JP3726575B2 - 電気光学パネル、電気光学パネルの検査方法および電子機器 - Google Patents

電気光学パネル、電気光学パネルの検査方法および電子機器 Download PDF

Info

Publication number
JP3726575B2
JP3726575B2 JP22432999A JP22432999A JP3726575B2 JP 3726575 B2 JP3726575 B2 JP 3726575B2 JP 22432999 A JP22432999 A JP 22432999A JP 22432999 A JP22432999 A JP 22432999A JP 3726575 B2 JP3726575 B2 JP 3726575B2
Authority
JP
Japan
Prior art keywords
lines
data
voltage
signal
data line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22432999A
Other languages
English (en)
Other versions
JP2001051655A (ja
Inventor
徳郎 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22432999A priority Critical patent/JP3726575B2/ja
Publication of JP2001051655A publication Critical patent/JP2001051655A/ja
Application granted granted Critical
Publication of JP3726575B2 publication Critical patent/JP3726575B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の走査線及び複数のデータ線と、それらの交差に対応してマトリックス状に配置された画素電極及びスイッチング素子とを有する電気光学パネルの検査方法、電気光学パネル、液晶装置および電子機器に関し、特に、基板上に、デジタル方式のデータ線駆動回路が形成されているタイプの基板の検査技術に関するものである。
【0002】
【従来の技術】
従来の電気光学装置、例えば、液晶装置の駆動回路は、画像表示領域に配線されたデータ線や走査線などに、データ線信号や走査信号などを所定タイミングで供給するためのデータ線駆動回路や、走査線駆動回路などから構成されている。また、こらの駆動回路を素子基板上に形成した、ドライバ内蔵型の液晶パネルおよびこれを用いた液晶装置が知られている。そこに用いられるデータ線駆動回路にあっては、各データ線信号の蓄積(ストア)を容易にするため、1水平走査期間毎の同一タイミングで総てのデータ線に各データ線信号を一括して供給する線順次駆動方式が採用されている。
【0003】
上述の液晶パネルを用いた製品を実際に市場に投入するためには、信頼性保証の見地から、基板形成後であってパネル組立前に良品/不良品の検査を正確に行う必要がある。
【0004】
この検査としては、大別して、駆動回路自体の出力能力チェックやデータ線の断線検出といった基礎的検査と、画素を構成するスイッチング素子(TFTやMIM等)の特性や蓄積容量のリーク特性といった画像表示領域(アクティブマトリクス部)の点欠陥の検査とが必要である。
【0005】
【発明が解決しようとする課題】
ところで、データ線の断線や点欠陥の検出は、各画素に信号を書き込み、これを読み出すことによって行うことができる。信号の書き込みについては、線順次駆動方式であっても、通常の表示動作と相違するところがないから、1フィールド期間が経過すれば総ての画素に信号を書き込むことができる。
【0006】
しかし、線順次駆動方式の素子基板においては、信号を読み出すことを想定していないため、いかにして上述のような高信頼度の検査を行うかは不明である。
【0007】
本発明は上述した事情に鑑みてなされたものであり、データ線駆動回路を搭載した液晶パネルの検査技術を確立し、高信頼度の基板や表示装置等を市場に投入できるようにすることにある。
【0008】
上記目的を達成するために、本発明の電気光学パネルは、複数の走査線と、複数のデータ線と、前記走査線と前記データ線とに接続されるスイッチング素子と、前記スイッチング素子に接続された蓄積容量とを有する電気光学パネルであって、開始パルスをクロック信号に従って順次転送することによって、各タイミング信号を発生するシフト手段と、入力画像データを前記各タイミング信号に従ってラッチする第1ラッチ手段と、前記第1ラッチ手段の各出力信号を水平走査期間毎にラッチする第2ラッチ手段と、1本以上の電源ラインを有し、通常時において、前記1本以上の電源ラインに給電される電圧と前記第2ラッチ手段の出力信号とに基づいて前記各データ線に前記入力画像データに応じた各データ線信号を供給する一方、検査時において、前記各タイミング信号に基づいて前記1本以上の電源ラインと前記各データ線とを順次接続することによって、前記1本以上の電源ラインから前記データ線の電圧を読み出す検査機能付D/A変換手段とを備えたことを特徴とする。
【0009】
データ線の断線や点欠陥の検出は、各蓄積容量に電圧を書き込み、これを読み出すことによって行われるが、このためには、各データ線を選択するためのタイミング信号が必要になる。上述した発明の構成によれば、検査時において、通常時に使用するシフト手段を用いて各タイミング信号を生成し、これを用いて各蓄積容量に書き込んだ電圧を検査機能付D/A変換手段の電源ラインを介して読み出すことができる。検査用に特別なシフト手段を素子基板上に形成する必要が無い。この結果、回路規模を削減することができ、さらに、別途設けたシフト手段の欠陥により、歩留まりが低下するといった問題を原理的に無くすことができる。
【0010】
ここで、前記検査機能付D/A変換手段は、前記1本以上の電源ラインと前記各データ線とを接続する選択回路と、前記各タイミング信号と外部から供給される読出信号とに基づいて、前記選択回路の選択動作を制御するための制御信号を生成する論理回路とを備えることことが望ましい。この構成によれば、論理回路によって選択回路の動作を制御することができるから、例えば、読出信号がアクティブとなる期間中に各タイミング信号に同期して、各データ線を1本以上の電源ラインに順次接続することができる。これにより、各データ線の電圧が電源ラインから読み出される。なお、検査時において1本の電源ラインからデータ線の電圧を読み出してもよいし、複数の電源ラインから電圧を読み出してもよい。
【0011】
さらに、前記検査機能付D/A変換手段は、容量分割型のD/A変換回路、抵抗分割型のD/A変換回路、またはPWM型のD/A変換回路を備えるものであってもよい。
【0012】
また、本発明に係る電気光学パネルの検査方法は、前記1本以上の電源ラインに電源電圧を給電するとともに、前記各スイッチング素子のオン・オフを制御することによって、前記各蓄積容量に電圧を書き込む工程と、前記シフト手段を動作させるとともに前記読出信号を前記検査機能付D/A変換手段に供給することにより、前記1本以上の電源ラインから前記各データ線の電圧を前記シフト手段で生成される前記各タイミング信号に同期して読み出す工程とを備えることを特徴とする。この構成によれば、各蓄積容量に電圧が書き込まれた後、各データ線の電圧が前記シフト手段で生成される前記各タイミング信号に同期して読み出される。
【0013】
また、本発明の電気光学パネルは、複数の走査線と、X(但し、X=M×N、M,Nは自然数)本のデータ線と、前記走査線と前記データ線とに接続されるスイッチング素子と、前記スイッチング素子に接続された蓄積容量とを有する電気光学パネルであって、開始パルスをクロック信号に従って順次転送することによって、M個のタイミング信号を各々発生するシフト手段と、入力画像データを前記各タイミング信号に従ってラッチする第1ラッチ手段と、前記第1ラッチ手段の各出力信号を水平走査期間毎にラッチする第2ラッチ手段と、N本以上の電源ラインを有し、通常時において、前記N本以上の電源ラインに給電される電圧と前記第2ラッチ手段の出力信号とに基づいて前記各データ線に前記入力画像データに応じた各データ線信号を供給する一方、検査時において、前記各タイミング信号に基づいてN本の電源ラインとN本のデータ線とを順次接続することによって、前記N本の電源ラインから前記N本のデータ線の電圧を同時に読み出す検査機能付D/A変換手段とを備えることを特徴とする。
【0014】
この場合のデータ線はX(=M×N)本であり、シフト手段で生成されるタイミング信号はM個である。したがって、タイミング信号の個数がデータ線の本数より少ないので、各タイミング信号と各データ線とを1対1に対応付けて、データ線から電圧を読み出すことができない。このため、上記発明にあっては、あるタイミング信号に対応して、N本の電源ラインを介してN本のデータ線から電圧を同時に読み出し、次のタイミング信号に対応して次のN本のデータ線から電圧を同時に読み出すようにしている。換言すれば、N本のデータ線単位で順次電圧を読み出すようにしている。これにより、タイミング信号の個数がデータ線の本数より少ない場合であっても、検査時と通常時でシフト手段を兼用することができ、検査用に特別なシフト手段を素子基板上に形成する必要が無い。この結果、回路規模を削減することができ、さらに、別途設けたシフト手段の欠陥により、歩留まりが低下するといった問題を原理的に無くすことができる。
【0015】
この発明は、例えば、RGBの3色に対応する3画素を1組とし、1本の走査線当たり3N個の画素を有する電気光学パネル(3N本のデータ線を有する)において、シフト手段がN個のタイミング信号を生成する場合に適用することができる。
【0016】
ここで、前記検査機能付D/A変換手段は、前記N本の電源ラインと前記各データ線とを接続する選択回路と、前記各タイミング信号と外部から供給される読出信号とに基づいて、前記選択回路の選択動作を制御するための制御信号を生成する論理回路とを備えることが望ましい。
【0017】
また、本発明に係る電気光学パネルの検査方法は、前記N本以上の電源ラインに電源電圧を給電するとともに、前記各スイッチング素子のオン・オフを制御することによって、前記各蓄積容量に電圧を書き込む工程と、前記シフト手段を動作させるとともに前記読出信号を前記検査機能付D/A変換手段に供給することにより、前記N本の電源ラインから前記N本のデータ線の電圧を前記シフト手段で生成される前記各タイミング信号に同期して読み出す工程とを備えることを特徴とする。この構成によれば、各蓄積容量に電圧が書き込まれた後、各データ線の電圧が前記シフト手段で生成される前記各タイミング信号に同期して読み出される。
【0018】
また、本発明の電子機器は、上述した電気光学パネルを備えることを特徴とするものであり、例えば、ビデオカメラに用いられるビューファインダ、携帯電話機、ノート型コンピュータ、ビデオプロジェクタ等が該当する。
【0019】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0020】
<1.第1実施形態>
<1−1.液晶装置の全体構成>
まず、本発明に係る電気光学装置として、電気光学材料として液晶を用いた液晶装置を一例にとって説明する。液晶装置の主要部は、スイッチング素子として薄膜トランジスタ(Thin Film Transistor:以下、「TFT」と称する)を形成した素子基板と対向基板とが互いに電極形成面を対向させて、かつ、一定の間隙を保って貼付されて、この間隙に液晶が挟持された液晶パネルAAから構成されている。
【0021】
図1は本実施形態に係る液晶装置の全体構成を示すブロック図である。この液晶装置は、液晶パネルAAと外部処理回路とから構成される。液晶パネルAAの素子基板上には、画像表示領域A、走査線駆動回路100、およびデータ線駆動回路200が形成されている。また、液晶装置は、外部処理回路として、タイミング発生回路300および電源回路400を備えて構成されている。
【0022】
この液晶装置に供給される入力画像データDは4ビットパラレルの形式である。ここで、入力画像データDの上位1ビットを上位画像データD3と、その下位3ビットを下位画像データD0〜D2と称することにする。なお、この例では、以下の説明を簡略化するため、入力画像データDは1色に対応するものとして説明するが、本発明はこれに限定する趣旨ではなく、RGBの3原色に対応するものであっても良いことは勿論である。
【0023】
ここで、タイミング発生回路300は、入力画像データDに同期してYクロックYCK、XクロックXCK、Y転送開始パルスDY、X転送開始パルスDX、ラッチパルスLAT、信号WR、信号RE等を生成し、これらの信号を走査線駆動回路100およびデータ線駆動回路200に各々供給するように構成されている。また、電源回路400は、定電圧回路から構成されており、液晶パネルAAの素子基板上に形成される各回路の電源電圧を生成する他、後述するD/Aコンバータ240に用いられる電圧Vdaw1,Vcgw1,Vdaw2,Vcgw2,Vdak1,Vcgk1,Vdak2,Vcgk2を生成するようになっている。
【0024】
<1−2.画像表示領域>
画像表示領域Aは、図1に示されるように、m本の走査線3aが、X方向に沿って平行に配列して形成される一方、n本のデータ線6aが、Y方向に沿って平行に配列して形成されている。そして、走査線3aとデータ線6aとの交点付近においては、TFT50のゲートが走査線3aに接続される一方、TFT50のソースがデータ線6aに接続されるとともに、TFT50のドレインが画素電極9aに接続されている。そして、各画素は、画素電極9aと、対向基板に形成される対向電極と、これら両電極間に挟持された液晶とによって構成される。この結果、走査線3aとデータ線6aとの各交点に対応して、マトリクス状に配列することとなる。
【0025】
また、TFT50のゲートが接続される各走査線3aには、走査信号Y1、Y2、…、Ymが、パルス的に線順次で印加される構成となっている。このため、ある走査線3aに走査信号が供給されると、当該走査線に接続されるTFT50がオンするので、データ線6aから所定のタイミングで供給される画像信号X1、X2、…、Xnは、対応する画素に順番に書き込まれた後、所定の期間保持されることとなる。
【0026】
ここで、各画素に印加される電圧レベルに応じて液晶分子の配向や秩序が変化するので、光変調による階調表示が可能となる。例えば、液晶を通過する光量は、ノーマリーホワイトモードであれば、印加電圧が高くなるにつれて制限される一方、ノーマリーブラックモードであれば、印加電圧が高くなるにつれて緩和されるので、液晶装置全体では、画像信号に応じたコントラストを持つ光が各画素毎に出射される。このため、所定の表示が可能となっているのである。なお、この例の画像表示領域Aはノーマリーホワイトモードで動作するよう構成されている。
【0027】
また、保持された画像信号がリークするのを防ぐために、蓄積容量51が、画素電極9aと対向電極との間に形成される液晶容量と並列に付加される。例えば、画素電極9aの電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量51により保持されるので、保持特性が改善される結果、高コントラスト比が実現されることとなる。
【0028】
なお、画像表示領域Aの欠陥としては、データ線6aの断線や、TFT50の不良等がある。後述するようにデータ線駆動回路200は、電源回路400からの電圧Vdaw1,Vcgw1,Vdaw2,Vcgw2,Vdak1,Vcgk1,Vdak2,Vcgk2を供給する複数の電源ラインL1〜L8を備えており、各データ線6aと複数の電源ラインL1〜L8とを選択的に接続できるようになっている。また、データ線駆動回路200は、検査時において、画像表示領域Aの欠陥を検知するため、各画素に所定の電圧を書き込み、データ線駆動回路200の電源ラインL1を介して各画素に書き込んだ電圧を読み出すようになっている。
【0029】
<1−3.走査線駆動回路>
次に、走査線駆動回路100は、Yシフトレジスタおよびレベルシフタ等を備えている。Yシフトレジスタは、垂直走査期間の開始を示す信号DYを水平走査期間毎に反転するYクロックYCKを用いてY方向にシフトし、順次シフトされた信号をレベルシフタを用いてレベルシフトして、走査信号Y1、Y2、…、Ymを生成している。各走査信号Y1、Y2、…、Ymは走査線3aに対しパルス的に線順次で供給されるようになっている。なお、走査信号Y1、Y2、…、Ymは、1水平走査期間の中の所定期間においてアクティブとなる信号である。
【0030】
<1−4.データ線駆動回路>
次に、データ線駆動回路200について説明する。図2は、データ線駆動回路200のブロック図である。図2に示すようにデータ線駆動回路200は、Xシフトレジスタ210、画像データD0〜D3が供給される画像データ供給線Ld0〜Ld3、スイッチSW10〜SWn3、第1ラッチ220、第2ラッチ230、およびD/Aコンバータ240を備えている。なお、D/Aコンバータ240は、後述するように検査機能を有している。
【0031】
Xシフトレジスタ210は、ラッチ回路を多段接続して構成されている。このXシフトレジスタ210は、XクロックXCKにしたがって、X転送開始パルスDXを順次シフトしてサンプリングパルスSR1、SR2、…、SRnを順次生成するようになっている。
【0032】
ところで、検査時において、画像表示領域Aを構成する各画素に書き込んだ電圧を読み出す際には、各データ線を順次選択するとともに、これに同期して、各走査線3aにTFT50をオン状態にする信号を印加し、蓄積容量51に保持された電圧を読み出す必要がある。ここで、検査用に特別なシフトレジスタを素子基板上に形成し、各データ線6aを順次選択するためのタイミング信号を生成することも考えられる。
【0033】
しかし、そのようなシフトレジスタを別途追加すると、回路規模が増大してしまう。さらに、別途設けたシフトレジスタに欠陥があると、他の部分に欠陥がなくても正常な検査を行うことができず、結局、そのような液晶パネルAAは不良品とせざるを得ない。
【0034】
そこで、この例にあっては、Xシフトレジスタ210を通常動作時のみならず、検査時においても使用するようにしている。このため、サンプリングパルスSR1、SR2、…、SRnはD/Aコンバータ240にも供給されるようになっており、D/Aコンバータ240は、検査時にサンプリングパルスSR1、SR2、…、SRnを用いて、各データ線6aを順次選択できるようになっている。
【0035】
次に、スイッチSW10〜SWn3は、スイッチSW10〜SW13、SW20〜SW23、…、SWn0〜SWn3といったように4個で1組の構成となっており、各組を構成する各スイッチが画像データ供給線Ld0〜Ld3に各々接続されている。そして、n個のサンプリングパルスSR1、SR2、…、SRnが各n組のスイッチSW10〜SW13、SW20〜SW23、…、SWn0〜SWn3に供給されるようになっている。したがって、サンプリングパルスSR1、SR2、…、SRnに同期して、画像データD0〜D3が第1ラッチ220に取り込まれる。
【0036】
次に、第1ラッチ220は、n組のスイッチSW10〜SWn3から供給される画像データD0〜D3をラッチするように構成されており、これにより、点順次で走査されるデータが得られる。また、第2ラッチ230は、第1ラッチ220の各出力データをラッチパルスLATを用いてラッチするように構成されている。ここで、ラッチパルスLATは1水平走査期間毎にアクティブとなる信号である。したがって、この第2ラッチ230によって、点順次で出力される第1ラッチ220の各データは、線順次の各データに変換される。換言すれば、スイッチSW10〜SWn3、第1ラッチ220および第3ラッチ230を用いることによって、画像データD0〜D3を前記各データ線6aに対応する線順次データに変換している。
【0037】
<1−5.D/Aコンバータ>
次に、D/Aコンバータ240について説明する。図3はD/Aコンバータ240のブロック図である。この図に示すようにD/Aコンバータ240は、n本のデータ線6aに対応したn個のユニットU1〜Unを備えている。
【0038】
各ユニットU1〜Unは、容量回路241、出力端子Zを有する選択回路242、およびアンド回路243を備えている。各ユニットU1〜Unにおいて、アンド回路243の一方の入力端子には読出信号REが供給される。また、アンド回路243の他方の入力端子にはサンプリングパルスSR1〜SRnが各々供給されるようになっている。例えば、ユニットU1にはサンプリングパルスSR1が、ユニットU2にはサンプリングパルスSR2、…といったように、各ユニットU1〜Unが接続されるn本のデータ線6aに各々対応したサンプリングパルスSR1〜SRnが供給される。これ以外の点については、各ユニットU1〜Unが同様に構成されているので、ユニットU1について以下説明する。
【0039】
ユニットU1において、アンド回路243は、Hレベルでアクティブとなる読出信号REとサンプリングパルスSR1の論理積を算出して出力する。ここで、読出信号REは、検査時において画像表示領域Aから電圧を読み出す時のみHレベルとなり、通常の動作時にあっては、Lレベルとなる信号である。一方、サンプリングパルスSR1は、第1番目のデータ線6aを選択する期間のみHレベルとなる信号である。
【0040】
したがって、アンド回路243の出力信号Wは、検査時において第1番目のデータ線6aを選択して電圧を読み出す時にのみHレベル(アクティブ)となる。
【0041】
次に、選択回路242は、各種の制御信号、画像データD3、およびアンド回路243の出力信号Wに基づいて、出力端子Zをハイインピーダンス状態にするか、あるいは各電源ラインL1〜L8のうちいずれかに接続するように構成されている。選択回路242は、特に、アンド回路243の出力信号WがHレベルのとき、出力端子Zと電源ラインL1を接続するようになっている。したがって、ユニットU1は、検査時において、第1番目のデータ線6aから電圧を読み出すことができる。
【0042】
次に、容量回路241は、キャパシタ341〜343、一端がキャパシタ341〜343に接続されるとともに他端がデータ線6aに接続されるスイッチSWa〜SWc、およびナンド回路344〜346から構成されている。なお、スイッチSWa〜SWcは、制御入力端子の論理レベルがLレベルのときオン状態となり、Hレベルのときオフ状態となるようになっている。
【0043】
ここで、D/Aコンバータ240のデジタルアナログ変換原理について説明する。D/Aコンバータ240の機能は、第一議的に各データ線6aに対して入力画像データDに応じた電圧を印加することにある。ところで、データ線6aには寄生容量が発生する。本実施形態のD/Aコンバータは、この寄生容量を積極的に活用しており、上位ビットに対応する電圧を寄生容量に充電した後、下位ビットに対する電荷を寄生容量に流し込むことによって、データ線6aに対して入力画像データDに対応する電圧を印加するように構成されている。
【0044】
図4は、1本のデータ線に対応するD/Aコンバータの動作原理を示す概念図である。D/Aコンバータ240の容量回路241には、上述したように下位画像データD0〜D2の各ビットの重み付けに応じた容量値を持つキャパシタ341〜343が設けられている。ここで、キャパシタ341の値をCdacとすれば、キャパシタ342、343の値は、2・Cdac、4・Cdacとなるように設定されている。また、データ線6aの寄生容量はCslnであり、そこに充電すべき電圧(上位画像データD3に対応)はVslnである。
【0045】
まず、下位画像データD0〜D2のうち“1”に対応するキャパシタに充電電圧Vdacを充電する。図に示す例では、D0=1、D1=0、D2=1であるため、キャパシタ341および343に充電電圧Vdacが充電される。次に、データ線6aに電圧Vslnを充電し、この後、データ線6aとキャパシタ341および343を接続する。ここで、下位画像データD0〜D2のデータ値がNであるとすれば、データ線6aの電圧Vは、以下に示す式(1)で与えられる。
【0046】
V=(N・Cdac・Vdac+Csln・Vsln)/(N・Cdac+Csln)……式(1)
式(1)において、CdacとCslnとは定数であり、VdacとVslnとは変数である。したがって、VdacとVslnとを適宜設定することによって、データ線6aの電圧を可変することができる。換言すれば、VdacとVslnとを適宜設定することによって、D/Aコンバータ240のビット数を拡大することが可能となる。このため、D/Aコンバータ240は、上位画像データD3の値に応じて、予め定められた複数の直流電圧の中から必要とされる電圧を選択するようになっている。
【0047】
例えば、上位画像データD3が“0”のときのVdacをVdaw1=7V,VslnをVcgw1=4.5V、上位画像データD3が“1”のときのVdacをVdak1=4.5V, VslnをVcgk1=7Vとし、Cdac=1.5E-12FかつCsln=1.1E-11Fとすると、0から15までの階調値とデータ線6aの電圧Vとは、図5に黒丸で示す関係がある。この図に示すように階調値に対する電圧Vの変化曲線は、S字上に変化するので、液晶に適したガンマ補正を施すことが可能となる。
【0048】
ところで、液晶には、直流電圧が印加されると、その組成が変化し表示特性が劣化する性質がある。このため、液晶に印加する電圧極性を、一定周期で反転させることが望ましい。極性反転には各種の方式があるが、この例では、1フィ−ルド周期毎にデータ線単位で極性反転を行っている。
【0049】
したがって、奇数フィールドと偶数フィールドで液晶に印加する電圧極性を反転する必要がある。このため、あるフィールドでは、上位画像データが“0”のときにVdaw1およびVcgw1、上位画像データが“1”のときにVdak1およびVcgk1を各々選択し、次のフィールドでは上位画像データが“0”のときにVdacとしてVdaw2=1V,VslnとしてVcgw2=3.5V、上位画像データが“1”のときにVdacとしてVdak2=3.5V, VslnとしてVcgk2=1Vを各々選択するようにしている。図5に示す白丸印の曲線は、次のフィールドにおける特性を示したものである。また、図6に図4にプロットした各点に対応する下位画像データD0〜D2、上位画像データD3、階調値、電圧Vの関係を示す。
【0050】
次に、選択回路の動作をより具体的に説明する。選択回路の真理値表を図7に示す。ここで、信号FEは、フィールドの種別を示す信号であり、“1”のとき偶数フィールドであることを示し、“0”のとき奇数フィールドであることを示す。また、信号CSETは、キャパシタ341〜343の充電期間においてのみ“1”となり、信号SSETはデータ線の充電期間においてのみ“1”となる信号である。
【0051】
この図に示すように、アンド回路243の出力信号Wが“1”のときは、他の制御信号の値に関わらず電源ラインL1と出力端子Zとが接続され、一方、その値が“0”のときは他の制御信号の値に基づいて、電源ラインL1〜L8と出力端子Zが接続されるか、あるいは出力端子Zがハイインピーダンス状態になる。
【0052】
図8は、D/Aコンバータ240の動作を説明するためのタイミングチャートであり、図9はD/A変換における電荷の移動を示す概念図である。なお、時刻t1は偶数フィールドにおけるj番目の水平走査期間の開始タイミングである。さらに、上位画像データD3の値は“0”、下位画像データD0〜D2の値は“1,1,1”であるものとする。
【0053】
時刻t1から当該水平走査期間が開始すると、まず、信号NRGCがHレベルとなる。すると、ディスチャージ回路(図示せず)が各データ線6aを接続し、各データ線6aに平均的な電圧を印加する。
【0054】
この後、信号CSETがHレベルになる第1期間T1において、D/Aコンバータ240から電圧Vdak1が出力される。このとき、信号WRはHレベルとなっており、また、D0=D1=D2=1であるから、容量回路241のスイッチSWa〜SWcは総てオン状態となる。このため、データ線6aの寄生容量Cslnに電圧Vdak1が充電されるとともに、各キャパシタ341〜343に電圧Vdak1が充電される。すなわち、図9(A)に示すように、D/Aコンバータ240の容量7・Cdacとデータ線6aの寄生容量Cslnに充電電圧VdacとしてVdak1が充電される。
【0055】
次に、信号SSETがHレベルになる第2期間T2においては、信号WRがLレベルとなるので、スイッチSWa〜SWcはオフ状態となる。このとき、D/Aコンバータ240から電圧Vcgk1が出力され、これにより、データ線6aの寄生容量Cslnが電圧Vcgk1に充電される。すなわち、図9(B)に示すように、D/Aコンバータ240の容量7・Cdacに電圧Vdak1が充電された状態で、データ線6aの寄生容量Cslnに充電電圧VslnとしてVcgk1が充電される。
【0056】
次に、走査信号YjがHレベルとなる期間(図8ではT2、T3)において、信号CSET、SSETはLレベルとなるので、D/Aコンバータ240中の選択回路242は出力端子Zをハイインピーダンス状態にする。一方、当該期間において信号WRはHレベルとなるので、スイッチSWa〜SWcはオンとなり、キャパシタ341〜343とデータ線6aが接続される。すると、キャパシタ341〜343とデータ線6aの寄生容量Cslnとの間で電荷が移動し、図9(C)に示すように両者の電圧が等しくなる。この場合、データ線6aの電圧Vaは以下に示す式(2)で与えられる。
【0057】
Figure 0003726575
また、当該期間において、走査信号YjがHレベルとなるから、TFT50がオン状態となり、TFT50を介して電圧Vaが蓄積容量51に印加される。そして、走査信号YjがLレベルになると、TFT50がオフ状態となり、次のフィールドまで、電圧Vaが保持される。
【0058】
次に、時刻t1から1フィールド期間が経過し、奇数フィールドにおけるj番目の水平走査期間が時刻t2から開始する。この場合も上述した偶数フィールドと同様に、第1期間T1'においてキャパシタ341〜343とデータ線6aの寄生容量に電圧が充電される。また、第2期間T2'においてデータ線6aとキャパシタ341〜343が分離されるとともに寄生容量に電圧が充電される。さらに、第3期間T3'においてデータ線6aとキャパシタ341〜343が接続されるとともにデータ線6aの電圧VbがTFT50を介して蓄積容量51に取り込まれる。ただし、奇数フィールドでは、第1期間T1'にD/Aコンバータ240から出力される電圧はVdak2となり、第2期間T2'にD/Aコンバータ240から出力される電圧はVcgk2となるから、奇数フィールドにおけるデータ線6aの電圧波形は、基準電圧Vrefを中心に奇数フィールドにおけるそれを上下反転したものとなる。したがって、液晶には直流電圧が印加されず、特性劣化を防止することができる。
【0059】
<1−6.検査システムの構成>
次に、上述した液晶パネルAAの欠陥を検査するための検査システムについて説明する。ところで、液晶パネルAAは、上述したように素子基板と対向基板とが互いに電極形成面を対向させて、かつ、一定の間隙を保って貼付されて、この間隙に液晶が挟持されて構成される。液晶パネルは高価であることから、走査線駆動回路100、データ線駆動回路200および画像表示領域Aが形成される素子基板の段階で検査を行うことが望ましい。このため、この例では、素子基板単体で検査を行うものとする。但し、液晶パネルAAとして完成したものを検査しても良いことは勿論である。図10は、本実施形態に係る検査システムのブロック図である。
【0060】
図10において、素子基板テスタ500は、検査動作を統括的に制御するテストシステムコントローラ510と、各種のタイミング信号を生成するタイミングジェネレータ520と、検査用のデータを出力するデータジェネレータ530と、高速のアンプおよびA/Dコンバータ540と、そのA/Dコンバータから出力されるデータを入力として所定の解析を行うデータアナライザ550とを有している。
また、フルオートプローバー600は、プローバコントローラ610と、各種信号のインタフェースとなるDUTボード620とを有している。
検査の際には、フルオートプローバー600のプローブは(図示せず)、液晶パネルAAの露出している所定の端子に接続される。
そして、テストシステムコントローラ510の統括制御の下で、素子基板テスタ500内のタイミングジェネレータ520およびデータジェネレータ530から、各種タイミング信号と検査データとが出力される。これらは、フルオートプローバー600のDUTボード620を介して液晶パネルAAに送られる。
【0061】
タイミング信号は、液晶パネルAA内の走査線駆動回路100、データ線駆動回路200にそれぞれ入力され、また、検査データはデータ線駆動回路200に入力される。
【0062】
そして、所定の検査工程を経た後(検査動作の詳細については後述する)、データ線駆動回路200から、取得された検査の基礎となるアナログ信号(以下、基礎信号という)が出力され、この基礎信号は、フルオートプローバー600内のDUTボード620を介してTFTテスタ500に送られる。そして、TFTテスタ500内の高速アンプ,A/Dコンバータ540により増幅ならびにA/D変換され、その変換されたデータは、データアナライザ550に入力され、所定の解析がなされる。
【0063】
<1−7.検査システムの動作>
次に、具体的な検査手順を説明する。図11は、液晶パネルAAの検査手順の一例を示すフローチャートである。この例は、検査時間の短いものから順に検査するという方式を採用し、かつ必要な総ての工程について検査をするようにしている。但し、不良が発見された時点で以後の検査を中止することも可能である。
【0064】
以下、図11の検査手順について順をおって説明する。まず、未検査の素子基板の有無を調べ、未検査素子基板が有る場合にはその基板を図10の検査システムにアラインメント(装着)し(ステップS1)、フルオートプローバー600によるプロービングを行う(ステップS2)。
【0065】
上述したようにデータ線駆動回路200は複数の電源ラインL1〜L8を有しているが、これらの電源ラインL1〜L8は、プロービングによってDUTボード620に接続されることになる。特に、電源ラインL1は、データ線6aに電圧を印加する際には、電源電圧Vdaw1を供給するための電源ラインとして機能する一方、後述する走査線およびデータ線の短絡検査や点欠陥検査においては、データ線6aに流れる電流や各画素に書き込まれた電圧を読み出すために用いられる。
【0066】
次に、走査線駆動回路100およびデータ線駆動回路200の消費電流の測定を行う(ステップS3)。このステップでは、走査線駆動回路100およびデータ線駆動回路200の供給電源に流れる消費電流が基準範囲にあるかどうかを判定する。電源間に短絡があると、過大な電流が流れるので、これにより判定が可能である。
【0067】
次に、Y転送開始パルスDYおよびYクロック信号YCKを走査線駆動回路100に供給し(ステップS5)、YエンドパルスDYEの測定を行う。そして、YエンドパルスDYEが所定のタイミング前に発生したか否かを判定する(ステップS6)。つまり、シフトレジスタの初段にパルスを入力し、そのパルスが所定のタイミングで最終段から出力されるかを判定する。仮にシフトレジスタに欠陥があると、正常にパルスの転送が行われないので、所定のタイミング前にYエンドパルスDYEが得られないことになる。ここで、所定のタイミングは、Y転送開始パルスDYを供給するタイミング、シフトレジスタの段数、Yクロック信号YCKの周波数および許容される遅延時間等に基づいて、走査線駆動回路100に欠陥があるか否かが判定できるように予め定められている。
【0068】
次に、データ線駆動回路200についても、走査線駆動回路100の場合と同様に、X転送開始パルスDXおよびXクロック信号XCKを供給し(ステップS7)、Xエンドパルスが所定タイミング前に発生するか否かを判定する(ステップS8)。これにより、データ線駆動回路200に欠陥があるか否かを判定することができる。
【0069】
次に、データ線6aおよび走査線3aの短絡検査を実行する(ステップS9)。具体的には、走査線駆動回路100の全出力をHレベルとし、データ線駆動回路200中のD/Aコンバータ240に供給する読出信号REをHレベルにする(図3参照)。そして、データ線駆動回路200にX転送開始パルスDXおよびXクロック信号XCKを供給する。すると、D/Aコンバータ240を構成する各ユニットU1〜Unにおいて、アンド回路243の出力信号Wが順次Hレベルとなる。このため、選択回路242を介してその出力端子Zと電源ラインL1とが順次接続される。仮に、走査線3aとデータ線6aとが短絡していれば、過大な電流が流れる。
【0070】
そこで、ステップ10にあっては、電源ラインL1を流れる電流値が基準値以下か否かを判定することによって、走査線3aとデータ線6aとの短絡の有無を検査している。
【0071】
この後、ステップS11に進み、点欠陥検査を実行し、不良アドレスの検出を行う。点欠陥検査の詳細なフローチャートを図12に示す。この図に示すように、まず、各画素の蓄積容量51に検査信号を書き込む。具体的には、通常の動作時と同様に、入力画像データDの替わりに検査データを素子基板に供給し、線順次で各画素に検査信号を書き込む(ステップS111)。この場合、D/Aコンバータ240には電源ラインL1〜L8を介して電源電圧が給電されている。
【0072】
次に、総ての画素について書き込みが終了すると、各画素から電圧の読み出しを行う(ステップS112)。この際、DUTボード620は、走査線駆動回路100にタイミングジェネレータ520で生成されたY転送開始パルスDYとYクロック信号YCKとを供給する。また、タイミングジェネレータ520は、D/Aコンバータ240に供給する読出信号REをHレベルに設定し、DUTボード620を介して、データ線駆動回路200にX転送開始パルスDXおよびXクロック信号XCKを供給する。
【0073】
これにより、D/Aコンバータ240を構成する各ユニットU1〜Unにおいて、アンド回路243の出力信号Wが順次Hレベルとなり、選択回路242を介してその出力端子Zと電源ラインL1とが順次接続される。したがって、各画素に書き込まれた電圧が電源ラインL1を介して順次出力される。DUTボード620は、読み出した電圧を高速アンプやA/Dコンバータ550を介して、データアナライザ550に供給する。
【0074】
この後、データアナライザ550は読出電圧が所定範囲内か否かを判定し、不良画素を特定する(ステップS113)。そして、必要に応じて、複数回の検出(ステップS114)や、書き込み条件を異ならせての検出(ステップS115)を実行する。
このようにして点欠陥の検査が終了すると、図11に示すステップS12に進み、良否の総合判定を行う。良否判定は例えば、不良画素の素子基板面における二次元的分布を考察し、周囲に対して極端に異なる数値を示す箇所(特異点)がないかどうかを調べること等により、総合的に判断される。
【0075】
このように本実施形態によれば、検査時において、通常動作時に使用するXシフトレジスタ210を用いてサンプリングパルスSR1〜SRnを生成し、これを用いて各画素に書き込んだ電圧を読み出すようにしたので、検査用に特別なシフトレジスタを素子基板上に形成する必要が無い。この結果、回路規模を削減することができ、さらに、別途設けたシフトレジスタの欠陥により、歩留まりが低下するといった問題を原理的に無くすことができる。
【0076】
<1−8.D/Aコンバータの他の例>
上述した実施形態では、D/Aコンバータ240として容量分割型のものを一例として説明したが、抵抗分割型やPWM型のものであっても良い。
【0077】
図13は、抵抗分割型のD/Aコンバータ240'のブロック図である。この図に示すようにD/Aコンバータ240'は、ユニットU1'〜Un'から構成されており、各ユニットU1'〜Un'には、電源ラインL1,L2を介して、高位電圧VHと低位電圧VLが供給されるようになっている。
【0078】
また、各ユニットU1'〜Un'は、アンド回路244、端子Z1〜Z4を有する選択回路245、デコーダ246、抵抗R1〜R7およびスイッチSWd1〜SWd8を備えている。各ユニットU1〜Unにおいて、アンド回路244の一方の入力端子には読出信号REが供給される。また、アンド回路244の他方の入力端子にはサンプリングパルスSR1〜SRnが各々供給されるようになっている。例えば、ユニットU1'にはサンプリングパルスSR1が、ユニットU2'にはサンプリングパルスSR2、…といったように、各ユニットU1'〜Un'が接続されるn本のデータ線6aに各々対応したサンプリングパルスSR1〜SRnが供給される。これ以外の点については、各ユニットU1'〜Un'が同様に構成されているので、ユニットU1'について以下説明する。
【0079】
まず、選択回路245はアンド回路244の出力信号W'に基づいて、各端子Z1〜Z4の接続状態を制御できるように構成されている。具体的には、出力信号W'がHレベルの場合、選択回路245は、端子Z1と端子Z2とを接続するとともに、端子Z3,Z4をハイインピーダンス状態、すなわち、開放状態にする。一方、 出力信号W'がLレベルの場合、選択回路245は、端子Z1と端子Z3とを接続するとともに、端子Z2と端子Z4とを接続する。アンド回路244は、読出信号REとサンプリングパルスSR1との論理積を算出して出力信号W'を出力するから、検査時において第1番目のデータ線6aを選択して電圧を読み出す時にのみ電源ラインL1と第1番目のデータ線6aとが選択回路245を介して接続されることになり、通常動作時には、電源ラインL1から高位電圧VHが選択回路245を介して抵抗R1の一端に供給されるとともにデータ線6aと各スイッチSWd1〜SWd8の共通接続点とが選択回路245を介して接続されることになる。
【0080】
デコーダ246は、第2ラッチ230から供給される4ビットの画像データDをデコードして、スイッチSWd1〜SWd8のオン・オフを制御する制御信号を生成する。ここで、スイッチSWd1〜SWd8は、抵抗R1〜R7の一端と各々接続されており、通常動作時には抵抗R1の一端が電電ラインL1に接続されるから、各抵抗R1〜R7によって分圧された電圧が第1番目のデータ線6aに印加される。
【0081】
一方、上述したように検査時にあっては、第1番目のデータ線6aから電圧を読み出す時にデータ線6aと電源ラインL1が接続されるので、電源ラインL1を介してデータ線6aの電圧を読み出すことができる。
【0082】
次に、PWM型のD/Aコンバータ240''について説明する。図14は、そのブロック図である。この図に示すようにD/Aコンバータ240''は、ユニットU1''〜Un''から構成されており、各ユニットU1''〜Un''には、電源ラインL1を介して、1水平走査線周期のランプ波形電圧VPが供給されるようになっている。
【0083】
また、各ユニットU1''〜Un''は、上述したアンド回路244、選択回路245を備える他、PWM回路247およびスイッチSWeを有している。
【0084】
まず、PWM回路247は第2ラッチ230から供給される4ビットの画像データDに応じて、Hレベルになる期間が調整される制御信号を出力するように構成されている。また、スイッチSWdは、制御信号がHレベルの期間中、オン状態となる。
【0085】
したがって、通常動作時にあっては、画像データDに応じた期間だけ、電源ラインL1から供給されるランプ波形電圧VPがデータ線6aに印加されることになる。一方、検査時においては、上述した抵抗分割型のD/Aコンバータ240'と同様に、各画素に書き込んだ電圧をサンプリングパルスSR1〜SRnが各々アクティブとなるタイミングで読み出すことになる。
【0086】
このように、D/Aコンバータは、電源ラインから供給される電圧に基づいて、画像データDに応じた電圧を各データ線6aに出力するものであるから、その形式は、容量分割型、抵抗分割型、あるいはPWM型のいずれであってもよい。要は、Xシフトレジスタ210を通常動作時と検査時で兼用し、検査時においてサンプリングパルスSR1〜SRnと読出信号REとの論理演算結果にもとづいて、電源ラインL1とデータ線6aとを接続する選択回路を備えていれば、いかなる構成であってもよい。
【0087】
<2.第2実施形態>
上述した第1実施形態の液晶装置は、単色を表示するものであった。これに対して、第2実施形態の液晶装置は、RGBといった3色を表示するものである。第2実施形態に係る液晶装置の全体構成は、画像表示領域のデータ線6aの本数が3n本である点、入力画像データDのデータ構成およびデータ線駆動回路2000の詳細な構成を除いて、図1に示す第1実施形態の液晶装置と同様に構成されている。この例の入力画像データDは、RGBの各色毎に4ビットパラレル形式で構成されており、Rに対応するデータDR0〜DR3、Gに対応するデータDG0〜DG3、およびBに対応するデータDB0〜DB3から構成されている。
【0088】
このように3色の表示を行う場合には、画像表示領域Aにおいて、隣接する3画素にRGBの各色を割り当て、RGBに対応する各色の画像データを同時にラッチするのが一般的である。このため、画像表示領域Aが3n本のデータ線6aを備えていても、n個のサンプリングパルスSR1〜SRnを用いることによって、RGBを1組とする3画素単位で点順次の変換が行われる。
【0089】
ところで、点欠陥等の検査においては各データ線6aから各画素に書き込まれた電圧を読み出す必要がある。このためには、3n本の各データ線6aに対応した3n個のサンプリングパルスが必要となる。しかし、上述したようにXシフトレジスタ210は、n個のサンプリングパルスを生成するものであるから、Xシフトレジスタ210を検査時において兼用することができない。
【0090】
第2実施形態はこの点に鑑みてなされたものであり、D/Aコンバータの構成を工夫することによって、検査時にn個のサンプリングパルスSR1〜SRnを用いて、3n本のデータ線6aを介して各画素に書き込まれた電圧を読み出すものである。
【0091】
<2−1.データ線駆動回路>
以下、第2実施形態に用いられるデータ線駆動回路2000について説明する。
【0092】
図15は、第2実施形態に係るデータ線駆動回路2000のブロック図である。データ線駆動回路2000は、Xシフトレジスタ210、第1ラッチ2200、第2ラッチ2300、D/Aコンバータ2400、スイッチ群SWu1〜SWunおよびデータ供給線Ld0〜Ld11から大略構成されている。なお、Xシフトレジスタ210は、第1実施形態のものと同一の構成である。また、第1ラッチ2200、第2ラッチ2300、D/Aコンバータ2400は、4ビットの入力画像データDに対応する第1実施形態の第1ラッチ220、第2ラッチ230、D/Aコンバータ240を各々12ビット(3原色:1色当たり4ビット)に拡張したものである。
【0093】
データ供給線Ld0〜Ld3にはDR0〜DR3が、データ供給線Ld4〜Ld7にはDG0〜DG3が、データ供給線Ld8〜Ld11にはDB0〜DB3が、各々供給されるようになっている。そして、各データ供給線Ld0〜Ld11は、各スイッチ群SWu1〜SWunを介して第1ラッチ2200と接続されている。
【0094】
各スイッチ群SWu1〜SWunは、共通の制御信号が供給される12個のスイッチから構成されており、スイッチ群SWu1にはサンプリングパルスSR1、スイッチ群SWu2にはサンプリングパルスSR2、…、スイッチ群SWunにはサンプリングパルスSRnといったように、各サンプリングパルスSR1〜SRnが制御信号として供給されている。そして、各サンプリングパルスSR1〜SRnが各々アクティブとなるタイミングで、入力画像データDR0〜DR3、DG0〜DG3、DB0〜DB3が同時に第1ラッチ2200に取り込まれる。第1ラッチ2200に取り込まれた入力画像データは点順次データとなる。なお、ここでいう「点」とは、R,G,Bに対応する画素の組に対応するものである。
【0095】
この後、第2ラッチ2300がラッチパルスLATによって点順次データをラッチすることによって、点順次データが線順次データに変換される。
【0096】
<2−2.D/Aコンバータ>
次に、D/Aコンバータ2400について説明する。図16はD/Aコンバータ2400の一部分の構成を示すブロック図である。D/Aコンバータ2400は、図16に示すRGBの各色に対応するユニットUa、Ub、Ucを一組とし、これをn組備えて構成されている。この例では、ユニットUaがRに、ユニットUbがGに、ユニットUcがBに各々対応している。
【0097】
各ユニットUa、Ub、Ucは、容量回路241、選択回路242'、アンド回路243、およびスイッチSWuを備えている。なお、容量回路241およびアンド回路243は、第1実施形態のものと同一の構成である。
【0098】
選択回路242'は、制御信号としてアンド回路243の出力信号Wが供給されない点を除いて、第1実施形態の選択回路242と同様に構成されている。このため、選択回路242'の入出力関係は、図7に示す選択回路242の真理値表から出力信号Wが“1”の場合を除いたものとなっている。
【0099】
また、スイッチSWuは、アンド回路243の出力信号Wによって制御され、出力信号WがHレベルの場合に、データ線6aを電源ラインL1〜L3のいずれかに接続する。どの電源ラインに接続するかは、ユニットの種類によって異なる。ユニットUaのスイッチSWuはデータ線6aを電源ラインL1に、ユニットUbのスイッチSWuはデータ線6aを電源ラインL2に、ユニットUcのスイッチSWuはデータ線6aを電源ラインL3に、各々接続する。したがって、3本のデータ線6aの各電圧を電源ラインL1〜L3を介して同時に読み出すことができる。
【0100】
一方、出力信号WがLレベルの場合には、スイッチSWuはデータ線6aを選択回路242'の出力端子Z'に接続する。通常時における選択回路242'の動作は第1実施形態の選択回路242と同じであるから、通常時におけるDA変換動作は第1実施形態と相違がない。
【0101】
次に、検査時におけるD/Aコンバータ2400の動作を説明する。検査時においては、第1実施形態と同様に、図10に示す検査システムを用いて、液晶パネルAAを構成する素子基板の検査が行われる。この検査においては、図11および図12に示す検査手順と同様の手順で検査が行われる。
【0102】
検査時において、フルオートプローバー600のプローブは、素子基板の所定端子に接続され、これにより、DUTボード620と素子基板とが接続される。この所定端子には上記した電源ラインL1〜L8と接続される端子が含まれている。
【0103】
点欠陥の検査を行う場合には、まず、電源ラインL1〜L8に電源電圧を給電するとともに、走査線駆動回路100およびデータ線駆動回路200を通常時と同様に動作させ、各画素に電圧を書き込む。
【0104】
次に、各画素から電圧を読み出す際に、DUTボード620は、電源ラインL1〜L3と接続される端子を入力端子として動作させ、それらに供給される電圧を高速アンプやA/Dコンバータ540に送る。電圧の読出時においては、第1実施形態と同様に、テストシステムコントローラ510は、Xシフトレジスタ210を動作させる。これにより、サンプリングパルスSR1〜SRnがD/Aコンバータ2400に供給される。また、電圧の読み出し時においては、読出信号REがHレベルとなる。ここで、サンプリングパルスSR1がHレベルになったとすると、図16に示す各ユニットUa,Ub,Ucにおけるアンド回路243の出力信号Wが同時にHレベルとなるから、各スイッチSWuは、各データ線6aを電源ラインL1,L2,L3に各々接続する。したがって、隣接する3本のデータ線6aをから各電圧が同時に読み出すことができる。
【0105】
このように、本実施形態においては、D/Aコンバータ2400の複数の電源ラインL1〜L3を用いて、複数のデータ線6aから電圧を同時に読み出すようにしたので、データ線6aの総数より少ない数のサンプリングパルスを用いて各データ線6aから電圧を読み出すことができる。このため、通常動作時に使用するXシフトレジスタ210を検査時にも使用することができ、検査用に特別なシフトレジスタを素子基板上に形成する必要が無い。この結果、回路規模を削減することができ、さらに、別途設けたシフトレジスタの欠陥により、歩留まりが低下するといった問題を原理的に無くすことができる。
【0106】
なお、この例では、RGBの各色に対応する入力画像データを同時にサンプリングする場合を一例として説明したが、本発明はこれに限定されるものではなく、X(但し、X=M×N、M,Nは自然数)本のデータ線を有する液晶パネルにおいて、以下のように構成してもよい。ます、M個のサンプリングパルスをXシフトレジスタで生成する。そして、1個のサンプリングパルスを用いて、Nサンプルを同時にサンプリングし、これを第1ラッチでラッチする。次に、第1ラッチの出力を1水平走査周期でアクティブとなるラッチパルスでラッチする。この結果をN本以上の電源ラインを有するD/AコンバータでDA変換してX本のデータ線を駆動する。D/Aコンバータは、検査時において、M個のサンプリングパルスに基づいて、N本の電源ラインとN本のデータ線とを順次接続する。具体的は、第1番目のサンプリングパルスに同期して、第1番目から第N番目のデータ線をN本の電源ラインと接続し、第2番目のサンプリングパルスに同期して、第N+1番目から第2N番目のデータ線をN本の電源ラインと接続し、これをM回繰り返すことにより、X本の各データ線から電圧を読み出すようにしてもよい。
【0107】
また、上述した例では、容量分割型のD/Aコンバータを用いたが、抵抗分割型やPWM型のD/Aコンバータを用いてもよいことは勿論である。
【0108】
<3.液晶装置の応用例>
次に、第1実施形態および第2実施形態で説明した液晶装置を各種の電子機器に適用される場合について説明する。
【0109】
<その1:プロジェクタ>
まず、この液晶装置をライトバルブとして用いたプロジェクタについて説明する。図17は、プロジェクタの構成例を示す平面図である。
【0110】
この図に示されるように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド1104内に配置された4枚のミラー1106および2枚のダイクロイックミラー1108によってRGBの3原色に分離され、各原色に対応するライトバルブとしての液晶パネル1110R、1110Bおよび1110Gに入射される。
【0111】
液晶パネル1110R、1110Bおよび1110Gの構成は、上述した液晶パネルと同等であり、画像信号処理回路(図示省略)から供給されるR、G、Bの原色信号でそれぞれ駆動されるものである。そして、これらの液晶パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112においては、RおよびBの光が90度に屈折する一方、Gの光が直進する。したがって、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン等にカラー画像が投写されることとなる。
【0112】
ここで、各液晶パネル1110R、1110Bおよび1110Gによる表示像について着目すると、液晶パネル1110Gによる表示像は、液晶パネル1110R、1110Bによる表示像に対して左右反転することが必要となる。
【0113】
なお、液晶パネル1110R、1110Bおよび1110Gには、ダイクロイックミラー1108によって、R、G、Bの各原色に対応する光が入射するので、カラーフィルタを設ける必要はない。
【0114】
<その2:モバイル型コンピュータ>
次に、この液晶パネルを、モバイル型のパーソナルコンピュータに適用した例について説明する。図18は、このパーソナルコンピュータの構成を示す斜視図である。図において、コンピュータ1200は、キーボード1202を備えた本体部1204と、液晶表示ユニット1206とから構成されている。この液晶表示ユニット1206は、先に述べた液晶パネル1005の背面にバックライトを付加することにより構成されている。
【0115】
<その3:携帯電話>
さらに、この液晶パネルを、携帯電話に適用した例について説明する。図19は、この携帯電話の構成を示す斜視図である。図において、携帯電話1300は、複数の操作ボタン1302とともに、反射型の液晶パネル1005を備えるものである。この反射型の液晶パネル100にあっては、必要に応じてその前面にフロントライトが設けられる。
【0116】
なお、図16〜図18を参照して説明した電子機器の他にも、液晶テレビや、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた装置等などが挙げられる。そして、これらの各種電子機器に適用可能なのは言うまでもない。
【0117】
【発明の効果】
以上説明したように本発明よれば、通常動作時に使用するシフト手段を検査時にも兼用することができるので、電気光学パネルの信頼性を向上させることができ、さらに簡易な構成で歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る液晶装置の全体構成を示すブロック図である。
【図2】 同実施形態に用いるデータ線駆動回路200のブロック図である。
【図3】 同実施形態に用いるD/Aコンバータ240のブロック図である。
【図4】 同実施形態に用いるD/Aコンバータ240のD/A変換動作を説明するための概念図である。
【図5】 同実施形態に用いるD/Aコンバータ240の特性を示すグラフである。
【図6】 図5にプロットした各点に対応する入力画像データD0〜D3、階調値、電圧Vの関係を示す図である。
【図7】 同実施形態に用いる選択回路242の真理値表である。
【図8】 同実施形態に用いるD/Aコンバータ240の動作を説明するためのタイミングチャートである。
【図9】 同実施形態に用いるD/Aコンバータ240のD/A変換における電荷の移動を示す概念図である。
【図10】 同実施形態に用いる検査システムのブロック図である。
【図11】 同実施形態に用いる検査システムの検査手順を示すフローチャートである。
【図12】 同実施形態に用いる点欠陥の検査手順を示すフローチャートである。
【図13】 同実施形態に用いる抵抗分割型のD/Aコンバータ240'の構成を示すブロック図である。
【図14】 同実施形態に用いるPWM型のD/Aコンバータ240''の構成を示すブロック図である。
【図15】 本発明の第2実施形態に用いるデータ線駆動回路2000のブロック図である。
【図16】 同実施形態に用いるD/Aコンバータ2400のブロック図である。
【図17】 液晶装置を適用した電子機器の一例たるプロジェクタの構成を示す断面図である。
【図18】 液晶装置を適用した電子機器の一例たるパーソナルコンピュータの構成を示す斜視図である。
【図19】 液晶装置を適用した電子機器の一例たる携帯電話の構成を示す斜視図である。
【符号の説明】
3a……走査線
6a……データ線
9a……画素電極
50……TFT(スイッチング素子)
SR1〜SRn……サンプリングパルス(タイミング信号)
D……入力画像データ
L1〜L8……電源ライン
200……データ線駆動回路
210……Xシフトレジスタ(シフト手段)
220、2200……第1ラッチ
230、2300……第2ラッチ
240、2400……D/Aコンバータ(検査機能付D/A変換手段)
242、242'……選択回路
243……アンド回路(論理回路)

Claims (8)

  1. 複数の走査線と、複数のデータ線と、前記走査線と前記データ線とに接続されるスイッチング素子と、前記スイッチング素子に接続された蓄積容量とを有する電気光学パネルであって、
    開始パルスをクロック信号に従って順次転送することによって、各タイミング信号を発生するシフト手段と、
    入力画像データを前記各タイミング信号に従ってラッチする第1ラッチ手段と、
    前記第1ラッチ手段の各出力信号を水平走査期間毎にラッチする第2ラッチ手段と、
    1本以上の電源ラインを有し、通常時において、前記1本以上の電源ラインに給電される電圧と前記第2ラッチ手段の出力信号とに基づいて前記各データ線に前記入力画像データに応じた各データ線信号を供給する一方、検査時において、前記各タイミング信号に基づいて前記1本以上の電源ラインと前記各データ線とを順次接続することによって、前記1本以上の電源ラインから、前記データ線の電圧を読み出す検査機能付D/A変換手段と
    を備えたことを特徴とする電気光学パネル。
  2. 前記検査機能付D/A変換手段は、
    前記1本以上の電源ラインと前記各データ線とを接続する選択回路と、
    前記各タイミング信号と外部から供給される読出信号とに基づいて、前記選択回路の選択動作を制御するための制御信号を生成する論理回路と
    を備えることを特徴とする請求項1に記載の電気光学パネル。
  3. 前記検査機能付D/A変換手段は、容量分割型のD/A変換回路、抵抗分割型のD/A変換回路、またはPWM型のD/A変換回路を備えることを特徴とする請求項2に記載の電気光学パネル。
  4. 請求項2に記載の電気光学パネルを検査する電気光学パネルの検査方法であって、
    前記1本以上の電源ラインに電源電圧を給電するとともに、前記各スイッチング素子のオン・オフを制御することによって、前記各蓄積容量に電圧を書き込む工程と、
    前記シフト手段を動作させるとともに前記読出信号を前記検査機能付D/A変換手段に供給することにより、前記1本以上の電源ラインから前記各データ線の電圧を前記シフト手段で生成される前記各タイミング信号に同期して読み出す工程と
    を備えることを特徴とする電気光学パネルの検査方法。
  5. 複数の走査線と、X(但し、X=M×N、M,Nは自然数)本のデータ線と、前記走査線と前記データ線とに接続されるスイッチング素子と、前記スイッチング素子に接続された蓄積容量とを有する電気光学パネルであって、
    開始パルスをクロック信号に従って順次転送することによって、M個のタイミング信号を各々発生するシフト手段と、
    入力画像データを前記各タイミング信号に従ってラッチする第1ラッチ手段と、
    前記第1ラッチ手段の各出力信号を水平走査期間毎にラッチする第2ラッチ手段と、
    N本以上の電源ラインを有し、通常時において、前記N本以上の電源ラインに給電される電圧と前記第2ラッチ手段の出力信号とに基づいて前記各データ線に前記入力画像データに応じた各データ線信号を供給する一方、検査時において、前記各タイミング信号に基づいてN本の電源ラインとN本のデータ線とを順次接続することによって、前記N本の電源ラインから前記N本のデータ線の電圧を同時に読み出す検査機能付D/A変換手段と
    を備えたことを特徴とする電気光学パネル。
  6. 前記検査機能付D/A変換手段は、
    前記N本の電源ラインと前記各データ線とを接続する選択回路と、
    前記各タイミング信号と外部から供給される読出信号とに基づいて、前記選択回路の選択動作を制御するための制御信号を生成する論理回路と
    を備えることを特徴とする請求項5に記載の電気光学パネル。
  7. 請求項6に記載の電気光学パネルを検査する電気光学パネルの検査方法であって、
    前記N本以上の電源ラインに電源電圧を給電するとともに、前記各スイッチング素子のオン・オフを制御することによって、前記各蓄積容量に電圧を書き込む工程と、
    前記シフト手段を動作させるとともに前記読出信号を前記検査機能付D/A変換手段に供給することにより、前記N本の電源ラインから前記N本のデータ線の電圧を前記シフト手段で生成される前記各タイミング信号に同期して読み出す工程と
    を備えることを特徴とする電気光学パネルの検査方法。
  8. 請求項1、2、3、5、または6のうちいずれか1項に記載の電気光学パネルを備えたこと特徴とする電子機器。
JP22432999A 1999-08-06 1999-08-06 電気光学パネル、電気光学パネルの検査方法および電子機器 Expired - Fee Related JP3726575B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22432999A JP3726575B2 (ja) 1999-08-06 1999-08-06 電気光学パネル、電気光学パネルの検査方法および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22432999A JP3726575B2 (ja) 1999-08-06 1999-08-06 電気光学パネル、電気光学パネルの検査方法および電子機器

Publications (2)

Publication Number Publication Date
JP2001051655A JP2001051655A (ja) 2001-02-23
JP3726575B2 true JP3726575B2 (ja) 2005-12-14

Family

ID=16812060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22432999A Expired - Fee Related JP3726575B2 (ja) 1999-08-06 1999-08-06 電気光学パネル、電気光学パネルの検査方法および電子機器

Country Status (1)

Country Link
JP (1) JP3726575B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757810B2 (ja) * 2001-03-19 2011-08-24 株式会社半導体エネルギー研究所 半導体装置、検査装置
US6850080B2 (en) 2001-03-19 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Inspection method and inspection apparatus

Also Published As

Publication number Publication date
JP2001051655A (ja) 2001-02-23

Similar Documents

Publication Publication Date Title
US9070341B2 (en) Liquid crystal display device and driving method thereof
JP4188603B2 (ja) 液晶表示装置およびその駆動方法
US8248394B2 (en) Electro-optical device, driving method thereof, and electronic apparatus
EP2093751B1 (en) Liquid crystal display apparatus, and driving circuit and driving method thereof
JP3722812B2 (ja) 容量性負荷の駆動回路および駆動方法
US7474290B2 (en) Semiconductor device and testing method thereof
JPH10214065A (ja) アクティブマトリクス基板の検査方法,アクティブマトリクス基板,液晶装置および電子機器
WO2006016686A1 (en) Electrooptic apparatus substrate and method of examining such a substrate, electrooptic apparatus comprising such a substrate and electronic equipment comprising such an apparatus
JP4298782B2 (ja) 液晶表示装置およびその駆動方法
CN112445037B (zh) 液晶设备、波长选择光开关装置以及像素检查方法
US7227523B2 (en) Liquid crystal display device and inspecting method thereof
JP2006201738A (ja) 電気光学装置用基板及びその検査方法、並びに電気光学装置及び電子機器
TWI410922B (zh) 光電裝置、光電裝置之驅動方法及電壓監視方法
CN112368764B (zh) 液晶显示装置及其像素检查方法
JP2001166741A (ja) 半導体集積回路装置および液晶表示装置
JP2001296840A (ja) 電気光学パネルの駆動方法、そのデータ線駆動回路、電気光学装置、及び電子機器
US11170676B2 (en) Electro-optical device and electronic apparatus
JP3726575B2 (ja) 電気光学パネル、電気光学パネルの検査方法および電子機器
JP2021039294A (ja) 液晶デバイス、波長選択光スイッチ装置、及び、液晶デバイスの画素検査方法
JP7375439B2 (ja) 電気光学装置、および電子機器
JP2020013074A (ja) 電気光学装置および電子機器
JP7111127B2 (ja) 電気光学装置および電子機器
JP2012027169A (ja) 液晶表示装置及びその駆動方法
KR101147119B1 (ko) 액정 표시장치의 공통전압 발생장치 및 발생방법
JP4166718B2 (ja) 半導体集積回路の検査方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees