JP3717490B2 - 光学記憶装置のシーク制御方法及び光学記憶装置 - Google Patents

光学記憶装置のシーク制御方法及び光学記憶装置 Download PDF

Info

Publication number
JP3717490B2
JP3717490B2 JP2003096048A JP2003096048A JP3717490B2 JP 3717490 B2 JP3717490 B2 JP 3717490B2 JP 2003096048 A JP2003096048 A JP 2003096048A JP 2003096048 A JP2003096048 A JP 2003096048A JP 3717490 B2 JP3717490 B2 JP 3717490B2
Authority
JP
Japan
Prior art keywords
track
target
dsp
target position
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003096048A
Other languages
English (en)
Other versions
JP2003296949A (ja
Inventor
茂知 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003096048A priority Critical patent/JP3717490B2/ja
Publication of JP2003296949A publication Critical patent/JP2003296949A/ja
Application granted granted Critical
Publication of JP3717490B2 publication Critical patent/JP3717490B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光ビームを光学記憶媒体の目標トラックにシーク動作するための光学記憶装置のシーク制御方法に関し、特にDSPを用いた光学記憶装置のシーク制御方法に関する。
【0002】
光ディスク装置,光カード装置等の光学記憶装置は、広く記憶装置として利用されている。このような光学記憶装置では、光ビームを光学記憶媒体に照射して、光学記憶媒体にデータをライトし、リードする。
【0003】
この光学記憶装置では、光ビームを目的トラックへ移動させる、所謂シーク動作を行う。このシーク動作において、光ビームの位置を検出するため、光学記憶媒体から反射光により、トラックエラー信号を発生している。このようなトラックエラー信号から現在位置を検出する際には、シーク速度が早くなっても、正確に現在位置を検出する技術が望まれる。
【0004】
【従来の技術】
トラックエラー信号TESから現在位置を検出する方法として、トラックエラー信号のアナログ値から現在位置を検出する方法が知られている。又、他のトラックエラー信号から現在位置を検出する方法として、トラックエラー信号をゼロスライスして、トラックゼロクロス信号TZCを得る。このトラックゼロクロス信号をカウントして、現在位置を検出する方法が知られている。
【0005】
【発明が解決しようとする課題】
シーク中のトラックエラー信号TESの周期は、最高速度の時には、500kHzにもなる。このため、デジタルサーボのサンプリング周波数50kHz〜40kHzに対しては、1回のサンプルに対して、10トラック以上に達することもある。
【0006】
光学ヘッドを駆動する移動機構のコイルは、大きなインダクタンス成分を持っているため、電流の立ち上がりが遅く、シーク速度の向上が困難であった。
【0008】
本発明の目的は、光学ヘッドを駆動する移動機構の電流の立ち上がりを補償して、シーク速度を向上するための光学記憶装置のシーク制御方法及び光学記憶装置を提供するにある。
【0010】
【課題を解決するための手段】
本発明は、光ビームを光学記憶媒体のあるトラックから目的トラックにシーク動作するため、光ビーム移動機構をシーク制御するための光学記憶装置のシーク制御方法において、前記あるトラックから前記目的トラックまでの距離に応じた目標速度特性である加速、定速、減速期間を算出するステップと、サンプリング割り込み毎に、前記目標速度特性に従い、目標位置を計算するステップと、前記サンプリング割り込み毎に、前記光ビームの前記トラックとの相対位置を示すトラックエラー信号から現在位置を検出するステップと、前記サンプリング割り込み毎に、前記目標位置と前記現在位置との誤差がゼロになるようなフィードバック制御量を算出するステップと、前記目標位置へ到達する目標速度特性に従う目標速度の変化が生じる前に、フィードフォワード量を生成し、前記フィードバック制御量と加算して、前記光ビーム移動機構を制御するステップとを有し、前記フィードバック制御量を算出するステップは、直前のサンプリング割り込みの目標位置から今回のサンプリング割り込みの目標位置との差から得た目標速度と、直前のサンプリング割り込みの現在位置から今回のサンプリング割り込みの現在位置との差から得た現在速度との速度誤差により、前記フィードバック制御量を算出するステップを有する。
【0022】
【作用】
本発明では、目標速度の変化前にフィードフォワード量を付加するため、高速シークを可能とする。
【0023】
【実施例】
図1は本発明の一実施例ブロック図、図2は図1の構成のゼロクロスコンパレータの回路図、図3は図2の構成のトラックカウンタ回路の回路図である。図において、トラックアクセスに関係のないフォーカス系のサーボ構成を省略してある。
【0024】
光ディスク1は、光学ヘッド(ポジショナ)2によりレーザー光を照射される。これにより、データのリード/ライトが行われる。光学ヘッド2は、光ディスク1にレーザー光を照射するための対物レンズ20と、対物レンズ20を光ディスク1のトラックを横切る方向に駆動するアクチュエータ21と、対物レンズ20の位置を検出するレンズ位置検出器22とを有する。
【0025】
VCM(ボイスコイルモータ)23は、光学ヘッド2を、光ディスク1のトラックを横切る方向に移動する。
【0026】
DSP(デジタルシグナル・プロセッサ)3は、40kHz〜50kHzのサンプルタイマ割り込みにより、オントラック中は、トラックエラー信号TESをサンプルし、トラックセンターからの位置誤差を得る。そして、制御量を作成する。同様に、シーク処理中は、図4以下で説明するように、トラックエラー信号TESから制御量を作成する。
【0027】
ホストMPU5は、DSP3にシークコマンド等のホストコマンドを発行し、且つシークのディファレンス等のホストデータを転送する。
【0028】
第1のデジタル/アナログ変換器40は、ホストMPU5からのトラックオフセット値をアナログ量に変換する。加算器41は、トラックエラー信号TESに第1のデジタル/アナログ変換器40の出力(トラックオフセット量)を加算する。
【0029】
2次ローパスフィルタ42は、トラックエラー信号TESの高域成分をカットするアナログ・ローパスフィルタである。そのカットオフ周波数は、20kHzに設定してある。第1のアナログ/デジタル変換器43は、ローパスフィルタ42からのアナログ・トラックエラー信号TESをデジタル値に変換する。
【0030】
尚、トラックエラー信号TESは、光学ヘッド2の図示しない4分割光検出器から得られる周知のものである。このトラックエラー信号TESは、トラック横断毎に、1周期の正弦波をなす。
【0031】
ゼロクロス・コンパレータ(ゼロクロス回路)44は、図2に示すように、トラックエラー信号TESを基準電圧でスライスして、トラックゼロクロス信号TZCを発生する。
【0032】
トラックカウンタ回路45は、図3に示すように、トラックゼロクロス信号TZCから光ビームの位置を検出するためのものである。
【0033】
2次ローパスフィルタ46は、レンズ位置検出器22からのレンズポジション信号LPOSの高域成分をカットするアナログ・ローパスフィルタである。第2のアナログ/デジタル変換器47は、ローパスフィルタ46からのアナログ・レンズポジション信号LPOSをデジタル値に変換する。
【0034】
第2のデジタル/アナログ変換器48は、DSP3からの疑似トラックエラー信号をアナログ量に変換する。この疑似トラックエラー信号は、DSP3が、第1のアナログ/デジタル変換器43から入力されたトラックエラー信号に所定のゲインを付与したものである。この疑似トラックエラー信号をモニターして、その値が上下対称となるように、トラックオフセット値が調整される。
【0035】
第3のデジタル/アナログ変換器49は、DSP3からのアクチュエータ制御値をアナログ量に変換する。駆動回路50は、第3のデジタル/アナログ変換器49の出力により、アクチュエータ21を駆動する。
【0036】
第4のデジタル/アナログ変換器51は、DSP3からのVCM制御値をアナログ量に変換する。駆動回路52は、第4のデジタル/アナログ変換器51の出力により、VCM23を駆動する。
【0037】
次に、ゼロクロス・コンパレータ44について、図2により説明する。図2に示すように、加算アンプ53は、基準電圧から第1のデジタル/アナログ変換器40からのトラックオフセット量を差し引く。トラックエラー信号TESは、基準電圧Vref 中心の信号であるが、回路オフセット等のDC成分を含んでいる。このため、予め測定したトラックオフセット値によりDC成分を補正する。尚、R3、R4、R5は、抵抗である。
【0038】
コンパレータ54は、加算アンプ53からの補正された基準電圧と、トラックエラー信号TESとを比較して、トラックゼロクロス信号TZCを出力する。このコンパレータ54は、スライス後のデジタル電圧を抵抗R1、R2及びコンデンサCを介して正帰還されている。
【0039】
これにより、コンパレータ54に、ヒステリシス特性を与え、ノイズに対して鈍感にしている。これにより、トラックエラー信号TESに、ID髭等のノイズを検出しないようにしている。
【0040】
その帰還量は、正帰還ルートに設けたスイッチSW1をオン/オフすることにより、可変にしてある。光ビームの速度が比較的遅い時は、スイッチSW1をオンして、帰還量を大きくする。これにより、ノイズに対する誤動作を防止する。
【0041】
一方、トラックエラー信号TESの振幅が小さくなる速度が比較的速い場合には、スイッチSW1をオフして、帰還量を小さくする。これにより、トラックエラー信号TESのゼロクロスが確実に検出できるように制御している。
【0042】
スイッチSW1の制御は、DSP3から行う。DSP3は、後述する速度検出により、速度が基準速度をオーバーすると、スイッチSW1をオフする。
【0043】
次に、トラックカウンタ回路45について、図3により説明する。図3に示すように、ゼロクロスパルス発生回路60は、トラックゼロクロス信号TZCをシステムクロックに同期させて、エッジパルスを発生する。
【0044】
ラッチパルス発生回路61は、DSP3からのラッチ信号からラッチパルスを作成する。インターバルカウンタ62は、エッジパルス(トラックゼロクロス信号TZC)の間隔を、システムクロックを計数することにより、計数する。
【0045】
インターバルラッチ回路63は、エッジパルスに応じて、インターバルカウンタ62の出力をラッチする。データ保持用ラッチ回路64は、ラッチパルスによりラッチ回路63のデータを保持する。このラッチ回路64の出力が、最新のゼロクロスインターバル値Aを示す。そして、ラッチ回路64の出力は、DSP3に出力される。
【0046】
ロードパルス発生回路65は、DSP3からのロード信号(ライト)に応じて、ロードパルスを発生する。インバータ66は、DSP3からの目標トラック数を反転する。横断トラックカウンタ67は、ロードパルスに応じて、目標トラック数の反転信号(目標トラック数の補数)がロードされる。そして、横断トラックカウンタ67は、そのロード値からエッジパルスを計数する。
【0047】
データ保持用ラッチ回路68は、ラッチパルスに応じて、インターバルカウンタ62のカウント値をラッチする。このラッチ回路68の出力は、最新のゼロクロスから現在(ラッチパルス発生時)までのカウント値Bを示す。このラッチ回路68の出力は、DSP3に出力される。
データ保持用ラッチ回路69は、ラッチパルスに応じて、横断トラックカウンタ67のカウント値をラッチする。このラッチ回路69の出力は、残りトラック数Xrを示す。このラッチ回路68の出力は、DSP3に出力される。
【0048】
図4(A)、図4(B)、図4(C)はDSP3のファームウェア構成図、図5は図4(C)におけるシークコマンド処理フロー図、図6はそのシーク処理の説明図である。
【0049】
図4(A)に示すように、DSP3は、メモリを初期化して、アイドル状態となる。アイドル状態において、割り込みがあると、割り込み処理を実行する。
【0050】
サンプリング割り込みがあると、図4(B)に示すサンプリング割り込み処理を実行する。このサンプリング割り込み処理を説明する。
【0051】
(S1)先ず、DSP3は、図7にて後述するVCMの制御量を計算するVCM計算処理を実行する。
【0052】
(S2)次に、DSP3は、レンズポジションの制御量を計算するLPOS計算処理を実行する。例えば、レンズロック時には、第2のアナログ/デジタル変換器47からのレンズポジション信号LPOSをサンプルし、光学ヘッド2とレンズとの相対位置を得る。そして、レンズポジション信号LPOS信号により得られる位置誤差がゼロとなるような制御量を計算する。この制御量により、デジタル/アナログ変換器49及び駆動回路50を介してトラックアクチュエータ21を制御して、光学ヘッド2に対して、レンズ20が中心に位置するように制御する。
【0053】
(S3)次に、DSP3は、フォーカス位置の制御量を計算するフォーカス計算処理を実行する。
【0054】
(S4)更に、DSP3は、図8にて後述するトラックアクチュエータの制御量を計算するトラック計算処理を実行する。そして、終了する。
【0055】
又、ホストMPU5からの割り込みがあると、図4(C)に示すホストインターフェース割り込み処理を実行する。この割り込み処理においては、コマンドを解析して、コマンドを実行する。
【0056】
このコマンド実行において、シークコマンドの処理について、図5により説明する。
【0057】
(S10)DSP3は、シークコマンド及びシークのディファレンス、シークの方向を受けると、レンズ加速終了トラック位置LAEをセットする。LAEは、「0.3」トラックに予め決められている。
【0058】
(S11)次に、DSP3は、レンズ定速終了トラック位置LCEをセットする。LCEは、「4」トラックに予め決められている。
【0059】
(S12)DSP3は、ポジショナ2の加速終了位置PAEをX1にセットする。この値X1は、ディファレンスDIFが、6000トラック以上なら、「3000」トラックに設定する。一方、ディファレンスDIFが、6000トラックを越えないときは、〔DIF〕÷2を設定する。
【0060】
(S13)次に、DSP3は、ポジショナ2の定速終了位置PCEをX2にセットする。この値X2は、ディファレンスDIFが、6000トラック以上なら、(〔DIF〕−3000)トラックに設定する。一方、ディファレンスDIFが、6000トラックを越えないときは、X1を設定する。
【0061】
(S14)DSP3は、ポジショナ2の減速終了トラック位置PBEをX3にセットする。値X3は、(〔DIF〕−4)トラックである。
【0062】
(S15)DSP3は、レンズ定速終了位置LBSをX4にセットする。この値X4は、(〔DIF〕−0.3)トラックである。
【0063】
(S16)DSP3は、レンズ減速終了位置LBEをディファレンス〔DIF〕に設定する。
【0064】
(S17)最後に、DSP3は、シークステータス信号SKSTSを「1」(レンズ加速)にセットして、終了する。
【0065】
このシークコマンド処理により、目的トラックまでのシーク処理モードが決定される。図6に示すように、トラック「0」からトラックLAE(0.3)までは、レンズ加速期間である。このシークステータス信号SKSTSは、「1」である。
【0066】
トラックLAEからトラックLCE(4)までは、レンズ定速期間である。このシークステータス信号SKSTSは、「2」である。トラックLCEからトラックPAE(=X1)までは、ポジショナ加速期間である。このシークステータス信号SKSTSは、「3」である。
【0067】
トラックPAEからトラックPCE(=X2)までは、ポジショナ定速期間である。このシークステータス信号SKSTSは、「4」である。トラックPCEからトラックPBE(=X3)までは、ポジショナ減速期間である。このシークステータス信号SKSTSは、「5」である。
【0068】
トラックPBEからトラックLBS(=X4)までは、レンズ定速期間である。このシークステータス信号SKSTSは、「6」である。トラックLBSからトラックLBEまでは、レンズ減速期間である。このシークステータス信号SKSTSは、「7」である。尚、シークステータス信号SKSTSが「0」の時は、オントラック中のファイン制御を示す。
【0069】
これらのシークステータス信号SKSTSは、レジスタに格納される。このようにして、シークディファレンスに応じて、各加速、定速、減速期間を設定する。
【0070】
図7は図4(B)におけるVCM計算処理フロー図、図8は図4(B)におけるトラック計算処理フロー図、図9は図8におけるSKSTS判定処理フロー図、図10(A)乃至図13は図8における目標位置計算処理フロー図、図14は目標位置計算処理の説明図である。
【0071】
図7により、VCM計算処理について説明する。
【0072】
(S21)DSP3は、シークステータス信号SKSTSが「0」以外かを調べる。シークステータス信号SKSTSが「0」以外でないなら、即ち、シークステータス信号SKSTSが「0」なら、ファイン制御のため、ファイン制御を行う。即ち、トラックエラー信号TESをアナログ/デジタル変換器43からサンプルして、トラックセンターからの位置誤差を得る。そして、その位置誤差がゼロになるような制御量を演算して、トラックアクチュエータ21を制御する。
【0073】
(S22)逆に、シークステータス信号SKSTSが「0」以外なら、シーク処理中である。DSP3は、目標速度Vtを演算する。目標速度Vtは、〔前回のサンプリング割り込みでの目標位置〕−〔今回のサンプリング割り込みでの目標位置〕により得られる。これら目標位置は、図8のトラック計算処理により得られる。
【0074】
(S23)次に、DSP3は、現在速度Vpを演算する。現在速度Vpは、〔前回のサンプリング割り込みでの現在位置〕−〔今回のサンプリング割り込みでの現在位置〕により得られる。この現在位置は、図8のトラック計算処理により得られる。
【0075】
(S24)次に、DSP3は、下記式により、速度誤差ΔVを演算する。
【0076】
ΔV=Vt−Vp (1)
(S25)次に、DSP3は、速度誤差ΔVに対し、ローパスフィルタ(iiRフィルタ)計算を行い、制御量を求める。
【0077】
(S26)更に、DSP3は、VCMフィードフォワードフラグが、オン(「1」)の時に、得られた制御量にフィードフォワード量を加算する。このフィードフォワード量は、加速度量αである。ある。
【0078】
(S27)最後に、DSP3は、得られた制御量をVCMのデジタル/アナログ変換器(DAC)51に出力する。これにより、VCM計算処理を終了する。
【0079】
次に、図8乃至図14により、トラック計算処理について説明する。
【0080】
(S30)DSP3は、後述する図9の処理により、シークステータス信号SKSTSを判定する。シークステータス信号SKSTSが「0」であると、ファイン制御のため、前述の如く、オントラック制御を行う。
【0081】
(S31)DSP3は、シークステータス信号SKSTSが「0」でないと、それぞれのシークステータスに応じた目標位置を計算する。この目標位置の計算については、図10(A)乃至図13により後述する。
【0082】
(S32)次に、DSP3は、図15にて後述する現在位置の計算を行う。
【0083】
(S33)DSP3は、次に、位置誤差を計算する。図19にて後述するように、位置誤差POSERRは、〔目標位置〕−〔現在位置〕の演算により得られる。
【0084】
(S34)次に、DSP3は、PID(比例・積分・微分)計算を行う。
【0085】
(S35)更に、DSP3は、レンズフィードフォワードフラグがオン(「1」)の時に、得られた制御量にフィードフォワード量を加算する。このフィードフォワード量は、加速度量αである。
【0086】
(S36)最後に、DSP3は、得られた制御量をアクチュエータコイルのデジタル/アナログ変換器(DAC)49に出力する。これにより、トラック計算処理を終了する。
【0087】
図9に示すように、SKSTS判定処理は、図6で説明したように、シークステータス信号SKSTSにより、シークのステータスを判定する処理である。即ち、シークステータス信号SKSTSが「0」なら、ファイン制御である。シークステータス信号SKSTSが「1」なら、レンズ加速制御である。
【0088】
シークステータス信号SKSTSが「2」なら、レンズ定速制御である。シークステータス信号SKSTSが「3」なら、ポジショナ加速制御である。シークステータス信号SKSTSが「4」なら、ポシショナ定速制御である。シークステータス信号SKSTSが「5」なら、ポジショナ減速制御である。
【0089】
シークステータス信号SKSTSが「6」なら、レンズ定速制御である。シークステータス信号SKSTSが「7」なら、レンズ減速制御である。
【0090】
このように、シークステータスを判定し、図10(A)乃至図13のそれぞれの目標位置計算処理を行う。
【0091】
図10(A)により、レンズ加速における目標位置計算処理について説明する。
【0092】
(S40)DSP3は、目標位置TAGPOSを計算する。図14に示すように、加速、減速は、一定の加速度αを用いて行う。このため、加速における目標位置xは、レンズの加速度をα1とし、時間をtとすると、下記式で示される。
【0093】
x=α1・t2 /2 (2)
(S41)次に、DSP3は、目標位置TAGPOSが、レンズ加速終了位置LAEを越えたかを判定する。
【0094】
(S42)DSP3は、目標位置TAGPOSが、レンズ加速終了位置LAEを越えていると、レンズ加速期間を越えているため、シークステータス信号SKSTSを「2」(レンズ定速)に変える。
【0095】
(S43)そして、DSP3は、レンズフィードフォワードフラグを「0」(フィードフォワード加算無し)にして、終了する。
【0096】
(S44)一方、DSP3は、目標位置TAGPOSが、レンズ加速終了位置LAEを越えていないと、未だレンズ加速期間である。従って、DSP3は、レンズフィードフォワードフラグを「1」(フィードフォワード加算有り)にして、終了する。
【0097】
次に、図10(B)により、レンズ定速における目標位置計算処理について説明する。
【0098】
(S45)DSP3は、目標位置TAGPOSを計算する。図14に示したように、定速期間は、加速度がゼロの期間である。このため、定速における目標位置xは、加速度をα1とし、時間をt、加速終了時間をt1とすると、下記式で示される。
【0099】
x=α1・t2 /2+α1(t−t1) (3)
(S46)次に、DSP3は、目標位置TAGPOSが、レンズ定速終了位置LCEを越えたかを判定する。DSP3は、目標位置TAGPOSが、レンズ定速終了位置LCEを越えていないと、終了する。
【0100】
(S47)DSP3は、目標位置TAGPOSが、レンズ定速終了位置LCEを越えていると、レンズ定速期間を越えているため、シークステータス信号SKSTSを「3」(ポジショナ加速)に変える。そして、終了する。
【0101】
次に、図11(A)により、ポジショナ加速における目標位置計算処理について説明する。
【0102】
(S48)DSP3は、目標位置TAGPOSを計算する。図14に示すように、加速は、一定の加速度α2を用いて行う。このため、加速における目標位置xは、ポジショナの加速度をα2とし、時間をt、レンズ加速の終了時間をt2とし、レンズ加速の終了位置をx2とし、レンズ加速の終了位置での速度をv2とすると、下記式で示される。
【0103】
x=α2・(t−t2)2 /2+x2+v2(t−t2) (4)
(S49)次に、DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEを越えたかを判定する。
【0104】
(S50)DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEを越えていると、ポジショナ加速期間を越えているため、シークステータス信号SKSTSを「4」(ポジショナ定速)に変える。
【0105】
(S51)そして、DSP3は、VCMフィードフォワードフラグを「0」(フィードフォワード加算無し)にして、終了する。
【0106】
(S52)一方、DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEを越えていないと、未だポジショナ加速期間である。従って、DSP3は、VCMフィードフォワードフラグを「1」(フィードフォワード加算有り)にして、終了する。
【0107】
次に、図11(B)により、ポジショナ定速における目標位置計算処理について説明する。
【0108】
(S53)DSP3は、目標位置TAGPOSを計算する。図14に示したように、定速期間は、加速度がゼロの期間である。このため、定速における目標位置xは、加速度をα1とし、時間をt、ポジショナの加速終了時間をt3、ポジショナの加速終了位置をx3、ポジショナの加速終了時の速度をv3とすると、下記式で示される。
【0109】
x=x3+v3(t−t3) (5)
(S54)次に、DSP3は、目標位置TAGPOSが、ポジショナ定速終了位置PCEを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ定速終了位置PCEを越えていないと、終了する。
【0110】
(S55)DSP3は、目標位置TAGPOSが、ポジショナ定速終了位置PCEを越えていると、ポジショナ定速期間を越えているため、シークステータス信号SKSTSを「5」(ポジショナ減速)に変える。そして、終了する。
【0111】
次に、図12(A)により、ポジショナ減速における目標位置計算処理について説明する。
【0112】
(S56)DSP3は、目標位置TAGPOSを計算する。図14に示すように、減速は、一定の減速度α2を用いて行う。このため、減速における目標位置xは、ポジショナの加速度をα2とし、時間をt、ポジショナ加速の終了時間をt4とし、ポジショナ加速の終了位置をx4とし、ポジショナ加速の終了位置での速度をv4とすると、下記式で示される。
【0113】
x=−α2・(t−t4)2 /2+x4+v4(t−t4) (6)
(S57)次に、DSP3は、目標位置TAGPOSが、ポジショナ減速終了位置PBEを越えたかを判定する。
【0114】
(S58)DSP3は、目標位置TAGPOSが、ポジショナ減速終了位置PBEを越えていると、ポジショナ減速期間を越えているため、シークステータス信号SKSTSを「6」(レンズ定速)に変える。
【0115】
(S59)そして、DSP3は、VCMフィードフォワードフラグを「0」(フィードフォワード加算無し)にして、終了する。
【0116】
(S60)一方、DSP3は、目標位置TAGPOSが、ポジショナ減速終了位置PBEを越えていないと、未だポジショナ減速期間である。従って、DSP3は、VCMフィードフォワードフラグを「1」(フィードフォワード加算有り)にして、終了する。
【0117】
次に、図12(B)により、レンズ定速における目標位置計算処理について説明する。
【0118】
(S61)DSP3は、目標位置TAGPOSを計算する。図14に示したように、定速期間は、加速度がゼロの期間である。このため、定速における目標位置xは、時間をt、ポジショナの減速終了時間をt5、ポジショナの減速終了位置をx5、ポジショナの減速終了時の速度をv5とすると、下記式で示される。
【0119】
x=x5+v5(t−t5) (7)
(S62)次に、DSP3は、目標位置TAGPOSが、レンズ定速終了位置LBSを越えたかを判定する。DSP3は、目標位置TAGPOSが、レンズ定速終了位置LBSを越えていないと、終了する。
【0120】
(S63)DSP3は、目標位置TAGPOSが、レンズ定速終了位置LBSを越えていると、レンズ定速期間を越えているため、シークステータス信号SKSTSを「7」(レンズ減速)に変える。そして、終了する。
【0121】
次に、図13により、レンズ減速における目標位置計算処理について説明する。
【0122】
(S64)DSP3は、目標位置TAGPOSを計算する。図14に示すように、減速は、一定の減速度−α1を用いて行う。このため、減速における目標位置xは、レンズの加速度をα1とし、時間をt、レンズ定速の終了時間をt6とし、レンズ定速の終了位置をx6とし、レンズ定速の終了位置での速度をv6とすると、下記式で示される。
【0123】
x=−α1・(t−t6)2 /2+x6+v6(t−t6) (8)
(S65)次に、DSP3は、目標位置TAGPOSが、レンズ減速終了位置LBEを越えたかを判定する。
【0124】
(S66)DSP3は、目標位置TAGPOSが、レンズ減速終了位置LBEを越えていると、レンズ減速期間を越えているため、シークステータス信号SKSTSを「0」(ファイン制御)に変える。
【0125】
(S67)そして、DSP3は、VCMフィードフォワードフラグを「0」(フィードフォワード加算無し)にして、終了する。
【0126】
(S68)一方、DSP3は、目標位置TAGPOSが、レンズ減速終了位置LBEを越えていないと、未だレンズ減速期間である。従って、DSP3は、VCMフィードフォワードフラグを「1」(フィードフォワード加算有り)にして、終了する。
【0127】
このようにして、各シークステータスでの目標位置を計算する。
【0128】
次に、図8における現在位置計算ステップについて説明する。
【0129】
図15は図8における現在位置計算処理フロー図、図16は図15におけるアナログ値からの計算処理フロー図、図17及び図18は現在位置計算の説明図である。
【0130】
図15により現在位置計算処理について説明する。
【0131】
(S70)DSP3は、シークステータス信号SKSTSが「3」(ポジショナ加速)、「4」(ポジショナ定速)、「5」(ポジショナ減速)かを判定する。
【0132】
(S71)DSP3は、シークステータス信号SKSTSが「3」、「4」、「5」であると、ポジショナ制御期間のため、光ビームの速度が速いと判定する。このため、トラックエラー信号の振幅が小さい。従って、1トラック中の位置を、トラックカウンタ回路45の値により求める。
【0133】
図3に示したように、DSP3は、ラッチ回路64から最新のゼロクロスインターバルAと、ラッチ回路68から最新のゼロクロスから現在までのカウント数Bを得る。最新のゼロクロスインターバルAと、最新のゼロクロスから現在までのカウント数Bとは、図17に示すような関係にある。そして、1トラック中の位置をB/Aにより求める。
【0134】
(S72)一方、DSP3は、シークステータス信号SKSTSが「3」、「4」、「5」でない「1」、「2」、「6」、「7」であると、レンズ制御期間のため、光ビームの速度が遅いと判定する。このため、トラックエラー信号TESの振幅は十分大きい。従って、1トラック中の位置を、トラックエラー信号TESのアナログ値から求める。
【0135】
DSP3は、第1のアナログ/デジタル変換器43からトラックエラー信号TESのデジタル値をサンプルする。次に、DSP3は、図16に示すように、1トラック中の位置を前記サンプル値から計算する。
【0136】
(S73)このようにして、1トラック中の位置が求まると、DSP3は、現在位置を算出する。このため、DSP3は、ラッチ回路69の残りトラック数Xrを得る。そして、図17に示すように、シーク距離(ディファレンス)Dから残りトラック数Xrを差し引き、横断トラック数を求める。これに、1トラック中の位置を加算して、現在位置を計算する。これにより、現在位置計算処理を終了する。
【0137】
このようにして、光ビームの速度が速い時は、トラックエラー信号の振幅が小さいため、トラックゼロクロス信号TZCによるデジタル値から現在位置を計算する。一方、光ビームの速度が遅い時は、トラックエラー信号の振幅が大きいため、トラックエラー信号TESのアナログ値から現在位置を計算する。これにより、光ビームの速度にかかわらず、正確な現在位置を求めることができる。
【0138】
次に、図16及び図18により、図15におけるステップS72のアナログ値から計算する処理について、説明する。この実施例は、正弦波のトラックエラー信号TESに対し、第1のアナログ/デジタル変換器43の分解能をフルに使用するものである。
【0139】
(S74)DSP3は、正規化するため、サンプルしたトラックエラー信号TESのデジタル値ADCTESに定数Cを掛けて、デジタル値ADCTESとする。
【0140】
(S75)DSP3は、前述の図10(A)乃至図13で計算した目標位置の端数が、0.25トラックを越えていないかを判定する。DSP3は、目標位置の端数が、0.25トラックを越えていないと判定すると、1トラック中の位置ADCPOSを、そのデジタル値ADCTESにセットする。そして、終了する。
【0141】
(S76)DSP3は、目標位置の端数が、0.25トラックを越えていると判定すると、目標位置の端数が、0.75トラックを越えているかを判定する。DSP3は、目標位置の端数が、0.75トラックを越えていると判定すると、1トラック中の位置ADCPOSを、そのデジタル値ADCTESにセットする。そして、終了する。
【0142】
(S77)DSP3は、目標位置の端数が、0.25トラック以上であり、0.75トラック以下と判定すると、デジタル値ADCTESの符号を反転して、−ADCTESとする。
【0143】
(S78)DSP3は、目標位置の端数が、0.5を越えているかを判定する。DSP3は、目標位置の端数が、0.5を越えていると判定すると、1トラック中の位置ADCPOSは、(デジタル値ADCTES−0.5トラック)として算出する。そして、終了する。
【0144】
(S79)DSP3は、目標位置の端数が、0.5トラック以下と判定すると、1トラック中の位置ADCPOSは、(デジタル値ADCTES+0.5トラック)として算出する。そして、終了する。
【0145】
この動作を、図18により説明する。目標位置の端数が、0.25トラックを越えない範囲か、0.75トラックを越える範囲ということは、目標位置の端数が±0.25トラックの範囲内にあるということである。図18に示すように、この範囲では、トラックエラー信号TESのデジタル変換値を利用できる。
【0146】
一方、1トラック内の目標位置が、±0.25トラックの範囲外では、図示のように、トラックエラー信号のデジタル値の符号を反転する。そして、目標位置の端数が、0.5トラックを越える時は(即ち、1トラック内の目標位置が、−0.25トラックから−0.5トラックの間は)、トラックエラー信号ADCTESに、0.5トラック分の値を減算する。
【0147】
一方、目標位置の端数が、0.5トラックを越えない時は(即ち、1トラック内の目標位置が、0.25トラックから0.5トラックの間は)、トラックエラー信号ADCTESに、0.5トラック分の値を加算する。
【0148】
このようにすることにより、1トラック内の位置が、±0.25トラックの範囲外では、図の矢印のように、信号の極性を変えて、シフトした形となる。このため、正弦波のトラックエラー信号に対し、アナログ/デジタル変換器の分解能をフルに利用して、デジタル値への変換ができる。
【0149】
このように、トラックエラー信号TESは、正弦波のため、図18に示したように、ピーク近傍の丸まった部分(図のXの範囲内)では、正確な位置を検出できない。この正確に位置を検出できない部分で、フィードバック制御をかけると、制御が不安定になる。このため、この部分では、制御量をゼロとする。
【0150】
図19は、このための位置誤差計算処理フロー図である。
【0151】
(S80)DSP3は、目標位置TAGPOSの端数が、(0.25−X)を越えていないかを判定する。ここで、Xは前述したピーク近傍の丸まった区間の長さを指し、0.25トラックを越えない範囲である。DSP3は、目標位置TAGPOSの端数が、(0.25−X)を越えていないと判定すると、位置誤差POSERRを(目標位置TAGPOS−現在位置ADCPOS)として算出する。
【0152】
(S81)DSP3は、目標位置TAGPOSの端数が、(0.25−X)を越えていると判定すると、目標位置TAGPOSの端数が、(0.25+X)を越えていないかを判定する。目標位置TAGPOSの端数が、(0.25+X)を越えていないと、目標位置の端数は、(0.25−X)から(0.25+X)の範囲内にあるため、位置誤差POSERRをゼロにする。
【0153】
(S82)DSP3は、目標位置TAGPOSの端数が、(0.25+X)を越えていると判定すると、目標位置TAGPOSの端数が、(0.75−X)を越えていないかを判定する。DSP3は、目標位置TAGPOSの端数が、(0.75−X)を越えていないと判定すると、位置誤差POSERRを(目標位置TAGPOS−現在位置ADCPOS)として算出する。
【0154】
(S83)DSP3は、目標位置TAGPOSの端数が、(0.75−X)を越えていると判定すると、目標位置TAGPOSの端数が、(0.75+X)を越えていないかを判定する。目標位置TAGPOSの端数が、(0.75+X)を越えていないと、目標位置の端数は、(0.75−X)から(0.75+X)の範囲内にあるため、位置誤差POSERRをゼロにする。
【0155】
(S84)DSP3は、目標位置TAGPOSの端数が、(0.75+X)を越えていると判定すると、位置誤差POSERRを(目標位置TAGPOS−現在位置ADCPOS)として算出する。そして、終了する。
【0156】
このようにして、図18に示すように、トラックエラー信号TESのピーク付近の丸まった部分の区間においては、位置誤差をゼロとして算出することにより、制御量をゼロにして、制御の不安定さを防止する。
【0157】
次に、同様の目的を達成するため、制御出力をゼロにする方法について、変形例として説明する。
【0158】
図20は、位置誤差計算の変形例処理フロー図、図21はアクチュエータDAC出力の処理フロー図である。
【0159】
(S85)先ず、DSP3は、位置誤差POSERRを(目標位置TAGPOS−現在位置ADCPOS)として算出する。
【0160】
(S86)DSP3は、目標位置TAGPOSの端数が、(0.25−X)を越えていないかを判定する。DSP3は、目標位置TAGPOSの端数が、(0.25−X)を越えていないと判定すると、ゲインGAINを「1」に設定して、終了する。
【0161】
(S87)DSP3は、目標位置TAGPOSの端数が、(0.25−X)を越えていると判定すると、目標位置TAGPOSの端数が、(0.25+X)を越えていないかを判定する。目標位置TAGPOSの端数が、(0.25+X)を越えていないと、目標位置の端数は、(0.25−X)から(0.25+X)の範囲内にあるため、ゲインGAINを「0」に設定する。そして、終了する。
【0162】
(S88)DSP3は、目標位置TAGPOSの端数が、(0.25+X)を越えていると判定すると、目標位置TAGPOSの端数が、(0.75−X)を越えていないかを判定する。DSP3は、目標位置TAGPOSの端数が、(0.75−X)を越えていないと判定すると、ゲインGAINを「1」に設定する。そして、終了する。
【0163】
(S89)DSP3は、目標位置TAGPOSの端数が、(0.75−X)を越えていると判定すると、目標位置TAGPOSの端数が、(0.75+X)を越えていないかを判定する。目標位置TAGPOSの端数が、(0.75+X)を越えていないと、目標位置の端数は、(0.75−X)から(0.75+X)の範囲内にあるため、ゲインGAINを「0」に設定する。そして、終了する。
【0164】
(S90)DSP3は、目標位置TAGPOSの端数が、(0.75+X)を越えていると判定すると、ゲインGAINを「1」に設定する。そして、終了する。
【0165】
一方、図21に示す出力処理(図8のステップS36)においては、アクチュエータDAC出力を、図8のステップS35で計算した計算結果に、前述のゲインGAINを乗じる。さらに、オフセット値を加算して、出力を計算する。そして、この結果を、アクチュエータのデジタル/アナログ変換器49に出力する(書き込む)。
【0166】
このようにして、図18に示すように、トラックエラー信号TESのピーク付近の丸まった部分の区間Xにおいては、ゲインをゼロとして算出することにより、制御量をゼロにして、制御の不安定さを防止する。
【0167】
次に、図8に示すPID計算処理について、説明する。
【0168】
図22は、図8におけるPID計算処理フロー図、図23はPID計算処理の説明図である。
【0169】
シーク中は、サンプリング間隔での移動量が大きく、位置誤差も大きい。このため、シーク中の位置誤差を、オントラック中(ファイン制御中)と同じ誤差で制御しようとすると、シーク中は、入力ゲインを下げる必要がある。入力ゲインを下げると、図23に示すような、PIDのフィルタ特性が、入力ゲインの低下分だけ周波数シフトした形となる。
【0170】
この結果、位相余裕が減少し、トラック飛び込み時の安定性が低下する。そこで、この実施例では、シーク中は、ゲインの減少を見込んで、位相余裕が十分得られるような補償系のパラメータを用いて、PID計算するものである。
【0171】
(S91)ファイン制御中の今回のサンプリング時の積分項ioPE1を、今回の位置誤差PE1と、ファイン制御中の前回のサンプリング時の積分項ioPE0と、積分定数Cioから下記式により、求める。
【0172】
ioPE1=PE1+ioPE0×Cio
同様に、シーク制御中の今回のサンプリング時の積分項isPE1を、今回の位置誤差PE1と、シーク制御中の前回のサンプリング時の積分項isPE0と、積分定数Cisから下記式により、求める。
【0173】
isPE1=PE1+isPE0×Cis
(S92)次に、ファイン制御中の前回のサンプリング時の積分項ioPE0を、求めた今回の積分項ioPE1で更新する。同様に、シーク制御中の前回のサンプリング時の積分項isPE0を、求めた今回の積分項isPE1で更新する。
【0174】
(S93)次に、位置誤差の微分dPE1を、今回の位置誤差PE1と前回の位置誤差PE0とから、下記式により得る。
【0175】
dPE1=PE1−PE0
(S94)ファイン制御中の今回のサンプリング時の微分項dioPE1を、今回の位置誤差の微分dPE1と、ファイン制御中の前回のサンプリング時の微分項dioPE0と、微分定数Cdoから下記式により、求める。
【0176】
dioPE1=dPE1+dioPE0×Cdo
同様に、シーク制御中の今回のサンプリング時の微分項disPE1を、今回の位置誤差の微分dPE1と、シーク制御中の前回のサンプリング時の微分項disPE0と、微分定数Cdsから下記式により、求める。
【0177】
disPE1=dPE1+disPE0×Cds
(S95)次に、ファイン制御中の前回のサンプリング時の微分項dioPE0を、求めた今回の微分項dioPE1で更新する。同様に、シーク制御中の前回のサンプリング時の微分項disPE0を、求めた今回の微分項disPE1で更新する。更に、前回の位置誤差PE0を、今回の位置誤差PE1に更新する。
【0178】
(S96)次に、シークステータス信号SKSTSが「0」以外かを判定する。シークステータス信号SKSTSが「0」なら、ファイン制御中(オントラック中)のため、各々ゲインをGpo、Gio、Gdoとして、下記式により、PID値PIDを求める。
【0179】
PID=Gpo・PE1+Gio・ioPE1+Gdo・dioPE1
又、シークステータス信号SKSTSが「0」でないなら、シーク制御中のため、各々ゲインをGps、Gis、Gdsとして、下記式により、PID値PIDを求める。
【0180】
PID=Gps・PE1+Gis・isPE1+Gds・disPE1
このようにして、シーク中とオントラック中において、ローパスフィルタ特性のカットオフ周波数を決める積分定数と、ハイパスフィルタ特性のカットオフ周波数を決める微分定数を変化している。
【0181】
このため、シーク中においても、位相余裕が得られる。これにより、トラックへの飛び込み時の安定性が増加する。
【0182】
次に、図7で説明した現在速度の演算の変形例を説明する。
【0183】
図24は、図7の現在速度の計算処理の変形例フロー図である。
【0184】
シーク制御において、トラックカウンタ45から得られる速度信号は、ポジショナ2の実速度以外にも、ポジショナ2と対物レンズ20の相対速度を含んでいる。このため、得られた速度信号から相対速度を差し引く必要がある。
【0185】
ポジショナ2と対物レンズ20の相対速度に相当する信号は、レンズポジション信号LPOSの微分値である。従って、速度信号からこれを差し引き、ポジショナの実速度を求める。
【0186】
即ち、図24に示すように、現在位置を獲得する。そして、現在速度Vpは、現在位置Xp1 と、1サンプル前の現在位置Xp0 と、微分されたレンズポジション信号dLと、正規化ゲインGhとにより、以下の式により得る。
【0187】
Vp=Xp1 −Xp0 −dL・Gh
このようにすると、トラックカウンタ45から得た信号からポジショナ2と対物レンズ20の相対速度を除いたポジショナの実速度が得られる。この微分されたレンズポジション信号dLは、図4(B)に示したLPOS計算処理(ステップS3)により計算されている。このため、この計算結果を流用することにより、容易に実現できる。
【0188】
次に、フィードフォワード制御について、説明する。フィードフォワード制御は、制御の遅れを防止する手法として有効である。図7及び図8に示したように、シークの際のフィードフォワード値は、シークのモードに応じて、トラックアクチュエータ及びポジショナのそれぞれに与えられる。
【0189】
そのフィードフォワード値は、トラックアクチュエータの場合には、目標位置加算に使用される加速度α1に応じた値であり、ポジショナの場合には、目標速度計算に使用される加速度α2に応じた値である。
【0190】
フィードフォワード値を大きくすれば、大きな加速量が得られるため、目標位置への到達時間も速くなる。しかし、それだけシーク中の制御も難しくなる。トラックアクチュエータ、ポジショナのそれぞれの加速性能は、駆動回路の飽和電流以下では、駆動電流に比例しているため、フィードフォワード値は、加速度値に応じた値とすることが望ましい。
【0191】
一方、ポジショナを駆動するVCM23は、大きなトルクを必要とする。このため、VCM23のコイルは、大きなインダクタンス成分を持っている。これにより、それだけ電流の立ち上がりが遅い。そこで、この実施例では、ポジショナにフィードフォワードを与えるタイミングを、その加速度変化が生じるタイミングより速めに制御して、遅れを防止している。
【0192】
図25は、そのためのシークコマンド処理の変形例フロー図、図26(A)乃至図27(B)はその目標位置計算処理の変形例フロー図、図28はそのフィードフォワード制御の説明図である。
【0193】
図25の処理は、図5で説明した処理の後に、追加して実行される。
【0194】
(S100)DSP3は、ポジショナ加速開始位置PASFを、(レンズ定速終了位置LCE−0.5トラック)に設定する。即ち、従来のポジショナ加速開始位置は、レンズ定速終了位置LCEであったものを、それより0.5トラック前に設定している。
【0195】
(S101)DSP3は、ポジショナ加速終了位置PAEFを、(ポジショナ加速終了位置PAE−10トラック)に設定する。即ち、従来のポジショナ加速終了位置(即ち、ポジショナ定速開始位置)が、PAEであったものを、それより10トラック前に設定している。
【0196】
(S102)DSP3は、ポジショナ減速開始位置PBSFを、(ポジショナ定速終了位置PCE−10トラック)に設定する。即ち、従来のポジショナ減速開始位置に対し、ポジショナ減速開始位置を10トラック前に設定している。
【0197】
(S103)DSP3は、ポジショナ減速終了位置PBEFを、(ポジショナ減速終了位置PBE−0.5トラック)に設定する。即ち、従来のポジショナ減速終了位置に対し、ポジショナ減速終了位置を0.5トラック前に設定している。
【0198】
このような各位置PASF、PAEF、PBSF、PBEFを図示すると、図28に示すようになる。
【0199】
一方、これに対する目標位置の計算処理は、図10(B)に示したレンズ定速処理が、図26(A)に変わり、図11(A)に示したポジショナ加速処理が、図26(B)に変わり、図11(B)に示したポジショナ定速処理が、図27(A)に変わり、図12(A)に示したポジショナ減速処理が、図27(B)に変わったものである。
【0200】
先ず、図26(A)のレンズ定速における目標位置計算処理について、説明する。
【0201】
(S104)DSP3は、目標位置TAGPOSを計算する。定速における目標位置xは、加速度をα1とし、時間をt、加速終了時間をt1として、前述の(3)式により、計算する。
【0202】
(S105)次に、DSP3は、目標位置TAGPOSが、ポジショナ加速開始位置PASFを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ加速開始位置PASFを越えていると判定すると、フィードフォワード開始位置に到達したため、VCMフィードフォワードフラグをオン(「1」)に設定する。逆に、DSP3は、目標位置TAGPOSが、ポジショナ加速開始位置PASFを越えていないと判定すると、未だフィードフォワード開始位置に到達していないため、VCMフィードフォワードフラグをオフ(「0」)とする。
【0203】
(S106)次に、DSP3は、目標位置TAGPOSが、レンズ定速終了位置LCEを越えたかを判定する。DSP3は、目標位置TAGPOSが、レンズ定速終了位置LCEを越えていないと、終了する。一方、DSP3は、目標位置TAGPOSが、レンズ定速終了位置LCEを越えていると、レンズ定速期間を越えているため、シークステータス信号SKSTSを「3」(ポジショナ加速)に変える。そして、終了する。
【0204】
次に、図26(B)により、ポジショナ加速における目標位置計算処理について説明する。
【0205】
(S107)DSP3は、前述の第(4)式により、目標位置TAGPOSを計算する。
【0206】
(S108)次に、DSP3は、目標位置TAGPOSが、フィードフォワード用ポジショナ加速終了位置PAEFを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEFを越えていると判定すると、フィードフォワード終了位置に到達したため、VCMフィードフォワードフラグをオフ(「0」)に設定する。逆に、DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEFを越えていないと判定すると、未だフィードフォワード終了位置に到達していないため、VCMフィードフォワードフラグをオン(「1」)とする。
【0207】
(S109)次に、DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEを越えていると、ポジショナ加速期間を越えているため、シークステータス信号SKSTSを「4」(ポジショナ定速)に変える。一方、DSP3は、目標位置TAGPOSが、ポジショナ加速終了位置PAEを越えていないと、未だポジショナ加速期間である。従って、終了する。
【0208】
次に、図27(A)により、ポジショナ定速における目標位置計算処理について説明する。
【0209】
(S110)DSP3は、前述の第(5)式により、目標位置TAGPOSを計算する。
【0210】
(S111)次に、DSP3は、目標位置TAGPOSが、ポジショナ減速開始位置PBSFを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ減速開始位置PBSFを越えていると、フィードフォワードの減速期間に入るため、VCMフィードフォワードフラグをオン(「1」)にする。逆に、DSP3は、目標位置TAGPOSが、ポジショナ減速開始位置PCEを越えていないと、VCMフィードフォワードフラグをオフ(「0」)にする。
【0211】
(S112)次に、DSP3は、目標位置TAGPOSが、ポジショナ定速終了位置PCEを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ定速終了位置PCEを越えていないと、終了する。一方、DSP3は、目標位置TAGPOSが、ポジショナ定速終了位置PCEを越えていると、ポジショナ定速期間を越えているため、シークステータス信号SKSTSを「5」(ポジショナ減速)に変える。そして、終了する。
【0212】
次に、図27(B)により、ポジショナ減速における目標位置計算処理について説明する。
【0213】
(S113)DSP3は、前述の(6)式により目標位置TAGPOSを計算する。
【0214】
(S114)次に、DSP3は、目標位置TAGPOSが、フィードフォワード用ポジショナ減速終了位置PBEFを越えたかを判定する。DSP3は、目標位置TAGPOSが、フィードフォワード用ポジショナ減速終了位置PBEFを越えたと判定すると、フィードフォワードの減速制御期間を終了したため、VCMフィードフォワードフラグをオフ(「0」)に設定する。逆に、DSP3は、目標位置TAGPOSが、フィードフォワード用ポジショナ減速終了位置PBEFを越えてないと判定すると、フィードフォワードの減速制御期間を終了してないため、VCMフィードフォワードフラグをオン(「1」)に設定する。
【0215】
(S115)次に、DSP3は、目標位置TAGPOSが、ポジショナ減速終了位置PBEを越えたかを判定する。DSP3は、目標位置TAGPOSが、ポジショナ減速終了位置PBEを越えていると、ポジショナ減速期間を越えているため、シークステータス信号SKSTSを「6」(レンズ定速)に変える。一方、DSP3は、目標位置TAGPOSが、ポジショナ減速終了位置PBEを越えていないと、未だポジショナ減速期間である。従って、終了する。
【0216】
このようにして、図28に示すように、ポジショナ2の加減速が開始する前に、フィードフォワードを開始することにより、ポジショナ2の動作の遅れを最小とすることができる。これにより、高速のポジショナの移動動作が可能となる。
【0217】
又、予めフィードフォワードの開始、終了位置を、光ビームの位置により、計算するため、目標位置での計算処理が高速に実行できる。
【0218】
上述の実施例の他に、本発明では、次の変形が可能である。
【0219】
▲1▼シークステータス信号から光ビームの速度状態を判定して、現在位置の算出方法を変えているが、目標速度又は現在速度から光ビームの速度を判定して、現在位置の算出方法を変えても良い。
【0220】
▲2▼光ディスクとしては、書き込み可能な光ディスク、書換え可能な光ディスク等種々のものを用いることができる。
【0221】
以上、本発明を実施例により説明したが、本発明の主旨の範囲内で種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0222】
【発明の効果】
以上説明したように、本発明によれば、次の効果を奏する。
【0223】
目標速度の変化前にフィードフォワード量を付加するため、高速シークを可能とする。
【図面の簡単な説明】
【図1】本発明の一実施例ブロック図である。
【図2】図1の構成のゼロクロスコンパレータの回路図である。
【図3】図1の構成のトラックカウンタ回路の回路図である。
【図4】図1の構成のDSPのファームウェア構成図である。
【図5】図4におけるシークコマンド処理フロー図である。
【図6】図5のシーク処理の説明図である。
【図7】図4におけるVCM計算処理フロー図である。
【図8】図4におけるトラック計算処理フロー図である。
【図9】図8におけるSKSTS判定処理フロー図である。
【図10】図8における目標位置計算処理フロー図(その1)である。
【図11】図8における目標位置計算処理フロー図(その2)である。
【図12】図8における目標位置計算処理フロー図(その3)である。
【図13】図8における目標位置計算処理フロー図(その4)である。
【図14】図10乃至図13の目標位置計算処理の説明図である。
【図15】図8における現在位置計算処理フロー図である。
【図16】図15におけるアナログ値からの計算処理フロー図である。
【図17】図15の現在位置計算処理の説明図(その1)である。
【図18】図15の現在位置計算処理の説明図(その2)である。
【図19】図8における位置誤差計算処理フロー図である。
【図20】図8における位置誤差計算の変形例処理フロー図である。
【図21】図8におけるアクチュエータDAC出力処理フロー図である。
【図22】図8におけるPID計算処理フロー図である。
【図23】図22のPID計算処理の説明図である。
【図24】図7における現在速度計算処理フロー図である。
【図25】図5におけるシークコマンド処理の変形例フロー図である。
【図26】図8における目標位置計算処理の変形例フロー図(その1)である。
【図27】図8における目標位置計算処理の変形例フロー図(その2)である。
【図28】図25乃至図27の実施例におけるフィードフォワード制御の説明図である。
【符号の説明】
1 光ディスク(光学記憶媒体)
2 ポジショナ
3 DSP
5 ホストMPU
20 対物レンズ
21 トラックアクチュエータ
23 VCM
43 アナログ/デジタル変換器
44 ゼロクロスコンパレータ
45 トラックカウンタ回路

Claims (2)

  1. 光ビームを光学記憶媒体のあるトラックから目的トラックにシーク動作するため、光ビーム移動機構をシーク制御するための光学記憶装置のシーク制御方法において、
    前記あるトラックから前記目的トラックまでの距離に応じた目標速度特性である加速、定速、減速期間を算出するステップと、
    サンプリング割り込み毎に、前記目標速度特性に従い、目標位置を計算するステップと、
    前記サンプリング割り込み毎に、前記光ビームの前記トラックとの相対位置を示すトラックエラー信号から現在位置を検出するステップと、
    前記サンプリング割り込み毎に、前記目標位置と前記現在位置との誤差がゼロになるようなフィードバック制御量を算出するステップと、
    前記目標位置へ到達する目標速度特性に従う目標速度の変化が生じる前に、フィードフォワード量を生成し、前記フィードバック制御量と加算して、前記光ビーム移動機構を制御するステップとを有し、
    前記フィードバック制御量を算出するステップは、
    直前のサンプリング割り込みの目標位置から今回のサンプリング割り込みの目標位置との差から得た目標速度と、直前のサンプリング割り込みの現在位置から今回のサンプリング割り込みの現在位置との差から得た現在速度との速度誤差により、前記フィードバック制御量を算出するステップを有する
    ことを特徴とする光学記憶装置のシーク制御方法。
  2. 光ビームを光学記憶媒体のあるトラックから目的トラックにシーク動作する光学記憶装置において、
    前記光学記憶媒体を読み取る光学ヘッドと、
    前記光学ヘッドの光ビームを移動する光ビーム移動機構と、
    前記光ビーム移動機構をシーク制御する制御部とを有し、
    前記制御部は、前記あるトラックから前記目的トラックまでの距離に応じた目標速度特性である加速、定速、減速期間を算出し、
    サンプリング割り込み毎に、前記目標速度特性に従い、目標位置を計算し、
    前記サンプリング割り込み毎に、前記光ビームの前記トラックとの相対位置を示すトラックエラー信号から現在位置を検出し、
    直前のサンプリング割り込みの目標位置から今回のサンプリング割り込みの目標位置との差から得た目標速度と、直前のサンプリング割り込みの現在位置から今回のサンプリング割り込みの現在位置との差から得た現在速度との速度誤差により、前記目標位置と前記現在位置との誤差がゼロになるようなフィードバック制御量を算出し、
    前記目標位置へ到達する目標速度特性に従う目標速度の変化が生じる前に、フィードフォワード量を生成し、前記フィードバック制御量と加算して、前記光ビーム移動機構を制御する
    ことを特徴とする光学記憶装置。
JP2003096048A 2003-03-31 2003-03-31 光学記憶装置のシーク制御方法及び光学記憶装置 Expired - Lifetime JP3717490B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096048A JP3717490B2 (ja) 2003-03-31 2003-03-31 光学記憶装置のシーク制御方法及び光学記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096048A JP3717490B2 (ja) 2003-03-31 2003-03-31 光学記憶装置のシーク制御方法及び光学記憶装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06028095A Division JP3539785B2 (ja) 1995-03-20 1995-03-20 光学記憶装置のシーク制御方法及び光学記憶装置

Publications (2)

Publication Number Publication Date
JP2003296949A JP2003296949A (ja) 2003-10-17
JP3717490B2 true JP3717490B2 (ja) 2005-11-16

Family

ID=29398208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096048A Expired - Lifetime JP3717490B2 (ja) 2003-03-31 2003-03-31 光学記憶装置のシーク制御方法及び光学記憶装置

Country Status (1)

Country Link
JP (1) JP3717490B2 (ja)

Also Published As

Publication number Publication date
JP2003296949A (ja) 2003-10-17

Similar Documents

Publication Publication Date Title
JP2682748B2 (ja) 光記録媒体のトラック横断信号作成回路
JP3967870B2 (ja) 光ディスク駆動装置におけるサーボ制御装置
EP0734016B1 (en) Seek control method in optical storage device
US5457671A (en) Method and circuit for correcting track zero crossing signal in optical track
KR950001873B1 (ko) 광디스크 고속탐색 제어장치 및 방법
WO1997036291A1 (fr) Appareil optique d'enregistrement et de reproduction
US5566148A (en) Optical disk tracking system for searching a target track based on a table of compensation reference velocity
JP3749235B2 (ja) 光学記憶装置のシーク制御方法及び光学記憶装置
JP3717490B2 (ja) 光学記憶装置のシーク制御方法及び光学記憶装置
JPH087960B2 (ja) ディスクプレーヤのサーボ装置
KR20030005380A (ko) 디스크드라이브장치와 정보독출방법
JP3539785B2 (ja) 光学記憶装置のシーク制御方法及び光学記憶装置
KR930003191B1 (ko) 콤팩트 디스크 플레이어의 트래킹 안정장치
JP2880374B2 (ja) 光ディスク装置のフォーカス制御装置
JP3067529B2 (ja) 光ディスク装置
JP4158734B2 (ja) 光ディスク装置のシーク制御方法及び光ディスク装置
JPH09167357A (ja) 光学式記録再生装置におけるトラックジャンプ制御装置
JPH0536099A (ja) 情報記録再生装置
JP3361662B2 (ja) 光学記憶装置のシーク制御方法及び光学記憶装置
JPH09167358A (ja) 光学式記録再生装置におけるトラックジャンプ制御装置
JPH0743832B2 (ja) トラツキング制御装置
JPH0778884B2 (ja) 光学ディスク駆動装置及び光学ディスクのトラック数のカウント方法
JP2002092914A (ja) 光ディスクドライブ装置のサーボ自動調整方法
JP2532266B2 (ja) フィ―ドバック制御装置
JP2000113474A (ja) トラックジャンプ制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

EXPY Cancellation because of completion of term