JPH10278165A - Manufacture of laminate - Google Patents

Manufacture of laminate

Info

Publication number
JPH10278165A
JPH10278165A JP9089657A JP8965797A JPH10278165A JP H10278165 A JPH10278165 A JP H10278165A JP 9089657 A JP9089657 A JP 9089657A JP 8965797 A JP8965797 A JP 8965797A JP H10278165 A JPH10278165 A JP H10278165A
Authority
JP
Japan
Prior art keywords
oxide
film
oxide film
substrate
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9089657A
Other languages
Japanese (ja)
Other versions
JP3518240B2 (en
Inventor
Susumu Suzuki
すすむ 鈴木
Satoshi Takeda
諭司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP08965797A priority Critical patent/JP3518240B2/en
Publication of JPH10278165A publication Critical patent/JPH10278165A/en
Application granted granted Critical
Publication of JP3518240B2 publication Critical patent/JP3518240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve antimarring properties and photocatalytic activity by forming an oxide coating composed mainly of a Ti oxide in such a manner that a crystal grain is mainly of an anatase type and work function at the time of measurement in an atmosphere and the gradient of the number of electrons generated at the time of ultraviolet emission for an ultraviolet energy are specified. SOLUTION: The growth of an anatase-type crystal grain is promoted by performing a specific operation and thereby, the adequate degree of oxidation of a Ti oxide coat is achieved. That is, a substrate is heated at temperatures higher than 100 deg.C to softening temperature of the substrate and the partial pressure of oxygen is set at a higher level than 4 m Torr as preferential conditions. Further, the Ti oxide coat is formed in such a manner that the gradient of the number of electrons generated by the emission of ultraviolet rays having an energy above a specified value in terms of 1 μm of quantity of light at a work function of 4.5-6.0 eV, for an ultraviolet energy is 8.5 or less. The specified value is about 5.8 eV. When the Ti oxide coat 2 is formed on a glass 11, an undercoat of alkali barrier between the glass 11 and the Ti oxide coat 2 is necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層体の製造方法に
関する。
[0001] The present invention relates to a method for producing a laminate.

【0002】[0002]

【従来の技術】窓ガラスには様々な物質の汚れが付く。
汚れは窓ガラスの透過性を落とし、居住空間の快適性を
減ずる。汚れの除去には多大な労力と費用を必要とする
ばかりでなく、高層ビルの窓ガラスの場合などでは危険
を伴う。カーボン等の有機物は窓ガラスの汚れの代表的
な物質であり、室外側の有機物の汚れは工場等からの煤
煙、車等からの排気ガスに由来し、室内側の有機物の汚
れは、たばこの煙、空調排気口からの煤、厨房からの油
蒸気、人の皮膚の油などに由来する。また室内側におい
ては、冷房または暖房の使用により昼夜で乾燥、結露を
繰り返すことが多く、そのため、窓ガラス表面にかびが
発生することもある。
2. Description of the Related Art Window glass is stained with various substances.
Dirt reduces the permeability of the window glass and reduces the comfort of the living space. Removal of dirt not only requires a great deal of labor and cost, but also involves dangers in the case of window glass of a high-rise building. Organic matter such as carbon is a representative substance of window glass dirt, organic dirt on the outdoor side is derived from soot from factories, exhaust gas from cars, etc., and organic dirt on the indoor side is tobacco. It is derived from smoke, soot from air-conditioning exhaust, oil vapor from kitchen, oil on human skin, etc. On the indoor side, drying and dew condensation are often repeated day and night due to the use of cooling or heating, so that mold may be generated on the surface of the window glass.

【0003】近年、チタニア(TiO2 )等の金属酸化
物半導体の光触媒性を利用し、これらの有機物の汚れを
分解する、または、かびの発生を防ぐという研究が注目
を浴びてきている。例えば、特開平6−198196、
特開平6−278241にはTiO2 と光触媒活性を向
上させる貴金属等を混合した例が述べられている。ま
た、特開平8−267646には基材に光触媒活性層を
形成して、親水化し、防汚性を付与する例が述べられて
いる。
[0003] In recent years, attention has been focused on the use of photocatalytic properties of metal oxide semiconductors such as titania (TiO 2 ) to decompose these organic contaminants or prevent the occurrence of mold. For example, JP-A-6-198196,
JP-A-6-278241 describes an example in which TiO 2 is mixed with a noble metal or the like for improving photocatalytic activity. Japanese Patent Application Laid-Open No. 8-267646 describes an example in which a photocatalytically active layer is formed on a substrate to make it hydrophilic and impart antifouling properties.

【0004】従来の検討では光触媒活性を示すTiO2
膜の形成方法として、TiO2 の微粒子を有機または無
機のバインダーにより固定したり、チタン有機金属溶液
からゾルゲル法で形成する等、ウェット法が主として検
討されてきた。この方法ではTiO2 の大きな光触媒活
性を引き出すことができるが、窓ガラスのような大面積
へのコートに対しては、膜厚の均一性を出すのが難し
く、また膜の耐擦傷性が不充分であった。また、原料で
あるコート液を一定の状態に保管するのに注意を必要と
した。
[0004] Conventional studies have shown that TiO 2 exhibiting photocatalytic activity can be used.
As a method for forming a film, a wet method has been mainly studied, such as fixing fine particles of TiO 2 with an organic or inorganic binder, or forming a sol-gel method from a titanium organic metal solution. Although this method can bring out the large photocatalytic activity of TiO 2 , it is difficult to achieve uniform film thickness for a large area coating such as a window glass, and the film has poor scratch resistance. It was enough. In addition, care must be taken to store the coating solution as a raw material in a constant state.

【0005】一方、従来より建築用、自動車用熱線反射
ガラスの製造で用いられているDCスパッタリング法は
大面積への均一なコーティングが容易で、かつ膜の基板
への密着性も優れている。また、スパッタリングターゲ
ットの保管には特別な注意を必要としない。しかしなが
ら、通常のスパッタリング法よるTiO2 膜は膜質がウ
ェット法による膜に比べて劣るため、充分な光触媒活性
は得られなかった。
On the other hand, the DC sputtering method conventionally used in the production of heat-reflective glass for architectural use and automobiles allows easy uniform coating on a large area and excellent adhesion of the film to the substrate. Further, no special care is required for storing the sputtering target. However, since the film quality of the TiO 2 film formed by the ordinary sputtering method is inferior to that of the film formed by the wet method, sufficient photocatalytic activity cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、耐擦傷性が
改善され、充分な光触媒活性を有する酸化物膜が形成さ
れた積層体の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a laminate in which an oxide film having improved scratch resistance and sufficient photocatalytic activity is formed.

【0007】[0007]

【課題を解決するための手段】本発明は、基体上に、T
iを主成分とする金属ターゲットから酸化性雰囲気で反
応性DCスパッタリング法によりTiの酸化物を主成分
とする酸化物膜を成膜してなる積層体の製造方法におい
て、該Tiの酸化物を主成分とする酸化物膜を、主とし
てアナターゼ型結晶の結晶粒を有し、かつ、大気中で測
定時の仕事関数が4.5〜6.0eVの範囲であり、光
量1μWで一定値以上のエネルギーの紫外線を当てたと
きに出てくる電子数の紫外線エネルギーに対する傾きが
8.5以下となるように形成することを特徴とする積層
体の製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a method for forming a substrate on a substrate.
In a method for manufacturing a laminated body formed by forming an oxide film mainly containing a Ti oxide by a reactive DC sputtering method in an oxidizing atmosphere from a metal target mainly containing i, The oxide film as a main component mainly has crystal grains of anatase type crystal, and has a work function in the range of 4.5 to 6.0 eV when measured in the atmosphere, and has a certain value or more at a light amount of 1 μW. Provided is a method for manufacturing a laminate, characterized in that the number of electrons emitted when ultraviolet light of energy is applied has a slope with respect to ultraviolet energy of 8.5 or less.

【0008】Tiを主成分とする酸化物膜(以下、単に
Ti酸化物膜という)をTiを主成分とする金属ターゲ
ットから基板無加熱で酸化性雰囲気で反応性DCスパッ
タリング法で形成する技術は現在非常にポピュラーであ
り、熱線反射ガラス等の製造にすでに用いられている。
しかし、この方法によるTiO2 膜はX線的にはアモル
ファスであり、ほとんど光触媒活性を示さない。光触媒
活性を得るためには、まず膜に光触媒活性の大きいアナ
ターゼ型の結晶粒を成長させなければならない。また、
Ti酸化物膜の酸化度も重要な因子である。Ti酸化物
膜が還元気味であると、バンド中に金属Ti等の準位が
できてバンドギャップが不鮮明になり、光触媒性能が低
下する傾向にある。
A technique for forming an oxide film containing Ti as a main component (hereinafter simply referred to as a Ti oxide film) from a metal target containing Ti as a main component by reactive DC sputtering in an oxidizing atmosphere without heating the substrate is known. It is now very popular and has already been used in the production of heat ray reflective glass and the like.
However, the TiO 2 film obtained by this method is amorphous in X-ray, and shows almost no photocatalytic activity. In order to obtain photocatalytic activity, first, anatase-type crystal grains having high photocatalytic activity must be grown on the film. Also,
The degree of oxidation of the Ti oxide film is also an important factor. If the Ti oxide film tends to be reduced, the level of metal Ti or the like is formed in the band, the band gap becomes unclear, and the photocatalytic performance tends to decrease.

【0009】Ti酸化物膜の酸化度は表面分析装置(理
研計器製AC−1)により大気中で測定したときの、
1)仕事関数と、および2)一定値以上のエネルギーの
紫外線を当てたときに出てくる電子数とにより評価でき
る。図1に紫外線エネルギー(eV)と膜から出てくる
光量1μWあたりの電子数(Y)との関係の模式図を示
す。紫外線の単位エネルギーに対する傾き(Y/eV)
を測定したデータの模式図を示す。膜の酸化度が高けれ
ば、出てくる電子量は少ないため、傾きは小さくなる。
本発明においては、仕事関数が4.5〜6.0eVの範
囲であり、光量1μWで一定値以上のエネルギーの紫外
線を当てたときに出てくる電子数の紫外線エネルギーに
対する傾きが8.5以下となるように形成することが重
要である。前記「一定値」はその測定条件にもよるが、
約5.8eVである。また、光量が0.35μWの場合
に換算すると、傾きは3.0以下となるように形成す
る。
The degree of oxidation of the Ti oxide film was measured by a surface analyzer (AC-1 manufactured by Riken Keiki) in the air.
It can be evaluated by 1) the work function and 2) the number of electrons emitted when ultraviolet light having energy equal to or higher than a certain value is applied. FIG. 1 is a schematic diagram showing the relationship between the ultraviolet energy (eV) and the number of electrons (Y) per 1 μW of light emitted from the film. Slope of UV against unit energy (Y / eV)
FIG. 1 shows a schematic diagram of data obtained by measuring the data. If the degree of oxidation of the film is high, the amount of emitted electrons is small, and the inclination becomes small.
In the present invention, the work function is in the range of 4.5 to 6.0 eV, and the slope of the number of electrons emitted when applying an ultraviolet ray having an energy of a certain value or more at a light amount of 1 μW to the ultraviolet energy is 8.5 or less. It is important to form such that The “constant value” depends on the measurement conditions,
It is about 5.8 eV. Further, when converted to a case where the light amount is 0.35 μW, the inclination is formed to be 3.0 or less.

【0010】本発明者らは種々の方法を検討した結果、
特定の操作を行うことによりアナターゼ型の結晶粒を成
長させ、かつ、Ti酸化物膜の酸化度を充分なものとす
ることができることを見い出した。
The present inventors have studied various methods, and as a result,
It has been found that by performing a specific operation, anatase-type crystal grains can be grown, and the degree of oxidation of the Ti oxide film can be made sufficient.

【0011】本発明においては、Ti酸化物膜を成膜中
に、基体を、100℃以上、基体の軟化温度以下の温度
に加熱し、かつ酸素分圧を4mTorr以上とすること
が好ましい。100℃より温度が低いと、アナターゼ型
結晶粒が充分に成長しない。また、実用上、基体として
ガラス基板を用いることが好ましく、したがって、前記
加熱温度の上限は650℃とすることが好ましい。65
0℃より高いと、ガラス基板が熱により軟化し、歪んで
しまう。特に、200〜650℃が好ましい。
In the present invention, it is preferable that the substrate is heated to a temperature of 100 ° C. or higher and lower than the softening temperature of the substrate during the formation of the Ti oxide film, and the oxygen partial pressure is set to 4 mTorr or higher. When the temperature is lower than 100 ° C., the anatase crystal grains do not grow sufficiently. Further, in practice, it is preferable to use a glass substrate as the base, and therefore, it is preferable that the upper limit of the heating temperature is 650 ° C. 65
If the temperature is higher than 0 ° C., the glass substrate is softened by heat and is distorted. Particularly, 200 to 650 ° C. is preferable.

【0012】基体加熱はアナターゼ型結晶粒の成長の点
で重要な操作であるが、その条件次第では光触媒活性が
充分でないこともある。酸素分圧を4mTorr以上と
することで、Ti酸化物膜の酸化度を充分なものとする
ことができる。
Heating the substrate is an important operation in growing anatase type crystal grains, but depending on the conditions, the photocatalytic activity may not be sufficient. By setting the oxygen partial pressure to 4 mTorr or more, the degree of oxidation of the Ti oxide film can be made sufficient.

【0013】また、本発明においては、Ti酸化物膜を
成膜後、基体を、100℃以上基体の軟化温度以下の温
度に加熱することも好ましい。該温度範囲が好ましい理
由は前記と同様の理由からであり、特に、200〜65
0℃が好ましい。成膜中に加熱し、さらに成膜後にも加
熱すれば、アナターゼ型結晶粒の成長はより完全なもの
となる。
In the present invention, it is also preferable that after forming the Ti oxide film, the substrate is heated to a temperature not lower than 100 ° C. and not higher than the softening temperature of the substrate. The reason why the temperature range is preferable is the same as the reason described above, and in particular, 200 to 65.
0 ° C. is preferred. If heating is performed during the film formation and further after the film formation, the growth of the anatase crystal grains will be more complete.

【0014】ガラスの上にTi酸化物膜を成膜する場合
には、ガラス中のナトリウムのTi酸化物膜への拡散を
防ぐため、ガラスとTi酸化物膜の間にアルカリバリア
のアンダーコートが必要である。通常Siの酸化物を主
成分とする膜が用いられる。Siの酸化物を主成分とす
る膜はどのような方法で成膜してもよい。図2に、本発
明により得られる積層体の一例の断面図を示す。1は、
アルカリバリアー膜、2は、Ti酸化物膜、11は、基
体を示す。
When a Ti oxide film is formed on glass, an undercoat of an alkali barrier is formed between the glass and the Ti oxide film to prevent sodium in the glass from diffusing into the Ti oxide film. is necessary. Usually, a film mainly containing an oxide of Si is used. The film containing Si oxide as a main component may be formed by any method. FIG. 2 shows a cross-sectional view of an example of the laminate obtained by the present invention. 1 is
An alkali barrier film, 2 is a Ti oxide film, and 11 is a base.

【0015】Siの酸化物を主成分とする膜の幾何学的
厚さは1〜100nmであることが好ましい。1nm未
満ではアルカリバリア性能が充分でなく、また100n
m超としてもアルカリバリア性能に差はなく、効率が悪
い。また、Tiの酸化物を主成分とする層の幾何学的厚
さは3〜500nmであることが好ましい。3nm未満
では光触媒活性が充分でなく、また500nm超として
も光触媒活性に差はなく、効率が悪い。
The geometric thickness of the film mainly composed of Si oxide is preferably 1 to 100 nm. If it is less than 1 nm, the alkali barrier performance is not sufficient, and
Even if it exceeds m, there is no difference in alkali barrier performance, and the efficiency is poor. The geometric thickness of the layer mainly composed of Ti oxide is preferably 3 to 500 nm. If it is less than 3 nm, the photocatalytic activity is not sufficient, and if it exceeds 500 nm, there is no difference in photocatalytic activity and the efficiency is poor.

【0016】本発明においては、ガラスとTi酸化物膜
の間に、金属酸化物、金属窒化物および金属炭化物から
なる群から選ばれる1種以上の機能性膜を形成すること
もできる。機能性膜はどのような方法で成膜してもよ
い。機能性膜がアルカリバリアの性質を有する場合には
アルカリバリアのアンダーコートは必要としない。
In the present invention, one or more functional films selected from the group consisting of metal oxides, metal nitrides and metal carbides can be formed between the glass and the Ti oxide film. The functional film may be formed by any method. When the functional film has an alkali barrier property, an alkali barrier undercoat is not required.

【0017】[0017]

【作用】本発明において、成膜中の基体加熱、または成
膜後の後加熱によりTi酸化物膜中にアナターゼ型結晶
粒が成長する。成膜中に酸素分圧を上げることによりT
i酸化物膜の酸化度は充分なものとなる。また、スパッ
タリング法を用いるため、膜の基体への密着性が強く、
膜の耐擦傷性が強い膜が得られる。
According to the present invention, anatase crystal grains grow in the Ti oxide film by heating the substrate during film formation or post-heating after film formation. By increasing the oxygen partial pressure during film formation, T
The oxidation degree of the i-oxide film becomes sufficient. In addition, since the sputtering method is used, the adhesion of the film to the substrate is strong,
A film having strong scratch resistance is obtained.

【0018】[0018]

【実施例】以下の例で例1〜5は本発明の実施例を、例
6〜11は比較例を示す。実施例および比較例において
用いた膜の成膜条件は表1に示すとおりである。これら
の膜の光触媒活性は次のようにして評価した。大きさ
4.5cm×5.0cm×2mmのサンプルを膜面を上
にしてのパイレックス製容器(容量3リットル)に入
れ、アセトアルデヒド蒸気を数百ppm入れた。次に容
器の外側からサンプルの膜面に6Wのブラックライト4
本で紫外光を当てた。一定時間おきに容器の中のアセト
アルデヒド濃度をガス検知管により測定し、アセトアル
デヒド濃度の減少速度を測定した。これらの膜の耐擦傷
性はテーバー試験(摩耗輪CS−10F、荷重500
g)によりテーバー100回転前後のヘーズ値変化ΔH
によって評価した。ΔHが5未満の場合を○、5以上の
場合を×とした。
EXAMPLES In the following examples, Examples 1 to 5 show examples of the present invention, and Examples 6 to 11 show comparative examples. The film forming conditions used in the examples and comparative examples are as shown in Table 1. The photocatalytic activity of these films was evaluated as follows. A sample having a size of 4.5 cm × 5.0 cm × 2 mm was placed in a Pyrex container (capacity: 3 liters) with the membrane surface facing upward, and several hundred ppm of acetaldehyde vapor was introduced. Next, a 6 W black light 4 was applied to the sample from the outside of the container.
The book was exposed to ultraviolet light. The acetaldehyde concentration in the container was measured at regular intervals using a gas detector tube, and the rate of decrease in the acetaldehyde concentration was measured. The abrasion resistance of these films was evaluated by the Taber test (wear wheel CS-10F, load 500).
g), the haze value change ΔH before and after 100 rotations of Taber
Was evaluated by. The case where ΔH was less than 5 was evaluated as ○, and the case where ΔH was 5 or more was evaluated as ×.

【0019】膜の酸化度は、表面分析装置(理研計器製
AC−1)により、仕事関数および電子数の紫外線エネ
ルギーに対する傾きを求めた。なお、傾きを求めたとき
の光量は0.35μWとした。結果は表2にまとめた。
表中の「濃度減少速度」は、アセトアルデヒド濃度減少
速度(ppm/時間)の意である。
The degree of oxidation of the film was determined by using a surface analyzer (AC-1 manufactured by Riken Keiki) to determine the slope of the work function and the number of electrons with respect to the ultraviolet energy. The amount of light when the inclination was obtained was 0.35 μW. The results are summarized in Table 2.
"Concentration reduction rate" in the table means the acetaldehyde concentration reduction rate (ppm / hour).

【0020】[例1]洗浄した厚さ2mmのフロートガ
ラス板をスパッタリング装置内にセットし、10-6To
rr台まで排気した。次に表1の条件で、SiO2
(幾何学的膜厚50nm)/Ti酸化物膜−1(200
nm)を成膜した。この膜は充分な光触媒活性を示し、
また実用上充分な耐擦傷性を示した。( )内の数字は
幾何学的膜厚であり、以下も同様である。表2における
( )内の数字は幾何学的膜厚(nm)である。また、
表2においては、Ti酸化物膜−1を単にTiO2 −1
と示し、以下も同様とする。
Example 1 A washed float glass plate having a thickness of 2 mm was set in a sputtering apparatus, and 10 -6 To
The air was exhausted to the rr level. Next, under the conditions shown in Table 1, the SiO 2 film (geometric thickness: 50 nm) / Ti oxide film-1 (200
nm). This film shows sufficient photocatalytic activity,
In addition, practically sufficient scratch resistance was exhibited. The numbers in parentheses are geometric film thicknesses, and the same applies to the following. The numbers in parentheses in Table 2 are the geometric film thickness (nm). Also,
In Table 2, simply TiO 2 -1 the Ti oxide film -1
And the same applies to the following.

【0021】[例2]例1と同様にして、SiO2
(50nm)/Ti酸化物膜−2(20nm)を成膜し
た。この膜は充分な光触媒活性を示し、また実用上充分
な耐擦傷性を示した。
Example 2 A SiO 2 film (50 nm) / Ti oxide film-2 (20 nm) was formed in the same manner as in Example 1. This film exhibited sufficient photocatalytic activity and also exhibited practically sufficient scratch resistance.

【0022】[例3]実施例1と同様にして、SiO2
膜(50nm)/Ti酸化物膜−3(200nm)を成
膜した。成膜後この膜を空気中で600℃、1時間熱処
理した。この膜は充分な光触媒活性を示し、また実用上
充分な耐擦傷性を示した。
Example 3 In the same manner as in Example 1, SiO 2
Film (50 nm) / Ti oxide film-3 (200 nm) was formed. After the film formation, the film was heat-treated in air at 600 ° C. for 1 hour. This film exhibited sufficient photocatalytic activity and also exhibited practically sufficient scratch resistance.

【0023】[例4]実施例1と同様にして、TiNx
膜(30nm)/Ti酸化物膜−1(200nm)を成
膜した。この膜は充分な光触媒活性を示し、また実用上
充分な耐擦傷性を示した。
Example 4 In the same manner as in Example 1, TiN x
Film (30 nm) / Ti oxide film-1 (200 nm) was formed. This film exhibited sufficient photocatalytic activity and also exhibited practically sufficient scratch resistance.

【0024】[例5]実施例1と同様にして、Ti酸化
物膜−3(50nm)/TiNx (10nm)/Ti酸
化物膜−3(20nm)/Ti酸化物膜−1(200n
m)を成膜した。この膜は充分な光触媒活性を示し、ま
た実用上充分な耐擦傷性を示した。
[0024] [Example 5] In the same manner as in Example 1, Ti oxide film -3 (50nm) / TiN x ( 10nm) / Ti oxide film -3 (20nm) / Ti oxide film -1 (200n
m) was formed. This film exhibited sufficient photocatalytic activity and also exhibited practically sufficient scratch resistance.

【0025】[例6]実施例1と同様にして、SiO2
膜(50nm)/Ti酸化物膜−2(200nm)を成
膜した。この膜は実用上充分な耐擦傷性を示したが、光
触媒活性は例1より劣ることが確認された。
Example 6 In the same manner as in Example 1, SiO 2
Film (50 nm) / Ti oxide film-2 (200 nm) was formed. Although this film showed practically sufficient scratch resistance, it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0026】[例7]実施例1と同様にして、SiO2
膜(50nm)/Ti酸化物膜−3(200nm)を成
膜した。この膜は実用上充分な耐擦傷性を示したが、光
触媒活性は例1より劣ることが確認された。
Example 7 As in Example 1, SiO 2
Film (50 nm) / Ti oxide film-3 (200 nm) was formed. Although this film showed practically sufficient scratch resistance, it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0027】[例8]実施例1と同様にして、SiO2
膜(50nm)/Ti酸化物膜−4(200nm)を成
膜した。この膜は実用上充分な耐擦傷性を示したが、光
触媒活性は例1より劣ることが確認された。
Example 8 In the same manner as in Example 1, SiO 2
Film (50 nm) / Ti oxide film-4 (200 nm) was formed. Although this film showed practically sufficient scratch resistance, it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0028】[例9]ゾルゲル法により、SiO2
(50nm)/Ti酸化物(200nm)を成膜した。
この膜は充分な光触媒活性を示したが、耐擦傷性は例1
より劣ることを確認した。
Example 9 A SiO 2 film (50 nm) / Ti oxide (200 nm) was formed by a sol-gel method.
Although this film exhibited sufficient photocatalytic activity, the scratch resistance was as shown in Example 1.
We confirmed that it was worse.

【0029】[例10]実施例1と同様にして、TiN
x (30nm)を成膜した。この膜は実用上充分な耐擦
傷性を示したが、光触媒活性は例1より劣ることが確認
された。
Example 10 In the same manner as in Example 1, TiN
x (30 nm) was deposited. Although this film showed practically sufficient scratch resistance, it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0030】[例11]実施例1と同様にして、Ti酸
化物膜−3(50nm)/TiNx (10nm)/Ti
酸化物膜−3(20nm)を成膜した。この膜は実用上
充分な耐擦傷性を示したが、光触媒活性は例1より劣る
ことが確認された。
Example 11 In the same manner as in Example 1, Ti oxide film-3 (50 nm) / TiN x (10 nm) / Ti
An oxide film-3 (20 nm) was formed. Although this film showed practically sufficient scratch resistance, it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明によれば、ウェット法によるチタ
ン酸化物膜と同等の光触媒活性を持ちながら、耐擦傷性
に優れている積層体を得ることができる。したがって特
に耐擦傷性向上のための施策を講ずることもなく、その
ままビル用の窓ガラスに使用できる。
According to the present invention, it is possible to obtain a laminate having excellent scratch resistance while having the same photocatalytic activity as a titanium oxide film formed by a wet method. Therefore, it can be used as it is for a building window glass without taking measures to improve the scratch resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】紫外線エネルギーと膜から出てくる電子数との
関係の模式図
FIG. 1 is a schematic diagram showing a relationship between ultraviolet energy and the number of electrons emitted from a film.

【図2】本発明により得られる積層体の一例の断面図FIG. 2 is a cross-sectional view of an example of a laminate obtained by the present invention.

【符号の説明】[Explanation of symbols]

1:アルカリバリアー膜 2:Ti酸化物膜 11:基体 1: Alkali barrier film 2: Ti oxide film 11: Base

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 14/34 C23C 14/34 M ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 14/34 C23C 14/34 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体上に、Tiを主成分とする金属ターゲ
ットから酸化性雰囲気で反応性DCスパッタリング法に
よりTiの酸化物を主成分とする酸化物膜を成膜してな
る積層体の製造方法において、該Tiの酸化物を主成分
とする酸化物膜を、主としてアナターゼ型結晶の結晶粒
を有し、かつ、大気中で測定時の仕事関数が4.5〜
6.0eVの範囲であり、光量1μWで一定値以上のエ
ネルギーの紫外線を当てたときに出てくる電子数の紫外
線エネルギーに対する傾きが8.5以下となるように形
成することを特徴とする積層体の製造方法。
1. Production of a laminate comprising a metal target containing Ti as a main component and an oxide film containing Ti oxide as a main component formed by a reactive DC sputtering method in an oxidizing atmosphere from a metal target containing Ti as a main component. In the method, the oxide film mainly composed of the Ti oxide has a work function of 4.5 to 4.5 mainly having anatase type crystal grains and having a work function of 4.5 in the atmosphere.
A layer having a range of 6.0 eV and having a light quantity of 1 μW and a gradient of the number of electrons emitted when the ultraviolet ray having an energy of a predetermined value or more is applied to the ultraviolet energy is 8.5 or less. How to make the body.
【請求項2】Tiの酸化物を主成分とする酸化物膜を成
膜中に、基体を、100℃以上、基体の軟化温度以下の
温度に加熱し、かつ酸素分圧を4mTorr以上とする
請求項1記載の積層体の製造方法。
2. The substrate is heated to a temperature of 100.degree. C. or higher and lower than the softening temperature of the substrate during the formation of the oxide film containing Ti oxide as a main component, and the oxygen partial pressure is set to 4 mTorr or higher. A method for manufacturing a laminate according to claim 1.
【請求項3】Tiの酸化物を主成分とする酸化物膜を成
膜後、基体を、100℃以上基体の軟化温度以下の温度
に加熱する請求項1または2記載の積層体の製造方法。
3. The method for producing a laminate according to claim 1, wherein the substrate is heated to a temperature not lower than 100 ° C. and not higher than the softening temperature of the substrate after forming an oxide film containing a Ti oxide as a main component. .
JP08965797A 1997-04-08 1997-04-08 Manufacturing method of laminate Expired - Fee Related JP3518240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08965797A JP3518240B2 (en) 1997-04-08 1997-04-08 Manufacturing method of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08965797A JP3518240B2 (en) 1997-04-08 1997-04-08 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JPH10278165A true JPH10278165A (en) 1998-10-20
JP3518240B2 JP3518240B2 (en) 2004-04-12

Family

ID=13976836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08965797A Expired - Fee Related JP3518240B2 (en) 1997-04-08 1997-04-08 Manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP3518240B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1068899A1 (en) * 1999-07-14 2001-01-17 Nippon Sheet Glass Co., Ltd. Multilayer structure and process for producing the same
FR2814094A1 (en) * 2000-09-20 2002-03-22 Saint Gobain Deposition of a titanium oxide layer on a vitreous surface to provide an antireflective coating for e.g. glass roofs
US6777091B2 (en) 2000-03-22 2004-08-17 Nippon Sheet Glass Co., Ltd. Substrate with photocatalytic film and method for producing the same
WO2004108283A1 (en) * 2003-06-09 2004-12-16 Nippon Sheet Glass Co., Ltd. Photocatalyst member
JP2007319731A (en) * 2006-05-30 2007-12-13 Ykk Ap株式会社 Photocatalytically active film-coated article
JP2008505841A (en) * 2004-07-12 2008-02-28 日本板硝子株式会社 Low maintenance coating
JP2008229419A (en) * 2007-03-16 2008-10-02 Bridgestone Corp Photocatalytic nitrogen-doped titanium oxide thin film and its depositing method
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
JP2013503812A (en) * 2009-09-08 2013-02-04 サン−ゴバン グラス フランス Material and glazing containing the material
JP2013505820A (en) * 2009-09-25 2013-02-21 エクス−マルセイユ ユニヴェルシテ Superporous photocatalytic material, method for producing the same, and use thereof
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1068899A1 (en) * 1999-07-14 2001-01-17 Nippon Sheet Glass Co., Ltd. Multilayer structure and process for producing the same
US6777091B2 (en) 2000-03-22 2004-08-17 Nippon Sheet Glass Co., Ltd. Substrate with photocatalytic film and method for producing the same
FR2814094A1 (en) * 2000-09-20 2002-03-22 Saint Gobain Deposition of a titanium oxide layer on a vitreous surface to provide an antireflective coating for e.g. glass roofs
JP2004510051A (en) * 2000-09-20 2004-04-02 サン−ゴバン グラス フランス Substrate with photocatalytic coating
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
WO2004108283A1 (en) * 2003-06-09 2004-12-16 Nippon Sheet Glass Co., Ltd. Photocatalyst member
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
JP2008505841A (en) * 2004-07-12 2008-02-28 日本板硝子株式会社 Low maintenance coating
JP2008505842A (en) * 2004-07-12 2008-02-28 日本板硝子株式会社 Low maintenance coating
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
JP2007319731A (en) * 2006-05-30 2007-12-13 Ykk Ap株式会社 Photocatalytically active film-coated article
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2008229419A (en) * 2007-03-16 2008-10-02 Bridgestone Corp Photocatalytic nitrogen-doped titanium oxide thin film and its depositing method
US9102565B2 (en) 2009-09-08 2015-08-11 Saint-Gobain Glass France Material and glazing comprising said material
JP2013503812A (en) * 2009-09-08 2013-02-04 サン−ゴバン グラス フランス Material and glazing containing the material
JP2013505820A (en) * 2009-09-25 2013-02-21 エクス−マルセイユ ユニヴェルシテ Superporous photocatalytic material, method for producing the same, and use thereof
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology

Also Published As

Publication number Publication date
JP3518240B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US7884047B2 (en) Substrate, in particular glass substrate, supporting a photocatalytic layer coated with a protective thin layer
EP0870530B1 (en) Photocatalyst and process for the preparation thereof
US6071606A (en) Hydrophilic film and method for forming same on substrate
JP4414361B2 (en) Substrate with photocatalytic coating
EP2069252B1 (en) Low-maintenance coating technology
CN100480203C (en) Protective layers for optical coatings
JPH10278165A (en) Manufacture of laminate
US20070087187A1 (en) Nanostructured coatings and related methods
JP2004513864A (en) Method for obtaining photoactive coatings and / or anatase crystalline phases of titanium oxide and articles made therefrom
EP0884288A2 (en) Hydrophilic article
JP2000239047A (en) Hydrophilic photocatalytic member
KR100948542B1 (en) Photocatalyst element, method and device for preparing the same
US6602607B2 (en) Titanium doxide photocatalyst carrier and process for its production
JP2006521470A (en) Titania coating
JPH1071337A (en) Photocatalyst and its production
JP3912976B2 (en) Method for producing titanium substrate having photocatalyst film and method for hydrophilizing titanium substrate surface
JP2002028494A (en) Photocatalyst carrier, and producing method thereof
JP2001130928A (en) Article with photocatalytic activity
JPH1060665A (en) Hydrophilic coating film and its production
JP2000192226A (en) Formation of titanium oxide film
JP3925179B2 (en) Anti-fogging and antifouling article and method for producing the same
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JPH11147277A (en) Hydrophilic film forming base material and its production
JP3219076B2 (en) Method of forming laminate
JP2001019494A (en) Antifogging glass article

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees