JP3724176B2 - バッテリ車のモータ制御装置 - Google Patents

バッテリ車のモータ制御装置 Download PDF

Info

Publication number
JP3724176B2
JP3724176B2 JP04042798A JP4042798A JP3724176B2 JP 3724176 B2 JP3724176 B2 JP 3724176B2 JP 04042798 A JP04042798 A JP 04042798A JP 4042798 A JP4042798 A JP 4042798A JP 3724176 B2 JP3724176 B2 JP 3724176B2
Authority
JP
Japan
Prior art keywords
switching transistor
voltage
motor
microcomputer
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04042798A
Other languages
English (en)
Other versions
JPH11243601A (ja
Inventor
憲幸 音部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP04042798A priority Critical patent/JP3724176B2/ja
Publication of JPH11243601A publication Critical patent/JPH11243601A/ja
Application granted granted Critical
Publication of JP3724176B2 publication Critical patent/JP3724176B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はバッテリフォークリフト等のバッテリ車のモータ制御装置に関するものである。
【0002】
【従来の技術】
図6には、バッテリフォークリフトのモータ制御装置の一例を示す。
図6に示すように、バッテリBには走行用モータ21とスイッチングトランジスタ22とが直列に接続されている。コントロールユニット23にはアクセルセンサ24が接続され、アクセルセンサ24はアクセルペダル25の操作量(踏込量)θを検出する。そして、コントロールユニット23はこの操作量θに応じたデューティ比を算出してスイッチングトランジスタ22をデューティ制御(チョッパ制御)している。スイッチングトランジスタ22のドレイン・ゲート間にはツェナーダイオード26がスイッチングトランジスタ22の保護回路として設けられている。また、抵抗27とコンデンサ28が走行用モータ21およびスイッチングトランジスタ22に対し並列に接続され、ダイオード29を介して、スイッチングトランジスタ22のオン・オフにより発生するサージ電圧をコンデンサ28に吸収するようになっている。
【0003】
また、走行用モータ21とスイッチングトランジスタ22の間には前進コンタクタ30と後進コンタクタ31が備えられ、両コンタクタ30,31を切り換えることによって、走行用モータ1を正逆回転(前後進)できるようになっている。
【0004】
さらに、走行用モータ21に対し並列にフライホイールダイオード32,33が接続され、チョッパ制御時においてスイッチングトランジスタ22がオンからオフ(ターンオフ)になったときに走行用モータ21に流れている大電流がフライホイールダイオード32,33と走行用モータ21とで形成されるループ(閉回路)R50,R51にて吸収されるようになっている。
【0005】
【発明が解決しようとする課題】
ところが、このようなモータ制御装置においてフライホイールダイオード32,33が断線してしまうと、スイッチングトランジスタ22がターンオフしたときに走行用モータ21に流れる大電流はフライホイールダイオード32,33と走行用モータ21とで形成されるループR50,R51にて吸収されなくなり、スイッチングトランジスタ22のドレイン端子に高電圧が印加され、この電圧がダイオード29等に加わることになる。よって、ダイオード29等に大電流が流れて、ダイオード29等が破損するおそれがあった。そのために、これら素子29等を高耐圧化することによる大型化やコストアップ等の不具合が発生する。
【0006】
そこで、この発明の目的は、新規な構成にてフライホイールダイオードの断線に伴う不具合を解消することが可能となるバッテリ車のモータ制御装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、車載バッテリからモータへの電源供給ラインに設けられたスイッチングトランジスタと、前記スイッチングトランジスタの制御端子への印加電圧を制御して同トランジスタをオン・オフするスイッチング制御手段と、前記モータに並列に接続されたフライホイールダイオードと、前記スイッチングトランジスタの高電圧側端子と制御端子との間に設けられたツェナーダイオードと、前記スイッチングトランジスタの制御端子の電圧または高電圧側端子の電圧に基づいて、フライホイールダイオードの断線の有無を判定する判定手段とを備え、前記判定手段は、前記スイッチングトランジスタの制御端子の電圧に基づいて判定を行うものであり、スイッチングトランジスタのターンオフから制御端子電圧が所定電位となるまでの時間を計測し、該時間が比較値よりも長いと断線が発生したと判定することを特徴としている。
【0008】
請求項1に記載の発明によれば、フライホイールダイオードが断線すると、スイッチングトランジスタのターンオフにより発生するサージ電圧にてツェナーダイオードを介してスイッチングトランジスタの制御端子電圧が昇圧され同トランジスタがオンして電流が流れて放電される。このとき、スイッチングトランジスタの制御端子の電圧または高電圧側端子の電圧が特有の挙動を示す。
【0009】
判定手段は、電圧検出手段によるこの電圧の変化からフライホイールダイオードの断線の有無を判断する
【0010】
また、フライホイールダイオードの断線の際には、スイッチングトランジスタの高電圧側端子に比べて制御端子の電圧の方が低く、処理電圧が低くなる。
【0012】
また、フライホイールダイオードが断線した時のサージ電圧放電中はトランジスタの制御端子電圧が上昇する。そして、判定手段はこの電圧が所定電位以上となっている時間を監視し、この時間が比較値よりも長いと、断線が発生したと判定する。
【0015】
請求項に記載の発明は、前記判定手段によりフライホイールダイオードが断線と判定された場合に、強制的に前記モータの駆動を停止する処理手段を備えたことを特徴としている。
【0016】
請求項に記載の発明によれば、フライホイールダイオードが断線したときに、処理手段が強制的にモータの駆動を停止する。よって、フライホイールダイオードの断線検出後において、スイッチングトランジスタの高電圧側端子に接続している素子に高電圧が印加されることが防止されるとともに、当該素子等に長期にわたり大電流が流れることが防止される。
【0017】
【発明の実施の形態】
以下、この発明をバッテリフォークリフトに具体化した実施の形態を図面に従って説明する。
【0018】
図1には、本実施の形態におけるバッテリフォークリフトのモータ制御装置の回路図を示す。本モータ制御装置は、走行用モータ1とスイッチングトランジスタ2とコントロールユニット5を具備している。詳しくは、車載バッテリBには、走行用モータ1とスイッチングトランジスタ2とが直列に接続されている。このように、バッテリBから走行用モータ1への電源供給ラインにスイッチングトランジスタ2が設けられ、スイッチングトランジスタ2としてはMOS形のFETが用いられている。
【0019】
走行用モータ1は直巻直流モータであり、電機子(アーマチャ)1aと界磁巻線(フィールドコイル)1bとを備えている。界磁巻線1bには切換コンタクタとして前進コンタクタ3及び後進コンタクタ4が接続され、この両コンタクタ3,4の切り換え動作により界磁巻線1bに流れる磁界電流の方向を換え、走行用モータ1の回転方向を切り換えている。即ち、前進方向に設定されると、その設定に基づいてコントロールユニット5は前進コンタクタ3を電機子1a側に接続(オン状態)し、後進コンタクタ4をスイッチングトランジスタ2側に接続(オフ状態)するようになっている。従って、走行用モータ1が正回転して車両が前進する。また、後進方向に設定されると、その設定に基づいてコントロールユニット5は前進コンタクタ3をオフ状態とし、後進コンタクタ4をオン状態にするようになっている。従って、走行用モータ1が逆回転して車両が後進する。なお、図1は前進時の設定である。
【0020】
コントロールユニット5はマイクロコンピュータ(以下、マイコンという)6と駆動回路7を備えている。マイコン6には駆動回路7を介して、スイッチングトランジスタ2のゲート端子が接続され、スイッチング制御手段としてのマイコン6は駆動回路7を介してスイッチングトランジスタ2のゲート端子への印加電圧を制御して、同トランジスタ2をオン・オフさせることができるようになっている。
【0021】
また、マイコン6にはアクセルセンサ8が接続され、アクセルセンサ8はアクセルペダル9の操作量(踏込量)θを検出している。マイコン6はアクセルペダル9の操作量θに応じたデューティ信号を生成し、このデューティ信号を駆動回路7に送出する。駆動回路7はこの信号により、スイッチングトランジスタ2をオン・オフさせる。このようにしてスイッチングトランジスタ2のチョッパ制御によって、走行用モータ1に流れる電流が増減されて、車速が制御される。
【0022】
一方、走行用モータ1およびスイッチングトランジスタ2に対しスナバ回路10が並列に接続されている。スナバ回路10は抵抗11とコンデンサ12との直列回路よりなる。また、走行用モータ1とスイッチングトランジスタ2との間の接続点aはダイオード13を介してスナバ回路10の抵抗11とコンデンサ12との間の接続点bに接続されている。そして、スイッチングトランジスタ2のオン・オフに伴いスイッチングトランジスタ2のドレイン端子に発生するサージ電圧が、ダイオード13を介してコンデンサ12に吸収される。
【0023】
また、界磁巻線1bと前進コンタクタ3との間の接続点cとバッテリBのプラス端子との間にはフライホイールダイオード14が接続されている。同様に、界磁巻線1bと後進コンタクタ4との間の接続点dとバッテリBのプラス端子との間にはフライホイールダイオード15が接続されている。このように、走行用モータ1に対しフライホイールダイオード14,15が並列に接続されている。
【0024】
スイッチングトランジスタ2のドレイン端子(高電圧側端子)とゲート端子(制御端子)との間にはスイッチングトランジスタ2の保護回路としてツェナーダイオード16が設けられ、スイッチングトランジスタ2のドレイン端子側に発生するサージ電圧(ツェナー電圧以上の電圧)にてスイッチングトランジスタ2のゲート端子電圧を高くしてスイッチングトランジスタ2をオンさせサージ電圧を放電することにより高電圧によるスイッチングトランジスタ2の破壊を防止するようになっている。
【0025】
さらに、本実施の形態においては、スイッチングトランジスタ2のゲート端子およびソース端子がA/D変換器17を介してマイコン6に接続され、マイコン6はスイッチングトランジスタ2のゲート端子電圧(詳しくはゲート・ソース間の電圧)を検出する。
【0026】
ここで、前進時においてコントロールユニット5がスイッチングトランジスタ2をチョッパ制御しているときの動作を説明する。即ち、図1のように前進コンタクタ3が電機子1a側に接続され、後進コンタクタ4がスイッチングトランジスタ2側に接続されている場合について説明する。
【0027】
図1において、スイッチングトランジスタ2がオン状態のときはバッテリBのプラス端子→電機子1a→コンタクタ3→界磁巻線1b→コンタクタ4→スイッチングトランジスタ2→バッテリBのマイナス端子の順に電流Iが流れる。そして、スイッチングトランジスタ2がオフ状態に移行するときには、サージ電圧が発生しスイッチングトランジスタ2のドレイン電圧が高くなる。このサージ電圧はダイオード13を通してコンデンサ12に吸収される。そして、スイッチングトランジスタ2が完全にオフするとコンデンサ12に蓄えられた電気エネルギーがコンデンサ12→抵抗11→バッテリBを通じて放電される。この際、サージによる電気エネルギーの一部は抵抗11にて熱として放出されるが、残りはバッテリBに戻るようになっている。その後、スイッチングトランジスタ2がオフ状態になっても電流Iは、電機子1a→コンタクタ3→界磁巻線1b→フライホイールダイオード15→電機子1aのように流れ続ける。即ち、サージによる大電流はフライホイールダイオード15と走行用モータ1とで形成されるループ(閉回路)にて吸収される。
【0028】
なお、後進時においては界磁巻線1bに流れる電流が逆(コンタクタ4→界磁巻線1b→コンタクタ3)になっているので、スイッチングトランジスタ2がオフ状態となると走行用モータ1に流れる電流はフライホイールダイオード14と走行用モータ1とで形成されるループにて吸収される。
【0029】
次に、上記のように構成したバッテリフォークリフトのモータ制御装置の作用を図2および図3を用いて説明する。
図2にはスイッチングトランジスタ2のターンオフの際のタイムチャートを示す。また、図3はマイコン6が実行する処理内容を示すフローチャートである。
【0030】
まず、前進時においてスイッチングトランジスタ2に加わる電圧の変化を図2のタイムチャートにより詳細に説明する。
図2には、(i)として正常時におけるスイッチングトランジスタ2がオンからオフ(ターンオフ)してからのドレイン電圧VD の変化とゲート・ソース間の電圧VGSの変化を示すとともに、(ii)としてフライホイールダイオード15が断線した時におけるターンオフの際のドレイン電圧VD とゲート・ソース間の電圧VGSの変化を示す。
【0031】
(i)の正常時では、コントロールユニット5がチョッパ信号によってスイッチングトランジスタ2をターンオフさせることによって(t1のタイミング)、即ち、マイコン6が駆動回路7を介してスイッチングトランジスタ2にオフ信号を出力し、ゲート・ソース間の電圧VGSをVGS0 から0V(グランド電位)とすることによって、ドレイン電圧VD は0Vから所定値VM となる。この時のゲート・ソース間の電圧VGSがVGS0 から0Vとなるまでの時間をT1 とする。
【0032】
一方、(ii)の断線時では、コントロールユニット5がスイッチングトランジスタ2をターンオフさせたときはt1のタイミングからゲート・ソース間の電圧VGSが0Vになろうとする。しかし、フライホイールダイオード15の断線しているので、走行用モータ1のエネルギーがフライホイールダイオード15と走行用モータ1とで形成されるループにて吸収できなくなり、スイッチングトランジスタ2のドレイン電圧VD が上昇する。そして、ドレイン電圧VD の上昇がツェナーダイオード16のツェナー電圧以上となると、スイッチングトランジスタ2がオンして放電が行われる(図2のT2 の期間)。つまり、ドレイン電圧VD はツェナー電圧に応じた電圧値VZ にて保持される。この期間T2 中にサージ電圧の放電が行われる。
【0033】
また、この放電期間T2 においてはゲート・ソース間の電圧VGSは0V(グランド電位)とならず、図2に示すように走行用モータ1のエネルギーが放電されている間は、ゲート・ソース間の電圧VGSがグランド電位より高い所定値VA となる。その後の図2のt3のタイミングにおいて、走行用モータ1のエネルギーが全て放電されると、ドレイン電圧VD が下がりツェナー電圧以下となる。すると、ゲート・ソース間の電圧VGSは0Vとなる(図中t4のタイミング)。このように、フライホイールダイオード15が断線したときは、ゲート・ソース間のVGSが0Vとなるまでの時間T3 が正常時のT1 よりも長くなる(T3 >T1 )。
【0034】
一方、スイッチングトランジスタ2のチョッパ制御時において、コントロールユニット5がスイッチングトランジスタ2をオンからオフ(ターンオフ)させたとき、即ち、コントロールユニット5がオフ信号を出力したときにマイコン6は図3の制御を開始する。
【0035】
図3において、マイコン6はステップ100において、ターンオフからの時間を計測するためのタイマーをスタートさせる(図2のt1のタイミング)。そして、ステップ101にてマイコン6はスイッチングトランジスタ2のゲート・ソース間の電圧VGSを検出する。さらに、マイコン6はステップ102にてこの検出電圧VGSが0Vになったか否かを判定し、検出電圧VGSが0Vより大きければステップ101に戻る。つまり、スイッチングトランジスタ2のゲート・ソース間の電圧VGSが0Vに低下するまでステップ101とステップ102にて、待機することになる。
【0036】
そして、スイッチングトランジスタ2のゲート・ソース間の電圧VGSの検出電圧が0Vになると(図2のt2あるいはt4のタイミング)、マイコン6はステップ103に移行して、ステップ100でスタートさせたタイマーのカウント値Tを取り込むことで、時間(図2に示すT1 あるいはT3 の期間)Tを計測する。ステップ104において、マイコン6はこの計測時間Tと比較値としての断線判定時間Tx とを比較して、計測時間Tが断線判定時間Tx よりも短いとき(図2に示すT1 のとき)はステップ105に移行して、判定手段としてのマイコン6は正常と判断し、即ち、フライホイールダイオード15が断線していないと判断して、通常のチョッパ制御を行い走行用モータ1の駆動を継続する。
【0037】
一方、計測時間Tが断線判定時間Tx よりも長いとき(図2に示すT3 のとき)はステップ106に移行して、マイコン6は異常と判断し、即ち、フライホイールダイオード15が断線していると判断して、マイコン6がスイッチングトランジスタ2をオフ状態に保つ。これにより、チョッパ制御が行われずに、走行用モータ1の駆動が停止する。
【0038】
ここでの検出は、前進時、即ち、前進コンタクタ3は電機子1a側に接続され、後進コンタクタ4はスイッチングトランジスタ2側に接続されている場合であるので、フライホイールダイオード15の断線を検出できる。同様の処理が後進時においても実行され、この後進時においてはフライホイールダイオード14の断線検出を行うことができる。
【0039】
このようにすれば、マイコン6はスイッチングトランジスタ2のターンオフ動作の際の電圧モニタにより確実にフライホイールダイオード14,15の断線検出を行うことができる。また、マイコン6がフライホイールダイオード14,15の断線を判定したときには走行用モータ1の駆動を停止させるので、断線検出後はサージ電圧による大電流が図1のダイオード13等に流れることがなく、同素子13等の破壊を防止できる。
【0040】
なお、このように構成した場合、マイコン6は検出した電圧値に基づいて、スイッチングトランジスタ2もしくは駆動回路7の故障を判断することもでき、実用性に優れたものとなる。つまり、マイコン6が駆動回路7を介してスイッチングトランジスタ2にオン信号を出力しているときに、A/D変換器17により検出する電圧値が低い(オフ状態)場合や、マイコン6が駆動回路7を介してスイッチングトランジスタ2にオフ信号を出力しているときに、A/D変換器17により検出する電圧値が高い(オン状態)場合は、スイッチングトランジスタ2もしくは駆動回路7が故障していると判断することができる。
【0041】
このように本実施の形態は下記のような特徴を有する。
(1)マイコン6はスイッチングトランジスタ2のゲート・ソース間の電圧VGSを検出し、ターンオフの際のゲート電圧の変化によりフライホイールダイオード14,15の断線の有無を判定するようにした。よって、フライホイールダイオード14,15が断線すると、スイッチングトランジスタ2のターンオフにより発生するサージ電圧にてツェナーダイオード16を介してスイッチングトランジスタ2のゲート端子電圧が昇圧され同トランジスタがオンして電流が流れて放電されるが、この放電時にはゲート・ソース間の電圧VGSが図2のように所定電圧VA に上昇するが、マイコン6はこの電圧VGSの上昇に伴う時間Tをモニタして、この時間Tが比較値Tx よりも長いと、フライホイールダイオード14,15の断線が発生したと判定する。
【0042】
そして、この断線の検出後は、マイコン6が強制的に走行用モータ1の駆動を停止するので、フライホイールダイオード14,15が断線したときに、スイッチングトランジスタ2のドレイン端子側に接続している素子(図1のダイオード13等)に高電圧が印加されることなく、当該素子13等に長期にわたり大電流が流れることが早期に防止される。これにより、当該素子13等の高耐圧化をすることなく素子13等の破損が回避されるので、断線検出時の処理として好ましいものとなる。
(2)スイッチングトランジスタ2のドレイン端子に比べてゲート端子の電圧の方が低く、マイコン6はこの低いゲート・ソース間の電圧VGSを直接処理(A/D変換)することができる。よって、新たな素子を追加してこの電圧VGSを降圧する必要がなく、A/Dコンバータに直接接続して処理することができ、実用上好ましいものとなる。
【0043】
以下、これまで説明した実施の形態以外の形態について説明する。
○ 上記実施の形態におけるマイコン6が実行するフライホイールダイオード14,15の断線時の処理は、図4のフローチャートに示すような処理にて行ってもよい。なお、図5は、図4の処理を説明するためのタイムチャートを示す。
【0044】
この図4に示す処理においても、図3の場合と同様にコントロールユニット5はスイッチングトランジスタ2をターンオフさせたときに処理を開始する。
図4において、マイコン6はステップ200で、ターンオフからの時間Taを計測するためのタイマーをスタートさせる(図5のt1のタイミング)。そして、マイコン6はステップ201にて断線判定時間Ta(図5参照)が経過するまで待機する。断線判定時間Taが経過したときマイコン6はステップ202に移行して、A/D変換器17にてスイッチングトランジスタ2のゲート・ソース間の電圧VGSを検出する。判定手段としてのマイコン6はステップ203にて検出電圧VGSと判定電圧Vx を比較し、検出電圧VGSがVx より小さければステップ204に移行して、マイコン6は正常と判断し、即ち、フライホイールダイオード14,15が断線していないと判断して、通常のチョッパ制御を行う。
【0045】
一方、検出電圧VGSがVx より大きければ、マイコン6はステップ205に移行して、異常と判断し、即ち、フライホイールダイオード14,15が断線していると判断して、処理手段としてのマイコン6がチョッパ制御を停止する。
【0046】
このように、所定時間Taが経過したときのスイッチングトランジスタ2のゲート・ソース間の電圧VGSを検出することによって、フライホイールダイオード14,15の断線の有無が確実に判断される。ここでは、図5に示すように、断線判定時間Taは、断線時のサージ放電期間T2 内でのタイミングであり(図5においては中間点)、判定電圧Vx はサージ電圧放電中のゲート・ソース間の電圧値VA より十分低い値を設定している。
【0047】
○ 上記実施の形態では1回のターンオフ動作で異常判定(フライホイールダイオード14,15の断線判定)を行ったが、正確に判定するために複数回のターンオフ動作で連続して異常有りと判定したときに、フライホイールダイオード14,15が断線したと判定するものとしてもよい。
【0048】
○ 図2および図3にて説明した実施の形態では、スイッチングトランジスタ2のゲート・ソース間の電圧が所定電位としての0V(グランド電位)に低下するまでの時間を計測していたが、この所定電位は0Vである必要はなく、サージ電圧放電中のゲート・ソース間の電圧値VA より低い電位であればよい。
【0049】
○ 新たに警報手段として警報ランプやブザーを設け、コントロールユニット5がフライホイールダイオード14,15の断線の有無をバッテリ車の運転者に知らせるように構成してもよい。つまり、コントロールユニット5がフライホイールダイオード14,15の断線を検出したときに、警報ランプやブザーを駆動するようにする。このようにすれば、上記実施形態のようにコントロールユニット5が走行用モータ1の駆動を停止させるのではなく、運転者はフライホイールダイオード14,15の断線の有無を容易に知ることができ、この警報手段によって、運転者がフォークリフトの走行を停止することも可能となる。そして、この警報手段を利用して、断線したのはフライホイールダイオード14なのか、あるいは、フライホイールダイオード15かを特定するような警報方法(例えば、点滅回数等)を採用すれば、フライホイールダイオード14,15の故障していないループが使用できる走行方向(前進あるいは後進)に回避走行でき、さらに、故障部位の特定にてフォークリフトのモータ制御装置における修理作業が容易となる。
【0050】
○ 上記実施形態においてはスイッチングトランジスタ2のゲート・ソース間の電圧VGSをコントロールユニット5に取り込んでマイクロコンピュータ6によるソフト構成にて断線判定を行ったが、比較器等のハード構成にて、判定を行ってもよい。
【0051】
○ 上記実施形態においては、スイッチングトランジスタ2のゲート電圧の変化を検出するものであったが、スイッチングトランジスタ2のドレイン端子に加えられる電圧の変化によりフライホイールダイオード14,15の断線を判定してもよい。この場合、ドレイン端子に加えられる電圧VD はゲート・ソース間の電圧VGSと比べ高くなるので、この電圧を降圧するための抵抗を追加し、これにより降圧した電圧をコントロールユニット5に取り込んでもよい。
【0052】
○ 上記実施形態において、スイッチングトランジスタ2はMOS形FETを用いたが、スイッチング機能を有していれば特に限定されず、例えば、バイポーラトランジスタ等を用いて実施してもよい。この場合、バイポーラトランジスタのベース端子が制御端子となり、コレクタ端子が高電圧側端子となる。
【0053】
○ 上記実施の形態では、走行用モータ1を駆動する場合に具体化したが、例えば荷役用モータを駆動する場合に具体化してもよい。
○ 前記実施の形態ではバッテリフォークリフトに具体化したが、他のバッテリ車に具体化してもよい。
【0054】
【発明の効果】
請求項1に記載の発明によれば、サージ電圧放電中においてスイッチングトランジスタの制御端子または高電圧側端子の電圧の変化によって、フライホイールダイオードの断線の有無を検出して、各種の対応を講じることができ、断線に伴う不具合を解消することが可能となる。
【0055】
また、電圧検出手段において、低電圧を処理すればよく、実用上好ましいものとなる。
さらに、トランジスタの制御端子電圧が所定電位となるまでの時間を監視することにより、フライホイールダイオードの断線を検出することができ、実用上好ましいものとなる。
【0057】
請求項に記載の発明によれば、請求項1に記載の発明の効果に加え、フライホイールダイオードが断線したときに、モータの駆動を停止するので、断線検出後において高電圧側端子側に接続している素子に高電圧が印加されることなく当該素子に大電流が流れることを防止でき、断線検出時の処理として好ましいものとなる。
【図面の簡単な説明】
【図1】 実施の形態におけるバッテリ車のモータ制御装置の回路図。
【図2】 実施の形態を作用を説明するためのタイムチャート。
【図3】 実施の形態の作用を説明するためのフローチャート。
【図4】 他の実施の形態の作用を説明するためのフローチャート。
【図5】 他の実施の形態の作用を説明するためのタイムチャート。
【図6】 従来のバッテリ車のモータ制御装置の回路図。
【符号の説明】
1…走行用モータ、2…スイッチングトランジスタ、6…マイクロコンピュータ、7…駆動回路、14…フライホイールダイオード、15…フライホイールダイオード、16…ツェナーダイオード、B…バッテリ。

Claims (2)

  1. 車載バッテリからモータへの電源供給ラインに設けられたスイッチングトランジスタと、
    前記スイッチングトランジスタの制御端子への印加電圧を制御して同トランジスタをオン・オフするスイッチング制御手段と、
    前記モータに並列に接続されたフライホイールダイオードと、
    前記スイッチングトランジスタの高電圧側端子と制御端子との間に設けられたツェナーダイオードと、
    前記スイッチングトランジスタの制御端子の電圧または高電圧側端子の電圧に基づいて、フライホイールダイオードの断線の有無を判定する判定手段とを備え
    前記判定手段は、前記スイッチングトランジスタの制御端子の電圧に基づいて判定を行うものであり、スイッチングトランジスタのターンオフから制御端子電圧が所定電位となるまでの時間を計測し、該時間が比較値よりも長いと断線が発生したと判定するバッテリ車のモータ制御装置。
  2. 前記判定手段によりフライホイールダイオードが断線と判定された場合に、強制的に前記モータの駆動を停止する処理手段を備えた請求項1に記載のバッテリ車のモータ制御装置。
JP04042798A 1998-02-23 1998-02-23 バッテリ車のモータ制御装置 Expired - Fee Related JP3724176B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04042798A JP3724176B2 (ja) 1998-02-23 1998-02-23 バッテリ車のモータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04042798A JP3724176B2 (ja) 1998-02-23 1998-02-23 バッテリ車のモータ制御装置

Publications (2)

Publication Number Publication Date
JPH11243601A JPH11243601A (ja) 1999-09-07
JP3724176B2 true JP3724176B2 (ja) 2005-12-07

Family

ID=12580364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04042798A Expired - Fee Related JP3724176B2 (ja) 1998-02-23 1998-02-23 バッテリ車のモータ制御装置

Country Status (1)

Country Link
JP (1) JP3724176B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050719A1 (en) * 2018-12-06 2021-02-18 Contemporary Amperex Technology Co., Limited Electric protection circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050719A1 (en) * 2018-12-06 2021-02-18 Contemporary Amperex Technology Co., Limited Electric protection circuit
US11600992B2 (en) * 2018-12-06 2023-03-07 Contemporary Amperex Technology Co., Limited Electric protection circuit

Also Published As

Publication number Publication date
JPH11243601A (ja) 1999-09-07

Similar Documents

Publication Publication Date Title
US6960903B2 (en) Trouble determining apparatus for DC boosting circuit
KR100812745B1 (ko) 전압 발생 장치, 자동차, 전압 발생 장치용 제어 방법, 자동차용 제어 방법, 및 그 제어 방법을 컴퓨터로 실행하기 위한 프로그램을 저장한 컴퓨터-판독가능 기록매체
US6577024B2 (en) Electric power steering controller
US6828742B2 (en) Power supplying apparatus and method for vehicle drive device to be controlled using control unit
US6512346B2 (en) Motor driving apparatus
US7355361B2 (en) Motor control apparatus
CN101379691B (zh) 监测电动机负载的系统和方法
US11283389B2 (en) Motor system
JP2006127455A (ja) 半導体素子制御装置
WO1998058833A1 (fr) Dispositif de direction assistee entraine par un moteur electrique
KR940006839A (ko) 전기 모터 차량의 브레이크 제어장치
US6213571B1 (en) Control apparatus for an electric vehicle and a method therefor
JP2005086968A (ja) 車両用バッテリー充放電管理装置
JP5561197B2 (ja) 電子装置
JP3724176B2 (ja) バッテリ車のモータ制御装置
US11787307B2 (en) Switch control device, switch control method, and in-vehicle power supply system
JPH0520976U (ja) 電動パワーステアリング装置
JPH08191503A (ja) 電気自動車用制御装置
JP2008228371A (ja) 車両用電動モータの駆動制御装置
JP2006081341A (ja) 負荷駆動回路における異常判定装置
CN114486280B (zh) 一种电动车转把检测方法及系统
JPH10318077A (ja) 圧電素子駆動装置
JP2011162311A (ja) エレベータの制御装置
JPH1053188A (ja) 電気自転車の制御装置
JP2730354B2 (ja) 直流モータの駆動制御装置における故障診断装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees