JP2792537B2 - Method for producing electrolytic ionic water - Google Patents

Method for producing electrolytic ionic water

Info

Publication number
JP2792537B2
JP2792537B2 JP7324451A JP32445195A JP2792537B2 JP 2792537 B2 JP2792537 B2 JP 2792537B2 JP 7324451 A JP7324451 A JP 7324451A JP 32445195 A JP32445195 A JP 32445195A JP 2792537 B2 JP2792537 B2 JP 2792537B2
Authority
JP
Japan
Prior art keywords
water
exchange resin
tank
anode
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7324451A
Other languages
Japanese (ja)
Other versions
JPH09155350A (en
Inventor
佐藤廣
菊池與志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKEMI KK
Original Assignee
TOOKEMI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKEMI KK filed Critical TOOKEMI KK
Priority to JP7324451A priority Critical patent/JP2792537B2/en
Publication of JPH09155350A publication Critical patent/JPH09155350A/en
Application granted granted Critical
Publication of JP2792537B2 publication Critical patent/JP2792537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解イオン水の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing electrolytic ionic water.

【0002】なお、本発明で得られる電解イオン水中の
一つである酸性酸化水は、微生物(細菌・ウイルス等)
の死滅・繁殖の防止、有機物の除去及び洗浄水として用
いる場合の金属付着防止に効果があり、他方、アルカリ
性還元水は酸化防止、油脂・蛋白質などの微粒子の除去
に効果があるとされている。また、この方法で得られる
酸性還元水並びにアルカリ性酸化水は金属などの洗浄用
水としての用途が考えられる。
Incidentally, acidic oxidized water, which is one of the electrolytic ionic waters obtained in the present invention, is a microorganism (bacteria, virus, etc.).
Is effective in preventing the killing and propagation of water, removing organic matter, and preventing metal adhesion when used as washing water, while alkaline reduced water is effective in preventing oxidation and removing fine particles such as oils and fats and proteins. . Further, the acidic reduced water and alkaline oxidized water obtained by this method can be used as washing water for metals and the like.

【0003】[0003]

【従来の技術】発明者等が先に提案し、特許出願(平成
7年特許願160308号)された製造方法があり、該
方法は固体高分子電極膜に陽イオン交換樹脂膜を用いた
固体高分子電解質電極槽を使用した。
2. Description of the Related Art There is a manufacturing method proposed by the inventors and applied for a patent (Japanese Patent Application No. 160308/1995). This method uses a cation exchange resin membrane as a solid polymer electrode membrane. A polymer electrolyte electrode bath was used.

【0004】[0004]

【発明が解決しようとする課題】発明者等が提案した方
法は、固体高分子電極膜に陽イオン交換樹脂膜を用いた
固体高分子電解質電極槽を用いて電解イオン水を得る方
法であるが、アノードにおける酸化還元電位(ORP)
の上昇がカソードにおけるORPの下降に比較してその
度合が少なかった。
The method proposed by the present inventors is a method for obtaining electrolytic ionic water using a solid polymer electrolyte electrode tank using a cation exchange resin membrane as the solid polymer electrode membrane. , Redox potential at the anode (ORP)
Was less to a lesser extent than the decrease in ORP at the cathode.

【0005】[0005]

【課題を解決するための手段】本発明は、原水をH型陽
イオン交換樹脂漕またはOH型陰イオン交換樹脂槽に通
し、この一次処理水を固体高分子電極膜に陰イオン交換
樹脂膜を用いた固体高分子電解質電極槽のアノード又は
カソードに導いて接触させ、それぞれの対極には別の水
系を接触させて通電することによって、酸性酸化水、酸
性還元水、アルカリ性酸化水、アルカリ性還元水を得る
方法である。
According to the present invention, raw water is passed through an H-type cation exchange resin tank or an OH-type anion exchange resin tank, and the primary treated water is passed through a solid polymer electrode membrane to form an anion exchange resin membrane. The anode and cathode of the used solid polymer electrolyte electrode tank are brought into contact with each other, and a separate aqueous system is brought into contact with each counter electrode and energized to obtain acidic oxidized water, acidic reduced water, alkaline oxidized water, alkaline reduced water. Is a way to get

【0006】本発明は、前記従来の方法とは異なり、固
体高分子電極膜にOH型陰イオン交換樹脂膜を用い、ア
ノード側に膜中のOH~ イオンを移動させ放電せしめて
酸素を発生させるが、カソード側の水に塩化物イオン
(Cl~ )を含む場合はCl~も一部陰イオン交換樹脂
膜中を移動し、アノード側で塩素を生ずるので、この方
法がより水のORPを上昇させるのではないかとの考え
に基づくものである。
In the present invention, unlike the conventional method, an OH-type anion exchange resin membrane is used for the solid polymer electrode membrane, and OH ions in the membrane are moved to the anode side to discharge and generate oxygen. However, when water on the cathode side contains chloride ions (Cl ~), Cl ~ partially moves in the anion exchange resin membrane and generates chlorine on the anode side, so this method further increases the ORP of water. It is based on the idea that it may be done.

【0007】また、原水を二分してH型陽イオン交換樹
脂槽とOH型陰イオン交換樹脂槽に別々に通し、H型陽
イオン交換樹脂槽を通した一次処理水を固体高分子電極
膜に陰イオン交換樹脂膜を用いた通電中の固体高分子電
解質電極槽のアノード側に接触させ、OH型陰イオン交
換樹脂槽を通した一次処理水を固体高分子電極膜に陰イ
オン交換樹脂膜を用いた通電中の固体高分子電解質電極
槽のカソード側に接触させることにより、また、H型陽
イオン交換樹脂槽を通した一次処理水を固体高分子電極
膜に陰イオン交換樹脂膜を用いた通電中の固体高分子電
解質電極槽のカソード側に接触させ、OH型陰イオン交
換樹脂槽を通した一次処理水を固体高分子電極膜に陰イ
オン交換樹脂膜を用いた通電中の固体高分子電解質電極
槽のアノード側に接触させることにより、効率良く酸性
酸化水とアルカリ性還元水を得る、または、効率良く酸
性還元水とアルカリ性酸性水を得るようにするのであ
る。
[0007] Further, the raw water is divided into two and passed separately through an H-type cation exchange resin tank and an OH-type anion exchange resin tank, and the primary treated water passed through the H-type cation exchange resin tank is applied to a solid polymer electrode membrane. The primary treated water passed through the OH type anion exchange resin tank was brought into contact with the anode side of the solid polymer electrolyte electrode tank during energization using an anion exchange resin membrane, and the anion exchange resin membrane was applied to the solid polymer electrode membrane. The first treated water passed through the H-type cation exchange resin tank was used as the solid polymer electrode membrane by using the anion exchange resin membrane by bringing the solid polymer electrolyte electrode tank into contact with the cathode side of the used solid polymer electrolyte electrode tank. Contacting the cathode side of the current-carrying solid polymer electrolyte electrode tank, the primary treated water passed through the OH-type anion-exchange resin tank is used as the solid polymer electrode membrane. On the anode side of the electrolyte electrode tank By giving tactile, obtained efficiently acidic oxide water and alkaline reduced water or is to to obtain efficiently the acidic reducing water and an alkaline acidic water.

【0008】本発明について、塩化ナトリウムなどの塩
類を含んでいる水を原水としてH型陽イオン交換樹脂槽
に通すと、例えば塩化ナトリウムを例に採れば、槽中で
は式の反応が起こる。但し、Rはイオン交換樹脂の母
体を示す。
In the present invention, when water containing salts such as sodium chloride is passed as raw water through an H-type cation exchange resin tank, for example, in the case of sodium chloride as an example, the following reaction occurs in the tank. Here, R represents a base of the ion exchange resin.

【0009】[0009]

【化1】 Embedded image

【0010】同様にOH型陰イオン交換樹脂槽では式
の反応が起こる。
Similarly, in the OH type anion exchange resin tank, the following reaction occurs.

【0011】[0011]

【化2】 Embedded image

【0012】例えば、比抵抗100万Ω・cm(at2
5℃)の純水にNaClのみ含まれるとみなした場合、
比抵抗100万Ω・cmすなわち電気伝導率1μS/c
mに含まれるNaClの濃度は、NaCl1mg(as
CaCO3)/lの電気伝導率が2.53μS/cm
(at25℃)であることにより、式のように約40
0μg/l(as CaCO3)となる。
For example, a specific resistance of 1,000,000 Ω · cm (at2
5 ° C) pure water contains only NaCl,
Specific resistance 1 million Ω · cm, that is, electric conductivity 1 μS / c
m, the concentration of NaCl contained in NaCl 1 mg (as
The electrical conductivity of CaCO 3 ) / l is 2.53 μS / cm
(At 25 ° C.), about 40
0 μg / l (as CaCO 3 ).

【0013】[0013]

【化3】 Embedded image

【0014】従って、この比抵抗100万Ω・cm(a
t25℃)の純水を原水としてH型陽イオン交換樹脂槽
に通水すると、処理水中のNaClは式により400
μg/l(as CaCO3)のHClとなり、計算上
のpHは約5.1となる。これより比抵抗の少ない純水
及び清水の場合は、より多くの塩類を含有しているの
で、H型陽イオン交換樹脂槽を通過することにより生成
する酸の量も増えpHは5.1よりも酸性側となる。
Therefore, this specific resistance of 1,000,000 Ω · cm (a
(t25 ° C.) pure water as raw water and passed through an H-type cation exchange resin tank, the NaCl in the treated water becomes 400
It will be μg / l (as CaCO 3 ) HCl and the calculated pH will be about 5.1. In the case of pure water and fresh water having a lower specific resistance than this, since more salts are contained, the amount of acid generated by passing through the H-type cation exchange resin tank also increases, and the pH becomes higher than 5.1. Is also on the acidic side.

【0015】また、NaClのみを含む1000万Ω・
cm(at25℃)の純水を原水としてOH型陰イオン
交換樹脂槽に通水すると、原水中には40μg/l(a
sCaCO3)のNaClから式により40μg/l
(as CaCO3)のNaOHを生じ、計算上のpH
は約7.9となる。これよりNaClの濃度が大であれ
ばOH型陰イオン交換樹脂槽を通過することにより生成
するアルカリの量も増えpHは7.9よりもアルカリ側
となる。
Further, 10 million Ω ·
When pure water of cm (at 25 ° C.) is passed through an OH type anion exchange resin tank as raw water, 40 μg / l (a
sCaCO 3 ) from NaCl by the formula: 40 μg / l
(As CaCO 3 ) to yield NaOH, calculated pH
Is about 7.9. From this, when the concentration of NaCl is high, the amount of alkali generated by passing through the OH type anion exchange resin tank also increases, and the pH becomes more alkaline than 7.9.

【0016】ここで、原水にNaCl等の塩類を添加
し、その添加量を変えることにより、H型陽イオン交換
樹脂槽に通水した場合は交換されるHClの量が変わ
り、OH型陰イオン交換樹脂槽に通水した場合は交換さ
れるNaOHの量が変わるため、結果的に得られる処理
水のpH値を任意に変えることができる。
Here, by adding salts such as NaCl to the raw water and changing the amount of addition, when water is passed through the H-type cation exchange resin tank, the amount of exchanged HCl changes, and the OH-type anion is changed. When water is passed through the exchange resin tank, the amount of NaOH to be exchanged changes, so that the pH value of the resulting treated water can be arbitrarily changed.

【0017】H型陽イオン交換樹脂槽を通した水を固体
高分子電極膜にOH型陰イオン交換樹脂膜を用いた通電
中の固体高分子電解質電極槽のアノード側に接触させる
と、アノード側では陰イオン交換樹脂膜中を移動したO
H~ イオンにより式の反応が行われ、酸素を発生して
アノード側処理水は強い酸化性を示す。また、H型陽イ
オン交換樹脂槽にて交換されたHClはアノード側処理
水にそのまま残るため、結果的にアノード側処理水は酸
性酸化水となる。
When water passed through the H-type cation exchange resin tank is brought into contact with the anode side of the energized solid polymer electrolyte electrode tank using the OH-type anion exchange resin membrane as the solid polymer electrode membrane, Now, the O that has moved through the anion exchange resin membrane
The reaction of the formula is carried out by H ~ ions to generate oxygen, and the anode-side treated water exhibits strong oxidizing properties. Further, HCl exchanged in the H-type cation exchange resin tank remains in the anode-side treated water, and as a result, the anode-side treated water becomes acidic oxidized water.

【0018】また、カソード側の水中にCl~ イオンが
存在する場合は、これも陰イオン交換樹脂膜を通りアノ
ード側に移動し、アノードで式の反応が行われて塩素
を発生する。これは結果的に次亜塩素酸を生じ、アノー
ド側処理水の酸化性を強める。
If Cl】 ions are present in the water on the cathode side, they also move to the anode side through the anion exchange resin membrane, and the chlorine is generated by the reaction of the formula at the anode. This results in the generation of hypochlorous acid, which enhances the oxidizability of the anode-side treated water.

【0019】[0019]

【化4】 Embedded image

【0020】[0020]

【化5】 Embedded image

【0021】同様に、OH型陰イオン交換樹脂槽を通し
た水を固体高分子電極膜にOH型陰イオン交換樹脂膜を
用いた通電中の固体高分子電解質電極槽のカソード側に
接触させると、カソード側では水が電気分解されて式
のように水素を発生し、カソード側は強い還元性を示
す。また、OH型陰イオン交換樹脂槽にて交換されたN
aOHはカソード側処理水にそのまま残るため、結果的
にカソード側処理水はアルカリ性還元水となる。
Similarly, when the water passed through the OH type anion exchange resin tank is brought into contact with the cathode side of the energized solid polymer electrolyte electrode tank using the OH type anion exchange resin membrane as the solid polymer electrode membrane. On the cathode side, water is electrolyzed to generate hydrogen as shown in the formula, and the cathode side shows strong reducing properties. Also, the N exchanged in the OH type anion exchange resin tank
Since aOH remains in the treated water on the cathode side, the treated water on the cathode side becomes alkaline reduced water as a result.

【0022】[0022]

【化6】 Embedded image

【0023】次に、H型陽イオン交換樹脂槽を通した水
を固体高分子電極膜にOH陰イオン交換樹脂膜を用いた
通電中の固体高分子電解質電極槽のカソード側に接触さ
せると、カソード側では水が電気分解されて式のよう
に水素を発生し、カソード側は強い還元性を示す。ま
た、H型陽イオン交換樹脂槽にて交換されたHClはカ
ソード側処理水に残るため(Cl~ イオンの一部はアノ
ード側に移動するため)、結果的にカソード側処理水は
酸性還元水となる。
Next, when the water passed through the H-type cation exchange resin tank is brought into contact with the cathode side of the energized solid polymer electrolyte electrode tank using the OH anion exchange resin membrane as the solid polymer electrode membrane, On the cathode side, water is electrolyzed to generate hydrogen as in the formula, and the cathode side shows strong reducing properties. Further, HCl exchanged in the H-type cation exchange resin tank remains in the treated water on the cathode side (part of ClCl ions move to the anode side), and consequently the treated water on the cathode side is acidic reduced water. Becomes

【0024】同様に、OH型陰イオン交換樹脂槽を通し
た水を固体高分子電極膜にOH型陰イオン交換樹脂膜を
用いた通電中の固体高分子電解質電極槽のアノード側に
接触させると、アノード側では式の反応が行われ、酸
素を発生したアノード側処理水は強い酸化性を示す。
又、OH型陰イオン交換樹脂槽にて交換されたNaOH
はアノード側処理水に残るため、結果的にアノード側処
理水はアルカリ性酸化水となる。この時、カソード側の
水にCl~ イオンがある場合、このCl~ イオンの一部
が陰イオン交換樹脂膜中を移動し、アノードで式のよ
うに反応して塩素を生じるため、アノード側のアルカリ
成分を減少させる。
Similarly, when water passed through the OH type anion exchange resin tank is brought into contact with the anode side of the energized solid polymer electrolyte electrode tank using the OH type anion exchange resin membrane as the solid polymer electrode membrane. On the anode side, the reaction of the formula is performed, and the anode-side treated water that has generated oxygen exhibits strong oxidizing properties.
NaOH exchanged in the OH type anion exchange resin tank
Remains in the anode-side treated water, and as a result, the anode-side treated water becomes alkaline oxidized water. At this time, if the water on the cathode side has Cl ions, a part of the Cl ions move in the anion exchange resin membrane and react as shown by the formula at the anode to generate chlorine. Reduce alkali content.

【0025】[0025]

【実施例】図面は本発明に係る電解イオン水の製造方法
を適用した装置例を示し、図1は第一装置例を示す略示
説明図、図2は第二装置例を示す略示説明図である。
1 shows an example of an apparatus to which the method for producing electrolytic ionic water according to the present invention is applied. FIG. 1 is a schematic illustration showing an example of a first apparatus, and FIG. 2 is an illustration showing an example of a second apparatus. FIG.

【0026】各装置例において、2はNaC等の塩類注
入装置、6はH型陽イオン交換樹脂槽、10はOH型陰
イオン交換樹脂槽、12は固体高分子電解質電極槽、2
6は直流電源部をそれぞれ示し、塩類注入装置2は、原
水に計算量の塩類を注入混合することにより、電解イオ
ン水のpH値を所望の値に変える場合に用い、NaCl
等の塩類はこの装置2から添加量を設定された注入バル
ブ3を通じて原水中に添加混合される。
In each apparatus example, 2 is an apparatus for injecting salts such as NaC, 6 is an H-type cation exchange resin tank, 10 is an OH-type anion exchange resin tank, 12 is a solid polymer electrolyte electrode tank,
Numeral 6 denotes a DC power supply unit. The salt injection device 2 is used for changing the pH value of the electrolytic ionized water to a desired value by injecting and mixing a calculated amount of salt into raw water.
And the like are added and mixed into raw water from the apparatus 2 through an injection valve 3 whose addition amount is set.

【0027】H型陽イオン交換樹脂槽6は、H型陽イオ
ン交換樹脂7を備え、槽上部に注入バルブ4と空気抜き
バルブ5を備え、注入バルブ4を通じて原水を受入れて
処理し、槽下部より処理水を槽外に排出するようになっ
ている。
The H-type cation exchange resin tank 6 is provided with an H-type cation exchange resin 7, is provided with an injection valve 4 and an air release valve 5 in an upper part of the tank, receives and processes raw water through the injection valve 4, and processes the raw water from the lower part of the tank. The treated water is discharged outside the tank.

【0028】OH型陰イオン交換樹脂槽10はOH型陰
イオン交換樹脂11を備え、槽上部にH型陽イオン交換
樹脂槽6と同様に注入バルブ8と空気抜きバルブ9を備
え、注入バルブ8より原水を受入れて処理し、槽下部よ
り処理水を槽外に排出するようになっている。
The OH type anion exchange resin tank 10 is provided with an OH type anion exchange resin 11, and is provided with an injection valve 8 and an air release valve 9 at the upper part of the tank similarly to the H type cation exchange resin tank 6. Raw water is received and treated, and treated water is discharged out of the tank from the lower part of the tank.

【0029】固体高分子電解質電極槽12は、OH型陰
イオン交換樹脂膜(商品名 トスフレックス IE−D
F34)を用いた固体高分子電極膜21でアノード側と
カソード側に区画され、OH型陰イオン交換樹脂膜を用
いた固体高分子電極膜21とアノード17及びカソード
18とで固体高分子電解質電極を構成し、アノード17
には液体の通過が可能な多孔性又は間隙を有するアノー
ド側給電体19が隣接し、カソード18には同様なカソ
ード側給電体20が隣接している。また、アノード側入
口径路15の外側にはアノード側注入バルブ13及びア
ノード側出口径路22の外側にはアノード側排出バルブ
27が、カソード側入口径路16の外側にはカソード側
注入バルブ14及びカソード側出口径路23の外側には
カソード側排出バルブ28が配されている。
The solid polymer electrolyte electrode tank 12 is made of an OH type anion exchange resin membrane (trade name: Tosflex IE-D).
F34) is divided into an anode side and a cathode side by the solid polymer electrode membrane 21 using the solid polymer electrolyte membrane 21 using the OH type anion exchange resin membrane, and the anode 17 and the cathode 18 are used as the solid polymer electrolyte electrode. And the anode 17
Is adjacent to an anode-side power supply 19 having a porosity or gap through which a liquid can pass, and the cathode 18 is adjacent to a similar cathode-side power supply 20. Outside the anode-side inlet path 15, the anode-side injection valve 13 and the anode-side discharge valve 27 outside the anode-side outlet path 22, and outside the cathode-side inlet path 16, the cathode-side injection valve 14 and the cathode side A cathode discharge valve 28 is arranged outside the outlet path 23.

【0030】なお、アノード側給電体19は陽極板24
を、カソード側給電体20は陰極板25をそれぞれ介し
て直流電源部26に導通させてある。
The anode-side power supply 19 is connected to the anode plate 24.
The cathode-side power supply 20 is electrically connected to the DC power supply unit 26 via the cathode plate 25.

【0031】図1で示す第一装置例において、原水はH
型陽イオン交換樹脂槽6とOH型陰イオン交換樹脂槽1
0の手前で分岐して流れ、一方はH型陽イオン交換樹脂
槽6内のH型陽イオン交換樹脂(商品名 ダイヤイオン
SKN1)7を通過して酸性一次処理水となり、アノ
ード側注入バルブ13よりアノード側入口径路15に通
じ、液体の通過が可能な多孔性又は間隙を有するアノー
ド側給電体19を通過して、アノード側出口径路22よ
りアノード側排出バルブ27を通って、酸性酸化水とし
て回収される。
In the first device example shown in FIG. 1, the raw water is H
Type cation exchange resin tank 6 and OH type anion exchange resin tank 1
0, one side flows, and one side passes through the H-type cation exchange resin (trade name: Diaion SKN1) 7 in the H-type cation exchange resin tank 6 to become acidic primary treatment water. Through the anode-side power supply 19 having a porosity or a gap through which the liquid can pass, and from the anode-side outlet path 22 through the anode-side discharge valve 27, and as acidic oxidized water. Collected.

【0032】H型陽イオン交換樹脂槽6とOH型陰イオ
ン交換樹脂槽10の手前で分岐された原水の他の一方
は、OH型陰イオン交換樹脂槽10内のOH型陰イオン
交換樹脂(商品名 ダイヤイオン SAN1)11を通
過してアルカリ性一次処理水となり、カソード側注入バ
ルブ14よりカソード側入口径路16に通じ、液体の通
電が可能な多孔性又は間隙を有するカソード側給電体2
0を通過して、カソード側出口径路23よりカソード側
排出バルブ28を通って、アルカリ性還元水として回収
される。
The other one of the raw water branched before the H-type cation exchange resin tank 6 and the OH-type anion exchange resin tank 10 is used as the OH-type anion exchange resin (OH) in the OH-type anion exchange resin tank 10. Product name: Diaion SAN1), which becomes alkaline primary treated water after passing through the cathode-side injection valve 14 through the cathode-side inlet path 16 and has a porous or gap-type cathode-side power supply 2 through which liquid can flow.
0, and is recovered as alkaline reduced water from the cathode-side outlet path 23 through the cathode-side discharge valve 28.

【0033】図2で示す第二装置例において、原水はH
型陽イオン交換樹脂槽6とOH型陰イオン交換樹脂槽1
0の手前で分岐して流れ、一方はOH型陰イオン交換樹
脂槽10内のOH型陰イオン交換樹脂11を通過してア
ルカリ性一次処理水となり、アノード側注入バルブ13
よりアノード側入口径路15に通じ、液体の通過が可能
な多孔性又は間隙を有するアノード側給電体19を通過
して、アノード側出口径路22よりアノード側排出バル
ブ27を通って、アルカリ性酸化水として回収される。
In the second apparatus example shown in FIG. 2, the raw water is H
Type cation exchange resin tank 6 and OH type anion exchange resin tank 1
0, and one of them flows through the OH-type anion-exchange resin 11 in the OH-type anion-exchange resin tank 10 to become alkaline primary treated water.
Through the anode-side power supply 19 having a porosity or gap through which liquid can pass, and from the anode-side outlet path 22 through the anode-side discharge valve 27, and as alkaline oxidized water. Collected.

【0034】H型陽イオン交換樹脂槽6とOH型陰イオ
ン交換樹脂槽10の手前で分岐された原水の他の一方
は、H型陽イオン交換樹脂槽6内のH型陽イオン交換樹
脂7を通過して酸性一次処理水となり、カソード側注入
バルブ14よりカソード側入口径路16に通じ、液体の
通電が可能な多孔性又は間隙を有するカソード側給電体
20を通過して、カソード側出口径路23よりカソード
側排出バルブ28を通って、酸性還元水として回収され
る。
The other of the raw water branched before the H-type cation exchange resin tank 6 and the OH-type anion exchange resin tank 10 is used as the H-type cation exchange resin 7 in the H-type cation exchange resin tank 6. Through the cathode-side injection valve 14 to the cathode-side inlet path 16, and through the cathode-side power feeder 20 having a porosity or gap through which liquid can flow, and passing through the cathode-side outlet path. Through the cathode-side discharge valve 28, the water is recovered as acidic reduced water.

【0035】なお、第一装置例及び第二装置例におい
て、硬度成分を含む原水の場合、OH型陰イオン交換樹
脂槽にそのまま通水すると水酸化カルシウムCa(OH
2)や水酸化マグネシウムMg(OH2)を析出し、樹脂
層を閉塞し障害を来すので、OH型陰イオン交換樹脂槽
の前にNa型の陽イオン交換樹脂槽を別に設け、原水を
該樹脂槽で処理し軟水としてからOH型陰イオン交換樹
脂槽に通水するのが望ましい。
In the first device example and the second device example, in the case of raw water containing a hardness component, calcium hydroxide Ca (OH
2 ) and magnesium hydroxide Mg (OH 2 ) precipitates and blocks the resin layer, causing obstacles. Therefore, a separate Na type cation exchange resin tank is provided before the OH type anion exchange resin tank to It is desirable that the water is treated in the resin tank to make the water soft and then passed through the OH type anion exchange resin tank.

【0036】また、第一装置例及び第二装置例におい
て、それぞれの固体高分子電解質電極の極性変換をする
ことにより、第一装置例の場合は第二装置例と、第二装
置例の場合は第一装置例と同様の結果を得ることもでき
る。
In the first device example and the second device example, the polarity of each solid polymer electrolyte electrode is converted to obtain the first device example and the second device example. Can obtain the same results as in the first device example.

【0037】なおまた、H型陽イオン交換樹脂捜とOH
型陰イオン交換樹脂槽のいずれか一方の省略して一次処
理水を得、この一次処理水を電極槽のアノードとカソー
ドのいずれか一方に接触させ、他の一方に別の水系を接
触させるようにして電解イオン水を得ても良い。
It should be noted that H-type cation exchange resin search and OH
Primary treatment water is obtained by omitting one of the mold anion exchange resin tanks, and the primary treatment water is brought into contact with one of the anode and the cathode of the electrode tank, and another water system is brought into contact with the other. To obtain electrolytic ionic water.

【0038】以下、上記装置に適用した本発明の実施例
について述べる。
An embodiment of the present invention applied to the above apparatus will be described below.

【0039】[0039]

【実施例1】図1の装置において、チタン網に白金メッ
キしたアノード17及びカソード18の面積をそれぞれ
250cm2とし、原水として電気伝導率約1.0μS
/cm(at25℃)の純水をそのまま薬品を注入せず
に用い、それを二分して、一方は毎時100リットルづ
つH型陽イオン交換樹脂槽6を通過させ、固体高分子電
解質電極槽12のアノード側給電体19に供給した。他
の一方にも毎時100リットルづつOH型陰イオン交換
樹脂槽10を通過させ、固体高分子電解質電極槽12の
カソード側給電体20に供給した。固体高分子電解質電
極槽内の水圧は発生する水素ガスの原水への溶解を良く
するために約0.18MPaになるようにし、電極間に
は9.5ボルトで5アンペアの電流を流した。結果を表
1に示す。
EXAMPLE 1 In the apparatus shown in FIG. 1, the area of each of an anode 17 and a cathode 18 which were platinum-plated on a titanium net was 250 cm 2, and the electric conductivity was about 1.0 μS as raw water.
/ Cm (at 25 ° C.) pure water is used without injecting the chemical as it is, and it is divided into two parts. One part is passed through the H-type cation exchange resin tank 6 at 100 liters per hour, and the solid polymer electrolyte electrode tank 12 To the anode-side power supply 19 of the above. The other was also passed through the OH type anion exchange resin tank 10 at an hourly rate of 100 liters and supplied to the cathode-side power supply 20 of the solid polymer electrolyte electrode tank 12. The water pressure in the solid polymer electrolyte electrode tank was adjusted to about 0.18 MPa in order to improve the dissolution of the generated hydrogen gas in raw water, and a current of 9.5 volts and 5 amps was passed between the electrodes. Table 1 shows the results.

【0040】[0040]

【実施例2】図2の装置において、原水として電気伝導
率約1.0μS/cm(at25℃)の純水に塩化ナト
リウム3.6mg(as CaCO3)/lを注入して
電気伝導率を約10μS/cm(at25℃)に調整し
たものを用いた。この調整された原水を二分して、一方
は毎時100リットルづつOH型陰イオン交換樹脂槽1
0を通過させ、固体高分子電解質電極槽12のアノード
側給電体19に供給した。他の一方にも毎時100リッ
トルづつH型陽イオン交換樹脂槽6を通過させ、固体高
分子電解質電極槽12のカソード側給電体20に供給し
た。固体高分子電解質電極槽内の水圧は発生する水素ガ
スの原水への溶解を良くするために約0.18MPaに
なるようにし、電極間には10ボルトで3アンペアの電
流を流した。その他の条件は実施例1に同じである。結
果を表1に示す。
EXAMPLE 2 In the apparatus shown in FIG. 2, 3.6 mg (as CaCO 3 ) / l of sodium chloride was injected into pure water having an electric conductivity of about 1.0 μS / cm (at 25 ° C.) as raw water to obtain an electric conductivity. The one adjusted to about 10 μS / cm (at 25 ° C.) was used. This adjusted raw water is divided into two parts, one of which is an OH type anion exchange resin tank 1 at 100 liters per hour.
0, and supplied to the anode-side power supply 19 of the solid polymer electrolyte electrode tank 12. The other was also passed through the H-type cation exchange resin tank 6 at an hourly rate of 100 liters, and supplied to the cathode-side power supply 20 of the solid polymer electrolyte electrode tank 12. The water pressure in the solid polymer electrolyte electrode tank was adjusted to about 0.18 MPa in order to improve the dissolution of generated hydrogen gas in raw water, and a current of 3 amps was applied between the electrodes at 10 volts. Other conditions are the same as in the first embodiment. Table 1 shows the results.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】本発明によれば、ORP値の高い酸性酸
化水及びアルカリ性酸化水を得ることができる。
According to the present invention, acidic oxidized water and alkaline oxidized water having a high ORP value can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一実施例の略示説明図。FIG. 1 is a schematic explanatory view of a first embodiment.

【図2】第二実施例の略示説明図。FIG. 2 is a schematic explanatory view of a second embodiment.

【符号の説明】[Explanation of symbols]

1 原水入口 2 NaCl等の塩類注入装置 3 注入バルブ 4 注入バルブ 5 空気抜きバルブ 6 H型陽イオン交換樹脂槽 7 H型陽イオン交換樹脂 8 注入バルブ 9 空気抜きバルブ 10 OH型陰イオン交換樹脂槽 11 OH型陰イオン交換樹脂 12 固体高分子電解質電極槽 13 アノード側注入バルブ 14 カソード側注入バルブ 15 アノード側入口径路 16 カソード側入口径路 17 アノード 18 カソード 19 アノード側給電体 20 カソード側給電体 21 固体高分子電極膜 22 アノード側出口径路 23 カソード側出口径路 24 陽極板 15 陰極板 26 直流電源部 27 アノード側排出バルブ 28 カソード側排出バルブ DESCRIPTION OF SYMBOLS 1 Raw water inlet 2 NaCl etc. salt injection apparatus 3 Injection valve 4 Injection valve 5 Air release valve 6 H type cation exchange resin tank 7 H type cation exchange resin 8 Injection valve 9 Air release valve 10 OH type anion exchange resin tank 11 OH Type anion exchange resin 12 Solid polymer electrolyte electrode tank 13 Anode side injection valve 14 Cathode side injection valve 15 Anode side inlet path 16 Cathode side inlet path 17 Anode 18 Cathode 19 Anode side power supply 20 Cathode side power supply 21 Solid polymer Electrode membrane 22 Anode-side exit path 23 Cathode-side exit path 24 Anode plate 15 Cathode plate 26 DC power supply 27 Anode discharge valve 28 Cathode discharge valve

フロントページの続き (56)参考文献 特開 平5−68975(JP,A) 特開 平7−214063(JP,A) 特公 平6−33474(JP,B2) 特許2732818(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C02F 1/46 - 1/48 C25B 11/20Continuation of the front page (56) References JP-A-5-68975 (JP, A) JP-A-7-214063 (JP, A) JP-B-6-33474 (JP, B2) Patent 2732818 (JP, B2) ( 58) Field surveyed (Int.Cl. 6 , DB name) C02F 1/46-1/48 C25B 11/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原水を、H型陽イオン交換樹脂槽又はO
H型陰イオン交換樹脂槽に通して酸性一次処理水又はア
ルカリ性一次処理水を得、固体高分子電極膜に陰イオン
交換樹脂膜を使用した通電中の固体高分子電解質電極槽
のアノード及びカソードの一方に前記一次処理水を、他
の一方に別の水系をそれぞれ接触させて得ることを特徴
とする電解イオン水の製造方法。
1. The raw water is supplied to an H-type cation exchange resin tank or an O-type cation exchange resin tank.
An acidic primary treatment water or an alkaline primary treatment water is obtained by passing through an H-type anion exchange resin tank, and the anode and the cathode of the energized solid polymer electrolyte electrode tank using an anion exchange resin membrane as the solid polymer electrode membrane A method for producing electrolytic ionic water, comprising obtaining the primary treated water on one side and another aqueous system on the other side.
【請求項2】 原水を、H型陽イオン交換樹脂槽とOH
型陰イオン交換樹脂槽に別々に通して酸性一次処理水と
アルカリ性一次処理水を得、固体高分子電極膜に陰イオ
ン交換樹脂膜を使用した通電中の固体高分子電解質電極
槽のアノード及びカソードの一方に前記酸性一次処理水
を、他の一方に前記アルカリ性一次処理水をそれぞれ接
触させて得ることを特徴とする電解イオン水の製造方
法。
2. Raw water is supplied to an H-type cation exchange resin tank and OH
Separately pass through the type anion exchange resin tank to obtain acidic primary treatment water and alkaline primary treatment water, and use the anion exchange resin membrane as the solid polymer electrode membrane to conduct the anode and cathode of the energized solid polymer electrolyte electrode tank A method for producing electrolytic ionic water, characterized by contacting one of the acidic primary treated water and the other with the alkaline primary treated water.
【請求項3】 原水に計算量の塩化ナトリウムなどの塩
類を予め混合することを特徴とする請求項1又は2記載
の電解イオン水の製造方法。
3. The method for producing electrolytic ionic water according to claim 1, wherein a calculated amount of salts such as sodium chloride is previously mixed with the raw water.
JP7324451A 1995-12-13 1995-12-13 Method for producing electrolytic ionic water Expired - Fee Related JP2792537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324451A JP2792537B2 (en) 1995-12-13 1995-12-13 Method for producing electrolytic ionic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324451A JP2792537B2 (en) 1995-12-13 1995-12-13 Method for producing electrolytic ionic water

Publications (2)

Publication Number Publication Date
JPH09155350A JPH09155350A (en) 1997-06-17
JP2792537B2 true JP2792537B2 (en) 1998-09-03

Family

ID=18165966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324451A Expired - Fee Related JP2792537B2 (en) 1995-12-13 1995-12-13 Method for producing electrolytic ionic water

Country Status (1)

Country Link
JP (1) JP2792537B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790054B2 (en) * 1998-11-17 2006-06-28 パイオニア株式会社 Reduced water generating apparatus and generating method
JP3914964B2 (en) * 2000-09-21 2007-05-16 高橋金属株式会社 Water-soluble coolant mixed with electrolytic ionic water and manufacturing apparatus
JP5061266B1 (en) * 2012-06-26 2012-10-31 日科ミクロン株式会社 Ozone water generator
JP6868365B2 (en) * 2016-09-30 2021-05-12 カーリットホールディングス株式会社 Hydrogen water production equipment and production method

Also Published As

Publication number Publication date
JPH09155350A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
EP0839762B1 (en) Method and apparatus for scale prevention in producing deionized water
JP2627100B2 (en) Method and apparatus for producing sterilized water
JPH09262583A (en) Preparation of acidic water and alkaline water
WO2004080901A1 (en) Process for producing mixed electrolytic water
TW200526526A (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
Trokhymenko et al. Study of the process of electro evolution of copper ions from waste regeneration solutions
CN111252963A (en) Treatment method of high-concentration COD wastewater
JP2792537B2 (en) Method for producing electrolytic ionic water
JP2732818B2 (en) Method for producing electrolytic ionic water
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP2005219011A (en) Regeneration method for ion-exchange resin
JPH0780253A (en) Electrodialytic purifying method
KR100229584B1 (en) An apparatus and method for making Acid and Alkali water using heterogeneous ionexchange membranes and ionexchang resins
JP3718781B2 (en) Method for simultaneous production of hypochlorous acid sterilizing water and strong alkaline water in electrolytic cell and additive chemical used in this method
JPH08150392A (en) Production of silver hydroxide bactericidal water
JPH1133552A (en) Water treatment apparatus
JP2000093964A (en) Alkali water making method and electrolytic apparatus
JPH08187492A (en) Modified water making apparatus
JPH078961A (en) Production of acidic water
JP2004089975A (en) Strong electrolytic water generator
JP2001192875A (en) Method and apparatus for preparing hydrogen peroxide
JPH032959B2 (en)
JPH0731979A (en) Production of alkaline water and acidic water
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JP3401294B2 (en) Electrolytic water treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees