JP3718781B2 - Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method - Google Patents

Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method Download PDF

Info

Publication number
JP3718781B2
JP3718781B2 JP06011696A JP6011696A JP3718781B2 JP 3718781 B2 JP3718781 B2 JP 3718781B2 JP 06011696 A JP06011696 A JP 06011696A JP 6011696 A JP6011696 A JP 6011696A JP 3718781 B2 JP3718781 B2 JP 3718781B2
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
chloride
hypochlorous acid
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06011696A
Other languages
Japanese (ja)
Other versions
JPH09262587A (en
Inventor
良弥 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeta Inc
Original Assignee
Veeta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeta Inc filed Critical Veeta Inc
Priority to JP06011696A priority Critical patent/JP3718781B2/en
Publication of JPH09262587A publication Critical patent/JPH09262587A/en
Application granted granted Critical
Publication of JP3718781B2 publication Critical patent/JP3718781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有隔膜電解槽を使用して強アルカリ水と次亜塩素酸殺菌水を同時に生成する方法ならびにこの方法に使用する原水への添加薬液に関する。
【0002】
【発明の背景】
次亜塩素酸を多く含むpH3〜7.5の殺菌水は、pH2〜2.5程度の強酸性殺菌水と比較すると、殺菌力がより強いうえに金属を錆びさせにくいため金属製器具などの洗浄・殺菌に適している。しかし、金属をまったく錆びさせないわけではないので洗浄・殺菌した後は、水道水などの中性の水で良く洗うか、アルカリ性溶液で中和する必要がある。
【0003】
また、電解により生成した強アルカリ水で食器の油落しなどの第一次洗浄をした後、電解生成した次亜塩素酸殺菌水で前記食器等の第二次洗浄・殺菌をすることが提案されている。
【0004】
【発明が解決しようとする課題】
このように、電解による次亜塩素酸殺菌水と強アルカリ水を同時、または、前後して使用する必要がある場合があるが、次亜塩素酸殺菌水を生成する電解槽と強アルカリ水を生成する電解槽は目的が異なるため、従来は次亜塩素酸殺菌水を生成する電解槽と強アルカリ水を生成する電解槽の2台の専用機が必要であり、製造、メンテナンス等のコストが高くつくとともに、電解槽において同時に生成される非利用側の電解水は捨て水になるので無駄が多かった。
【0005】
従って、本発明の第一の目的は1台の電解槽から殺菌力の優れた次亜塩素酸殺菌水と洗浄効果の高い強アルカリ水を同時に生成する方法を提供することにある

【0006】
従って、本発明の第二の目的は上記の方法に使用する添加薬液を提供することにある。
【0007】
【課題を解決するための手段】
上記第一の目的を達成するために、本発明は塩化ナトリウム、塩化カリウムなどの塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陰極側にpH10〜12.5、好ましくはpH11〜12.5の強アルカリ水を生成させるとともに、陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させることを特徴とする。
【0008】
前記方法において、原水への前記薬液の添加については、(A)電解前の原水に前記薬液を添加して電解する方法、(B)電解槽の陰極室と陽極室の水に、成分・濃度を異にする前記薬液を添加して電解する方法、(C)電解槽の陽極室の水のみに前記薬液を添加して電解する方法の三通りがある。
【0009】
上記第一の目的を達成するための本発明の他の方法は、塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の一方の電極側に生成された電解水の一部を、電解槽の他方の電極側に生成された電解水に混合してpH10〜12.5、好ましくはpH11〜12.5の強アルカリ水とpH3〜7.5の次亜塩素酸殺菌水に調整することを特徴とする。
【0010】
上記第一の目的を達成するための本発明のさらに他の方法は、塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物とを含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させるとともに、電解槽の陰極側に生成された電解処理水に、水に溶けてアルカリ性を示す化合物を添加してpH10〜12.5、好ましくはpH11〜12.5の強アルカリ水に調整することを特徴とする。
【0011】
上記第一の目的を達成するための本発明のさらに他の方法は、塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陰極側に生成された電解アルカリ水の一部を、電解槽の陽極側に生成された電解酸性水に混合してpH3〜7.5の次亜塩素酸殺菌水に調整するとともに、電解槽の陰極室に生成された前記電解アルカリ水に、水に溶けてアルカリ性を示す化合物を含む薬液を添加してpH10〜12.5、好ましくはpH11〜12.5の強アルカリ水に調整することを特徴とする。
【0012】
前記添加薬液中の、水に溶けてアルカリ性を示す化合物は、メタケイ酸ナトリウムなどのポリケイ酸塩、ケイ酸ナトリウムなどのケイ酸塩、水酸化ナトリウム、水酸化カリウムなどの水酸化物塩、又はこれらの二種又は三種の混合物が好適であり、とくに、メタケイ酸ナトリウムが好ましい。
【0013】
前記第二の目的を達成するために、本発明の前記方法に使用する好ましい添加薬液は、塩化ナトリウム、塩化カリウムなどの塩化物塩に、メタケイ酸ナトリウムなどのポリケイ酸塩、ケイ酸ナトリウムなどのケイ酸塩、水酸化ナトリウム、水酸化カリウムなどの水酸化物塩の一種または二種以上を混合してなる。
【0014】
【発明の実施の形態】
請求項1の発明は、水道水等の原水に、塩化ナトリウム、塩化カリウムなどの塩化物塩と、水に溶けてアルカリ性を示す化合物とを含む薬液を添加し、この水を有隔膜電解槽で電気分解し、電解槽の陰極側にpH10〜12.5の強アルカリ水を生成させるとともに、陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させるものである。
【0015】
前記水溶液に添加する塩化物塩は、電解により電解槽の陽極側に次亜塩素酸を発生させるためのもので、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウムなどを使用することができる。
【0016】
本発明により、電解槽の陽極室に生成されるpH3〜7.5の電解水は、水中の遊離残留塩素のほとんど100%が、殺菌力が強く且つ安全な次亜塩素酸の形で存在するため、20〜80ppmという比較的低い濃度でも優れた殺菌力を発揮する。前記水溶液(被電解水)中の塩化物塩の濃度は、使用する塩化物塩の種類によってことなるが、陽極側電解水の次亜塩素酸濃度が所望の値になるように適宜選択する。
【0017】
本発明の方法に使用される前記「水に溶けてアルカリ性を示す化合物」は、前記薬液添加水の有隔膜電解によって生ずる陽極室の電解処理水のpHの下り過ぎを防止する目的と、陰極室に生成される電解水をpH10〜12.5の強アルカリ水に調整する目的で添加するアルカリ化剤であり、このアルカリ化剤として、例えば、メタケイ酸ナトリウムなどのポリケイ酸塩;ケイ酸ナトリウムなどのケイ酸塩;水酸化ナトリウム、水酸化カリウムなどの水酸化物塩;炭酸水素ナトリウム(重曹)などの炭酸水素塩;又はこれらの二種以上の混合物があげられる 。なかでも、メタケイ酸ナトリウムなどのポリケイ酸塩は、人体に害のない化合物として水道水等への投入が認められているので、食器洗い用の強アルカリ水等を生成する際にとくに有用である。
【0018】
前記の水に溶けてアルカリ性を示す化合物(以下、アルカリ化剤という)を添加した被電解水中のアルカリ化剤の濃度は、使用するアルカリ化剤の種類によって異なるが、陽極側に生成される電解水(次亜塩素酸殺菌水)のpHが3〜7.5になり、且つ、陰極室に生成される電解水(強アルカリ水)のpHが10〜12.5になるように適宜選択する。
【0019】
同様に、前記の塩化物塩とアルカリ化剤を原水に添加して前記水溶液を調整するにあたり、これらの薬液の混合液を使用する場合、その濃度はこれら薬液の種類、組合せ、電気分解時の電流電圧や電極面積、電極間距離等によって様々であるが、電解の結果、電解槽の陽極側に生成される水の性質がpH3〜7.5になり、陰極側に生成される水の性質がpH10〜12.5の強アルカリ水になるようにを適宜調整する。
【0020】
本発明の方法に使用される電解水生成装置の電解槽は、通水型の連続式電解槽、貯水電解式(バッヂ式)電解槽のいずれを使用することもできるが、原水への薬液添加の実施形態には、
(A)電解前の原水に前記薬液を添加して電解する方法。
(B)電解槽の陰極室と陽極室の水に、成分・濃度を異にする前記薬液を添加して電解する方法。
(C)電解槽の陽極室の水のみに前記薬液を添加して電解する方法。
の三通りがあり、以下、各々の実施例を通水式電解槽を使用した場合を例示して説明する。
【0021】
図の連続式電解水生成装置を使用する場合は、給水管1の先端を二股の給水支管2、3に分岐するとともに、この支管2、3を、独立給水口を有する通水型電解槽4の各給水口に接続して、電解隔膜5で仕切られた異極の電極室6、7に独立に連通させるようになっている。
電解槽4の電極室6、7の双方の原水に前記薬液を添加する形態には、図1のように、共通の給水管1に前記薬液を供給する場合と、図2のように、電解槽4の電極室6、7に独立に連通する二股の給水支管2、3に別々に供給する場合がある。
図1は給水管1の水に、塩化物塩とアルカリ化剤(図では塩化ナトリウムとメタケイ酸ナトリウム)の混合薬液をタンク8から添加し、陰極室と陽極室に同じ性質の水を通水して電解するのに適している。
他方、図2は、両電極室6、7に成分・濃度が異なる薬液を添加して電解するのに適しており、ちなみに、図2の実施例は陰極室に塩化ナトリウムとメタケイ酸ナトリウムの混合薬液がタンク8aから供給され、陽極室には別のタンク8bからメタケイ酸ナトリウムだけが供給されるようになっている。
【0022】
図3は前記の塩化物塩とアルカリ化剤(図では塩化ナトリウムとメタケイ酸ナトリウムの混合薬液)の混合薬液を陽極室のみに添加し、陰極室には薬液を添加していない水をを通水する実施例を示している。
この実施形態は陰極室の塩素イオンの増加が抑制されるので脱塩洗浄効果が得られる点でより好ましい。
【0023】
図4は本発明の他の実施形態を示すもので、前記のように塩化物塩、又はこれら塩化物塩とアルカリ化剤を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の一方の電極側に生成された電解水の一部を、電解槽の他方の電極側に生成された電解水に混合してpH10〜12.5の強アルカリ水とpH3〜7.5の次亜塩素酸殺菌水に調整するものである。薬液添加の仕方には前記と同様の(A)、(B)、(C)の三通りがある。
【0024】
図4の実施例では、陰極室にpH10〜12.5の強アルカリ水が生成され、陽極室にpH値が3よりも低い電解水が生成される場合に、陰極室から生成されたpH10〜12.5の電解水の一部を、陽極室から生成された電解水に混合してpH3〜7.5に調整している。しかし、陰極室の電解水のアルカリ度がpH12.5よりも高く、陽極室の電解水のpHが3〜7.5である場合は、逆に陽極室の電解水を陰極室の電解水に混合して最終的にpH10〜12.5の強アルカリ水とpH3〜7.5の次亜塩素酸殺菌水が生成されるようにする。
【0025】
図5は本発明のさらに別の方法に係り、塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させるとともに、電解槽の陰極室に生成された電解処理水に、水に溶けてアルカリ性を示す化合物を含む薬液を添加してpH10〜12.5の強アルカリ水に調整することを示している。
すなわち、この方法は、前記薬液を添加して電解した陰極側のアルカリ水にさらに前記アルカリ化剤を添加して目的のpH10〜12.5の強アルカリ水に調整するものである。
【0026】
また、図6は本発明のさらに別の方法に係り、塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陰極側に生成された電解アルカリ水の一部を、電解槽の陽極側に生成された電解酸性水に混合してpH3〜7.5の次亜塩素酸殺菌水に調整するとともに、電解槽の陰極室に生成された前記電解アルカリ水に、水に溶けてアルカリ性を示す化合物を含む薬液を添加してpH10〜12.5の強アルカリ水に調整することを示している。
すなわち、この方法は、前記薬液を添加して電解した陽極側電解水のpH値が所望のpH3〜7.5に上がらず、且つ、陰極側電解水のpH値が所望のpH10〜12.5に上がらない場合に、陰極側の電解水(アルカリ水)の一部を陽極側電解水(酸性水)に添加して目的のpH3〜7.5の次亜塩素酸殺菌水に調整するとともに、陰極側の前記電解アルカリ水に前記アルカリ化剤を添加して目的のpH10〜12.5の強アルカリ水に調整するものである。この場合、陰極側電解水へのアルカリ化剤の添加は酸性水への一部混合の前でも後でもよい。
【0027】
前記のように、図5及び図6の発明の方法においては、塩化物塩だけを電解前の水に添加する場合と、塩化物塩と前記アルカリ化剤を電解前の原水に添加する場合がある。いずれの場合も、電解前の水に前記薬液を添加する形態には前記(A)、(B)、(C)の三通りがある。
【0019】
かくして、図の各実施例では、通水型電解槽4の陽極室6に通ずる吐水管9からはpH3〜7.5の次亜塩素酸殺菌水が吐出されるとともに、陰極室7に通ずる吐水管10からはpH10〜12.5の強アルカリ水が吐出される。
【0028】
図のように電解槽4は、電極11、12の極性を所定時間毎に正逆切換えることによりカルシウム等の析出・付着を防止をすることができる。この場合は、給水支管2、3に流路/流量切換装置13を介装し、吐水管9、10に流路切換装置14を介装するのが望ましい。
【0029】
なお、強アルカリ水の吐水管10に銀イオン発生装置を介装して強アルカリ水に銀イオンを溶出させると強アルカリ水の洗浄・殺菌効果がさらに向上する。
【0030】
図7は本発明の方法を実施する貯水式電解水生成装置の一例を示す概略図である。この形式の電解水生成装置は、電極11、12間を電解隔膜5で仕切ったバッヂ式電解槽4と、電気機器、制御機器、安全装置などの機器類18をケーシング15内に収納し、電解槽4の陽極室6に生成された次亜塩素酸殺菌水と陰極側に生成された強アルカリ水はそれぞれの蛇口16、17から取水するようになっている。
このような貯水式電解水生成装置を使用する場合は、装置が倒れたときに電解等の電源が自動的にOFFになる安全装置を取り付けるのが望ましく、また、電解槽に水位センサを設けて水が溢れないようにする。さらに、電極にカルシウム等の付着物が付くと電解効率が低下するので電極の交換ができるようにする。 カルシウム等の付着物の除去は、電極の極性を一定時間ごとに切り換える逆電洗浄機構によって行うようにしてもよい。
【0031】
本発明の方法における前記水溶液の電解は、従来のこれら電解水生成装置を通常の方法で作動させることによって実施することができる。
【0032】
前記各方法における薬液の添加は個々の薬液を別々に添加してもよいが、好ましくは、塩化ナトリウム、塩化カリウムなどの塩化物塩に、メタケイ酸ナトリウムなどのポリケイ酸塩、ケイ酸ナトリウムなどのケイ酸塩、水酸化ナトリウム、水酸化カリウムなどの水酸化物塩の一種または二種以上を所望の割合で混合し、本発明の方法に使用する添加薬液の調合剤として予め調整しておくと使用に便である。
【0033】
【実施例】
水4リツトルに、塩化ナトリウム400gと水酸化ナトリウム59gを溶解して得た添加薬液を、原水給水量6リットル/分の流量に対して58ミリリットル/分の流量の割合で添加・混合して通水式電解水生成装置の有隔膜電解槽に給水した。このときの電解槽に給水される水溶液(被電解水)中の塩化ナトリウムの濃度は0.97g/リットル、水酸化ナトリウムの濃度は0.14g/リットルてあった。
次いで、有隔膜電解槽に給水した前記水溶液を36アンペアの電流で電解したところ、電解槽の陽極室から、pH5.58、酸化還元電位(ORP)880mV、残留塩素濃度約40ppmの次亜塩素酸殺菌水が生成され、陰極室からは、pH12.40、酸化還元電位(ORP)−875mV、残留塩素濃度0.56ppmの強アルカリ水が生成された。
【0034】
実験によれば、本発明の方法において、塩化ナトリウムと水酸化ナトリウムを使用して初期の目的を達成するには、有隔膜電解槽に入れる被電解水溶液は、塩化ナトリウム濃度を0.5〜3.0g、水酸化ナトリウム濃度を0.05〜0.5gくらいに調整するのが適切である。
【0035】
【効果】
本発明は、1台(一機種)の電解槽で次亜塩素酸殺菌水と強アルカリ水を同時に生成することができる。したがって、例えば、食品加工の際の食品の洗浄・殺菌や食器洗いの際の洗浄・殺菌のように、特に、強アルカリ水洗浄と殺菌洗浄を連続して行う場合や、酸化水による洗浄の後にアルカリ水による中和を行う場合などに、従来のように、2台の専用電解機を使用する必要がないので、コストを大巾に削減できるとともに、捨て水もなくなるので極めて経済的である。
【0036】
また、本発明は、電解生成水の一部混合、アルカリ化剤の補充等によって目的の強アルカリ水と次亜塩素酸殺菌水を生成できるので、電解処理に無駄が生ずることがなく、この点でも経済的である。
【0037】
予め調合した添加薬液を使用することにより、薬液添加の専門技術を要せずに目的の水を得ることができる。
【図面の簡単な説明】
【図1】本発明の方法に使用される通水式電解水生成装置の概略構成図
【図2】本発明の方法に使用される通水式電解水生成装置の概略構成図
【図3】本発明の方法に使用される通水式電解水生成装置の概略構成図
【図4】本発明の方法に使用される通水式電解水生成装置の概略構成図
【図5】本発明の方法に使用される通水式電解水生成装置の概略構成図
【図6】本発明の方法に使用される通水式電解水生成装置の概略構成図
【図7】本発明の方法に使用される貯水式電解水生成装置の概略構成図
【符号の説明】
1… 給水管
2、3…支管
4…電解槽
5…電解隔膜
6、7…電解室
8…薬液タンク
9,10…吐水管
11,12…電極
13…流路/流量切換装置
14…流量切換装置
15…ケーシング
16,17…蛇口
18…機器類
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for simultaneously producing strong alkaline water and hypochlorous acid sterilizing water using a diaphragm membrane electrolytic cell, and a chemical solution added to raw water used in this method.
[0002]
BACKGROUND OF THE INVENTION
The sterilized water with a pH of 3 to 7.5 containing a lot of hypochlorous acid has a stronger sterilizing power and is less likely to rust the metal compared to a strongly acidic sterilized water with a pH of about 2 to 2.5. Suitable for cleaning and sterilization. However, since it does not prevent the metal from being rusted, after washing and sterilization, it is necessary to wash well with neutral water such as tap water or neutralize with an alkaline solution.
[0003]
In addition, it is proposed that after washing the tableware with a strong alkaline water generated by electrolysis, the tableware and the like is washed and sterilized with hypochlorous acid sterilized water. ing.
[0004]
[Problems to be solved by the invention]
In this way, it may be necessary to use sterilized hypochlorous acid sterilized water and strong alkaline water at the same time or before and after. Since the purpose of the electrolytic cell to be generated is different, two dedicated machines, an electrolytic cell that generates hypochlorous acid sterilized water and an electrolytic cell that generates strong alkaline water, are required. In addition to being expensive, the electrolyzed water on the non-use side that is generated simultaneously in the electrolytic cell is wasted, and thus was wasted.
[0005]
Accordingly, a first object of the present invention is to provide a method for simultaneously producing hypochlorous acid sterilized water having excellent sterilizing power and strong alkaline water having a high cleaning effect from one electrolytic cell.
[0006]
Therefore, the second object of the present invention is to provide an additive chemical used in the above method.
[0007]
[Means for Solving the Problems]
In order to achieve the first object, the present invention electrolyzes water containing a chemical salt containing a chloride salt such as sodium chloride and potassium chloride and a compound that is dissolved in water and exhibits alkalinity in a diaphragm electrolytic cell. In addition, strong alkaline water having a pH of 10 to 12.5, preferably 11 to 12.5 is generated on the cathode side of the electrolytic cell, and hypochlorous acid sterilizing water having a pH of 3 to 7.5 is generated on the anode side. And
[0008]
In the above method, the addition of the chemical solution to the raw water includes (A) a method in which the chemical solution is added to the raw water before electrolysis and electrolysis, and (B) components and concentrations in the water in the cathode chamber and the anode chamber of the electrolytic cell. There are three methods: a method of electrolyzing by adding the chemical solution with different values, and a method of electrolyzing by adding the chemical solution only to the water in the anode chamber of the electrolytic cell (C).
[0009]
In another method of the present invention for achieving the first object, a chemical salt containing a chloride salt such as sodium chloride or potassium chloride, or a chloride salt thereof and a compound that is alkaline in water is added. Water is electrolyzed in a diaphragm membrane electrolytic cell, and a part of the electrolytic water generated on one electrode side of the electrolytic cell is mixed with the electrolytic water generated on the other electrode side of the electrolytic cell to adjust the pH to 10-12. 5, preferably adjusted to strong alkaline water of pH 11 to 12.5 and hypochlorous acid sterilized water of pH 3 to 7.5.
[0010]
Still another method of the present invention for achieving the first object described above is to provide a chemical solution containing a chloride salt such as sodium chloride or potassium chloride, or a chloride salt thereof and a compound that is alkaline in water. The added water is electrolyzed in a diaphragm electrolytic cell, and hypochlorous acid sterilizing water having a pH of 3 to 7.5 is generated on the anode side of the electrolytic cell, and the electrolytically treated water generated on the cathode side of the electrolytic cell is It is characterized in that it is adjusted to a strong alkaline water having a pH of 10 to 12.5, preferably a pH of 11 to 12.5 by adding a compound exhibiting alkalinity dissolved in water.
[0011]
Still another method of the present invention for achieving the first object is to add a chemical salt containing a chloride salt such as sodium chloride or potassium chloride, or a chloride salt thereof and a compound that is alkaline in water. The electrolyzed water is electrolyzed in the diaphragm membrane electrolytic cell, and a part of the electrolytic alkaline water generated on the cathode side of the electrolytic cell is mixed with the electrolytic acidic water generated on the anode side of the electrolytic cell to adjust the pH to 3 to 7.5. In addition to the electrolytic alkaline water produced in the cathode chamber of the electrolytic cell, a chemical solution containing a compound that is alkaline and dissolves in water is added to adjust the pH to 10 to 12.5, preferably It is characterized by adjusting to strong alkaline water having a pH of 11 to 12.5.
[0012]
In the additive chemical solution, a compound that is alkaline when dissolved in water is a polysilicate such as sodium metasilicate, a silicate such as sodium silicate, a hydroxide salt such as sodium hydroxide or potassium hydroxide, or these. A mixture of two or three of these is preferred, and sodium metasilicate is particularly preferred.
[0013]
In order to achieve the second object, preferred chemical solutions used in the method of the present invention include chloride salts such as sodium chloride and potassium chloride, polysilicates such as sodium metasilicate, sodium silicate and the like. One or two or more hydroxide salts such as silicate, sodium hydroxide and potassium hydroxide are mixed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The invention of claim 1 adds a chemical solution containing a chloride salt such as sodium chloride or potassium chloride and a compound that exhibits alkalinity when dissolved in water to raw water such as tap water. Electrolysis is performed to generate strong alkaline water having a pH of 10 to 12.5 on the cathode side of the electrolytic cell, and hypochlorous acid sterilizing water having a pH of 3 to 7.5 on the anode side.
[0015]
The chloride salt added to the aqueous solution is for generating hypochlorous acid on the anode side of the electrolytic cell by electrolysis. For example, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, etc. can be used. .
[0016]
According to the present invention, the electrolyzed water having a pH of 3 to 7.5 generated in the anode chamber of the electrolytic cell has almost 100% of free residual chlorine in the water in a form of hypochlorous acid having a strong sterilizing power and safe. Therefore, it exhibits excellent sterilizing power even at a relatively low concentration of 20 to 80 ppm. The concentration of the chloride salt in the aqueous solution (electrolyzed water) varies depending on the type of chloride salt used, but is appropriately selected so that the hypochlorous acid concentration of the anode side electrolyzed water becomes a desired value.
[0017]
The “compound exhibiting alkalinity when dissolved in water” used in the method of the present invention has the purpose of preventing the pH of the electrolytically treated water in the anode chamber from dropping too much, which is caused by diaphragm electrolysis of the chemical solution-added water; Is an alkalizing agent added for the purpose of adjusting the electrolyzed water produced to pH 10 to 12.5 to strong alkaline water. Examples of the alkalizing agent include polysilicates such as sodium metasilicate; sodium silicate and the like Silicates; hydroxides such as sodium hydroxide and potassium hydroxide; bicarbonates such as sodium bicarbonate (bicarbonate); or a mixture of two or more of these. Among these, polysilicates such as sodium metasilicate are particularly useful when producing strong alkaline water for dishwashing because they are accepted as tap water and the like as compounds that are not harmful to the human body.
[0018]
The concentration of the alkalizing agent in the electrolyzed water to which the compound that dissolves in water and exhibits alkalinity (hereinafter referred to as an alkalizing agent) varies depending on the type of the alkalizing agent to be used. The pH is appropriately selected so that the pH of water (hypochlorous acid sterilized water) is 3 to 7.5 and the pH of the electrolyzed water (strong alkaline water) generated in the cathode chamber is 10 to 12.5. .
[0019]
Similarly, in preparing the aqueous solution by adding the chloride salt and the alkalizing agent to the raw water, when using a mixture of these chemicals, the concentration is the type, combination, and electrolysis of these chemicals. Although it varies depending on the current voltage, electrode area, distance between electrodes, etc., as a result of electrolysis, the property of water generated on the anode side of the electrolytic cell becomes pH 3 to 7.5, and the property of water generated on the cathode side Is adjusted as appropriate so that it becomes strong alkaline water having a pH of 10 to 12.5.
[0020]
The electrolytic cell of the electrolyzed water generating apparatus used in the method of the present invention can be either a water-flowing continuous electrolytic cell or a water storage electrolytic (bad) electrolytic cell. The embodiment includes
(A) A method of electrolyzing by adding the chemical solution to raw water before electrolysis.
(B) A method of performing electrolysis by adding the chemical solutions having different components and concentrations to the water in the cathode chamber and the anode chamber of the electrolytic cell.
(C) A method of performing electrolysis by adding the chemical solution only to the water in the anode chamber of the electrolytic cell.
In the following, the case where a water-type electrolytic cell is used will be described as an example.
[0021]
When using the continuous electrolyzed water generating apparatus shown in the figure, the tip of the water supply pipe 1 is branched into bifurcated water supply branch pipes 2 and 3, and the branch pipes 2 and 3 are connected to a water flow type electrolytic cell 4 having an independent water supply port. The electrode chambers 6 and 7 having different polarities partitioned by the electrolytic diaphragm 5 are communicated independently.
In the form in which the chemical solution is added to the raw water in both electrode chambers 6 and 7 of the electrolytic cell 4, the chemical solution is supplied to a common water supply pipe 1 as shown in FIG. In some cases, the water is separately supplied to the bifurcated water supply branch pipes 2 and 3 that communicate with the electrode chambers 6 and 7 of the tank 4 independently.
In FIG. 1, a mixed chemical solution of a chloride salt and an alkalizing agent (in the figure, sodium chloride and sodium metasilicate) is added from the tank 8 to the water in the water supply pipe 1, and water of the same property is passed through the cathode chamber and the anode chamber. It is suitable for electrolysis.
On the other hand, FIG. 2 is suitable for electrolysis by adding chemicals having different components and concentrations to both electrode chambers 6 and 7, and the embodiment of FIG. 2 is a mixture of sodium chloride and sodium metasilicate in the cathode chamber. The chemical solution is supplied from the tank 8a, and only sodium metasilicate is supplied to the anode chamber from another tank 8b.
[0022]
FIG. 3 shows that a mixed chemical solution of the above-described chloride salt and alkalizing agent (in the figure, a mixed chemical solution of sodium chloride and sodium metasilicate) is added only to the anode chamber, and water to which no chemical solution is added is passed through the cathode chamber. An example of watering is shown.
This embodiment is more preferable in that a desalting cleaning effect can be obtained because an increase in chlorine ions in the cathode chamber is suppressed.
[0023]
FIG. 4 shows another embodiment of the present invention. As described above, water to which a chloride salt or a chemical solution containing these chloride salts and an alkalizing agent is added is electrolyzed in a diaphragm electrolytic cell, and electrolysis is performed. A portion of the electrolyzed water generated on one electrode side of the tank is mixed with the electrolyzed water generated on the other electrode side of the electrolyzer so that strong alkaline water having pH 10 to 12.5 and pH 3 to 7.5 is mixed. Adjust to hypochlorous acid sterilized water. There are three ways (A), (B), and (C) similar to those described above for adding the chemical solution.
[0024]
In the embodiment of FIG. 4, when strong alkaline water having a pH of 10 to 12.5 is generated in the cathode chamber and electrolyzed water having a pH value lower than 3 is generated in the anode chamber, the pH of 10 to 10 generated from the cathode chamber is generated. A part of 12.5 electrolyzed water is mixed with electrolyzed water generated from the anode chamber to adjust the pH to 3 to 7.5. However, when the alkalinity of the electrolyzed water in the cathode chamber is higher than pH 12.5 and the pH of the electrolyzed water in the anode chamber is 3 to 7.5, conversely, the electrolyzed water in the anode chamber is used as the electrolyzed water in the cathode chamber. Finally, strong alkaline water having a pH of 10 to 12.5 and hypochlorous acid sterilizing water having a pH of 3 to 7.5 are produced.
[0025]
FIG. 5 relates to still another method of the present invention, in which water containing a salt solution such as sodium chloride or potassium chloride, or a chemical solution containing these chloride salts and a compound that is alkaline and dissolves in water is added to the diaphragm. Electrolyze in a tank to produce hypochlorous acid sterilized water having a pH of 3 to 7.5 on the anode side of the electrolytic cell, and dissolve in water in the electrolytically treated water generated in the cathode chamber of the electrolytic cell to show alkalinity It shows that a chemical solution containing a compound is added to adjust to strong alkaline water having a pH of 10 to 12.5.
That is, in this method, the alkali solution on the cathode side added with the chemical solution and electrolyzed is further added with the alkalizing agent to adjust to the desired strong alkaline water having a pH of 10 to 12.5.
[0026]
FIG. 6 relates to still another method of the present invention, and has water to which chloride salts such as sodium chloride and potassium chloride, or these chloride salts and a chemical solution containing an alkaline compound dissolved in water is added. Hypochlorous acid having a pH of 3 to 7.5 by electrolysis in a diaphragm electrolytic cell and mixing a part of electrolytic alkaline water generated on the cathode side of the electrolytic cell with electrolytic acidic water generated on the anode side of the electrolytic cell. While adjusting to acid sterilized water, a chemical solution containing an alkaline compound dissolved in water is added to the electrolytic alkaline water produced in the cathode chamber of the electrolytic cell to adjust to strong alkaline water having a pH of 10 to 12.5. It is shown that.
That is, in this method, the pH value of the anode side electrolyzed water electrolyzed by adding the chemical solution does not rise to the desired pH of 3 to 7.5, and the pH value of the cathode side electrolyzed water is the desired pH of 10 to 12.5. In the case where it does not rise, the part of the electrolyzed water on the cathode side (alkaline water) is added to the anode side electrolyzed water (acidic water) to adjust to the target hypochlorous acid sterilized water having a pH of 3 to 7.5, The alkalizing agent is added to the electrolytic alkaline water on the cathode side to adjust to the desired strong alkaline water having a pH of 10 to 12.5. In this case, the alkalizing agent may be added to the cathode side electrolyzed water before or after partial mixing with the acidic water.
[0027]
As described above, in the method of the invention shown in FIGS. 5 and 6, there are a case where only a chloride salt is added to water before electrolysis, and a case where a chloride salt and the alkalizing agent are added to raw water before electrolysis. is there. In any case, there are three modes (A), (B), and (C) in which the chemical solution is added to the water before electrolysis.
[0019]
Thus, in each embodiment shown in the figure, hypochlorous acid sterilizing water having a pH of 3 to 7.5 is discharged from the water discharge pipe 9 communicating with the anode chamber 6 of the water flow type electrolytic cell 4 and the discharge discharged to the cathode chamber 7. Strong alkaline water having a pH of 10 to 12.5 is discharged from the water pipe 10.
[0028]
As shown in the figure, the electrolytic cell 4 can prevent the precipitation and adhesion of calcium and the like by switching the polarity of the electrodes 11 and 12 forward and reverse every predetermined time. In this case, it is desirable to install a flow path / flow rate switching device 13 in the water supply branch pipes 2 and 3 and a flow path switching device 14 in the water discharge pipes 9 and 10.
[0029]
In addition, if a silver ion generator is interposed in the strong alkaline water discharge pipe 10 to elute silver ions into the strong alkaline water, the cleaning / sterilizing effect of the strong alkaline water is further improved.
[0030]
FIG. 7 is a schematic view showing an example of a water storage type electrolyzed water generating apparatus for carrying out the method of the present invention. In this type of electrolyzed water generating device, a bath type electrolytic cell 4 in which electrodes 11 and 12 are partitioned by an electrolytic diaphragm 5 and devices 18 such as electric devices, control devices, safety devices, etc. are housed in a casing 15 for electrolysis. Hypochlorous acid sterilized water generated in the anode chamber 6 of the tank 4 and strong alkaline water generated on the cathode side are taken from the respective taps 16 and 17.
When using such a water storage type electrolyzed water generating device, it is desirable to install a safety device that automatically turns off the power source such as electrolysis when the device falls down, and a water level sensor is provided in the electrolyzer. Prevent water from overflowing. Furthermore, if deposits such as calcium adhere to the electrode, the electrolytic efficiency is lowered, so that the electrode can be replaced. The removal of deposits such as calcium may be performed by a reverse electric cleaning mechanism that switches the polarity of the electrode at regular intervals.
[0031]
The electrolysis of the aqueous solution in the method of the present invention can be carried out by operating these conventional electrolyzed water generators in the usual manner.
[0032]
In the above methods, each chemical solution may be added separately, but preferably, a chloride salt such as sodium chloride or potassium chloride, a polysilicate such as sodium metasilicate, or a sodium silicate is used. When one or more hydroxide salts such as silicate, sodium hydroxide and potassium hydroxide are mixed in a desired ratio and adjusted in advance as a preparation for an additive chemical used in the method of the present invention. Convenient to use.
[0033]
【Example】
An additive chemical obtained by dissolving 400 g of sodium chloride and 59 g of sodium hydroxide in 4 liters of water is added and mixed at a rate of 58 ml / min with respect to the flow rate of raw water supply of 6 l / min. Water was supplied to the diaphragm electrolyzer of the water electrolyzed water generator. The concentration of sodium chloride in the aqueous solution (electrolyzed water) supplied to the electrolytic cell at this time was 0.97 g / liter, and the concentration of sodium hydroxide was 0.14 g / liter.
Next, the aqueous solution supplied to the diaphragm electrolyzer was electrolyzed at a current of 36 amperes. From the anode chamber of the electrolyzer, hypochlorous acid having a pH of 5.58, an oxidation-reduction potential (ORP) of 880 mV, and a residual chlorine concentration of about 40 ppm was obtained. Sterilized water was generated, and strong alkaline water having a pH of 12.40, an oxidation-reduction potential (ORP) of -875 mV, and a residual chlorine concentration of 0.56 ppm was generated from the cathode chamber.
[0034]
According to experiments, in order to achieve the initial purpose using sodium chloride and sodium hydroxide in the method of the present invention, the electrolyzed aqueous solution to be placed in the diaphragm electrolyzer has a sodium chloride concentration of 0.5-3. It is appropriate to adjust the sodium hydroxide concentration to about 0.05 to 0.5 g.
[0035]
【effect】
The present invention can simultaneously generate hypochlorous acid sterilized water and strong alkaline water in one (one model) electrolytic cell. Therefore, for example, when performing washing with strong alkaline water and sterilization washing continuously, such as washing and sterilization of food during food processing and washing and sterilization during dishwashing, or after washing with oxidized water, When neutralizing with water, etc., it is not necessary to use two dedicated electrolyzers as in the prior art, so that the cost can be greatly reduced and waste water is eliminated, which is extremely economical.
[0036]
In addition, the present invention can generate the desired strong alkaline water and hypochlorous acid sterilized water by partially mixing electrolytically generated water, supplementing with an alkalizing agent, etc., so there is no waste in electrolytic treatment. But it is economical.
[0037]
By using a pre-prepared additive chemical solution, it is possible to obtain the target water without requiring a special technique for adding the chemical solution.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a water-passing electrolyzed water generating apparatus used in the method of the present invention. FIG. 2 is a schematic configuration diagram of a water-passing electrolyzed water generating apparatus used in the method of the present invention. FIG. 4 is a schematic configuration diagram of a water-passing electrolyzed water generating device used in the method of the present invention. FIG. 4 is a schematic block diagram of a water-passing electrolyzed water generating device used in the method of the present invention. FIG. 6 is a schematic configuration diagram of a water-based electrolyzed water generating apparatus used in the method of the present invention. FIG. 6 is a schematic configuration diagram of a water-based electrolyzed water generating device used in the method of the present invention. Schematic configuration diagram of a storage-type electrolyzed water generator [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water supply pipe 2, 3 ... Branch pipe 4 ... Electrolysis tank 5 ... Electrolytic diaphragm 6, 7 ... Electrolytic chamber 8 ... Chemical solution tank 9, 10 ... Water discharge pipe 11, 12 ... Electrode 13 ... Flow path / flow rate switching device 14 ... Flow rate switching Apparatus 15 ... casing 16, 17 ... faucet 18 ... equipment

Claims (8)

塩化ナトリウム、塩化カリウムなどの塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陰極側にpH10〜12.5の強アルカリ水を生成させるとともに、陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させることを特徴とする強アルカリ水と次亜塩素酸殺菌水の同時生成方法Water containing a salt solution such as sodium chloride or potassium chloride and a chemical solution containing an alkaline compound dissolved in water is electrolyzed in a diaphragm electrolytic cell, and a strong pH of 10 to 12.5 is formed on the cathode side of the electrolytic cell. A method for simultaneously producing strong alkaline water and hypochlorous acid sterilizing water, characterized by generating alkaline water and generating hypochlorous acid sterilizing water having a pH of 3 to 7.5 on the anode side 有隔膜電解槽の陰極室と陽極室の水の前記薬液の成分及び/又は濃度を異にして電解することを特徴とする請求項1記載の強アルカリ水と次亜塩素酸殺菌水の同時生成方法The simultaneous generation of strongly alkaline water and hypochlorous acid sterilized water according to claim 1, wherein the chemicals are mixed with different chemical components and / or concentrations of water in the cathode chamber and the anode chamber of the diaphragm membrane electrolytic cell. Method 塩化ナトリウム、塩化カリウムなどの塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽の陽極側に入れるとともに、電解槽の陰極側に水道水などの通常の水を入れて電気分解し、前記電解槽の陰極側にpH10〜12.5の強アルカリ水を生成させるとともに前記電解槽の陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させることを特徴とする強アルカリ水と次亜塩素酸殺菌水の同時生成方法Water containing a chloride salt such as sodium chloride or potassium chloride and a chemical solution containing an alkaline compound dissolved in water is added to the anode side of the diaphragm electrolyzer, and tap water or the like is usually added to the cathode side of the electrolyzer. Water is electrolyzed to produce strong alkaline water having a pH of 10 to 12.5 on the cathode side of the electrolytic cell and hypochlorous acid sterilized water having a pH of 3 to 7.5 on the anode side of the electrolytic cell. For simultaneous generation of strong alkaline water and hypochlorous acid sterilizing water 塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の一方の電極側に生成された電解水の一部を、電解槽の他方の電極側に生成された電解水に混合してpH10〜12.5の強アルカリ水とpH3〜7.5の次亜塩素酸殺菌水に調整することを特徴とする強アルカリ水と次亜塩素酸殺菌水の同時生成方法Electrolyze water containing a chloride salt such as sodium chloride or potassium chloride, or a chemical solution containing these chloride salts and an alkaline compound dissolved in water in a diaphragm membrane electrolytic cell, and one electrode side of the electrolytic cell A part of the electrolyzed water produced in this step was mixed with the electrolyzed water produced on the other electrode side of the electrolytic cell, and strong alkaline water having a pH of 10 to 12.5 and hypochlorous acid sterilizing water having a pH of 3 to 7.5 Method for simultaneous production of strong alkaline water and hypochlorous acid sterilized water 塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陽極側にpH3〜7.5の次亜塩素酸殺菌水を生成させるとともに、電解槽の陰極室に生成された電解処理水に、水に溶けてアルカリ性を示す化合物を含む薬液を添加してpH10〜12.5の強アルカリ水に調整することを特徴とする強アルカリ水と次亜塩素酸殺菌水の同時生成方法Electrolyze water containing a chloride salt such as sodium chloride or potassium chloride, or a chemical solution containing these chloride salts and an alkaline compound dissolved in water in a diaphragm membrane electrolytic cell, and pH 3 on the anode side of the electrolytic cell. -7.5 hypochlorous acid sterilized water is generated, and chemical solution containing a compound that is alkaline and dissolves in water is added to the electrolyzed water generated in the cathode chamber of the electrolytic cell to adjust the pH to 10 to 12.5. Method of strong alkaline water and hypochlorous acid sterilized water characterized by adjusting to strong alkaline water 塩化ナトリウム、塩化カリウムなどの塩化物塩、又はこれら塩化物塩と、水に溶けてアルカリ性を示す化合物を含む薬液を添加した水を有隔膜電解槽で電気分解し、電解槽の陰極側に生成された電解アルカリ水の一部を、電解槽の陽極側に生成された電解酸性水に混合してpH3〜7.5の次亜塩素酸殺菌水に調整するとともに、電解槽の陰極室に生成された前記電解アルカリ水に、水に溶けてアルカリ性を示す化合物を含む薬液を添加してpH10〜12.5の強アルカリ水に調整することを特徴とする強アルカリ水と次亜塩素酸殺菌水の同時生成方法Electrolysis of chloride salt such as sodium chloride and potassium chloride, or chemicals containing these chloride salts and chemicals containing alkaline compounds dissolved in water in a diaphragm membrane electrolytic cell, generated on the cathode side of the electrolytic cell A portion of the electrolyzed alkaline water is mixed with the electrolytic acid water generated on the anode side of the electrolytic cell to adjust to pH 3 to 7.5 hypochlorous acid sterilized water and generated in the cathode chamber of the electrolytic cell A strong alkaline water and a hypochlorous acid sterilized water, characterized in that a chemical solution containing a compound that is dissolved in water and exhibits alkalinity is added to the electrolytic alkaline water thus prepared to adjust to a strong alkaline water having a pH of 10 to 12.5. Generation method 前記添加薬液中の、水に溶けてアルカリ性を示す化合物が、メタケイ酸ナトリウムなどのポリケイ酸塩、ケイ酸ナトリウムなどのケイ酸塩、水酸化ナトリウム、水酸化カリウムなどの水酸化物塩、又はこれらの二種以上の混合物であることを特徴とする請求項1、2、3、4又は5記載の強アルカリ水と次亜塩素酸殺菌水の同時生成方法In the additive chemical solution, a compound that is alkaline when dissolved in water is a polysilicate such as sodium metasilicate, a silicate such as sodium silicate, a hydroxide salt such as sodium hydroxide or potassium hydroxide, or these. A method for simultaneously producing strong alkaline water and hypochlorous acid sterilized water according to claim 1, 2, 3, 4, or 5 塩化ナトリウム、塩化カリウムなどの塩化物塩に、メタケイ酸ナトリウムなどのポリケイ酸塩、ケイ酸ナトリウムなどのケイ酸塩、水酸化ナトリウム、水酸化カリウムなどの水酸化物塩の一種または二種以上を混合してなる前記請求項1、2、3、4、5又は6の方法に使用する添加薬液Chloride salts such as sodium chloride and potassium chloride, polysilicates such as sodium metasilicate, silicates such as sodium silicate, and hydroxide salts such as sodium hydroxide and potassium hydroxide. An additive chemical solution used in the method according to claim 1, 2, 3, 4, 5 or 6 obtained by mixing.
JP06011696A 1996-01-26 1996-02-22 Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method Expired - Fee Related JP3718781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06011696A JP3718781B2 (en) 1996-01-26 1996-02-22 Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3265996 1996-01-26
JP8-32659 1996-01-26
JP06011696A JP3718781B2 (en) 1996-01-26 1996-02-22 Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method

Publications (2)

Publication Number Publication Date
JPH09262587A JPH09262587A (en) 1997-10-07
JP3718781B2 true JP3718781B2 (en) 2005-11-24

Family

ID=26371241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06011696A Expired - Fee Related JP3718781B2 (en) 1996-01-26 1996-02-22 Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method

Country Status (1)

Country Link
JP (1) JP3718781B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098870A1 (en) 2008-02-08 2009-08-13 Noguchi Dental Medical Research Institute Dental sterilizing water, method for producing the water, and device for producing the water
KR101446571B1 (en) * 2013-04-04 2014-10-07 주식회사 아큐스 Apparatus for simultaneous producing High concentrations of aqueous solution of sodium hypochlorite and low concentrations of aqueous solution of sodium hypochlorite
JP5886894B2 (en) * 2014-05-09 2016-03-16 株式会社日本トリム Electrolyzed water generator
JP2016101287A (en) * 2014-11-28 2016-06-02 株式会社魚市 Electrolytic water producing device
CN112777692A (en) * 2021-02-24 2021-05-11 烟台方心水处理设备有限公司 High-concentration subacidity hypochlorous acid water electrolysis device and production method

Also Published As

Publication number Publication date
JPH09262587A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
US6527940B1 (en) Production method of acid water and alkaline water
JP3820248B2 (en) Electrolytic water conditioner
KR101768458B1 (en) Hand Sterilizer of Electrolytic Water Disinfection
JPS6059995B2 (en) Impure salt water electrolysis method and device
JP2015112570A (en) Electrolytic water generator and method of operating the same
JP2006346650A (en) Apparatus and method for producing alkali sterilization water
JP3718781B2 (en) Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP3705756B2 (en) Electrolytic solution and electrolyzed water produced by the electrolytic solution
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP4101081B2 (en) Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus
JP3747337B2 (en) Tableware cleaning and sterilization method and apparatus
JPH0731979A (en) Production of alkaline water and acidic water
JPH078961A (en) Production of acidic water
JP2792537B2 (en) Method for producing electrolytic ionic water
JP2003117554A (en) Cleaning water producing apparatus
JP2002035751A (en) Batchwise electrolytic water making apparatus
JP2003126858A (en) Method for producing electrolyzed water
JP2004089975A (en) Strong electrolytic water generator
CN219239338U (en) Acid electrolyzed water generator
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP3733476B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method
JP3269784B2 (en) Ozone water production method and ozone water production device
JP2001062453A (en) Electrolytic water production device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees