JP3721588B2 - Method for manufacturing silicon carbide semiconductor device - Google Patents

Method for manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP3721588B2
JP3721588B2 JP23979894A JP23979894A JP3721588B2 JP 3721588 B2 JP3721588 B2 JP 3721588B2 JP 23979894 A JP23979894 A JP 23979894A JP 23979894 A JP23979894 A JP 23979894A JP 3721588 B2 JP3721588 B2 JP 3721588B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide semiconductor
ion implantation
ion
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23979894A
Other languages
Japanese (ja)
Other versions
JPH08107223A (en
Inventor
孝一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP23979894A priority Critical patent/JP3721588B2/en
Publication of JPH08107223A publication Critical patent/JPH08107223A/en
Application granted granted Critical
Publication of JP3721588B2 publication Critical patent/JP3721588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炭化けい素(以下SiCと記す)からなる半導体素子の製造方法に関する。
【0002】
【従来の技術】
半導体材料として広く用いられているシリコン(Si)に対して、その性能限界が考慮され、過酷な環境下でも使用に耐える半導体材料が模索されている。そして、例えば、3eV(エレクトロンボルト)のバンドギャップを持つSiCのようなワイドギャップ半導体が次世代の半導体材料として有望視されている。SiCはSiと比較して、熱伝導度が3倍、最大電界強度が10倍、電子のドリフト速度が2倍と優れた特性をもっている。既に、このSiCの特性を生かし、1.1kVの高耐圧ショットキーダイオードが試作されたことが報告されている〔SiC及び関連ワイドギャップ半導体研究会第2回講演予稿集、19頁、1993年11月〕。
【0003】
【発明が解決しようとする課題】
前述のショットキーダイオードは、SiC基板上にn型SiCをエピタキシャル成長させた後、ショットキー電極として金(Au)、オーミック電極としてニッケル(Ni)を形成して、作成された半導体素子である。この製造工程には、イオン注入による拡散層の形成工程が含まれていなかった。しかし種々の半導体素子をSiCを適用する場合に、イオン注入およびその後の熱処理による拡散層の形成が必要となる。SiCへのイオン注入に関しては、学会等で多数の研究がなされている〔例えば、SiC及び関連ワイドギャップ半導体研究会第2回講演予稿集、27頁、1993年11月〕。そして、SiCへのイオン注入によって生じる結晶欠陥は、Siと同程度の1100〜1200℃の熱処理では回復しきらず、Siより高い1300〜1400℃の熱処理が必要となることが知られている。一方、イオン注入層は、未注入層と比較して、非常に酸化速度が早いからである〔シャパニーズジャーナルオブアプライドフィジックス、33巻、L1121頁、1994年〕。一般に結晶欠陥の多い層の酸化速度は速いことが知られており、イオン注入によって生じた結晶欠陥の多いためと考えられる。
【0004】
通常、イオン注入後の高温熱処理は、不活性ガス雰囲気下で行われるが、このとき、不活性ガス雰囲気中に含まれる微量の酸素により、イオン注入領域の表面層が酸化される心配がある。特に、イオン注入領域が非常に浅い場合は、注入領域が全部酸化されて、不純物拡散領域が形成できないことになる。
以上の問題に鑑み、 本発明の目的は、イオン注入後の熱処理時に、不活性ガス雰囲気中の酸素の影響を受けずに熱処理が行え、そして、充分に結晶欠陥を回復させることができるSiC半導体素子の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明のSiC半導体素子の製造方法は、炭化けい素半導体基板にイオン注入後、イオン注入した表面上に酸素遮蔽性の膜を形成し、1300℃以上の高温熱処理を行うこととする。
また、炭化けい素半導体基板にイオン注入後、イオン注入した表面上に酸素遮蔽性の膜を形成し、1300℃〜1400℃の高温熱処理を行うこととする。
また、炭化けい素半導体基板にイオン注入後、イオン注入した表面上に酸素遮蔽性の膜を形成し、前記イオン注入時に生じた結晶欠陥を回復するように1300℃以上の高温熱処理を行うこととする。
さらに、酸素遮蔽性の膜として窒化けい素膜を成膜することとする。
【0006】
【作用】
上記の手段を講じ、イオン注入後、そのイオン注入した表面上に酸素遮蔽性の膜、例えば窒化膜を成膜することによつて、結晶欠陥の回復に充分な高温熱処理を可能にし、また熱処理雰囲気中の微量酸素による酸化を防止する。
窒化けい素膜の形成方法としては、高周波スパッタリング法、減圧CVD法、またはプラズマCVD法のいずれの方法でも、緻密な成膜が可能である。
【0007】
【実施例】
以下、図を引用して本発明の実施例について述べる。
図1(a)ないし(e)は、本発明の製造方法にかかるSiC半導体素子の工程順に示した断面図であり、例としてnpnトランジスタを取り上げる。6H−SiCのn型サブストレート1上に、n型エピタキシャル層2、p型エピタキシャル層3をエピタキシャル成長したSiCエピタキシャルウェハ4を使用する〔図1(a)〕。n型エピタキシャル層2は、ノンドープで厚さ5μm、p型エピタキシャル層3は、不純物濃度が9.0×1016cm-3で厚さ1.2μmのものを用いた。このSiCエピタキシャルウェハ4に、フォトレジスト5を塗布し、露光・現像を行い、イオン注入用の窓を開け、窒素イオン6を注入する〔同図(b)〕。ここでは、イオン種として窒素(N+ )を用いた。注入条件は、加速電圧が35keVでドーズ量が1.0×1015cm-2、70keVで1.0×1015cm-2、150keVで4.0×1015cm-2、180keVで2.0×1015cm-2という多重エネルギイオン注入を行った。窒素は、SiCにイオン注入されると、n型領域を形成するドナー形成型の不純物である。この窒素イオン注入を行った部分をnソース領域として利用することができる。多重エネルギイオン注入をしたのは、表面から深さ方向に0.3〜0.4μmの距離で均一に1019cm-3以上の窒素濃度を得るためである。イオン注入後、フォトレジスト5は、酸素プラズマにより灰化した後、剥離液を通して除去する。次に高周波スパッタリング法にて窒化けい素膜7を成膜する〔同図(c)〕。高周波スパッタリングには、反応焼結法で作成したターゲットを用いた。ターゲットの組成は、けい素:窒素比が3:4のものである。ターゲットを叩くガスは、アルゴン:窒素=1:1の混合ガスを用いた。高周波スパッタリング法で成膜した窒化けい素膜7は、膜中に水素(H)が含まれる割合が少ないので、膜質が緻密である。よって、高温環境においても表面保護膜として働く。続いて、窒素雰囲気下で1300℃、5時間の熱処理を行う〔同図(d)〕。この時にイオン注入時に生じた結晶欠陥は、ほぼ完全に回復する。また、前記窒素雰囲気中の微量酸素により、窒化けい素膜7の一部が酸化されて、窒化けい素膜7上に30nm程度の酸化膜が形成される。また、この熱処理時にイオン注入された窒素がイオン化し(活性化率数%)、ドナーとなってnエミッタ領域8が形成される。この後、フッ化水素酸(HF)をHF:水=1:1の割合で混合した希釈フッ化水素酸溶液を用い、窒化けい素膜7を除去する〔同図(e)〕。この後、nエミッタ領域8上にエミッタ電極、p型エピタキシャル層3の表面上にベース電極、n型サブストレート1の裏面にコレクタ電極を設ければ、npnトランジスタが完成する。
【0008】
酸素遮蔽性の膜としては、上記の窒化けい素膜の他に、多結晶シリコン等がある。なお、窒化けい素膜7は、減圧CVD法やプラズマCVD法によっても形成できる。
【0009】
【発明の効果】
本発明によれば、SiC半導体基板表面にイオン注入後、高周波スパッタリング法他の方法で、窒化けい素膜等の酸素遮蔽性の膜を成膜してから高温熱処理を行う。これにより、不活性ガス中の酸素によるSiC半導体表面の酸化が抑えられ、なおかつ、イオン注入時の結晶欠陥を回復させられる充分な高温熱処理を行うことができて、拡散領域が確実に形成できる。
【図面の簡単な説明】
【図1】(a)ないし(e)は本発明の製造方法にかかるSiC半導体素子の工程順に示した断面図
【符号の説明】
1 n型サブストレート
2 n型エピタキシャル層
3 p型エピタキシャル層
4 エピタキシャルウェハ
5 フォトレジスト
6 窒素イオン
7 窒化けい素膜
8 nエミッタ領域
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a semiconductor element made of silicon carbide (hereinafter referred to as SiC).
[0002]
[Prior art]
With respect to silicon (Si), which is widely used as a semiconductor material, its performance limit is considered, and a semiconductor material that can be used even in a harsh environment is being sought. For example, a wide gap semiconductor such as SiC having a band gap of 3 eV (electron volts) is promising as a next-generation semiconductor material. Compared with Si, SiC has excellent characteristics such as three times the thermal conductivity, ten times the maximum electric field strength, and twice the electron drift velocity. Already, it has been reported that a 1.1 kV high voltage Schottky diode has been prototyped taking advantage of the characteristics of SiC [SiC and related wide gap semiconductor study group second lecture proceedings, page 19, 1993 11 Month〕.
[0003]
[Problems to be solved by the invention]
The aforementioned Schottky diode is a semiconductor element formed by epitaxially growing n-type SiC on a SiC substrate and then forming gold (Au) as a Schottky electrode and nickel (Ni) as an ohmic electrode. This manufacturing process did not include a step of forming a diffusion layer by ion implantation. However, when SiC is applied to various semiconductor elements, it is necessary to form a diffusion layer by ion implantation and subsequent heat treatment. Many studies have been made on ion implantation into SiC at academic societies and the like [for example, the second lecture proceedings collection of the SiC and related wide gap semiconductor research group, 27 pages, November 1993]. It is known that crystal defects caused by ion implantation into SiC cannot be recovered by heat treatment at 1100 to 1200 ° C., which is similar to that of Si, and heat treatment at 1300 to 1400 ° C. higher than Si is required. On the other hand, the ion-implanted layer has a much faster oxidation rate than the non-implanted layer [Japanese Journal of Applied Physics, 33, L1121, 1994]. In general, it is known that the oxidation rate of a layer having many crystal defects is high, and it is considered that there are many crystal defects generated by ion implantation.
[0004]
Usually, the high-temperature heat treatment after ion implantation is performed in an inert gas atmosphere. At this time, there is a concern that the surface layer of the ion implantation region is oxidized by a small amount of oxygen contained in the inert gas atmosphere. In particular, when the ion implantation region is very shallow, the implantation region is entirely oxidized and an impurity diffusion region cannot be formed.
In view of the above problems, an object of the present invention is to provide a SiC semiconductor capable of performing heat treatment without being affected by oxygen in an inert gas atmosphere and sufficiently recovering crystal defects during heat treatment after ion implantation. The object is to provide a method for manufacturing an element.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing an SiC semiconductor device according to the present invention includes forming an oxygen-shielding film on an ion-implanted surface after ion implantation into a silicon carbide semiconductor substrate, and a high temperature of 1300 ° C. or higher. Heat treatment is to be performed.
Further, after ion implantation into the silicon carbide semiconductor substrate, an oxygen shielding film is formed on the ion implanted surface, and high-temperature heat treatment at 1300 ° C. to 1400 ° C. is performed.
In addition, after ion implantation into the silicon carbide semiconductor substrate, an oxygen shielding film is formed on the ion-implanted surface, and high-temperature heat treatment at 1300 ° C. or higher is performed so as to recover crystal defects generated during the ion implantation. To do.
Further, a silicon nitride film is formed as an oxygen shielding film.
[0006]
[Action]
By taking the above measures and forming an oxygen shielding film such as a nitride film on the ion-implanted surface after the ion implantation, it is possible to perform a high-temperature heat treatment sufficient to recover crystal defects. Prevents oxidation by trace oxygen in the atmosphere.
As a method for forming the silicon nitride film, dense film formation is possible by any of a high-frequency sputtering method, a low pressure CVD method, and a plasma CVD method.
[0007]
【Example】
Examples of the present invention will be described below with reference to the drawings.
FIGS. 1A to 1E are cross-sectional views showing the order of steps of a SiC semiconductor device according to the manufacturing method of the present invention, taking an npn transistor as an example. A SiC epitaxial wafer 4 in which an n-type epitaxial layer 2 and a p-type epitaxial layer 3 are epitaxially grown on a 6H—SiC n-type substrate 1 is used [FIG. 1A]. The n-type epitaxial layer 2 is non-doped and has a thickness of 5 μm, and the p-type epitaxial layer 3 has an impurity concentration of 9.0 × 10 16 cm −3 and a thickness of 1.2 μm. Photoresist 5 is applied to this SiC epitaxial wafer 4, exposure and development are performed, an ion implantation window is opened, and nitrogen ions 6 are implanted [FIG. Here, nitrogen (N + ) was used as the ion species. The implantation conditions are an acceleration voltage of 35 keV, a dose of 1.0 × 10 15 cm −2 , 70 keV of 1.0 × 10 15 cm −2 , 150 keV of 4.0 × 10 15 cm −2 , and 180 keV of 2. Multiple energy ion implantation of 0 × 10 15 cm −2 was performed. Nitrogen is a donor-forming impurity that forms an n-type region when ion-implanted into SiC. The portion where the nitrogen ions are implanted can be used as an n source region. The reason why the multiple energy ion implantation is performed is to obtain a nitrogen concentration of 10 19 cm −3 or more uniformly at a distance of 0.3 to 0.4 μm in the depth direction from the surface. After the ion implantation, the photoresist 5 is ashed by oxygen plasma and then removed through a stripping solution. Next, a silicon nitride film 7 is formed by high frequency sputtering [FIG. For high-frequency sputtering, a target prepared by a reactive sintering method was used. The composition of the target is that having a silicon: nitrogen ratio of 3: 4. As a gas for hitting the target, a mixed gas of argon: nitrogen = 1: 1 was used. The silicon nitride film 7 formed by the high frequency sputtering method has a dense film quality because the ratio of hydrogen (H) contained in the film is small. Therefore, it functions as a surface protective film even in a high temperature environment. Subsequently, heat treatment is performed at 1300 ° C. for 5 hours in a nitrogen atmosphere [(d)]. At this time, crystal defects generated at the time of ion implantation are almost completely recovered. Further, a part of the silicon nitride film 7 is oxidized by the trace amount of oxygen in the nitrogen atmosphere, and an oxide film of about 30 nm is formed on the silicon nitride film 7. Further, the nitrogen ion-implanted during the heat treatment is ionized (activation rate: several%), and the n emitter region 8 is formed as a donor. Thereafter, the silicon nitride film 7 is removed using a diluted hydrofluoric acid solution in which hydrofluoric acid (HF) is mixed at a ratio of HF: water = 1: 1 [(e) in FIG. Thereafter, if an emitter electrode is provided on the n emitter region 8, a base electrode is provided on the surface of the p-type epitaxial layer 3, and a collector electrode is provided on the back surface of the n-type substrate 1, an npn transistor is completed.
[0008]
Examples of the oxygen shielding film include polycrystalline silicon in addition to the above silicon nitride film. The silicon nitride film 7 can also be formed by a low pressure CVD method or a plasma CVD method.
[0009]
【The invention's effect】
According to the present invention, after ion implantation into the SiC semiconductor substrate surface, an oxygen shielding film such as a silicon nitride film is formed by a high frequency sputtering method or the like, and then a high temperature heat treatment is performed. Thereby, oxidation of the SiC semiconductor surface by oxygen in the inert gas can be suppressed, and sufficient high-temperature heat treatment that can recover crystal defects during ion implantation can be performed, and a diffusion region can be formed reliably.
[Brief description of the drawings]
FIGS. 1A to 1E are cross-sectional views showing the order of steps of a SiC semiconductor device according to a manufacturing method of the present invention.
1 n-type substrate 2 n-type epitaxial layer 3 p-type epitaxial layer 4 epitaxial wafer 5 photoresist 6 nitrogen ion 7 silicon nitride film 8 n emitter region

Claims (4)

炭化けい素半導体基板にイオン注入後、イオン注入した表面上に酸素遮蔽性の膜を形成し、1300℃以上の高温熱処理を行うことを特徴とする炭化けい素半導体素子の製造方法。A method of manufacturing a silicon carbide semiconductor element, comprising: forming an oxygen-shielding film on an ion-implanted surface after ion implantation into a silicon carbide semiconductor substrate; and performing a high-temperature heat treatment at 1300 ° C. or higher . 炭化けい素半導体基板にイオン注入後、イオン注入した表面上に酸素遮蔽性の膜を形成し、1300℃〜1400℃の高温熱処理を行うことを特徴とする炭化けい素半導体素子の製造方法。 A method for manufacturing a silicon carbide semiconductor element, comprising: forming an oxygen shielding film on an ion-implanted surface after ion implantation into a silicon carbide semiconductor substrate; and performing a high-temperature heat treatment at 1300 ° C. to 1400 ° C. 炭化けい素半導体基板にイオン注入後、イオン注入した表面上に酸素遮蔽性の膜を形成し、前記イオン注入時に生じた結晶欠陥を回復するように1300℃以上の高温熱処理を行うことを特徴とする炭化けい素半導体素子の製造方法。Wherein after the ion implantation in the silicon carbide semiconductor substrate, that you forming the oxygen barrier property of the film to the ion-implanted surface, performing high temperature heat treatment above 1300 ° C. so as to recover the crystal defects caused during the ion implantation A method for manufacturing a silicon carbide semiconductor element. 酸素遮蔽性の膜が窒化けい素膜であることを特徴とする請求項1ないし3のいずれか一項に記載の炭化けい素半導体素子の製造方法。4. The method for manufacturing a silicon carbide semiconductor element according to claim 1, wherein the oxygen shielding film is a silicon nitride film.
JP23979894A 1994-10-04 1994-10-04 Method for manufacturing silicon carbide semiconductor device Expired - Lifetime JP3721588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23979894A JP3721588B2 (en) 1994-10-04 1994-10-04 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23979894A JP3721588B2 (en) 1994-10-04 1994-10-04 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPH08107223A JPH08107223A (en) 1996-04-23
JP3721588B2 true JP3721588B2 (en) 2005-11-30

Family

ID=17050028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23979894A Expired - Lifetime JP3721588B2 (en) 1994-10-04 1994-10-04 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3721588B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952679A (en) * 1996-10-17 1999-09-14 Denso Corporation Semiconductor substrate and method for straightening warp of semiconductor substrate
JP3956487B2 (en) * 1998-06-22 2007-08-08 富士電機デバイステクノロジー株式会社 Method for manufacturing silicon carbide semiconductor device
JP4961633B2 (en) * 2001-04-18 2012-06-27 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
KR100446954B1 (en) * 2001-09-22 2004-09-01 한국전기연구원 Fabrication method of silicon carbide semiconducting devices
US7462540B2 (en) * 2004-02-06 2008-12-09 Panasonic Corporation Silicon carbide semiconductor device and process for producing the same
JP2008112834A (en) 2006-10-30 2008-05-15 Sumitomo Electric Ind Ltd Manufacturing method of silicon carbide semiconductor device
CN115513172B (en) * 2022-11-22 2023-04-28 广东芯粤能半导体有限公司 Semiconductor structure and preparation method thereof

Also Published As

Publication number Publication date
JPH08107223A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
JP5306193B2 (en) Silicon carbide switching device including p-type channel and method of forming the same
JP3760688B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3146694B2 (en) Silicon carbide MOSFET and method of manufacturing silicon carbide MOSFET
JP3848700B2 (en) Silicon carbide semiconductor device
JP4449814B2 (en) Method for manufacturing silicon carbide semiconductor device
CN110473911B (en) SiC MOSFET device and manufacturing method thereof
CN113196499A (en) Vertical silicon carbide power MOSFET and IGBT and manufacturing method thereof
JPH11297712A (en) Formation method for compound film and manufacture of semiconductor element
JP3721588B2 (en) Method for manufacturing silicon carbide semiconductor device
KR20090082350A (en) Method for manufacturing silicon carbide semiconductor device
JPH0982663A (en) Manufacture of silicon carbide semiconductor device
JP2000133819A (en) Silicon carbide schottky barrier diode and manufacture thereof
WO1989004056A1 (en) Mosfet in silicon carbide
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP2000049363A (en) Schottky diode and its manufacture
CN210575962U (en) SiC MOSFET device
JP3303530B2 (en) Method for manufacturing silicon carbide semiconductor device
CN209766431U (en) MPS diode device
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2000106350A (en) Manufacture of ohmic electrode and semiconductor element
JP4708722B2 (en) Method for manufacturing silicon carbide semiconductor device
EP4246554A1 (en) Forming an electronic device, such as a jbs or mps diode, based on 3c-sic, and 3c-sic electronic device
US20230299148A1 (en) Forming an electronic device, such as a jbs or mps diode, based on 3c-sic, and 3c-sic electronic device
JPH11307467A (en) Manufacture of silicon carbide semiconductor element
JP2829754B2 (en) Heterojunction electrostatic induction transistor and method of manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 19980202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20010716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term