JP3726644B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP3726644B2
JP3726644B2 JP2000155567A JP2000155567A JP3726644B2 JP 3726644 B2 JP3726644 B2 JP 3726644B2 JP 2000155567 A JP2000155567 A JP 2000155567A JP 2000155567 A JP2000155567 A JP 2000155567A JP 3726644 B2 JP3726644 B2 JP 3726644B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
switching element
voltage
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000155567A
Other languages
English (en)
Other versions
JP2001339955A (ja
Inventor
敏也 神舎
直景 岸本
善宣 村上
丈二 大山
滋 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000155567A priority Critical patent/JP3726644B2/ja
Publication of JP2001339955A publication Critical patent/JP2001339955A/ja
Application granted granted Critical
Publication of JP3726644B2 publication Critical patent/JP3726644B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源装置に関するものである。
【0002】
【従来の技術】
図12は放電灯点灯装置を構成する従来の電源装置の一例を示す。この従来例は、交流電源ACに、出力端側に接続したコンデンサCfとともにフィルタ回路を構成するインダクタンス素子Lfを介して接続されたダイオードブリッジからなる整流回路DBと、この整流回路DBの一対の出力端間に接続されたインバータ回路部1と、インバータ回路部1に接続された谷埋め電源回路部2とから構成される(例えば特開平9−320783号公報参照)。
【0003】
インバータ回路部1は、高周波ダイオード(以下、ダイオードと言う)D1、D2を介して整流回路DBの両出力端間に接続した電界効果トランジスタよりなるスイッチング素子Q1,Q2の直列回路と、両スイッチング素子Q1,Q2の接続点とダイオードD1,D2の接続点との間に接続された直流カット用コンデンサC1、共振負荷回路3、自励発振用の駆動トランスDT1の一次巻線の直列回路と、ダイオードD2に並列接続されたインピーダンス素子としてのコンデンサC3と、各スイッチング素子Q1,Q2に対応して設けられた駆動トランスDT1の2次巻線とスイッチング素子Q1,Q2のゲート端子との間に挿入された抵抗R1、R2と、スイッチング素子Q1,Q2の何れか一方のスイッチングを起動する起動回路(図示せず)で構成される。
【0004】
谷埋め電源回路部2は、上記スイッチング素子Q1,Q2の直列回路に並列に接続される、平滑コンデンサC0、インダクタンス素子(別のインダクタンス素子)L1、ダイオードD4の直列回路と、該直列回路の両端間に接続されたコンデンサC2と、インダクタンス素子L1及びダイオードD4の接続点と上記共振負荷回路3及び駆動トランスDT1の1次巻線の接続点との間に接続されたダイオードD3とで構成される。
【0005】
共振負荷回路3は図13に示すようにコンデンサC1と駆動トランスDT1の一次巻線との間に一次巻線を挿入したリーケージトランスよりなるトランスLT1と、このトランスLT1の二次巻線の両端に、両側のフィラメント電極の夫々の一端を接続し、フィラメント電極の夫々の他端間にコンデンサC4を接続した蛍光灯のような負荷である放電灯FLとで構成され、コンデンサC4とトランスLT1の漏れインダクタンスと放電灯FLとで共振回路を構成する。
【0006】
この従来例の動作を以下に説明する。まず電源投入があり、起動回路(図示せず)によって、インバータ回路部1のスイッチング素子Q2がオンすると、整流回路DBの整流出力によりダイオードD1、D2、平滑コンデンサC0、インダクタンス素子L1、ダイオードD3、駆動トランスDT1の一次巻線、スイッチング素子Q2の経路で平滑コンデンサC0が充電されて整流回路DBの脈流出力が平滑される。そして整流回路DBの出力電圧が低下すると、平滑コンデンサC0→コンデンサC3→コンデンサC1→共振負荷回路3→駆動トランスDT1→スイッチング素子Q2→ダイオードD4→インダクタンス素子L1→平滑コンデンサC0の経路で共振電流が流れ、コンデンサC3を充電する(コンデンサC3充電モード)。
【0007】
その後、コンデンサC3に電荷が溜まり、その電位と整流回路DBの出力電圧との和が谷埋め電源回路部2の出力電圧と釣り合うと上記経路での共振電流が流れなくなり、整流回路DBよりコンデンサC1→共振負荷回路3→駆動トランスDT1の一次巻線→スイッチング素子Q2→整流回路DBの経路で共振電流が流れ、入力電流が引き込まれる(入力電流流入モード)。なお、コンデンサC3を充電する期間と、入力電流が引き込まれる期間との割合は、整流回路DBの出力電圧が高いほど、入力電流が引き込まれる期間の割合が大きくなる。
【0008】
ここで、整流回路DBの出力電圧が平滑コンデンサC0の平滑電圧よりも高い場合は、整流回路DBよりダイオードD1,D2→コンデンサC0→インダクタンス素子L1→ダイオードD3→駆動トランスDT1の一次巻線→スイッチング素子Q2→整流回路DBの経路で三角波状の充電電流(チョッパー電流)が流れる。尚、この充電電流のピーク値は整流回路DBの出力電圧に比例する。
【0009】
スイッチング素子Q2がオフすると、共振負荷回路3から駆動トランスDT1の一次巻線→スイッチング素子Q1の寄生ダイオード→谷埋め電源回路部2(コンデンサC2)→整流回路DB→ダイオードD1→コンデンサC1→共振負荷回路3の経路で回生電流が流れ、入力電流が引き込まれる(回生電流による入力電流流入モード)。尚、この電流の大きさは、整流回路DBの出力電圧(すなわち交流電源ACの交流電源電圧)の大きさに比例する。また、スイッチング素子Q2のオン時にチョッパー電流が流れた場合は、インダクタンス素子L1→ダイオードD3→駆動トランスDT1→スイッチング素子Q1の寄生ダイオード→平滑コンデンサC0→インダクタンス素子L1の経路で回生電流が流れる。
【0010】
次に、駆動トランスDT1の二次巻線からスイッチング素子Q1のゲートに駆動信号が入力されると、スイッチング素子Q1がオンになり、直流カット用コンデンサC1を電源としてコンデンサC3→スイッチング素子Q1→駆動トランスDT1→共振負荷回路3→コンデンサC1の経路で共振電流が流れる。その後、コンデンサC3の電荷が減少して略0になると、コンデンサC1を電源としてダイオードD2→スイッチング素子Q1→駆動トランスDT1→共振負荷回路3→コンデンサC1の経路で共振電流が流れる。
【0011】
そして、駆動トランスDT1の二次巻線に発生する自励信号が反転し、スイッチング素子Q1がオフすると、共振負荷回路3→コンデンサC1→ダイオードD2→平滑コンデンサC0→インダクタンス素子L1→ダイオードD3→共振負荷回路3の経路と、共振負荷回路3→コンデンサC1→ダイオードD2→コンデンサC2→スイッチング素子Q2の寄生ダイオード→駆動トランスDT1→共振負荷回路3の経路とで回生電流が流れる。
【0012】
これらの一連の動作が共振回路の共振動作に応じて繰り返されることにより、放電灯FLに高周波の交流電圧が印加され、放電灯FLが点灯するのである。また、谷埋め電源回路部2を構成する平滑コンデンサC0の両端電圧よりも、整流回路DBの出力電圧が高い期間では、交流電源AC側からチョッパー電流が流れ込み、またインバータ回路部1においても、交流電源ACの交流電源電圧の大きさに応じて入力電流を流す機能を有しているので、これらの交流電源電圧に応じた高周波電圧をインダクタンス素子LF及びコンデンサCfからなるフィルタ回路で平滑化することにより、正弦波状の入力電流を得ることができ、入力電流歪みを低減することができる。
【0013】
【発明が解決しようとする課題】
上記構成の電源装置では、駆動トランスDT1によりスイッチング素子Q1,Q2のオン/オフを自励制御しているため、その動作周波数はインバータ回路部1の共振要素によって決定され、交流電源電圧の山部付近では動作周波数が低くなり、谷部付近では動作周波数が高くなっていた。すなわち、交流電源電圧の山部付近では、上述した入力電流流入モードの動作が支配的になるため、共振系はトランスLT1の漏れインダクタンスとコンデンサC4と放電灯FLとなる。一方、交流電源電圧の谷部付近では、コンデンサC3充電モードが支配的になるため、共振系はトランスLT1の漏れインダクタンスとコンデンサC3,C4と放電灯FLとで構成される。したがって、放電灯FLのインピーダンスが交流電源電圧の山部と谷部とで一定であったとしても、コンデンサC3が直列に挿入されているコンデンサC3充電モードの方が共振周波数が高くなり、その動作周波数が高くなるからである。
【0014】
さらに、交流電源電圧の山部付近ではインバータ回路部1の電源電圧が高くなり、放電灯FLの出力も高くなるので、放電灯FLのインピーダンスが低下し、インバータ回路部1の動作周波数がより低い周波数へ移行する方向となっていた。また、交流電源電圧の谷部付近では、インバータ回路部1の電源電圧が低くなるため、放電灯FLのインピーダンスが増加し、インバータ回路部1の動作周波数がより高い周波数へ移行する方向となっていた。このため、放電灯FLのランプ電流は交流電源電圧の山部付近では大きく、谷部付近では小さくなり、波高率が悪化するという問題があった。またインバータ回路部1は、交流電源電圧が高くなるほど出力を大きくするような方向に動作するため、電源変動時には出力の特性変化が大きくなるという問題があった。
【0015】
また、従来より図14に示すような回路構成を有する電源装置も提供されている。この電源装置では、上述した図12の電源装置においてダイオードD3のカソードをコンデンサC1と共振負荷回路3との接続点に接続しており、谷埋め電源回路部2の平滑コンデンサC0を充電する際の別のインピーダンス素子を共振負荷回路3の一部(トランスLT1の一次巻線など)で構成しているが、この電源装置においても上述した図12の電源装置と同様の問題があった。
【0016】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、波高率を改善すると共に、電源変動時の出力変動を低減した電源装置を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、交流電源を整流する整流回路と、並列にインピーダンス素子を接続した高周波ダイオードを介して、少なくとも一対のスイッチング素子の直列回路を上記整流回路の一対の出力端間に接続し、両スイッチング素子の接続点と上記整流回路の一方の出力端との間に直流カット用コンデンサ、共振負荷回路、駆動トランスの一次巻線の直列回路を接続し、上記各スイッチング素子の制御端に上記駆動トランスに各スイッチング素子に対応して各別に設けた2次巻線を夫々接続し、上記スイッチング素子のスイッチング動作を起動する起動回路を備えて構成されたインバータ回路部と、上記整流回路の出力により充電される平滑コンデンサを有するとともに該平滑コンデンサの充電経路に逆流防止用ダイオードと、上記一対のスイッチング素子の一方と、別のインピーダンス素子とを少なくとも挿入し、上記インバータ回路部に接続される谷埋め電源回路部と、交流電源電圧の絶対値が所定電圧以上ある区間において、交流電源電圧の絶対値が高いほど、上記スイッチング素子のオン幅を短くする他制御部とを備え、交流電源電圧の絶対値が所定電圧未満の区間では上記駆動トランスによる帰還作用によってインバータ回路部のスイッチング素子のスイッチングを自励動作させることを特徴とし、スイッチング素子のスイッチングを自励動作させた場合、インバータ回路部は交流電源電圧が上昇するほど出力を大きくするような方向に動作するが、交流電源電圧の絶対値が所定電圧以上ある区間では他制御部がスイッチング素子のスイッチング動作を制御しているので、インバータ回路部の出力が増加して、波高率が悪化するのを防止でき且つ電源変動時の出力変動を抑制できる。しかも、他制御部はスイッチング素子のオン幅を交流電源電圧の絶対値が高いほど短くするので、交流電源電圧の電圧変動による出力の変動をさらに抑制できる。
【0023】
請求項の発明では、交流電源を整流する整流回路と、並列にインピーダンス素子を接続した高周波ダイオードを介して、少なくとも一対のスイッチング素子の直列回路を上記整流回路の一対の出力端間に接続し、両スイッチング素子の接続点と上記整流回路の一方の出力端との間に直流カット用コンデンサ、共振負荷回路、駆動トランスの一次巻線の直列回路を接続し、上記各スイッチング素子の制御端に上記駆動トランスに各スイッチング素子に対応して各別に設けた2次巻線を夫々接続し、上記スイッチング素子のスイッチング動作を起動する起動回路を備えて構成されたインバータ回路部と、上記整流回路の出力により充電される平滑コンデンサを有するとともに該平滑コンデンサの充電経路に逆流防止用ダイオードと、上記一対のスイッチング素子の一方と、別のインピーダンス素子とを少なくとも挿入し、上記インバータ回路部に接続される谷埋め電源回路部と、交流電源電圧の絶対値が所定電圧以上ある区間において、谷埋め電源回路部の出力電圧が高いほど、上記スイッチング素子のオン幅を短くする他制御部とを備え、交流電源電圧の絶対値が所定電圧未満の区間では上記駆動トランスによる帰還作用によってインバータ回路部のスイッチング素子のスイッチングを自励動作させることを特徴とし、スイッチング素子のスイッチングを自励動作させた場合、インバータ回路部は交流電源電圧が上昇するほど出力を大きくするような方向に動作するが、交流電源電圧の絶対値が所定電圧以上ある区間では他制御部がスイッチング素子のスイッチング動作を制御しているので、インバータ回路部の出力が増加して、波高率が悪化するのを防止でき且つ電源変動時の出力変動を抑制できる。しかも、他制御部はスイッチング素子のオン幅を谷埋め電源回路部の出力電圧が高いほど短くするので、谷埋め電源回路部の出力電圧変動すなわち交流電源電圧の電圧変動による出力の変動をさらに抑制できる。
【0024】
請求項の発明では、請求項1又は2の発明において、上記別のインピーダンス素子がインダクタンス素子からなることを特徴とし、請求項1又は2の発明と同様の作用を奏する。
【0025】
請求項の発明では、請求項1又は2の発明において、上記別のインピーダンス素子を上記共振回路の一部で構成して成ることを特徴とし、請求項1又は2の発明の作用に加えて、部品数を削減することができる。
【0026】
請求項の発明では、請求項乃至4の何れかの発明において、上記他制御部によるスイッチング素子の制御時にスイッチング素子のオン幅に温度特性を持たせたことを特徴とし、他制御部はスイッチング素子のオン幅を周囲温度に応じて変化させているので、温度変化による出力の変動を防止することができる。
【0027】
【発明の実施の形態】
本発明の基本例及び実施の形態を図面を参照して説明する。
【0028】
基本例1)
本発明の基本例1を図面を参照して説明する。図1に本基本例の電源装置の回路図を示し、図2に共振負荷回路の回路図を示す。本回路では、従来例で説明した図12の電源装置において、スイッチング素子Q2のゲート電極に印加されるオン信号のパルス幅を制御する他制御部としてのパルス幅制御回路4を設けている。尚、パルス幅制御回路4以外の構成は上述した図12の電源装置と同様であるので、同一の構成要素には同一の符号を付して、その説明を省略する。
【0029】
パルス幅制御回路4は、スイッチング素子Q2のゲート・ソース間にダイオードD5を介して接続されたPNP形トランジスタよりなるスイッチング素子Q6と、スイッチング素子Q6のベース・コレクタ間にコレクタ・エミッタ間が接続されたNPN形トランジスタよりなるスイッチング素子Q7と、直流電源Vccの出力端子間に接続された抵抗R8及びコンデンサC5の直列回路と、抵抗R8及びコンデンサC5の接続点とスイッチング素子Q7のベースとの間に接続された抵抗R7と、スイッチング素子Q2の両端間に接続された抵抗R3,R4の直列回路と、抵抗R4と並列に接続されたコンデンサC6と、コンデンサC6の両端間にベース・エミッタ間が接続されると共に、抵抗R8及びコンデンサC5の接続点にコレクタが接続されたNPN形トランジスタよりなるスイッチング素子Q8と、整流回路DBの出力電圧を分圧抵抗R5,R6,R9により分圧した電圧と基準電圧Vrefとの高低を比較するコンパレータCPとで構成され、コンパレータCPの出力端子は抵抗R8及びコンデンサC5の接続点に接続されている。
【0030】
この電源装置の動作を以下に説明する。まず電源投入があり、起動回路(図示せず)によって、インバータ回路部1のスイッチング素子Q2がオンすると、整流回路DBの整流出力によりダイオードD1、D2、平滑コンデンサC0、インダクタンス素子L1、ダイオードD3、駆動トランスDT1の一次巻線、スイッチング素子Q2の経路で平滑コンデンサC0が充電されて整流回路DBの脈流出力が平滑される。そして整流回路DBの出力電圧が低下すると、平滑コンデンサC0→コンデンサC3→コンデンサC1→共振負荷回路3→駆動トランスDT1→スイッチング素子Q2→ダイオードD4→インダクタンス素子L1→平滑コンデンサC0の経路で共振電流が流れ、コンデンサC3を充電する(コンデンサC3充電モード)。
【0031】
その後、コンデンサC3に電荷が溜まり、その電位と整流回路DBの出力電圧との和が谷埋め電源回路部2の出力電圧と釣り合うと上記経路での共振電流が流れなくなり、整流回路DBよりコンデンサC1→共振負荷回路3→駆動トランスDT1の一次巻線→スイッチング素子Q2→整流回路DBの経路で共振電流が流れ、入力電流が引き込まれる(入力電流流入モード)。なお、コンデンサC3を充電する期間と、入力電流が引き込まれる期間との割合は、整流回路DBの出力電圧が高いほど(すなわち交流電源電圧が高いほど)、入力電流が引き込まれる期間の割合が大きくなる。
【0032】
ここで、整流回路DBの出力電圧が平滑コンデンサC0の平滑電圧よりも高い場合は、整流回路DBよりダイオードD1,D2→コンデンサC0→インダクタンス素子L1→ダイオードD3→駆動トランスDT1の一次巻線→スイッチング素子Q2→整流回路DBの経路で三角波状の充電電流(チョッパー電流)が流れる。尚、この充電電流のピーク値は整流回路DBの出力電圧に比例する。
【0033】
スイッチング素子Q2がオフすると、共振負荷回路3から駆動トランスDT1の一次巻線→スイッチング素子Q1の寄生ダイオード→谷埋め電源回路部2(コンデンサC2)→整流回路DB→ダイオードD1→コンデンサC1→共振負荷回路3の経路で回生電流が流れ、入力電流が引き込まれる(回生電流による入力電流流入モード)。尚、この電流の大きさは、整流回路DBの出力電圧(すなわち交流電源ACの交流電圧)の大きさに比例する。また、スイッチング素子Q2のオン時にチョッパー電流が流れた場合は、インダクタンス素子L1→ダイオードD3→駆動トランスDT1→スイッチング素子Q1の寄生ダイオード→平滑コンデンサC0→インダクタンス素子L1の経路で回生電流が流れる。
【0034】
次に、駆動トランスDT1の二次巻線からスイッチング素子Q1のゲートに駆動信号が入力されると、スイッチング素子Q1がオンになり、直流カット用コンデンサC1を電源としてコンデンサC3→スイッチング素子Q1→駆動トランスDT1→共振負荷回路3→コンデンサC1の経路で共振電流が流れる。その後、コンデンサC3の電荷が減少して略0になると、コンデンサC1を電源としてダイオードD2→スイッチング素子Q1→駆動トランスDT1→共振負荷回路3→コンデンサC1の経路で共振電流が流れる。
【0035】
そして、駆動トランスDT1の二次巻線に発生する自励信号が反転し、スイッチング素子Q1がオフすると、共振負荷回路3→コンデンサC1→ダイオードD2→平滑コンデンサC0→インダクタンス素子L1→ダイオードD3→共振負荷回路3の経路と、共振負荷回路3→コンデンサC1→ダイオードD2→コンデンサC2→スイッチング素子Q2の寄生ダイオード→駆動トランスDT1→共振負荷回路3の経路とで回生電流が流れる。
【0036】
こららの一連の動作が共振回路の共振動作に応じて繰り返されることにより、放電灯FLに高周波の交流電圧が印加され、放電灯FLが点灯するのである。また、谷埋め電源回路部2を構成する平滑コンデンサC0の両端電圧よりも、整流回路DBの出力電圧が高い期間では、交流電源AC側からチョッパー電流が流れ込み、またインバータ回路部1においても、交流電源ACの交流電源電圧の大きさに応じて入力電流を流す機能を有しているので、これらの交流電源電圧に応じた高周波電圧をインダクタンス素子LF及びコンデンサCfからなるフィルタ回路で平滑化することにより、正弦波状の入力電流を得ることができ、入力電流歪みを低減することができる。
【0037】
ここで、スイッチング素子Q2のゲートにはパルス幅制御回路4が接続され、パルス幅制御回路4によってスイッチング素子Q2のオン幅が調整される。すなわち、交流電源電圧のゼロクロス付近(すなわち整流回路DBの出力電圧の谷部付近)など交流電源電圧の絶対値が所定電圧よりも低い区間では、整流回路DBの出力電圧を抵抗R5,R6,R9で分圧した電圧が基準電圧Vrefよりも低くなるため、コンパレータCPの出力はローレベルになり、コンデンサC5の電荷が引き抜かれる。この時、スイッチング素子Q7,Q6はオフになり、スイッチング素子Q2のゲート信号が引き抜かれることはない。
【0038】
一方、交流電源電圧のピーク値付近(すなわち整流回路DBの出力電圧の山部付近)など交流電源電圧の絶対値が所定電圧以上になる区間では、整流回路DBの出力電圧を抵抗R5,R6,R9で分圧した電圧が基準電圧Vrefよりも高くなるため、コンパレータCPの出力はハイレベルになる。この時、スイッチング素子Q2のゲートにオン信号が印加されて、スイッチング素子Q2がオンになると、スイッチング素子Q2の両端電圧が低下し、スイッチング素子Q8がオフになるので、定電圧源Vccから抵抗R8を介してコンデンサC5に充電電流が流れ、コンデンサC5の両端電圧が上昇する。そして、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧を越えると、スイッチング素子Q7がオン、スイッチング素子Q6がオンになるので、スイッチング素子Q2のゲート・ソース間がダイオードD5及びスイッチング素子Q6を介して短絡され、スイッチング素子Q2のオン信号が引き抜かれて、スイッチング素子Q2がオフになる。
【0039】
スイッチング素子Q2がオフすると、スイッチング素子Q2の両端電圧が上昇するので、抵抗R3,R4の接続点の電位が上昇してスイッチング素子Q8がオンになり、コンデンサC5の電荷がスイッチング素子Q8を介して放出される。そして、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧を下回ると、スイッチング素子Q7,Q6がオフになり、スイッチング素子Q2がオンする。以下、パルス幅制御回路4は上述の動作を繰り返し、他制式のスイッチング動作を行う。
【0040】
このように、交流電源電圧の大きさに応じてスイッチング素子Q1,Q2のスイッチング動作が自励式と他制式とに切り替えられ、スイッチング素子Q2のオン幅が制限されるので、交流電源電圧の絶対値が所定電圧以上となる区間には、スイッチング素子Q2のオン幅が制限され、インバータ回路部1の動作周波数の低下が抑制されるから、交流電源電圧のピーク値付近でランプ電流が低下するのを防止して、波高率が悪化するのを防止できる。
【0041】
また電源変動が発生して、整流回路DBの出力電圧が増加すると、整流回路DBの出力電圧を抵抗R5,R6,R9により分圧した電圧が基準電圧Vref以上になる区間、すなわちパルス幅制御回路4による他制制御期間が長くなる。一方、整流回路DBの出力電圧が低下すると、パルス幅制御回路4による他制制御期間が短くなるので、電源電圧変動による出力の変動を抑制することができる。
【0042】
尚、本基本例では共振負荷回路3を、図2に示すようにコンデンサC1と駆動トランスDT1の一次巻線との間に一次巻線を挿入したトランスLT1と、このトランスLT1の二次巻線の両端に、両側のフィラメント電極の夫々の一端を接続し、フィラメント電極の夫々の他端間にコンデンサC4を接続した蛍光灯のような負荷である放電灯FLとで構成しているが、共振負荷回路3の構成を上記の構成に限定する趣旨のものではなく、また放電灯FLの灯数が複数であっても同様の効果を得ることができる。
【0043】
また、本基本例ではダイオードD3のカソードを共振負荷回路3及び駆動トランスDT1の接続点に接続しているが、図3に示すようにダイオードD3のカソードをスイッチング素子Q1,Q2の接続点に接続しても良いし、図4に示すようにダイオードD3のカソードをコンデンサC1及び共振負荷回路3の接続点に接続しても良く、この場合は谷埋め電源回路部2の平滑コンデンサC0を充電する際の別のインピーダンス素子を共振負荷回路3の一部(トランスLT1の一次巻線など)で構成することにより、部品点数を削減することができる。
【0044】
実施形態1
本発明の実施形態を図5を参照して説明する。尚、パルス幅制御回路4以外の回路構成及びその動作は基本例1と同様であるので、同一の構成要素には同一の符号を付して、その説明を省略する。
【0045】
基本例1のパルス幅制御回路4では、コンデンサC5を充電する電源として定電圧源Vccを設けているが、本実施形態では整流回路DBの出力端子間に抵抗R5,R6,R9の直列回路を接続すると共に、抵抗R9と並列にコンデンサC7を接続し、コンデンサC7の両端間に抵抗R8及びコンデンサC5の直列回路を接続しており、コンデンサC5の充電電源を整流回路DBの出力から供給している。
【0046】
本回路では抵抗R6,R9の接続点の電位によっては、コンデンサC5の両端電圧によりスイッチング素子Q7をオンできない期間が存在する。すなわち、交流電源電圧のゼロクロス付近(整流回路DBの出力電圧の谷部付近)など交流電源電圧の絶対値が所定電圧未満の場合は、抵抗R6,R9の接続点の電位が低下し、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧に達しないため、スイッチング素子Q7,Q6はオフになり、スイッチング素子Q2のゲート信号が引き抜かれることはないから、スイッチング素子Q1,Q2のスイッチング動作は自励式のスイッチング動作となる。
【0047】
一方、交流電源電圧のピーク値付近(すなわち整流回路DBの出力電圧の山部付近)など交流電源電圧の絶対値が所定電圧以上になる区間では、抵抗R6,R9の接続点の電位がスイッチング素子Q7のスレッショルド電圧を上回る。この時、スイッチング素子Q2のゲートにオン信号が印加されて、スイッチング素子Q2がオンになると、スイッチング素子Q2の両端電圧が低下し、スイッチング素子Q8がオフになるので、抵抗R6,R9の接続点から抵抗R8を介してコンデンサC5に充電電流が流れ、コンデンサC5の両端電圧が上昇する。そして、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧を越えると、スイッチング素子Q7がオン、スイッチング素子Q6がオンになるので、スイッチング素子Q2のゲート・ソース間がダイオードD5及びスイッチング素子Q6を介して短絡され、スイッチング素子Q2のオン信号が引き抜かれて、スイッチング素子Q2がオフになる。
【0048】
スイッチング素子Q2がオフすると、スイッチング素子Q2の両端電圧が上昇するので、抵抗R3,R4の接続点の電位が上昇してスイッチング素子Q8がオンになり、コンデンサC5の電荷がスイッチング素子Q8を介して放出される。そして、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧を下回ると、スイッチング素子Q7,Q6がオフになり、スイッチング素子Q2がオンする。以下、パルス幅制御回路4は上述の動作を繰り返し、他制式のスイッチング動作を行う。
【0049】
このように交流電源電圧の大きさに応じてスイッチング素子Q1,Q2のスイッチング動作が自励式と他制式とに切り替えられる。すなわち、交流電源電圧のゼロクロス付近(整流回路DBの出力電圧の谷部付近)など交流電源電圧の絶対値が所定電圧よりも低い区間では自励式のスイッチング動作を行わせ、交流電源電圧のピーク値付近(整流回路DBの出力電圧の山部付近)など交流電源電圧の絶対値が所定電圧よりも高い場合には他制式のスイッチング動作を行わせている。したがって、交流電源電圧の絶対値が所定電圧以上となる区間では、スイッチング素子Q2のオン幅が制限され、インバータ回路部1の動作周波数の低下が抑制されるから、ランプ電流が低下するのを防止し、波高率が悪化するのを防止できる。また電源変動が発生して、整流回路DBの出力電圧が増加すると、整流回路DBの出力電圧を抵抗R5,R6,R9により分圧した電圧がスイッチング素子Q7のスレッショルド電圧を上回る期間、すなわちパルス幅制御回路4による他制制御期間が長くなり、整流回路DBの出力電圧が低下すると、パルス幅制御回路4による他制制御期間が短くなるので、電源電圧変動による出力の変動を抑制することができる。
【0050】
また、本実施形態ではパルス幅制御回路4による他制制御時に抵抗R6,R9の接続点の電位に応じてスイッチング素子Q2のオン幅が変化し、電源電圧が高いほどコンデンサC5の充電に要する時間が短くなって、スイッチング素子Q2のオン幅が短くなるから、基本例1の電源装置に比べて波高率を改善する効果を高めることができる。
【0051】
尚、本実施形態ではダイオードD3のカソードを共振負荷回路3及び駆動トランスDT1の接続点に接続しているが、図6に示すようにダイオードD3のカソードをスイッチング素子Q1,Q2の接続点に接続しても良いし、図7に示すようにダイオードD3のカソードをコンデンサC1及び共振負荷回路3の接続点に接続しても良く、図7の回路では谷埋め電源回路部2の平滑コンデンサC0を充電する際の別のインピーダンス素子を共振負荷回路3の一部(トランスLT1の一次巻線など)で構成することにより、部品点数を削減することができる。
【0052】
(実施形態
本発明の実施形態を図8を参照して説明する。尚、パルス幅制御回路4以外の回路構成及びその動作は基本例1と同様であるので、同一の構成要素には同一の符号を付して、その説明を省略する。
【0053】
基本例1のパルス幅制御回路4では、コンデンサC5を充電する電源として定電圧源Vccを設けているが、本実施形態では谷埋め電源回路部2のコンデンサC2と並列に抵抗R5,R6,R9の直列回路を接続すると共に、抵抗R9と並列にコンデンサC7を接続し、コンデンサC7の両端間に抵抗R8及びコンデンサC5の直列回路を接続しており、コンデンサC5の充電電源を谷埋め電源回路部2の出力から供給している。
【0054】
本回路では抵抗R6,R9の接続点の電位によっては、コンデンサC5の両端電圧によりスイッチング素子Q7をオンできない期間が存在する。すなわち、交流電源電圧のゼロクロス付近など交流電源電圧の絶対値が所定電圧未満となる区間では谷埋め電源回路部2の出力電圧が低く、この出力電圧を分圧した抵抗R6,R9の接続点の電位も低くなるため、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧に達しなくなり、スイッチング素子Q7,Q6はオフになる。この時、スイッチング素子Q2のゲート信号が引き抜かれることはないから、スイッチング素子Q1,Q2のスイッチング動作は自励式のスイッチング動作となる。
【0055】
一方、交流電源電圧のピーク値付近など交流電源電圧の絶対値が所定電圧以上となる区間では谷埋め電源回路部2の出力電圧が上昇し、抵抗R6,R9の接続点の電位がスイッチング素子Q7のスレッショルド電圧を上回る。この時、スイッチング素子Q2のゲートにオン信号が印加されて、スイッチング素子Q2がオンになると、スイッチング素子Q2の両端電圧が低下し、スイッチング素子Q8がオフになるので、抵抗R6,R9の接続点から抵抗R8を介してコンデンサC5に充電電流が流れ、コンデンサC5の両端電圧が上昇する。そして、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧を越えると、スイッチング素子Q7がオン、スイッチング素子Q6がオンになるので、スイッチング素子Q2のゲート・ソース間がダイオードD5及びスイッチング素子Q6を介して短絡され、スイッチング素子Q2のオン信号が引き抜かれて、スイッチング素子Q2がオフになる。
【0056】
スイッチング素子Q2がオフすると、スイッチング素子Q2の両端電圧が上昇するので、抵抗R3,R4の接続点の電位が上昇してスイッチング素子Q8がオンになり、コンデンサC5の電荷がスイッチング素子Q8を介して放出される。そして、コンデンサC5の両端電圧がスイッチング素子Q7のスレッショルド電圧を下回ると、スイッチング素子Q7,Q6がオフになり、スイッチング素子Q2がオンする。以下、パルス幅制御回路4は上述の動作を繰り返し、他制式のスイッチング動作を行う。
【0057】
上述のように交流電源電圧の大きさに応じてスイッチング素子Q1,Q2のスイッチング動作が自励式と他制式とに切り替えられる。すなわち、交流電源電圧のゼロクロス付近など交流電源電圧の絶対値が所定電圧よりも低い区間では自励式のスイッチング動作を行わせ、交流電源電圧のピーク値付近など交流電源電圧の絶対値が所定電圧よりも高い区間では他制式のスイッチング動作を行わせている。したがって、交流電源電圧の絶対値が所定電圧以上となる区間では、スイッチング素子Q2のオン幅が制限され、インバータ回路部1の動作周波数の低下が抑制されるから、交流電源電圧のピーク値付近でランプ電流が低下するのを防止でき、波高率が悪化するのを防止できる。また電源変動が発生して、整流回路DBの出力電圧が増加すると、谷埋め電源回路部2の出力電圧が増加し、谷埋め電源回路部2の出力電圧を抵抗R5,R6,R9により分圧した電圧がスイッチング素子Q7のスレッショルド電圧以上になる区間、すなわちパルス幅制御回路4による他制制御期間が長くなり、整流回路DBの出力電圧が低下すると、パルス幅制御回路4による他制制御期間が短くなるので、電源電圧変動による出力の変動を抑制することができる。
【0058】
また、本実施形態ではパルス幅制御回路4による制御動作時に抵抗R6,R9の接続点の電位に応じてスイッチング素子Q2のオン幅が変化し、谷埋め電源回路部2の出力電圧が高いほどコンデンサC5の充電に要する時間が短くなって、スイッチング素子Q2のオン幅が短くなるから、基本例1の電源装置に比べて波高率を改善する効果を高めることができる。
【0059】
尚、本実施形態ではダイオードD3のカソードを共振負荷回路3及び駆動トランスDT1の接続点に接続しているが、図9に示すようにダイオードD3のカソードをスイッチング素子Q1,Q2の接続点に接続しても良いし、図10に示すようにダイオードD3のカソードをコンデンサC1及び共振負荷回路3の接続点に接続しても良く、図10の回路では谷埋め電源回路部2の平滑コンデンサC0を充電する際の別のインピーダンス素子を共振負荷回路3の一部(トランスLT1の一次巻線など)で構成することにより、部品点数を削減することができる。
【0060】
(実施形態
本発明の実施形態を図11を参照して説明する。本実施形態では、実施形態で説明した図10の回路において、抵抗R6と抵抗R9との間に温度上昇に応じて抵抗値が上昇する正の温度係数を有する抵抗器PTCを接続し、抵抗器PTCと抵抗R9の直列回路と並列にコンデンサC7を接続してある。尚、抵抗器PTC以外の回路構成及びその動作は実施形態と同様であるので、同一の構成要素には同一の符号を付してその説明を省略する。
【0061】
本回路では、コンデンサC5の充電電源として、谷埋め電源回路部2の出力を抵抗R5,R6,R9及び抵抗器PTCからなる分圧回路で分圧して生成している。ここで、交流電源電圧のピーク値付近(すなわち整流回路DBの出力電圧の山部付近)など交流電源電圧の絶対値が所定電圧以上になる区間では、パルス幅制御回路4によってスイッチング素子Q1,Q2のスイッチング動作が他制制御されるのであるが、周囲温度が低下して抵抗器PTCの抵抗値が低下すると、抵抗器PTC及び抵抗R9の合成抵抗値が低下して、抵抗R6及び抵抗器PTCの接続点の電位が低下するため、コンデンサC5の充電に要する時間が長くなり、スイッチング素子Q2のオン幅が長くなる。したがって、低温時にはパルス幅制御回路4による他制制御の効果が低下し、ランプ電流の波高率が実施形態に比べて増加するため、低温時における光出力のちらつきを改善することができる。一方、周囲温度が上がり抵抗器PTCの抵抗値が増加すると、抵抗器PTC及び抵抗R9の合成抵抗値が増加して、抵抗R6及び抵抗器PTCの接続点の電位が上昇するため、コンデンサC5の充電に要する時間が短くなり、スイッチング素子Q2のオン幅が短くなるので、実施形態と同様にランプ電流の波高率を低減させることができる。また、交流電源電圧のゼロクロス付近(すなわち整流回路DBの出力電圧の谷部付近)など交流電源電圧の絶対値が所定電圧未満となる区間の回路動作は実施形態と同様であるので、その説明は省略する。
【0062】
尚、本実施形態では実施形態の電源装置において、抵抗R6と抵抗R9との間に温度上昇に応じて抵抗値が上昇する正の温度係数を有する抵抗器PTCを接続し、抵抗器PTCと抵抗R9の直列回路と並列にコンデンサC7を接続しているが、実施形態の電源装置に本実施形態の構成を適用しても良く、上述と同様の効果を得ることができる。
【0063】
【発明の効果】
上述のように、請求項1の発明は、交流電源を整流する整流回路と、並列にインピーダンス素子を接続した高周波ダイオードを介して、少なくとも一対のスイッチング素子の直列回路を上記整流回路の一対の出力端間に接続し、両スイッチング素子の接続点と上記整流回路の一方の出力端との間に直流カット用コンデンサ、共振負荷回路、駆動トランスの一次巻線の直列回路を接続し、上記各スイッチング素子の制御端に上記駆動トランスに各スイッチング素子に対応して各別に設けた2次巻線を夫々接続し、上記スイッチング素子のスイッチング動作を起動する起動回路を備えて構成されたインバータ回路部と、上記整流回路の出力により充電される平滑コンデンサを有するとともに該平滑コンデンサの充電経路に逆流防止用ダイオードと、上記一対のスイッチング素子の一方と、別のインピーダンス素子とを少なくとも挿入し、上記インバータ回路部に接続される谷埋め電源回路部と、交流電源電圧の絶対値が所定電圧以上ある区間において、交流電源電圧の絶対値が高いほど、上記スイッチング素子のオン幅を短くする他制御部とを備え、交流電源電圧の絶対値が所定電圧未満の区間では上記駆動トランスによる帰還作用によってインバータ回路部のスイッチング素子のスイッチングを自励動作させることを特徴とし、スイッチング素子のスイッチングを自励動作させた場合、インバータ回路部は交流電源電圧が上昇するほど出力を大きくするような方向に動作するが、交流電源電圧の絶対値が所定電圧以上ある区間では他制御部がスイッチング素子のスイッチング動作を制御しているので、インバータ回路部の出力が増加して、波高率が悪化するのを防止でき且つ電源変動時の出力変動を抑制できるという効果があり、且つ他制御部はスイッチング素子のオン幅を交流電源電圧の絶対値が高いほど短くするので、交流電源電圧の電圧変動による出力の変動をさらに抑制できるという効果がある。
【0069】
請求項の発明では、交流電源を整流する整流回路と、並列にインピーダンス素子を接続した高周波ダイオードを介して、少なくとも一対のスイッチング素子の直列回路を上記整流回路の一対の出力端間に接続し、両スイッチング素子の接続点と上記整流回路の一方の出力端との間に直流カット用コンデンサ、共振負荷回路、駆動トランスの一次巻線の直列回路を接続し、上記各スイッチング素子の制御端に上記駆動トランスに各スイッチング素子に対応して各別に設けた2次巻線を夫々接続し、上記スイッチング素子のスイッチング動作を起動する起動回路を備えて構成されたインバータ回路部と、上記整流回路の出力により充電される平滑コンデンサを有するとともに該平滑コンデンサの充電経路に逆流防止用ダイオードと、上記一対のスイッチング素子の一方と、別のインピーダンス素子とを少なくとも挿入し、上記インバータ回路部に接続される谷埋め電源回路部と、交流電源電圧の絶対値が所定電圧以上ある区間において、谷埋め電源回路部の出力電圧が高いほど、上記スイッチング素子のオン幅を短くする他制御部とを備え、交流電源電圧の絶対値が所定電圧未満の区間では上記駆動トランスによる帰還作用によってインバータ回路部のスイッチング素子のスイッチングを自励動作させることを特徴とし、スイッチング素子のスイッチングを自励動作させた場合、インバータ回路部は交流電源電圧が上昇するほど出力を大きくするような方向に動作するが、交流電源電圧の絶対値が所定電圧以上ある区間では他制御部がスイッチング素子のスイッチング動作を制御しているので、インバータ回路部の出力が増加して、波高率が悪化するのを防止でき且つ電源変動時の出力変動を抑制できるという効果があり、且つ他制御部はスイッチング素子のオン幅を谷埋め電源回路部の出力電圧が高いほど短くするので、谷埋め電源回路部の出力電圧変動すなわち交流電源電圧の電圧変動による出力の変動をさらに抑制できるという効果がある。
【0070】
請求項の発明は、請求項1又は2の発明において、上記別のインピーダンス素子がインダクタンス素子からなることを特徴とし、請求項1又は2の発明と同様の効果を奏する。
【0071】
請求項の発明は、請求項1又は2の発明において、上記別のインピーダンス素子を上記共振負荷回路の一部で構成して成ることを特徴とし、請求項1又は2の発明の効果に加えて、部品数を削減できるという効果がある。
【0072】
請求項の発明は、請求項乃至4の何れかの発明において、上記他制御部によるスイッチング素子の制御時にスイッチング素子のオン幅に温度特性を持たせたことを特徴とし、他制御部はスイッチング素子のオン幅を周囲温度に応じて変化させているので、温度変化による出力の変動を防止できるという効果がある。
【図面の簡単な説明】
【図1】 基本例1の電源装置の回路図である。
【図2】 同上の共振負荷回路を示す一部省略せる回路図である。
【図3】 同上の別の電源装置の回路図である。
【図4】 同上のまた別の電源装置の回路図である。
【図5】 実施形態の電源装置の回路図である。
【図6】 同上の別の電源装置の回路図である。
【図7】 同上のまた別の電源装置の回路図である。
【図8】 実施形態の電源装置の回路図である。
【図9】 同上の別の電源装置の回路図である。
【図10】 同上のまた別の電源装置の回路図である。
【図11】 実施形態の電源装置の回路図である。
【図12】 従来の電源装置の回路図である。
【図13】 同上の共振負荷回路を示す一部省略せる回路図である。
【図14】 同上の別の電源装置の回路図である。
【符号の説明】
1 インバータ回路部
3 共振負荷回路
4 パルス幅制御回路
C1 コンデンサ
D1,D2 ダイオード
DB 整流回路
DT1 駆動トランス
Q1,Q2 スイッチング素子

Claims (5)

  1. 交流電源を整流する整流回路と、並列にインピーダンス素子を接続した高周波ダイオードを介して、少なくとも一対のスイッチング素子の直列回路を上記整流回路の一対の出力端間に接続し、両スイッチング素子の接続点と上記整流回路の一方の出力端との間に直流カット用コンデンサ、共振負荷回路、駆動トランスの一次巻線の直列回路を接続し、上記各スイッチング素子の制御端に上記駆動トランスに各スイッチング素子に対応して各別に設けた2次巻線を夫々接続し、上記スイッチング素子のスイッチング動作を起動する起動回路を備えて構成されたインバータ回路部と、上記整流回路の出力により充電される平滑コンデンサを有するとともに該平滑コンデンサの充電経路に逆流防止用ダイオードと、上記一対のスイッチング素子の一方と、別のインピーダンス素子とを少なくとも挿入し、上記インバータ回路部に接続される谷埋め電源回路部と、交流電源電圧の絶対値が所定電圧以上ある区間において、交流電源電圧の絶対値が高いほど、上記スイッチング素子のオン幅を短くする他制御部とを備え、交流電源電圧の絶対値が所定電圧未満の区間では上記駆動トランスによる帰還作用によってインバータ回路部のスイッチング素子のスイッチングを自励動作させることを特徴とする電源装置。
  2. 交流電源を整流する整流回路と、並列にインピーダンス素子を接続した高周波ダイオードを介して、少なくとも一対のスイッチング素子の直列回路を上記整流回路の一対の出力端間に接続し、両スイッチング素子の接続点と上記整流回路の一方の出力端との間に直流カット用コンデンサ、共振負荷回路、駆動トランスの一次巻線の直列回路を接続し、上記各スイッチング素子の制御端に上記駆動トランスに各スイッチング素子に対応して各別に設けた2次巻線を夫々接続し、上記スイッチング素子のスイッチング動作を起動する起動回路を備えて構成されたインバータ回路部と、上記整流回路の出力により充電される平滑コンデンサを有するとともに該平滑コンデンサの充電経路に逆流防止用ダイオードと、上記一対のスイッチング素子の一方と、別のインピーダンス素子とを少なくとも挿入し、上記インバータ回路部に接続される谷埋め電源回路部と、交流電源電圧の絶対値が所定電圧以上ある区間において、谷埋め電源回路部の出力電圧が高いほど、上記スイッチング素子のオン幅を短くする他制御部とを備え、交流電源電圧の絶対値が所定電圧未満の区間では上記駆動トランスによる帰還作用によってインバータ回路部のスイッチング素子のスイッチングを自励動作させることを特徴とする電源装置。
  3. 上記別のインピーダンス素子がインダクタンス素子からなることを特徴とする請求項1又は2記載の電源装置。
  4. 上記別のインピーダンス素子を上記共振負荷回路の一部で構成して成ることを特徴とする請求項1又は2記載の電源装置。
  5. 上記他制御部によるスイッチング素子の制御時にスイッチング素子のオン幅に温度特性を持たせたことを特徴とする請求項1乃至4の何れかに記載の電源装置
JP2000155567A 2000-05-26 2000-05-26 電源装置 Expired - Fee Related JP3726644B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155567A JP3726644B2 (ja) 2000-05-26 2000-05-26 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155567A JP3726644B2 (ja) 2000-05-26 2000-05-26 電源装置

Publications (2)

Publication Number Publication Date
JP2001339955A JP2001339955A (ja) 2001-12-07
JP3726644B2 true JP3726644B2 (ja) 2005-12-14

Family

ID=18660495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155567A Expired - Fee Related JP3726644B2 (ja) 2000-05-26 2000-05-26 電源装置

Country Status (1)

Country Link
JP (1) JP3726644B2 (ja)

Also Published As

Publication number Publication date
JP2001339955A (ja) 2001-12-07

Similar Documents

Publication Publication Date Title
JPH08138876A (ja) 圧電トランスを使用した冷陰極管点灯装置
KR101171686B1 (ko) 예열가능 전극들을 갖는 방전 램프를 동작시키기 위한 펌프 회로를 갖는 전자 안정기 및 방전 램프를 동작시키기 위한 방법
US6933681B2 (en) Circuit arrangement and method for starting and operating discharge lamps
JP3726644B2 (ja) 電源装置
JP4441108B2 (ja) 放電灯点灯装置
JP2756540B2 (ja) 蛍光灯用点灯回路
KR0140820B1 (ko) 스탠드용 인버터 회로
JP3820865B2 (ja) 電源装置
US6628090B1 (en) Resonant driving system for a fluorescent lamp
JP4698707B2 (ja) 放電灯点灯装置及び電球形蛍光灯
CN1956616B (zh) 放电灯点亮装置
JP2006513540A (ja) 負荷、特に高輝度放電ランプに電力を供給する回路および方法
JP4069687B2 (ja) 放電灯点灯装置
JP4699245B2 (ja) スイッチング電源装置
JP4235517B2 (ja) 放電灯点灯装置及び電球形蛍光灯
JPH048919B2 (ja)
JP2658042B2 (ja) 放電灯点灯装置
JP3702504B2 (ja) 放電灯点灯装置および照明装置
KR950006605B1 (ko) 전류원 방식 형광등의 안정기
JPH0880041A (ja) スイッチング電源装置
KR200407446Y1 (ko) 초기점등 보조회로를 갖는 전자식 안정기
KR100707394B1 (ko) 초기점등 보조회로를 갖는 전자식 안정기
JPH07288186A (ja) 蛍光灯回路
KR200308318Y1 (ko) 센싱 기능을 갖는 방전등의 전자식 안정기
JPH10326690A (ja) 放電灯点灯装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees