able to satisfy both excellent canability and high strength, and we will use a steel plate that uses solid solution N strengthening that has not been actively used as a drum can material. As a result, it has been found that the drum can exhibit a weldability equivalent to that of a conventional material and a formability of a welded portion, and can have a high can strength by strain age hardening after canning. In addition, it has been found that the drum can has a high temperature strength that has never been seen before and can be used for special purposes such as heating the can from inside and outside. On the other hand, it has also been found that a steel sheet using only the strengthening by solute C as in the prior art has a significant decrease in ductility and is unsuitable as a drum material.
[0014]
The present invention is configured based on the above-described findings.
That is, the present invention is, by weight percent, C: 0.10% or less, Si: 0.20% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.03% or less, Al: 0.150% or less, N: 0.0050 to A cold-rolled steel sheet for drums, containing 0.0200%, the balance being Fe and inevitable impurities.
[0015]
In the present invention, the weight percentage is C: 0.10% or less, Si: 0.20% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.03% or less, Al: 0.150% or less, N: 0.0050 to Ductility and bake hardenability with an elongation of 35% or more, characterized by containing 0.0200%, the balance being Fe and inevitable impurities, and of the N content being 0.0010% or more as solute N It is an excellent cold-rolled steel sheet for drums.
[0016]
In the present invention, the weight percentage is C: 0.10% or less, Si: 0.20% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.03% or less, Al: 0.150% or less, N: 0.0050 to A steel material containing 0.0200%, with the balance being Fe and inevitable impurities, is heated and subjected to hot rolling to a finish rolling temperature of 800 ° C or higher, and forced cooling is performed within 2 seconds after the hot rolling is completed. Start and wind at a temperature of 650 ° C. or lower to make a hot rolled sheet, then pickle the hot rolled sheet, and then cold-roll into a cold-rolled sheet. A method for producing a cold-rolled steel sheet for a drum can excellent in ductility and bake hardenability, characterized by annealing or further temper rolling.
[0017]
In addition, the present invention is a steel high-strength drum that uses the cold-rolled steel plate having the above composition for at least one of a body plate, a top plate, and a base plate.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the chemical composition of the steel sheet of the present invention will be described.
C: 0.10% or less C dissolves in the base and increases the strength of the steel sheet. However, if it exceeds 0.10%, carbides are formed and ductility is deteriorated. In the flange forming process, cracks frequently occur, and in a drop test characteristic as a drum can strength test, there is a high risk that the winding part is broken to cause leakage and become defective. For this reason, in this invention, the upper limit of C content was made into 0.10% from a viewpoint of a moldability. Further, from the viewpoint of moldability, the C content is preferably 0.02% or more and 0.08% or less.
[0019]
Si: 0.20% or less
Si is useful as a strengthening element, but if it is contained in a large amount, the cold rolling property, surface treatment property, and corrosion resistance deteriorate. For this reason, Si content was limited to 0.20% or less. In particular, when used in applications requiring corrosion resistance, the Si content is preferably limited to 0.10% or less.
[0020]
Mn: 1.0% or less
Mn is an element that prevents hot cracking due to S, and is added according to the S content. Further, Mn has an effect of refining crystal grains, and the addition of Mn is preferable in terms of material. However, if it is added in a large amount, the corrosion resistance tends to deteriorate, and the steel plate is hardened to deteriorate the cold rolling property. Furthermore, since a large amount of Mn tends to deteriorate weldability and formability of the welded portion, the Mn content is limited to 1.0% or less. In the case where good corrosion resistance and moldability are required, the Mn content is preferably 0.60% or less.
[0021]
P: 0.04% or less P significantly hardens steel, deteriorates flange workability and neck workability at the time of manufacturing a drum can, and remarkably deteriorates corrosion resistance. Moreover, P has a strong tendency to segregate in steel and causes embrittlement of the weld. For these reasons, P is limited to 0.04% or less. In addition, Preferably it is 0.02% or less.
[0022]
S: 0.03% or less S is mainly present as an inclusion in steel, so it is preferable to reduce it as much as possible in order to reduce the elongation of the steel sheet and further reduce the corrosion resistance, but 0.03% is acceptable. In addition, when good workability is required, the content is preferably 0.015% or less.
[0023]
Al: 0.150% or less
Al is a useful element that is added as a deoxidizing element and improves the cleanliness of the steel, and also has an effect of refining the structure, and it is actively added. However, when the Al content exceeds 0.15%, the surface properties of the steel sheet deteriorate and the amount of solute N is significantly reduced. For this reason, Al content was limited to 0.15% or less. From the viewpoint of the stability of the material, the range of 0.010 to 0.080% is preferable.
[0024]
N: 0.0050-0.0200%
N has a function of increasing the room temperature strength and high temperature strength of the steel plate by dissolving in the steel. In the present invention, a predetermined amount of solid solution N is secured, and the strength of the steel sheet is increased by solid solution strengthening. For this purpose, the N content needs to be at least 0.0050% or more. However, if the content exceeds 0.0200%, the internal defect occurrence rate of the steel sheet increases, and cracking during casting becomes prominent. For this reason, N content was limited to 0.0050 to 0.0200% of range. In consideration of the entire manufacturing process, the range of 0.0070 to 0.0170% is preferable from the viewpoint of stability of material and improvement of yield.
[0025]
Furthermore, N does not impede the weldability and workability of the welded portion required at the time of making a drum can, and contributes effectively to an increase in steel sheet strength. Further, N shows an effect more than the usual solid solution strengthening for improving the strength of the drum body, and it can be said that “strain age hardening” is caused. If the N content is within the scope of the present invention, no significant increase in seam weld hardness is observed.
[0026]
The balance consists of Fe and unavoidable impurities. Cu: 0.2% or less, Ni: 0.2% or less, Cr: 0.2% or less, Mo: 0.2% or less, Nb: 0.02% or less, Ti: 0.02% Hereinafter, it is preferable to limit to B: 0.0010% or less of range. By containing these elements, the strength of the steel sheet is increased, but the weldability, the workability of the welded portion, and the chemical conversion property are remarkably deteriorated, so that the application to the drum can becomes extremely difficult, and is limited to the above range.
[0027]
Next, the reasons for limiting the manufacturing conditions of the steel sheet will be described.
The molten steel having the above composition is melted by a generally known melting method such as a converter or an electric furnace, and solidified into a slab by a known method such as a continuous casting method, an ingot forming method or a thin slab casting method to obtain a steel material. Is preferred. Among these known casting methods, the continuous casting method is preferable in order to prevent macro segregation.
[0028]
The steel material is heated and hot rolled.
The heating temperature of the material is not particularly limited, but is preferably in the range of 1000 to 1300 ° C. to make the material uniform. If the temperature exceeds 1300 ° C, the crystal grains become coarse and the elongation characteristics deteriorate. Moreover, if it is less than 1000 degreeC, a deformation resistance becomes high and a rolling load will increase and hot rolling will become difficult.
[0029]
The hot rolling finish rolling temperature is set to 800 ° C or higher.
By setting the finishing rolling temperature to 800 ° C. or more, a uniform and fine hot-rolled sheet structure can be obtained, and the structure of the final product can be uniformly refined. Furthermore, solid solution N can be secured stably in the hot-rolled sheet stage, and the mechanical properties in the final product are also stabilized. If the finish rolling temperature is less than 800 ° C., a uniform fine structure cannot be obtained. On the other hand, if the finish rolling temperature exceeds 1000 ° C., the generation of wrinkles due to the scale during finish rolling becomes remarkable, which is not preferable for drums that require surface integrity. In view of the uniformity of the material, the finish rolling temperature is preferably in the range of 820 to 920 ° C.
[0030]
Forced cooling is started within 2 seconds after the hot rolling process is completed.
Forced cooling starts immediately after rolling. The start of forced cooling is within 2 seconds after the end of rolling, which is effective for improving the normal temperature strength and high temperature strength of the final product. The forced cooling is preferably water cooling or mist cooling, and the cooling rate is preferably 50 ° C./s or more. By forcibly cooling after rolling, precipitation of AlN, which is easily promoted by rolling strain, can be prevented, and a base on which solid solution N can be effectively secured even through a cold rolling / annealing process can be obtained. Furthermore, by forced cooling after rolling, the growth of crystal grains is suppressed and uniform refinement of the hot rolled sheet structure is achieved.
[0031]
In order to prevent overcooling of the steel plate edge portion, it is preferable to perform masking during cooling so that the edge portion is not directly exposed to water. Thereby, the flange workability at the time of can-making of a drum can and the soundness of a winding fastening part are securable.
The coiling temperature should be 650 ° C or less.
By setting the coiling temperature to 650 ° C. or lower, solid solution N in the hot-rolled sheet can be secured, and a predetermined amount or more (0.0010% or more) of solid solution N can be obtained in the final product. However, when the coiling temperature is less than 400 ° C., the hot-rolled sheet shape deteriorates, and the hardness difference in the width direction of the steel sheet further increases, which may deteriorate the steel sheet shape after cold rolling. Therefore, the coiling temperature is 650 ° C. or lower, preferably 400 ° C. or higher.
[0032]
The hot-rolled sheet is pickled and then cold-rolled to form a cold-rolled sheet.
The pickling conditions for the hot-rolled sheet need not be specified in particular, and it is sufficient if the surface scale can be removed, and the surface scale is usually removed by a known method, for example, an acid such as hydrochloric acid or sulfuric acid.
Although cold rolling is performed in order to make a hot-rolled sheet into a cold-rolled sheet having a predetermined thickness, it is not necessary to specifically limit rolling conditions such as the cold rolling rate in the present invention, but the cold rolling rate is the final plate shape. It is preferable to make it into the range of 40 to 85% from the point of improvement of structure and refinement | miniaturization of structure | tissue.
[0033]
The cold rolled sheet is annealed at a temperature equal to or higher than the recrystallization temperature.
Annealing is performed at a temperature higher than the recrystallization temperature. Here, the recrystallization temperature means the recrystallization end temperature. When annealing is performed below the recrystallization end temperature, the structure becomes an unrecrystallized structure. The non-recrystallized structure has high strength but low ductility, and shows a tendency to rapidly soften when exposed to high temperatures, so that it is not suitable for applications exposed to high temperatures, for example, drum cans for welding assembly. It becomes inappropriate. Furthermore, the variation of the material increases in the width direction and the longitudinal direction of the steel plate. For this reason, annealing of a cold-rolled sheet shall be implemented at the temperature more than the recrystallization completion temperature. In order to secure the amount of dissolved N, it is preferable to hold the heating temperature for 60 seconds or less.
[0034]
The annealing cycle is a simple heating / cooling cycle, and it is not particularly necessary to perform an overaging treatment. However, since there is no particular change in the material even when overaging is performed, a heat cycle continuous annealing facility that performs overaging may be used.
In addition, in order to clean the surface of a cold-rolled annealing board, you may perform pickling after annealing as needed.
[0035]
The annealed cold-rolled steel sheet is further subjected to temper rolling.
The temper rolling is performed to eliminate or reduce the yield point elongation, and to adjust the surface roughness of the steel sheet and improve the shape of the original sheet. The rolling reduction of temper rolling is preferably 5% or less. If the rolling reduction exceeds 5%, the ductility of the steel sheet deteriorates. In order to adjust the surface roughness, it is preferably 1% or more and 5% or less.
[0036]
The temper-rolled steel sheet may be subjected to surface treatment as necessary. Suitable surface treatments applied to ordinary cold-rolled steel sheets such as tin plating, chromium plating, nickel plating, nickel / chromium plating, zinc plating, various alloy platings, chemical conversion treatments, etc. Needless to say, it can be applied to the above. Moreover, it is good also as a hot dip galvanized steel plate to which the hot dip galvanization process is given in a continuous hot dip galvanizing line after cold rolling. In addition, there is no problem even after making these platings or directly making a can by coating or applying an organic resin film.
[0037]
A cold-rolled steel sheet manufactured according to the above-described manufacturing conditions shows a high elongation of 35% or more, and further contains a solid solution N amount of 0.0010% or more. A drum can made using the cold-rolled steel sheet is: Compared to the case of using conventional steel plates, by applying the painting and baking process after making the can, the drum can has a high normal temperature strength by bake hardening and a high high temperature strength in the high temperature range (specifically 300-800 ° C). It becomes. In addition, in order to make the can strength after can-making stable and high strength, the solid solution N amount is preferably in the range of 0.0015 to 0.0100%. The adjustment of the solid solution N amount is preferably performed by a combination of the total N amount of the steel material and hot rolling (cold rolling) annealing conditions.
[0038]
In addition, the solid solution N amount as used in the field of this invention means the N amount which remove | subtracted the precipitation N amount obtained by the precipitation N analysis method by melt | dissolution by bromine ester from the total N amount in steel.
In order to stably produce a drum can, the ductility of the can material is an important factor. If the steel sheet has an elongation value of 35% or more, stable can production is possible. The elongation value is measured by a tensile test. The specimen is collected in the circumferential direction when the drum can is formed.
[0039]
The cold-rolled steel sheet of the present invention is a steel sheet showing an aging index of 5 kgf / mm 2 or more. Further, a steel plate having an aging index of 7 kgf / mm 2 or more is desirable in order to obtain high resistance to local deformation and higher strength at high temperatures as the drum can body. It is desirable to adjust the aging index mainly by adjusting the amount of dissolved N. By using the cold-rolled steel sheet of the present invention as a raw material, a drum can having high normal temperature strength and high temperature strength is obtained after undergoing a forming process and a painting-baking process. In addition, the steel sheet of the present invention is sufficiently hardened by natural aging for about one day at room temperature without special accelerated aging treatment, is insensitive to subtle fluctuations in baking conditions after coating, and has a stable can strength. It can be secured. This is an advantage over the conventional case where only solid solution C is used.
[0040]
The aging index is measured by applying a 7.5% tensile pre-strain to a tensile test piece taken from the product steel plate, unloading it, aging it at 100 ° C for 60 min, and then performing a tensile test again to obtain the deformation stress. The aging index is the difference between the deformation stress before aging and the yield stress after aging. Note that the conventional method of adding 2% pre-strain and aging for 20 minutes at 170 ° C. did not correspond to the strength of the drum can. The reason for this is unknown, but it seems that one factor is the use of strain age hardening by N.
[0041]
The drum can is composed of a body plate, a top plate, and a main plate. Using the cold-rolled steel sheet of the present invention as a raw material, the top plate and the base plate are pressed, the body plate is bent, and both ends thereof are joined by seam welding or butt welding to form a can body portion, at both ends of the can body portion. A base plate (and a top plate) is attached by winding and a drum can is formed. There are open type that only tightens the main plate and close type that also tightens the top plate. After forming into a drum, chemical conversion treatment and painting-baking process are performed. In the drum can using the cold-rolled steel sheet of the present invention, the strength is greatly increased in the baking process after coating, and a high strength of the can that is not found in the prior art is exhibited. By applying the cold-rolled steel sheet of the present invention to at least one of the drum plate body plate, top plate, and ground plate, an effect of increasing the strength of the can body can be obtained.
[0042]
【Example】
(Example 1)
Steel having the chemical composition shown in Table 1 was melted in a converter, and a slab (steel material) having a thickness of 260 mm was obtained by a continuous casting method. Subsequently, these slabs were hot-rolled under the conditions shown in Table 2, water cooling was started at 0.1 to 1.5 seconds after the completion of rolling, and the slabs were wound at the temperatures shown in Table 2 to obtain hot-rolled sheets. Subsequently, these hot-rolled sheets were made into cold-rolled sheets having a thickness of 1.21 mm by pickling and cold rolling. These cold-rolled sheets were subjected to continuous annealing under the conditions shown in Table 2 and then subjected to temper rolling to a final finished sheet thickness of 1.2 mm.
[0043]
For these cold-rolled steel plates, tensile properties (tensile strength at room temperature and 500 ° C., substituting with 0.5% deformation stress) and aging index were determined. The aging index is measured by applying 7.5% tensile pre-strain to a tensile specimen taken from the product steel plate, unloading it, aging at 100 ° C x 60min, performing a tensile test again to obtain the yield stress, The difference between the yield stress before aging and the yield stress after aging was defined as the aging index.
[0044]
The results are shown in Table 3.
[0045]
[Table 1]
Figure 0003727151
[0046]
[Table 2]
Figure 0003727151
[0047]
[Table 3]
Figure 0003727151
[0048]
The steel sheets within the scope of the present invention (Invention Examples No. 1 to No. 3) exhibit an elongation of 40% or more, and increase in normal temperature strength and high temperature strength at 500 ° C. without decreasing ductility. In addition, it can be seen that the examples of the present invention have an aging index of 5 kg / mm 2 or more, and have higher aging properties than the comparative example (No. 4) outside the scope of the present invention.
In the comparative examples (No. 5 to No. 7) in which the composition is out of the range of the present invention, the elongation is low and the ductility is deteriorated.
[0049]
Next, the top plate and the main plate are pressed from these steel plates, the body plate is bent, and both ends are seam welded to form a can body, and the top and ground plates are attached to both ends of the can body by tightening. A liter sealed drum was obtained. The outer surface was painted with melamine, the inner surface was subjected to chemical conversion treatment with zinc phosphate, and the coating was baked (180 ° C). When making cans, the processability and weldability at the time of can making were investigated and made into can making properties.
[0050]
These drums were filled with water and dropped from a height of 1.2 m, and a drop test was conducted to investigate leakage and deformation. The deformation amount in the drop test is shown as a ratio with respect to the comparative example with the deformation amount of the comparative example (No. 4) being 1.00.
In addition, as a recycling test, the drums were subjected to a process corresponding to the drum recycling process (held at 800 ° C. for 5 minutes, then cooled to 200 ° C. and shot blasted) a plurality of times. The shot blasting was a steel shot and the shot conditions were constant. After each treatment, the amount of strain of the can was measured, and the number of treatments where the value was equal to or higher than the reference ground was determined as the reusable limit number.
[0051]
These results are shown in Table 3 as can body characteristics.
From Table 3, the example of the present invention has no problem in can manufacturing, does not cause leakage in the drop test, and further, the deformation amount in the drop test is reduced compared to the comparative example, and the strength of the can body is increased. I understand that. In addition, the recycle limit number of the example of the present invention is increased as compared with the comparative example, and it can be seen from this that the drum strength of the example of the present invention is increased.
[0052]
Furthermore, for comparison, the amount of deformation after dropping was compared between the case where the drop test was performed immediately after the can molding without performing the baking process and the case where the baking process was performed. As a result, in the comparative example out of the scope of the present invention, the deformation amount was improved by about 3% by the baking process, but in the present invention example, a remarkable improvement in deformation amount by about 20% was confirmed. . From this, it can be seen that the steel sheet of the present invention has excellent bake-hardening properties and contributes effectively to an increase in can strength.
[0053]
In addition, it has been confirmed that the steel sheet of the present invention is sufficiently hardened by 80% or more of the increase in strength due to aging at the time of complete baking by natural aging for about one day at room temperature even if the drum can is not subjected to accelerated aging treatment after forming. It is insensitive to subtle fluctuations in the baking conditions after painting, and a stable drum can strength can be secured.
Furthermore, if the drum made of the steel plate of the present invention is heated at about 100 ° C. or more for several minutes, it can obtain a strength of 95% or more of a fully aged state (210 ° C. × 20 minutes after aging). However, the rate of change is small even when the temperature rises further. Therefore, in the case of a drum can using the steel of the present invention, if the coating and baking conditions are heated to 100 ° C. or higher (the baking itself is insufficient at this temperature), the desired can strength can be secured and the operation can be performed. Can strength is secured stably against temperature fluctuations.
[0054]
However, drums made of conventional steel cannot stably secure sufficient can strength by baking at such a low temperature for a short time. Generally, baking for 20 minutes at 170 ° C ± 10 ° C is essential.
Moreover, oil was filled and the above drop test was performed at a low temperature of −40 ° C., and the same result as the test result at normal temperature was obtained.
(Example 2)
0.035 wt% C-0.01 wt% Si-0.35 wt% Mn-0.008 wt% P-0.005 wt% S-0.035 wt% Al content in the range of 0.0020 to 0.0150 wt% as shown in Table 4 Using the steel material (slab) changed in the above, hot rolling was performed under the conditions shown in Table 4, water-cooled after the completion of rolling, and a rolled hot rolled sheet was obtained at the temperature shown in Table 4. In order to change the amount of solute N in the product plate, the hot-rolled plate was obtained by changing the hot-rolling heating conditions and the rolling finishing conditions. Subsequently, these hot-rolled sheets were made into cold-rolled sheets by pickling and cold rolling. These cold rolled sheets were subjected to continuous annealing under the conditions shown in Table 4 (soaking time constant 40 seconds), then subjected to temper rolling to a final finished sheet thickness of 1.0 mm.
[0055]
The body plate, top plate, and ground plate are processed from these cold-rolled steel plates, the body plate is bent, both ends are seam welded to form a can body, and the top and ground plates are attached to both ends of the can body by tightening. A 200-liter sealed drum was used. The outer surface was painted with melamine, the inner surface was subjected to chemical conversion treatment with zinc phosphate, and the coating was baked (150 ° C).
For these drums, concentrated load was applied from the outside of the drum at a normal temperature (30 ° C.) and 300 ° C. so as to obtain a compressive stress in the circumferential direction, and the amount of deformation of the resulting can was measured. Further, a recycling test was conducted in the same manner as in Example 1. The results are shown in Table 4.
[0056]
[Table 4]
Figure 0003727151
[0057]
It can be seen that in drums using the steel sheets within the scope of the present invention (Invention Examples No. 8 to No. 14), the amount of deformation caused by a load is significantly reduced at both high and normal temperatures as compared to the comparative example. Further, the limit number of times in the can recycling test is remarkably increased as compared with the comparative example.
In addition, the amount of deformation of the can when the pressure inside the drum can was increased was also measured, but there was no significant difference compared to the external compressive stress load, and the amount of deformation of the drum can of the present invention was a deformation of the comparative example. A tendency to be smaller than the amount was confirmed in the same manner.
[0058]
Depending on the use of the drum, the contents may be filled at a high temperature (approximately 70 ° C.) and the lid may be capped under conditions that do not completely cool. In that case, it is known that the inside of the can becomes negative pressure during the cooling process, and if the can body does not have sufficient strength, a buckling phenomenon due to atmospheric pressure occurs. When the pressure at which buckling occurs (negative pressure with respect to atmospheric pressure) was investigated, the drum can using the steel of the present invention compared with the same can manufacturing conditions, compared to the drum can using the conventional steel. High strength of about 10% can be obtained, and even when filling at higher temperatures or adverse conditions, the can body is less likely to buckle and more efficient filling is possible. It is difficult for the shape defect to occur.
[0059]
Thus, having a elongation value of 35% or more, and further using the cold-rolled steel sheet of the present invention containing 0.0010 wt% or more of solid solution N as a drum can material, without producing a can, The strength of the can at normal temperature and high temperature can be increased, and as a result, the number of recycling can be expected to increase.
Here, only the sealed drum having a capacity of 200 liters has been described, but it goes without saying that the same effect can be obtained when applied to an open-type drum can and a small-capacity drum can.
[0060]
【The invention's effect】
According to the present invention, the strength of drum cans can be increased without lowering the can-making ability, the reliability for storage of contents can be improved, and a significant increase in the number of recycling can be expected. Can be expected. Furthermore, it is possible to achieve a reduction in the thickness of the steel sheet and to contribute to a reduction in can manufacturing costs.

Claims (4)

重量%で、
C:0.10%以下、 Si:0.20%以下、
Mn:1.0 %以下、 P:0.04%以下、
S:0.03%以下、 Al:0.150 %以下、
N:0.0050〜0.0200%
を含有し、残部がFeおよび不可避的不純物からなることを特徴とするドラム缶用冷延鋼板。
% By weight
C: 0.10% or less, Si: 0.20% or less,
Mn: 1.0% or less, P: 0.04% or less,
S: 0.03% or less, Al: 0.150% or less,
N: 0.0050-0.0200%
A cold-rolled steel sheet for drums, characterized in that the balance is made of Fe and inevitable impurities.
重量%で、
C:0.10%以下、 Si:0.20%以下、
Mn:1.0 %以下、 P:0.04%以下、
S:0.03%以下、 Al:0.150 %以下、
N:0.0050〜0.0200%
を含有し、残部がFeおよび不可避的不純物からなり、かつ前記N含有量のうち、固溶Nとして0.0010%以上含有することを特徴とする伸び35%以上を有し延性および焼付け硬化性に優れたドラム缶用冷延鋼板。
% By weight
C: 0.10% or less, Si: 0.20% or less,
Mn: 1.0% or less, P: 0.04% or less,
S: 0.03% or less, Al: 0.150% or less,
N: 0.0050-0.0200%
And the balance is Fe and inevitable impurities, and out of the N content, 0.0010% or more as solid solution N is contained, and has an elongation of 35% or more and is excellent in ductility and bake hardenability Cold rolled steel sheet for drums.
重量%で、
C:0.10%以下、 Si:0.20%以下、
Mn:1.0 %以下、 P:0.04%以下、
S:0.03%以下、 Al:0.150 %以下、
N:0.0050〜0.0200%
を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、加熱し仕上圧延温度を800 ℃以上とする熱間圧延加工を施し、該熱間圧延加工終了後2sec 以内に強制冷却を開始し、巻取り温度:650 ℃以下で巻取り熱延板としたのち、該熱延板を酸洗し、ついで冷間圧延により冷延板とし、該冷延板に再結晶温度以上で焼鈍を行い、あるいはさらに調質圧延を施すことを特徴とする延性および焼付け硬化性に優れたドラム缶用冷延鋼板の製造方法。
% By weight
C: 0.10% or less, Si: 0.20% or less,
Mn: 1.0% or less, P: 0.04% or less,
S: 0.03% or less, Al: 0.150% or less,
N: 0.0050-0.0200%
The steel material, the balance of which contains Fe and inevitable impurities, is heated and subjected to hot rolling to a finish rolling temperature of 800 ° C or higher, and forced cooling is started within 2 seconds after the hot rolling is completed. Winding temperature: 650 ℃ or less to make a hot rolled sheet, pickled the hot rolled sheet, then cold rolled into a cold rolled sheet, and annealed at the recrystallization temperature or higher to the cold rolled sheet Or a method for producing a cold-rolled steel sheet for a drum can excellent in ductility and bake hardenability, characterized by further subjecting temper rolling.
請求項1または2に記載の冷延鋼板を胴板、天板および地板のうち少なくとも1つに用いたことを特徴とする鋼製高強度ドラム缶。A steel high-strength drum that uses the cold-rolled steel sheet according to claim 1 or 2 as at least one of a body plate, a top plate, and a ground plate.
JP23993897A 1997-09-04 1997-09-04 Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum Expired - Fee Related JP3727151B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23993897A JP3727151B2 (en) 1997-09-04 1997-09-04 Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum
KR1019997003932A KR20000068896A (en) 1997-09-04 1998-09-03 Steel plates for drum cans, method of manufacturing the same, and drum can
EP98941704A EP0943696A4 (en) 1997-09-04 1998-09-03 Steel plates for drum cans, method of manufacturing the same, and drum can
CN98801678A CN1092714C (en) 1997-09-04 1998-09-03 Steel plates for drum cans, method of manufacturing same, and drum can
CA 2270916 CA2270916A1 (en) 1997-09-04 1998-09-03 Steel plates for drum cans, method of manufacturing the same, and drum can
PCT/JP1998/003956 WO1999011835A1 (en) 1997-09-04 1998-09-03 Steel plates for drum cans, method of manufacturing the same, and drum can
CNB021085110A CN1162566C (en) 1997-09-04 1998-09-03 Steel plate for barrel and its making process and barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23993897A JP3727151B2 (en) 1997-09-04 1997-09-04 Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum

Publications (2)

Publication Number Publication Date
JPH1180886A JPH1180886A (en) 1999-03-26
JP3727151B2 true JP3727151B2 (en) 2005-12-14

Family

ID=17052062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23993897A Expired - Fee Related JP3727151B2 (en) 1997-09-04 1997-09-04 Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum

Country Status (1)

Country Link
JP (1) JP3727151B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316036B2 (en) * 1999-08-04 2013-10-16 Jfeスチール株式会社 Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof
KR100554753B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof
JP4853325B2 (en) * 2007-02-23 2012-01-11 Jfeスチール株式会社 Thin wall cold-rolled steel sheet for drums and method for producing the same
US20110076177A1 (en) * 2008-04-03 2011-03-31 Jfe Steel Corporation High-strength steel sheet for cans and method for manufacturing the same
JP5315928B2 (en) * 2008-10-29 2013-10-16 新日鐵住金株式会社 Cold rolled steel sheet for drums and method for producing the same
JP5660291B2 (en) * 2010-07-29 2015-01-28 Jfeスチール株式会社 High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
CN102796943B (en) * 2012-08-31 2014-07-23 宝山钢铁股份有限公司 Thin strip steel for thin-wall oil drum and manufacturing method of thin strip steel

Also Published As

Publication number Publication date
JPH1180886A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5794004B2 (en) Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
JP4853325B2 (en) Thin wall cold-rolled steel sheet for drums and method for producing the same
JP5854134B2 (en) 3-piece can body and manufacturing method thereof
WO1999011835A1 (en) Steel plates for drum cans, method of manufacturing the same, and drum can
JP2001107186A (en) High strength steel sheet for can and its producing method
JP3727151B2 (en) Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3727150B2 (en) Hot-rolled steel sheet for drums, method for producing the same, and steel high-strength drum
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JP3976396B2 (en) High-strength steel plate for drums, method for producing the same, and steel drum
JP2004197119A (en) Hot-rolled steel sheet superior in uniformity of material quality, hot-dipped steel sheet, and manufacturing method therefor
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JPH01184229A (en) Production of steel sheet for di can having excellent stretch flanging property
JP5929739B2 (en) Steel plate for aerosol can bottom and manufacturing method thereof
JP5315928B2 (en) Cold rolled steel sheet for drums and method for producing the same
JP5463720B2 (en) Cold rolled steel sheet for can steel sheet, steel sheet for can and manufacturing method thereof
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
CN115135795B (en) High-strength tin-plated original plate and manufacturing method thereof
JP4301013B2 (en) Cold-rolled steel sheet with excellent dent resistance
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees