JP3716885B2 - Photocatalyst and method for producing the same - Google Patents

Photocatalyst and method for producing the same Download PDF

Info

Publication number
JP3716885B2
JP3716885B2 JP24730996A JP24730996A JP3716885B2 JP 3716885 B2 JP3716885 B2 JP 3716885B2 JP 24730996 A JP24730996 A JP 24730996A JP 24730996 A JP24730996 A JP 24730996A JP 3716885 B2 JP3716885 B2 JP 3716885B2
Authority
JP
Japan
Prior art keywords
photocatalyst
film
metal
substrate
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24730996A
Other languages
Japanese (ja)
Other versions
JPH1071337A (en
Inventor
智子 野口
雅人 吉川
信子 加藤
壽夫 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP24730996A priority Critical patent/JP3716885B2/en
Publication of JPH1071337A publication Critical patent/JPH1071337A/en
Application granted granted Critical
Publication of JP3716885B2 publication Critical patent/JP3716885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水浄化、空気浄化、消臭、油分の分解等に有効に用いられる光触媒体及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、TiO2,ZnO,WO3,Fe23,SrTiO3等の金属酸化物が光触媒として水浄化、空気浄化、消臭、油分の分解などに広く使用されている。このような光触媒は、通常粉末状で用いられている。この粉末状の光触媒を固定化するためには、例えば粉末にバインダーとして樹脂やゴムなどを混ぜて練り、それを基材に塗って数百℃で焼結させるバインダー固定法がある。また、光触媒を基材に膜状に密着させる方法として金属アルコキシド溶液を用いてゲルコーティング膜を作成し、それを数百℃で加熱するゾル−ゲル法で得た金属酸化物膜を光触媒に用いることも知られている。しかし、バインダー固定法もゾル−ゲル法も、上述したように金属酸化物膜の作成時に高温で加熱するため、耐熱性の基材しか用いることができない。一方、スパッタリング法により得られる金属酸化物膜を光触媒膜として用いれば、基材の種類を選ばないで光触媒膜がコーティングされた光触媒体を得ることができるが、この場合であっても、例えば有機物質の基材を用いると、基材と光触媒膜が直接接触するために、基材自身が光触媒作用を受けて劣化する可能性が生じる。
【0003】
本発明は上記事情に鑑みなされたもので、担持する基材の種類を選ばず、取扱性及び耐久性に優れるのみならず、触媒効率も良好な光触媒体及びその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、基材が例えばプラスチックや繊維等の有機物質からなるものであっても、基材上に成膜される光触媒膜を、その基材と接する部分は金属又はほとんど金属酸化物が含まれない金属と金属酸化物とが混合したものであって、その表面に近づくにつれて酸素原子数が多くなる(金属の酸化度が高くなる乃至は酸化物割合が多くなる)傾斜膜とすれば、光触媒活性の高い金属酸化膜が基材とほとんど接触しないので、基材自身が光触媒作用を受けて劣化することが防止でき、一方、光触媒体の表面は光触媒活性の高い金属酸化物の割合が高いので、光触媒体としての光触媒作用が何ら損なわれないことを知見すると共に、スパッタリング法やイオンプレーティング法において酸素分子を含有するガスを導入して得られる金属酸化物を光触媒膜として基材上に成膜する間に、導入する酸素ガス量を経時的に制御することにより、膜中の金属酸化度を容易に調節できるので、上記のような光触媒体が好適に製造されることを見出し、本発明をなすに至った。
【0005】
従って、本発明は
(1)基材上に光触媒膜が形成された光触媒体であって、光触媒膜が、金属とその金属の酸化物とからなると共に、光触媒膜の基材側から表面側に向かうに従い酸素原子数が漸次増加するように形成された傾斜膜であることを特徴とする光触媒体、
(2)基材上に金属の酸化物からなる光触媒膜を形成する光触媒体の製造方法において、酸素分子を有するガスを光触媒膜を形成する雰囲気下に導入して金属を酸化させて成膜する間に、上記雰囲気下における酸素分子の割合が経時的に増加するように酸素分子を有するガスを導入することを特徴とする上記(1)の光触媒体の製造方法、
(3)光触媒膜をリアクティブスパッタリング法により形成する上記(2)の光触媒体の製造方法
を提供する。
【0006】
以下、本発明につき図面を参照して更に詳しく説明する。
図1は、本発明の光触媒体の構成を説明する光触媒体1の断面概略図である。この光触媒体1は、基材2上に光触媒膜3を形成したものである。ここで、基材2としては、その材質や形状は特に限定されず、通常光触媒体の基材として用いられているものであればいずれのものでもよく、例えばポリメチルメタクリレート、ポリカーボネート、シリコーン、ポリスチレン等のプラスチック材、ポリエステル系,ポリアミド系,ポリビニルアルコール系などの合成繊維、天然繊維、半合成繊維等からなる織布又は不織布などの有機系材料やガラス、石英、セラミックス、シリカ等の無機質材料及びアルミ、ステンレス等の金属材料などの無機系材料を使用することができるが、本発明の場合、これらの中でも、特に金属酸化物による光触媒作用を受けて劣化しやすいプラスチック及び繊維等の有機系材料(有機物質)からなる基材である場合に特に効果的である。
【0007】
光触媒膜3としては、Ti,Zn,W,Fe,SrTi等の金属とこれらの金属の酸化物であるTiO2,ZnO,WO3,Fe23,SrTiO3等とこれらより酸化度が低い金属の酸化物が混在する金属酸化物とからなり、光触媒膜3における酸素原子数の割合(金属の酸化度の割合或いは金属酸化物の割合)がその厚さ方向において基材側3aから表面側3bへと増加したものが用いられる。ここで、光触媒膜の厚さは特に制限されるものではなく、光触媒体の用途等により種々選定することできる。また、光触媒膜3における金属と金属酸化物の割合は、酸素原子数が基材側3aから表面側3bに向けて、その厚さ方向に漸次増加するように形成されていることが必要であり、基材の劣化防止効果及び光触媒体の触媒効率を鑑みれば、光触媒膜3の基材側3aは金属のみからなり、表面側3bは光触媒活性の高い金属酸化物のみからなることが望ましい。なお、厚さ方向における金属酸化物の増加割合は必ずしも一定である必要はない。
【0008】
このような光触媒膜3は、基材2上に金属の酸化物からなる光触媒膜を形成する光触媒体の製造方法、例えば減圧下で加熱された蒸発源から蒸発した金属原子を部分的にイオン化して基材上に蒸着させる際に、減圧空間に酸素分子を含むガスを導入することによって金属の酸化物を蒸着させるイオンプレーティング法や酸素分子を含むガスを含有する不活性ガス中で金属ターゲットを用いてリアクティブスパッタリングを行うリアクティブスパッタリング法等の方法において、酸素分子を有するガスを光触媒膜を形成する雰囲気下に導入して金属を酸化する際に、上記雰囲気下における酸素分子の割合が経時的に増加するように酸素分子を有するガスを導入することによって、金属を酸化する度合を制御しながら漸次増加させていくことができるが、これらの方法の中でも、成膜時に基材の耐熱性が問題にならず、基材の材質を広く選択することができることを鑑みれば、特にリアクティブスパッタリング法が好適に採用される。
【0009】
リアクティブスパッタリング法により本発明の光触媒体を製造する場合、不活性ガス中に含まれる酸素分子量を制御することにより、金属/金属酸化物の傾斜膜が得られる。ここで用いられる金属ターゲットとしては、所望する金属酸化物MeOx(MeはFe,Ti,W,SrTi,Zn等の金属を示し、xは金属の種類によって異なるが、0〜10、好ましくは0〜5の範囲の正数であり、xは必ずしも金属の価数に相当していなくともよい)に対応した金属であり、この場合、特には光触媒として優れたTiO2,ZnO,WO3,Fe23,SrTiO3等に対応した金属である。また、本発明においては、酸素分子を有するガス(酸化性ガス)を含有する不活性ガスの存在下で、酸化性ガス量を増加させながら上記金属ターゲットより金属をスパッタさせ、所望の基材上にこのスパッタされた金属と金属酸化物とからなる金属酸化物傾斜膜を形成するものであるが、上記酸化性ガスとしては、酸素、オゾン、空気、水等が挙げられ、通常は酸素が用いられる。一方、スパッタリング用の不活性ガスとしては、ヘリウム、アルゴン等が用いられ、特に工業的に安価なアルゴンが好ましい。なお、上記不活性ガスと酸化性ガスとの流量比(容量比)は、スパッタリング開始時から終了時にかけて酸化性ガスの割合が漸次増加するように適宜選定されるが、スパッタリング開始時に酸化性ガスを供給しなければ、上述したように基材に直接触れる光触媒膜の部分が光触媒活性のない金属となるので好適であり、具体的には、不活性ガス:酸化性ガス=100:0〜100:1000の範囲内において適宜、酸化性ガスの割合を増加していくことが好ましい。
【0010】
本発明において、スパッタリング装置、リアクティブスパッタリング装置、スパッタリング圧力等のスパッタリング条件などは特に制限されず、公知の装置、条件を採用することができる。例えば、DCマグネトロンスパッタリング、対向スパッタリングなどの装置を用いることができ、またスパッタリング時の圧力は高真空下から大気圧下とすることができるが、通常1mTorr〜1Torrの真空下で行われる。
【0011】
本発明の光触媒体は、公知の光触媒体と同様にして使用することができ、例えばこの光触媒体の表面に光を照射することによって表面に形成された光触媒膜が励起し、殺菌、脱臭等の作用を発揮するもので、水浄化、空気浄化、消臭、油分の分解などに用いることができるものである。この場合、基材が有機物質からなるものであっても、この基材は金属酸化物傾斜膜の金属又は大部分が金属である側と接しており、光触媒活性の高い金属酸化物にはほとんど直接触れないため、光触媒体として光触媒活性を損なうことなく、基材の劣化を防止することができ、長時間使用することができる。
【0012】
【発明の効果】
本発明の光触媒体は、基材を劣化させることなく長時間使用することが可能なものであり、本発明の製造方法によれば、この光触媒体を好適に製造することができる。
【0013】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0014】
〔実施例,比較例〕
4×5(cm2)のポリエステル不織布を基材として使用し、この基材に対し、対向スパッタリング法(ターゲット Ti)で、酸化用ガスとして酸素0〜5ml/分を図2に示す流量となるようにアルゴンガス5ml/分とともにスパッタ装置内に流し、ガス圧5mTorr、ターゲット投入パワー1.2kWで基材表面全体に60分成膜を行って、基材側がTiのみであり、表面側がTiO2のみである5000ÅのTi/TiO2からなる金属酸化物傾斜膜(光触媒膜)を形成して実施例の光触媒体を得た。一方、実施例において、酸素の流量を一定(5ml/分)とした以外は実施例と同様にして基材表面全体にTiO2からなる3000Åの金属酸化物膜(光触媒膜)を形成して比較例の光触媒体を得た。
【0015】
これらの光触媒体について、サンシャインウェザーメーターに500時間暴露する前後の光触媒体の質量を測定し、その質量の変化を調べた。結果を表1に示す。
【0016】
【表1】

Figure 0003716885
表1によれば、本発明の光触媒体は光暴露による基材の劣化を防止することが認められる。
【図面の簡単な説明】
【図1】本発明の構成を説明する断面図である。
【図2】本発明の実施例における酸素導入量の変化を示す酸素ガス流量−成膜時間のグラフである。
【符号の説明】
1 光触媒体
2 基材
3 光触媒膜
3a 基材側
3b 表面側[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst that is effectively used for water purification, air purification, deodorization, oil decomposition, and the like, and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, metal oxides such as TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and SrTiO 3 have been widely used as photocatalysts for water purification, air purification, deodorization, oil decomposition, and the like. Such a photocatalyst is usually used in powder form. In order to immobilize this powdery photocatalyst, for example, there is a binder immobilization method in which a powder is mixed with a resin or rubber as a binder, kneaded, applied to a base material, and sintered at several hundred degrees Celsius. In addition, as a method for closely attaching the photocatalyst to the substrate, a metal coating film is prepared using a metal alkoxide solution, and a metal oxide film obtained by a sol-gel method in which the gel coating film is heated at several hundred degrees Celsius is used as the photocatalyst. It is also known. However, since both the binder fixing method and the sol-gel method are heated at a high temperature when forming the metal oxide film as described above, only a heat-resistant substrate can be used. On the other hand, if a metal oxide film obtained by a sputtering method is used as a photocatalyst film, a photocatalyst body coated with the photocatalyst film can be obtained regardless of the type of the base material. When the base material is used, the base material and the photocatalyst film are in direct contact with each other, so that the base material itself may be deteriorated due to photocatalytic action.
[0003]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a photocatalyst having good catalytic efficiency and a method for producing the photocatalyst that is excellent not only in handling property and durability, but also in the kind of the substrate to be supported. And
[0004]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive investigations to achieve the above object, the present inventors have obtained a photocatalytic film formed on a substrate, even if the substrate is made of an organic substance such as plastic or fiber. The portion in contact with the base material is a mixture of metal or metal oxide containing almost no metal oxide, and the number of oxygen atoms increases as it approaches the surface (the degree of oxidation of the metal increases) If the gradient film is used, the metal oxide film having a high photocatalytic activity hardly comes into contact with the base material, so that the base material itself can be prevented from being deteriorated by the photocatalytic action. Since the surface of the body has a high proportion of metal oxides with high photocatalytic activity, it has been found that the photocatalytic activity as a photocatalyst is not impaired at all, and oxygen molecules in sputtering and ion plating methods. While the metal oxide obtained by introducing the contained gas is deposited on the substrate as a photocatalyst film, the amount of oxygen gas introduced is controlled over time to easily adjust the metal oxidation degree in the film. Therefore, the present inventors have found that the above photocatalyst is preferably produced, and have made the present invention.
[0005]
Therefore, the present invention is (1) a photocatalyst having a photocatalyst film formed on a base material, the photocatalyst film comprising a metal and an oxide of the metal, and from the base material side to the surface side of the photocatalyst film. A photocatalyst that is an inclined film formed so that the number of oxygen atoms gradually increases toward
(2) In a method for producing a photocatalyst that forms a photocatalyst film made of a metal oxide on a substrate, a gas having oxygen molecules is introduced into the atmosphere for forming the photocatalyst film to oxidize the metal to form a film. The method for producing a photocatalyst according to the above (1), wherein a gas having oxygen molecules is introduced so that the ratio of oxygen molecules in the atmosphere increases over time,
(3) The method for producing a photocatalyst body according to (2) above, wherein the photocatalytic film is formed by a reactive sputtering method.
[0006]
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a photocatalyst body 1 illustrating the configuration of the photocatalyst body of the present invention. This photocatalyst body 1 is obtained by forming a photocatalyst film 3 on a substrate 2. Here, the material and shape of the substrate 2 are not particularly limited, and any material can be used as long as it is usually used as a substrate of a photocatalyst, for example, polymethyl methacrylate, polycarbonate, silicone, polystyrene. Such as plastic materials, polyester-based, polyamide-based, polyvinyl alcohol-based synthetic fibers, organic materials such as woven fabrics and non-woven fabrics made of natural fibers, semi-synthetic fibers, etc., and inorganic materials such as glass, quartz, ceramics, silica, etc. Inorganic materials such as metal materials such as aluminum and stainless steel can be used. In the present invention, among these, organic materials such as plastics and fibers that are particularly susceptible to deterioration due to photocatalysis by metal oxides. This is particularly effective when the substrate is made of (organic substance).
[0007]
The photocatalyst film 3 has a lower degree of oxidation than metals such as Ti, Zn, W, Fe, and SrTi, and oxides of these metals such as TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and SrTiO 3. It consists of a metal oxide in which a metal oxide is mixed, and the ratio of the number of oxygen atoms in the photocatalytic film 3 (the ratio of the degree of oxidation of the metal or the ratio of the metal oxide) is from the substrate side 3a to the surface side in the thickness direction. The one increased to 3b is used. Here, the thickness of the photocatalyst film is not particularly limited, and various thicknesses can be selected depending on the use of the photocatalyst. Moreover, the ratio of the metal and the metal oxide in the photocatalyst film 3 needs to be formed so that the number of oxygen atoms gradually increases in the thickness direction from the substrate side 3a toward the surface side 3b. In view of the effect of preventing deterioration of the substrate and the catalytic efficiency of the photocatalyst body, it is desirable that the substrate side 3a of the photocatalyst film 3 is made of only metal and the surface side 3b is made of only metal oxide having high photocatalytic activity. Note that the increase rate of the metal oxide in the thickness direction is not necessarily constant.
[0008]
Such a photocatalyst film 3 is a method of manufacturing a photocatalyst that forms a photocatalyst film made of a metal oxide on a substrate 2, for example, ionizes metal atoms evaporated from an evaporation source heated under reduced pressure. The metal target in an inert gas containing an ion plating method in which a metal oxide is vapor-deposited by introducing a gas containing oxygen molecules into a reduced pressure space or a gas containing oxygen molecules when being deposited on a substrate. In a reactive sputtering method or the like in which reactive sputtering is performed using oxygen, when a gas having oxygen molecules is introduced into an atmosphere for forming a photocatalytic film to oxidize a metal, the ratio of oxygen molecules in the atmosphere is By introducing a gas with oxygen molecules so that it increases over time, it can be gradually increased while controlling the degree of metal oxidation. That is, among these methods, not to heat resistance of the substrate is a problem during the film formation, given that it is possible to widely select a material of the substrate, in particular reactive sputtering method is preferably employed.
[0009]
When the photocatalyst of the present invention is produced by the reactive sputtering method, a metal / metal oxide gradient film can be obtained by controlling the molecular weight of oxygen contained in the inert gas. As the metal target used here, a desired metal oxide MeO x (Me represents a metal such as Fe, Ti, W, SrTi, Zn, etc., and x varies depending on the type of metal, but 0 to 10, preferably 0. Is a positive number in the range of ˜5, and x does not necessarily correspond to the valence of the metal). In this case, TiO 2 , ZnO, WO 3 , Fe, which are particularly excellent as photocatalysts. It is a metal corresponding to 2 O 3 , SrTiO 3 and the like. In the present invention, a metal is sputtered from the metal target while increasing the amount of oxidizing gas in the presence of an inert gas containing oxygen molecule-containing gas (oxidizing gas). The metal oxide gradient film made of the sputtered metal and the metal oxide is formed on the substrate. Examples of the oxidizing gas include oxygen, ozone, air, and water. Usually, oxygen is used. It is done. On the other hand, as the inert gas for sputtering, helium, argon or the like is used, and industrially inexpensive argon is particularly preferable. The flow rate ratio (capacity ratio) between the inert gas and the oxidizing gas is appropriately selected so that the ratio of the oxidizing gas gradually increases from the start to the end of sputtering. If it is not supplied, the portion of the photocatalyst film that directly touches the substrate becomes a metal having no photocatalytic activity as described above, which is preferable. Specifically, inert gas: oxidizing gas = 100: 0 to 100 : It is preferable to increase the ratio of the oxidizing gas as appropriate within the range of 1000.
[0010]
In the present invention, sputtering conditions such as sputtering apparatus, reactive sputtering apparatus, and sputtering pressure are not particularly limited, and known apparatuses and conditions can be employed. For example, an apparatus such as DC magnetron sputtering or counter sputtering can be used, and the pressure during sputtering can be from high vacuum to atmospheric pressure, but it is usually performed under a vacuum of 1 mTorr to 1 Torr.
[0011]
The photocatalyst of the present invention can be used in the same manner as known photocatalysts. For example, the photocatalyst film formed on the surface of the photocatalyst is irradiated with light to excite and sterilize, deodorize, etc. It exerts its action and can be used for water purification, air purification, deodorization, oil decomposition, and the like. In this case, even if the base material is made of an organic substance, the base material is in contact with the metal or the side of the metal oxide gradient film that is mostly metal, and almost no metal oxide with high photocatalytic activity is used. Since it does not touch directly, deterioration of a base material can be prevented without impairing photocatalytic activity as a photocatalyst, and it can be used for a long time.
[0012]
【The invention's effect】
The photocatalyst of the present invention can be used for a long time without deteriorating the substrate, and according to the production method of the present invention, this photocatalyst can be suitably produced.
[0013]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0014]
[Examples and comparative examples]
A polyester nonwoven fabric of 4 × 5 (cm 2 ) is used as a base material, and the flow rate shown in FIG. 2 is 0 to 5 ml / min of oxygen as an oxidizing gas by an opposing sputtering method (target Ti). flowed into the sputtering apparatus together with the argon gas 5 ml / min as the gas pressure 5 mTorr, performs target input power 60 minutes deposition on the entire substrate surface at 1.2 kW, and a substrate side only Ti, the surface side of TiO 2 A metal oxide gradient film (photocatalyst film) made of only 5000 mm of Ti / TiO 2 was formed to obtain a photocatalyst of the example. On the other hand, in the example, a 3000-nm metal oxide film (photocatalyst film) made of TiO 2 was formed on the entire substrate surface in the same manner as in the example except that the flow rate of oxygen was constant (5 ml / min). An example photocatalyst was obtained.
[0015]
About these photocatalyst bodies, the mass of the photocatalyst body before and behind exposing to a sunshine weather meter for 500 hours was measured, and the change of the mass was investigated. The results are shown in Table 1.
[0016]
[Table 1]
Figure 0003716885
According to Table 1, it is recognized that the photocatalyst of the present invention prevents the deterioration of the substrate due to light exposure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of the present invention.
FIG. 2 is a graph of oxygen gas flow rate-film formation time showing changes in the amount of oxygen introduced in an example of the present invention.
[Explanation of symbols]
1 Photocatalyst body 2 Base material 3 Photocatalyst film 3a Base material side 3b Surface side

Claims (4)

基材上に光触媒膜が形成された光触媒体であって、光触媒膜が、金属とその金属の酸化物とからなると共に、光触媒膜の基材側から表面側に向かうに従い酸素原子数が漸次増加するように形成された傾斜膜であることを特徴とする光触媒体。A photocatalyst having a photocatalyst film formed on a substrate, the photocatalyst film is made of a metal and an oxide of the metal, and the number of oxygen atoms gradually increases from the substrate side to the surface side of the photocatalyst film. A photocatalyst that is an inclined film formed as described above. 基材が有機系材料からなる請求項1記載の光触媒体。The photocatalyst body according to claim 1, wherein the substrate is made of an organic material. 基材上に金属の酸化物からなる光触媒膜を形成する光触媒体の製造方法において、酸素分子を有するガスを光触媒膜を形成する雰囲気下に導入して金属を酸化させて成膜する間に、上記雰囲気下における酸素分子の割合が経時的に増加するように酸素分子を有するガスを導入することを特徴とする請求項1又は2記載の光触媒体の製造方法。In the method of manufacturing a photocatalyst for forming a photocatalyst film made of a metal oxide on a substrate, a gas having oxygen molecules is introduced into the atmosphere for forming the photocatalyst film to oxidize the metal and form a film. 3. The method for producing a photocatalyst according to claim 1, wherein a gas having oxygen molecules is introduced so that the proportion of oxygen molecules in the atmosphere increases with time. 光触媒膜をリアクティブスパッタリング法により形成する請求項3記載の光触媒体の製造方法。The method for producing a photocatalyst body according to claim 3, wherein the photocatalyst film is formed by a reactive sputtering method.
JP24730996A 1996-08-29 1996-08-29 Photocatalyst and method for producing the same Expired - Fee Related JP3716885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24730996A JP3716885B2 (en) 1996-08-29 1996-08-29 Photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24730996A JP3716885B2 (en) 1996-08-29 1996-08-29 Photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1071337A JPH1071337A (en) 1998-03-17
JP3716885B2 true JP3716885B2 (en) 2005-11-16

Family

ID=17161498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24730996A Expired - Fee Related JP3716885B2 (en) 1996-08-29 1996-08-29 Photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3716885B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496444B2 (en) * 2000-01-06 2010-07-07 和幸 田路 Photocatalyst, method for producing the same, and method for decomposing hydrogen sulfide using the photocatalyst
JP2002035600A (en) * 2000-07-28 2002-02-05 Toto Ltd Photocatalyst member and manufacturing method therefor
JP4620844B2 (en) * 2000-07-31 2011-01-26 新日本製鐵株式会社 Metal plate with photocatalytic activity
JP4620846B2 (en) * 2000-08-28 2011-01-26 新日本製鐵株式会社 Metal plate with photocatalytic activity
JP3607637B2 (en) * 2001-04-17 2005-01-05 株式会社不二機販 Photocatalyst coating composition and fluid purification and reduction method using the photocatalyst coating composition
JP5354569B2 (en) * 2008-09-05 2013-11-27 国立大学法人 千葉大学 Method for producing composite photocatalyst and composite photocatalyst produced thereby
JP2010116504A (en) * 2008-11-13 2010-05-27 Ube Nitto Kasei Co Ltd Highly transparent photocatalytic membrane and article including the same
JP5363073B2 (en) * 2008-11-13 2013-12-11 宇部日東化成株式会社 Glass window covering film
JP5588611B2 (en) * 2008-12-18 2014-09-10 アート金属工業株式会社 Radical-generating solid catalyst
JP5266073B2 (en) * 2009-01-20 2013-08-21 宇部日東化成株式会社 Glass window covering film

Also Published As

Publication number Publication date
JPH1071337A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
JP3716885B2 (en) Photocatalyst and method for producing the same
US6336998B1 (en) UV lamp device for air cleaning
US6074981A (en) Photocatalyst and process for the preparation thereof
JP5453281B2 (en) Hydrophilic film and member and structure using the same
JP5194427B2 (en) Photocatalytic tungsten oxide thin film
JP3781065B2 (en) Photocatalyst
JP2002253975A (en) Oxide photocatalytic material using organometallic compound and its application article
JP3781066B2 (en) photocatalyst
JP2000096212A (en) Photocatalyst film coated member and its production
RU2647839C2 (en) Photo-catalytic element for cleaning and disinfecting of air and water and the method of its manufacturing
JPH10278165A (en) Manufacture of laminate
EP0967008A2 (en) Film of titanium dioxide containing silicon dioxide and a method of forming the same
WO2021224358A1 (en) A filter and a method for manufacturing thereof
JP2001205105A (en) Photocatalytic thin film
JPH11130434A (en) Titanium dioxide film, photocatalyst film and its production
JPH10146530A (en) Titanium oxide based photocatalyst and its production and its production
JP3884104B2 (en) Photocatalyst and production method thereof
JP2001073116A (en) Production of thin film
JP3856535B2 (en) Method for producing photocatalyst body
JP2009066497A (en) Photocatalyst thin film of titanium oxide and its production method
JPH08309204A (en) Photocatalyst
JPH08309201A (en) Photocatalytic body
JP4620844B2 (en) Metal plate with photocatalytic activity
JP2004052147A (en) Deodorant/antimicrobial textile product or deodorant/antimicrobial textile processed product using apatite coating-type photocatalytic titanium oxide
JP2001062310A (en) Photocatalyst material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees