JP2000239047A - Hydrophilic photocatalytic member - Google Patents

Hydrophilic photocatalytic member

Info

Publication number
JP2000239047A
JP2000239047A JP11344611A JP34461199A JP2000239047A JP 2000239047 A JP2000239047 A JP 2000239047A JP 11344611 A JP11344611 A JP 11344611A JP 34461199 A JP34461199 A JP 34461199A JP 2000239047 A JP2000239047 A JP 2000239047A
Authority
JP
Japan
Prior art keywords
titanium oxide
layer
hydrophilic
oxide layer
photocatalyst member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11344611A
Other languages
Japanese (ja)
Other versions
JP3904355B2 (en
Inventor
Keisuke Tanaka
啓介 田中
Kenji Mori
健次 森
Etsuo Ogino
悦男 荻野
Kazuhiro Doshita
和宏 堂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP34461199A priority Critical patent/JP3904355B2/en
Publication of JP2000239047A publication Critical patent/JP2000239047A/en
Application granted granted Critical
Publication of JP3904355B2 publication Critical patent/JP3904355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a member capable of sufficiently manifesting not only hydrophilic actions but also photocatalytic actions such as antimicrobial actions and antifouling actions. SOLUTION: This member is obtained by forming a titanium oxide (TiO2) layer 2 on the surface of a glass plate 1 as a substrate and forming a silicon oxide (SiO2) film 3 as an overcoating layer on the surface of the titanium oxide (TiO2) layer 2. A soda-lime glass consisting essentially of SiO2 is used as the glass plate 1 and the titanium oxide (TiO2) layer 2 is formed by, e.g. a sputtering method. The thickness thereof is >=200 nm, more preferably >=500 nm and crystal faces (101), (112) and (211) are oriented nearly parallel to the substrate surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光触媒による親水作
用、抗菌作用及び防汚作用を発揮する親水性光触媒部材
に関する。
The present invention relates to a hydrophilic photocatalyst member exhibiting a hydrophilic action, an antibacterial action and an antifouling action by a photocatalyst.

【0002】[0002]

【従来の技術】酸化チタン(TiO2)に紫外線を照射す
ると、酸化チタン(TiO2)の光触媒作用によって、親
水作用、抗菌作用及び防汚作用が発揮されることが従来
から知られている。
2. Description of the Related Art It has been known that when titanium oxide (TiO 2 ) is irradiated with ultraviolet rays, a hydrophilic action, an antibacterial action and an antifouling action are exerted by the photocatalytic action of titanium oxide (TiO 2 ).

【0003】斯かる酸化チタン(TiO2)をガラスやセ
ラミックス等の基材に応用した先行技術として、特開平
9−57912号公報、特開平10−36144号公
報、特開平10−57817号公報及び特開平10−2
31146号公報に開示されるものがある。これら先行
技術に開示される基本構成は、ガラス基板の表面に、直
接或いはアルカリ遮断用の下地膜を介して光触媒として
の酸化チタン層が形成され、この酸化チタン層の表面に
酸化珪素(SiO2)膜を形成したものである。
[0003] As a prior art in which such a titanium oxide (TiO 2 ) is applied to a substrate such as glass or ceramics, Japanese Patent Application Laid-Open Nos. 9-57912, 10-36144, 10-57817 and JP-A-10-2
There is one disclosed in Japanese Patent No. 31146. In the basic structure disclosed in these prior arts, a titanium oxide layer as a photocatalyst is formed directly or via a base film for blocking alkali on the surface of a glass substrate, and silicon oxide (SiO 2) is formed on the surface of the titanium oxide layer. ) A film is formed.

【0004】上述した先行技術は酸化珪素(SiO2)膜
を多孔質としたり、酸化チタン(TiO2)膜やガラス基
板に微細な凹凸を設けることで、光触媒作用を高める工
夫をしている。
The prior art described above is designed to enhance the photocatalytic action by making the silicon oxide (SiO 2 ) film porous or providing fine irregularities on the titanium oxide (TiO 2 ) film or glass substrate.

【0005】表面に微細な凹凸を形成することで表面積
が増すので、Wenzelの式から親水性の表面は益々
親水性となることは知られている。しかしながら、表面
に微細な凹凸を形成しても抗菌作用及び防汚作用につい
ては必ずしも顕著な向上はみられない。
It is known from the Wenzel equation that a hydrophilic surface becomes more and more hydrophilic, since the surface area is increased by forming fine irregularities on the surface. However, even if fine irregularities are formed on the surface, the remarkable improvement in the antibacterial action and the antifouling action is not necessarily observed.

【0006】そこで、酸化チタン(TiO2)の結晶面の
配向に着目した提案が、特開平10−152396号公
報になされている。この先行技術は、酸化チタン(Ti
2)の結晶面のうち、(001),(211),(101)及び
(110)から選択された結晶面が、結晶方向と垂直方向
に配向させることで、光触媒の抗菌作用、防汚作用、有
機物の分解作用、親水作用の全てを向上させるというも
のである。
A proposal focusing on the orientation of the crystal plane of titanium oxide (TiO 2 ) has been proposed in Japanese Patent Application Laid-Open No. H10-152396. This prior art relates to titanium oxide (Ti
Of the crystal planes of O 2 ), the crystal planes selected from (001), (211), (101) and (110) are oriented in the direction perpendicular to the crystal direction, so that the antibacterial action of the photocatalyst and the antifouling effect It enhances the action, the decomposition action of organic substances, and the hydrophilic action.

【0007】[0007]

【発明が解決しようとする課題】光触媒作用は結晶構造
がルチル型のものよりアナターゼ型の酸化チタン(Ti
2)の方が強いことは事実であり、したがって、結晶
面の配向によって光触媒作用が影響を受けることは予想
されることである。しかしながら、上述した先行技術に
記載されるように、(001),(211),(101)及び(11
0)から選択された結晶面を結晶方向と垂直方向に配向
した場合には、若干の光触媒作用の改善は認められるも
のの、十分とは言えない。
The photocatalytic action of titanium oxide (Ti) of anatase type is better than that of rutile type.
It is true that O 2 ) is stronger, and it is therefore expected that the orientation of the crystal planes will affect photocatalysis. However, as described in the prior art mentioned above, (001), (211), (101) and (11)
When the crystal plane selected from 0) is oriented in the direction perpendicular to the crystal direction, a slight improvement in the photocatalytic action is observed, but it is not sufficient.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
請求項1に係る親水性光触媒部材は、基材表面に直接若
しくはアルカリ遮断用の下地膜を介して光触媒としての
酸化チタン層が形成され、この酸化チタン層の表面にオ
ーバーコート層が形成された親水性光触媒部材であっ
て、前記酸化チタン層はアナターゼ型の結晶構造を有
し、結晶面(101),(112)及び(211)が基材表面に対
してほぼ平行に配向された構成になっている。ここで、
結晶面(101),(112)及び(211)が基材表面に対して
ほぼ平行に配向されたとは、X線回折によるピークを捉
えることができることを意味する。
According to a first aspect of the present invention, there is provided a hydrophilic photocatalyst member having a titanium oxide layer as a photocatalyst formed on a substrate surface directly or via a base film for blocking alkali. A hydrophilic photocatalyst member having an overcoat layer formed on the surface of the titanium oxide layer, wherein the titanium oxide layer has an anatase-type crystal structure, and has crystal faces (101), (112) and (211). Are oriented substantially parallel to the substrate surface. here,
That the crystal planes (101), (112) and (211) are oriented substantially parallel to the substrate surface means that a peak by X-ray diffraction can be captured.

【0009】また、請求項2に係る親水性光触媒部材
は、上記の結晶面の他に更に結晶面(200)についても
同様に配向された構成にした。
Further, the hydrophilic photocatalyst member according to claim 2 has a configuration in which the crystal plane (200) is similarly oriented in addition to the above-mentioned crystal plane.

【0010】また請求項3に係る親水性光触媒部材は、
基材表面に直接若しくはアルカリ遮断用の下地膜を介し
て光触媒としての酸化チタン層が形成され、この酸化チ
タン層の表面にオーバーコート層が形成された親水性光
触媒部材であって、前記酸化チタン層の厚みを200n
m以上とし、且つ酸化チタンの結晶子サイズを10nm
以上50nm以下とした。
A hydrophilic photocatalyst member according to claim 3 is
A hydrophilic photocatalyst member in which a titanium oxide layer as a photocatalyst is formed directly on the surface of a substrate or via an underlayer for blocking alkali, and an overcoat layer is formed on the surface of the titanium oxide layer, wherein the titanium oxide 200n layer thickness
m or more, and the crystallite size of titanium oxide is 10 nm.
At least 50 nm.

【0011】光触媒作用の向上を図るには、酸化チタン
層はアナターゼ型の結晶構造をとることが好ましく、特
に、結晶面(101),(112)及び(211)が基材表面に対
してほぼ平行に配向されることで、光触媒作用が十分に
発揮される。酸化チタン層の厚みを200nm以上とす
ることで、結晶面(101),(112)及び(211)の配向が
顕著になる。さらに、結晶面(200)も基材表面に対し
てほぼ平行に配向されることが好ましい。酸化チタン層
のさらに好ましい厚みは500nm以上である。一方、
酸化チタン層の厚みを200nm以上としても、酸化チ
タン層を形成する際の基材温度を約230℃以下とした
場合には、上記の結晶面配向は得られない。これは、基
材温度を約230℃以下とした場合には酸化チタンの結
晶の成長が十分ではなく、結晶子サイズが10nm未満
になってしまい、その結果上記の結晶面の配向がなされ
ないと考えられる。
In order to improve the photocatalytic action, it is preferable that the titanium oxide layer has an anatase type crystal structure. In particular, the crystal planes (101), (112) and (211) are almost equal to the substrate surface. By being oriented in parallel, the photocatalytic action is sufficiently exhibited. When the thickness of the titanium oxide layer is 200 nm or more, the orientation of the crystal planes (101), (112), and (211) becomes remarkable. Further, the crystal plane (200) is also preferably oriented substantially parallel to the substrate surface. The more preferable thickness of the titanium oxide layer is 500 nm or more. on the other hand,
Even if the thickness of the titanium oxide layer is 200 nm or more, the above crystal plane orientation cannot be obtained when the substrate temperature at the time of forming the titanium oxide layer is about 230 ° C. or less. This is because when the substrate temperature is set to about 230 ° C. or less, the growth of the titanium oxide crystal is not sufficient, and the crystallite size becomes less than 10 nm. As a result, if the orientation of the crystal plane is not performed, Conceivable.

【0012】また、親水性を向上させるには、部材の最
表面の表面平均粗さ(Ra)を0.5〜25nmとする
ことが好ましい。即ち、表面に微細な凹凸を形成するこ
とで表面積がr倍になった場合には、平滑表面の時の水
との接触角をθ、凹凸を形成した時の水との接触角を
θ’とすると、Wenzelの式から、cosθ’=r
cosθ(90°>θ>θ’)が成り立つ。例えば、平
滑表面の時の水に対する接触角が30°の部材の表面
に、凹凸を形成して表面積を1.1倍にすると、上式か
ら、cosθ’=1.1cos30°=0.935とな
り、これからθ’=17.7°となる。同様にして、表
面積を1.15倍にすると、θ’は5.2°になる。
尚、θが90°以上の場合、つまり表面が疎水性(撥水
性)の場合には、表面積が大きくなると、θ’も大きく
なる。即ち、表面に微細な凹凸を形成することで、親水
性表面は益々親水性になり、疎水性表面は益々疎水性に
なる。
Further, in order to improve the hydrophilicity, it is preferable that the surface average roughness (Ra) of the outermost surface of the member is 0.5 to 25 nm. That is, when the surface area is increased by r times by forming fine irregularities on the surface, the contact angle with water when the surface is smooth is θ, and the contact angle with water when the irregularities are formed is θ ′. From the Wenzel equation, cos θ ′ = r
cos θ (90 °>θ> θ ′) holds. For example, if irregularities are formed on the surface of a member having a contact angle of 30 ° with water when the surface is smooth and the surface area is increased by a factor of 1.1, cos θ ′ = 1.1 cos30 ° = 0.935 from the above equation. From this, θ ′ = 17.7 °. Similarly, when the surface area is increased by a factor of 1.15, θ ′ becomes 5.2 °.
When θ is 90 ° or more, that is, when the surface is hydrophobic (water repellent), θ ′ increases as the surface area increases. That is, by forming fine irregularities on the surface, the hydrophilic surface becomes more and more hydrophilic, and the hydrophobic surface becomes more and more hydrophobic.

【0013】部材の最表面を上記の表面平均粗さにする
には、酸化チタン層の表面平均粗さ(Ra)を0.5〜
25nmとしてもよい。この場合には酸化チタン層の凹
凸がオーバーコート層にそのまま転写され、結局、部材
最表面の表面平均粗さ(Ra)が0.5〜25nmとな
る。前記の表面平均粗さ(Ra)が0.5nmより小さ
くても25nmより大きくても、親水性の長期安定性が
低く好ましくない。また、凹凸の平均間隔(Sm)は4
〜300nmが好ましい。4nmより小さくても300
nmより大きくても親水性能の長期安定性が低く好まし
くない。凹凸の平均間隔(Sm)のさらに好ましい範囲
は5〜150nmである。この範囲で親水性能の長期安
定性がさらに良好である。ここで、表面平均粗さ(R
a)、凹凸の平均間隔(Sm)は、JIS B 060
1(1994)記載の方法により定義され、電子顕微鏡
(例えば、株式会社日立製作所製H−600)を用いて
観察、測定した断面曲線から計算できる。
In order to make the outermost surface of the member have the above-mentioned average surface roughness, the average surface roughness (Ra) of the titanium oxide layer should be 0.5 to 0.5%.
It may be 25 nm. In this case, the unevenness of the titanium oxide layer is transferred to the overcoat layer as it is, so that the surface average roughness (Ra) of the outermost surface of the member becomes 0.5 to 25 nm. If the surface average roughness (Ra) is smaller than 0.5 nm or larger than 25 nm, the long-term stability of hydrophilicity is not preferred. The average interval (Sm) of the irregularities is 4
~ 300 nm is preferred. 300 even if smaller than 4 nm
Even if it is larger than nm, the long-term stability of hydrophilic performance is low, which is not preferable. The more preferable range of the average interval (Sm) of the unevenness is 5 to 150 nm. Within this range, the long-term stability of hydrophilic performance is even better. Here, the surface average roughness (R
a), the average interval (Sm) of the irregularities is JIS B 060
1 (1994), and can be calculated from a cross-sectional curve observed and measured using an electron microscope (for example, H-600 manufactured by Hitachi, Ltd.).

【0014】本発明において、前記光触媒膜上のオーバ
ーコート層は、光が照射されていない時の親水性に不可
欠である。前記オーバーコート層は、酸化珪素、酸化ア
ルミニウム、酸化チタン、酸化ジルコニウム及び酸化セ
リウムより選ばれる少なくとも一種の金属酸化物(ただ
し酸化チタン一種のみは除く)であり、好ましくは酸化
珪素を80wt%以上含む薄膜である。
In the present invention, the overcoat layer on the photocatalytic film is indispensable for hydrophilicity when no light is irradiated. The overcoat layer is at least one metal oxide selected from silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, and cerium oxide (excluding only one kind of titanium oxide), and preferably contains silicon oxide in an amount of 80 wt% or more. It is a thin film.

【0015】前記オーバーコート層は公知の方法で形成
できる。例えば、ゾルゲル法(例えば山本雄二、神谷寛
一、作花済夫、窯業協会誌、90、328〜333(1
982))、液相析出法(例えば特公平1−59210
号、特公平4−13301号)、真空成膜法(真空蒸
着、スパッタ)、焼き付け法、スプレーコート(例え
ば、特開昭53−124523号、特開昭56−967
49号)、CVD法(例えば、特開昭55−90441
号、特開昭1−201046号、特開平5−20884
9号)などが例示である。
The overcoat layer can be formed by a known method. For example, a sol-gel method (for example, Yuji Yamamoto, Kanichi Kamiya, Saio Sakuhana, Journal of the Ceramic Society of Japan, 90, 328-333 (1
982)), liquid phase deposition method (for example, Japanese Patent Publication No. 1-59210).
No. 4-13301), vacuum film forming method (vacuum deposition, sputtering), baking method, spray coating (for example, JP-A-53-124523, JP-A-56-967).
No. 49), CVD method (for example, JP-A-55-90441).
JP-A-1-201046, JP-A-5-20884
No. 9) is an example.

【0016】前記オーバーコート層の平均厚みは、0.
1〜50nmが好ましい。この平均厚みが0.1nmよ
り小さいと親水性向上効果が顕著でなく、50nmより
大きいと、酸化チタン層表面の凹凸が埋まる傾向があ
り、また紫外線照射による親水性の向上効果が認められ
難くなるので好ましくない。
The average thickness of the overcoat layer is 0.1.
1-50 nm is preferred. When the average thickness is less than 0.1 nm, the effect of improving hydrophilicity is not remarkable. When the average thickness is more than 50 nm, irregularities on the surface of the titanium oxide layer tend to be buried, and the effect of improving hydrophilicity by ultraviolet irradiation is hardly recognized. It is not preferable.

【0017】前記オーバーコート層は多孔質体であるこ
とが好ましい。前記オーバーコート層が多孔質、特に細
孔容積が1〜50%の多孔質であると、表面での水分の
保持能力が大きくなり、親水性が更に向上し好ましい。
Preferably, the overcoat layer is a porous body. When the overcoat layer is porous, in particular, porous having a pore volume of 1 to 50%, the ability to retain moisture on the surface is increased, and the hydrophilicity is further improved, which is preferable.

【0018】多孔質オーバーコート層は、様々な方法で
形成される。例えば、ゾルゲル法を用いて形成できる。
オーバーコート形成用コーティング液中に、ポリエチレ
ングリコール、ポリプロピレングリコール、ポリビニル
アルコールからなる群から選ばれた少なくとも一種の有
機高分子化合物を添加し、これらを溶解させて得られた
液を、前記光触媒形成済み基材上に塗布・乾燥して、さ
らに350〜650℃で5分間〜2時間加熱し、添加し
た有機高分子化合物を分解することで得られる。
[0018] The porous overcoat layer can be formed in various ways. For example, it can be formed using a sol-gel method.
In the coating liquid for forming an overcoat, at least one organic polymer compound selected from the group consisting of polyethylene glycol, polypropylene glycol, and polyvinyl alcohol is added, and a solution obtained by dissolving them is treated with the photocatalyst formed. It is obtained by applying and drying on a substrate, and further heating at 350 to 650 ° C. for 5 minutes to 2 hours to decompose the added organic polymer compound.

【0019】尚、本発明に係る親水性光触媒部材として
は、例えば、ミラーや自動車用窓ガラス等に応用するこ
とができる。
The hydrophilic photocatalyst member according to the present invention can be applied to, for example, mirrors and window glasses for automobiles.

【0020】[0020]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1(a)及び
(b)はそれぞれ本発明に係る親水性光触媒部材の拡大
断面図、図2は酸化チタン(TiO2)の結晶面を説明し
た図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIGS. 1A and 1B are enlarged cross-sectional views of the hydrophilic photocatalyst member according to the present invention, respectively, and FIG. 2 is a view illustrating a crystal plane of titanium oxide (TiO 2 ).

【0021】(a)に示す実施例にあっては、親水性光
触媒部材は基材としてのガラス板1の表面に酸化チタン
(TiO2)層2を形成し、この酸化チタン(TiO2)層
2の表面にオーバーコート層として酸化珪素(SiO2
膜3を形成している。(b)に示す実施例にあっては、
ガラス板1と酸化チタン(TiO2)層2の間に、ガラス
板1からNaなどのアルカリが浸出するのを防止する下
地膜4を介在させている。
In the embodiment shown in FIG. 2A, a titanium oxide (TiO 2 ) layer 2 is formed on the surface of a glass plate 1 as a substrate for a hydrophilic photocatalyst member, and this titanium oxide (TiO 2 ) layer is formed. Silicon oxide (SiO 2 ) as an overcoat layer on the surface of
The film 3 is formed. In the embodiment shown in (b),
Between the glass plate 1 and the titanium oxide (TiO 2 ) layer 2, a base film 4 for preventing the leaching of alkali such as Na from the glass plate 1 is interposed.

【0022】ガラス板1としてはSiO2を主成分とした
ソーダライムガラスとし、酸化チタン(TiO2)層2
は、例えば、ゾルゲル法、液相析出法、真空成膜法、焼
き付け法、スプレーコート法、CVD法、スパッタリン
グ法など従来から公知の方法により形成され、その厚み
は200nm以上とされ、表面の表面平均粗さ(Ra)
は0.5〜25nmになっている。また、酸化チタン
(TiO2)層2はアナターゼ型の結晶構造となってい
る。
The glass plate 1 is made of soda lime glass containing SiO 2 as a main component, and a titanium oxide (TiO 2 ) layer 2
Is formed by a conventionally known method such as a sol-gel method, a liquid phase deposition method, a vacuum film formation method, a baking method, a spray coating method, a CVD method, and a sputtering method, and has a thickness of 200 nm or more. Average roughness (Ra)
Is 0.5 to 25 nm. The titanium oxide (TiO 2 ) layer 2 has an anatase type crystal structure.

【0023】一方、酸化珪素(SiO2)膜3はスパッタ
リングにて形成され、その厚みは0.1〜100nmと
されている。そして、酸化珪素(SiO2)膜3は前記酸
化チタン(TiO2)層2の上に形成されるので、酸化チ
タン(TiO2)層2の凹凸がそのまま転写され、酸化珪
素(SiO2)膜3の表面の表面平均粗さ(Ra)も0.
5〜25nmになっている。また、凹凸の平均間隔(S
m)については、4〜300nmの範囲にするのが適当
である。
On the other hand, the silicon oxide (SiO 2 ) film 3 is formed by sputtering and has a thickness of 0.1 to 100 nm. Since the silicon oxide (SiO 2) film 3 is formed on the titanium oxide (TiO 2) layer 2, unevenness of titanium oxide (TiO 2) layer 2 is transferred as it is, silicon oxide (SiO 2) film The surface average roughness (Ra) of the surface of No. 3 is also 0.
It is 5 to 25 nm. In addition, the average interval of irregularities (S
It is appropriate for m) to be in the range of 4 to 300 nm.

【0024】酸化チタン(TiO2)は結晶子サイズ10
nm以上50nm以下の範囲で、光触媒による親水作
用、抗菌作用及び防汚作用が確保される。結晶子サイズ
が10nmより小さいと、光触媒活性が十分でない。ま
た、結晶子サイズが50nmより大きいと、薄膜の透明
性が低下してヘイズ率が高い膜になるので好ましくな
い。
Titanium oxide (TiO 2 ) has a crystallite size of 10
In the range of not less than nm and not more than 50 nm, the hydrophilic action, antibacterial action and antifouling action by the photocatalyst are ensured. If the crystallite size is smaller than 10 nm, the photocatalytic activity is not sufficient. On the other hand, when the crystallite size is larger than 50 nm, the transparency of the thin film is reduced, and the film has a high haze ratio, which is not preferable.

【0025】ここで、アナターゼ型酸化チタン(Ti
2)はその結晶面(101),(112),(200),(211)及
び(204)が基板表面に対してほぼ平行に配向されてい
る。各結晶面については図2に示した。
Here, anatase type titanium oxide (Ti
O 2 ) has its crystal planes (101), (112), (200), (211) and (204) oriented substantially parallel to the substrate surface. Each crystal plane is shown in FIG.

【0026】図3は酸化チタン(TiO2)層を、例え
ば、DCマグネトロンスパッタ(圧力:3mTorr、温
度:350℃)で形成したときの酸化チタン(TiO2
層の厚みと結晶面との関係を示すX線回折グラフ、図4
は基板処理温度と酸化チタン(厚み:500nm)の結
晶面との関係を示すX線回折グラフ、図5は酸化チタン
(TiO2)の膜厚と成膜温度を変えた場合の結晶面との
関係を示すX線回折グラフであり、更に以下の(表1)
乃至(表4)は図5の実施例と比較例をまとめたもので
ある。
[0026] Figure 3 is titanium oxide (TiO 2) layer, for example, DC magnetron sputtering (pressure: 3 mTorr, Temperature: 350 ° C.) titanium oxide when formed by the (TiO 2)
X-ray diffraction graph showing relationship between layer thickness and crystal plane, FIG.
The substrate processing temperature and titanium oxide (thickness: 500 nm) X-ray diffraction graph showing the relationship between the crystal planes of FIG. 5 is a crystal plane when changing the film thickness and the deposition temperature of the titanium oxide (TiO 2) FIG. 9 is an X-ray diffraction graph showing the relationship, and is further shown in the following (Table 1).
Table 4 summarizes the embodiment of FIG. 5 and a comparative example.

【0027】(実施例1)実施例1に示す防曇物品の作
製は、以下の要領で実施した。 [下地膜の形成]ガラス板から酸化チタン膜へのアルカ
リ溶出を防止する目的で、RFマグネトロンスパッタ
(ターゲット SiO2)により、SiO2の成膜を行っ
た。酸素ガス5sccmおよびアルゴンガス60scc
mの混合ガスを用い、ガス圧力3mTorr、ターゲット投
入パワー2kWの条件で、インライン式のRFマグネト
ロンスパッタ装置により、厚さ3mm、10×10cm
□のソーダライムガラス上にSiO2の下地膜の成膜を行
った。基板搬送のパス回数を調整し、膜厚50nmの下
地膜(SiO2)を形成した。下地膜(SiO2)の膜厚は
触針式段差計を用いて測定・確認した。
Example 1 The antifogging article shown in Example 1 was produced in the following manner. [Formation of Base Film] In order to prevent alkali elution from the glass plate to the titanium oxide film, SiO 2 was formed by RF magnetron sputtering (target SiO 2 ). Oxygen gas 5sccm and argon gas 60scc
m, a gas pressure of 3 mTorr, a target input power of 2 kW, and a thickness of 3 mm, 10 × 10 cm by an in-line type RF magnetron sputtering apparatus.
An underlayer of SiO 2 was formed on soda-lime glass of □. The number of passes of the substrate transfer was adjusted to form a base film (SiO 2 ) having a thickness of 50 nm. The film thickness of the underlayer (SiO 2 ) was measured and confirmed using a stylus-type step meter.

【0028】[酸化チタン膜の形成]上記SiO2の下地
膜を形成したガラス板上に以下の要領で酸化チタン層を
形成した。インライン式のDCマグネトロンスパッタ装
置(ターゲット:Ti)により、ガス(酸素)50sc
cm、ガス圧力3mTorr、ターゲット投入パワー3kW
の条件で、且つ真空装置チャンバー内ヒータによりガラ
ス板を約350℃に加熱し、酸化チタンの成膜を行っ
た。基板搬送のパス回数を調整することで、膜厚500
nmの酸化チタン膜を成膜した。酸化チタン(TiO2
の膜厚は、触針式段差計を用いて測定・確認した。
[Formation of Titanium Oxide Film] A titanium oxide layer was formed on the glass plate on which the above-mentioned SiO 2 underlayer was formed in the following manner. Gas (oxygen) 50 sc by in-line type DC magnetron sputtering device (target: Ti)
cm, gas pressure 3mTorr, target input power 3kW
Under the above conditions, the glass plate was heated to about 350 ° C. by a heater in a vacuum device chamber to form a titanium oxide film. By adjusting the number of passes of the substrate transfer, a film thickness of 500
An nm-thick titanium oxide film was formed. Titanium oxide (TiO 2 )
Was measured and confirmed using a stylus-type step meter.

【0029】[オーバーコート層の形成]上記の下地膜
および酸化チタン膜を形成したガラス板上に、以下の要
領でオーバーコート層のSiO2膜を形成した。酸素ガス
5sccm及びアルゴン60sccmの混合ガスを用
い、ガス圧力3mTorr、ターゲット投入パワー2kWの
条件で、インライン式のRFマグネトロンスパッタ装置
(ターゲットSiO2)により、上記で形成した下地膜
および酸化チタン膜を形成したガラス板上にオーバーコ
ート層のSiO2膜の成膜を行った。基板搬送のパス回数
を調整し、膜厚10nmのオーバーコート層を形成し
た。オーバーコート層の膜厚は触針式段差計を用いて測
定・確認した。これにより、ガラス板/下地膜(Si
2)(50nm)/酸化チタン層(TiO2)(500
nm)/オーバーコート層(SiO2)(10nm)から
なる親水性光触媒部材を得た。このようにして得られた
サンプルをAとする。
[Formation of Overcoat Layer] An SiO 2 film as an overcoat layer was formed on the glass plate on which the above-mentioned underlayer film and titanium oxide film had been formed in the following manner. Using a mixed gas of 5 sccm of oxygen gas and 60 sccm of argon, under the conditions of a gas pressure of 3 mTorr and a target input power of 2 kW, the base film and the titanium oxide film are formed by an in-line RF magnetron sputtering apparatus (target SiO 2 ). An SiO 2 film as an overcoat layer was formed on the glass plate thus obtained. The number of passes of the substrate transfer was adjusted to form an overcoat layer having a thickness of 10 nm. The thickness of the overcoat layer was measured and confirmed using a stylus-type step meter. Thereby, the glass plate / base film (Si
O 2 ) (50 nm) / titanium oxide layer (TiO 2 ) (500
nm) / overcoat layer (SiO 2 ) (10 nm) to obtain a hydrophilic photocatalyst member. The sample thus obtained is designated as A.

【0030】[光触媒活性の評価]光触媒活性は、次の
トリオレイン分解試験により測定した。70mm□に切
出したサンプルの膜面側に、トリオレイン(化学式(C17
H33COO)3C3H5)を2.5mg滴下・塗布し、トリオレイ
ン残留率を比較し、光触媒活性を評価した。上記サンプ
ルに、膜面側よりブラックライトによりサンプル表面上
で3mW/cm2の強度の紫外線を20時間照射した。
紫外線照射後、サンプル重量を測定し、トリオレイン残
留率を求め、光触媒活性の指標とした。トリオレイン残
留率が小さいほど、光触媒活性が高いといえる。トリオ
レイン残留率(%)は以下の式により算出した。 トリオレイン残留率=((z−x)/(y−x))×1
00 ここで、x:サンプルのみの重量(g) y:紫外線照射前のトリオレインを塗布したサンプルの
重量(g) z:紫外線照射後のトリオレインを塗布したサンプルの
重量(g)
[Evaluation of Photocatalytic Activity] The photocatalytic activity was measured by the following triolein decomposition test. The film surface side of the sample cut out in 70 mm □, triolein (chemical formula (C 17
H 33 COO) 3 C 3 H 5) was 2.5mg dropping and coating, compared triolein residual ratio Evaluation of the photocatalytic activity. The sample was irradiated with ultraviolet light having an intensity of 3 mW / cm 2 for 20 hours from the film surface side with black light on the sample surface.
After irradiation with ultraviolet light, the sample weight was measured, and the residual ratio of triolein was obtained, and this was used as an index of photocatalytic activity. It can be said that the smaller the residual ratio of triolein, the higher the photocatalytic activity. The triolein residual ratio (%) was calculated by the following equation. Triolein residual rate = ((z−x) / (y−x)) × 1
Here, x: weight of sample only (g) y: weight of sample coated with triolein before ultraviolet irradiation (g) z: weight (g) of sample coated with triolein after ultraviolet irradiation

【0031】[表面粗さおよび凹凸の平均間隔の測定]
酸化チタン層の算術平均粗さ(Ra)(nm)および凹
凸の平均間隔(Sm)(nm)は、AFM(原子間力顕
微鏡)にて測定した。
[Measurement of Surface Roughness and Average Spacing of Roughness]
The arithmetic average roughness (Ra) (nm) and the average interval (Sm) (nm) of the unevenness of the titanium oxide layer were measured by AFM (atomic force microscope).

【0032】[平均結晶子サイズの算出]酸化チタンの
結晶子サイズは以下の方法で算出した。X線回析測定に
より得られる各配向面に対するピークの積分巾から、S
cherrerの式より結晶子サイズを算出した。 Scherrerの式 ε=λ/(β・cosθ) ε=結晶子の大きさ(Å) λ=測定X線波長(Å) β=ピークの積分幅(ラジアン) θ=回析線のブラッグ角(ラジアン)
[Calculation of average crystallite size] The crystallite size of titanium oxide was calculated by the following method. From the integrated width of the peak for each orientation plane obtained by X-ray diffraction measurement,
The crystallite size was calculated from the formula of Cerrer. Scherrer's equation ε = λ / (β · cos θ) ε = crystallite size (Å) λ = measured X-ray wavelength (Å) β = peak integration width (radian) θ = Bragg angle of diffraction line (radian) )

【0033】[親水性評価]上記サンプルAを、直接日
光が当らないが間接的に日光で明るく、人が絶えず出入
りする室内に放置し続け、その表面が汚れて防曇性が低
下する程度を、呼気を吹きかけたときの曇り程度により
評価した(呼気テスト)。即ち、表面を清浄にした直後
のサンプルは呼気を吹きかけても曇りを生じないが、室
内放置により大気中の汚れ成分がサンプル表面に吸着さ
れ呼気テストにより曇るようになる。室内放置を始めて
から曇りが生じ始めるまでの時間(防曇維持時間)を防
曇維持性の指標とした。この値が大きい程、防曇維持性
が高いといえる。これらサンプルの防曇維持性を下記
(表1)に従い評価した。
[Evaluation of Hydrophilicity] The sample A was kept in a room where it was not exposed to direct sunlight but was indirectly brightened by sunlight and where people constantly came in and out. And the degree of cloudiness when breath was sprayed was evaluated (breath test). That is, the sample immediately after the surface is cleaned does not fog even when breath is blown, but when left indoors, dirt components in the air are adsorbed on the sample surface and become cloudy by the breath test. The time from the start of indoor standing until the start of fogging (antifogging maintenance time) was used as an index of antifogging maintenance. It can be said that the larger this value is, the higher the antifogging maintenance property is. The antifogging maintenance of these samples was evaluated according to the following (Table 1).

【0034】[0034]

【表1】 [Table 1]

【0035】更に、室内放置により防曇性が低下した
(上記呼気テストで曇りが生じた)サンプルに、キセノ
ンランプ光(紫外線強度0.5mW/cm2:トプコン
株式会社製紫外線強度計UVR−2/UD−36で測
定。)を連続して30分間照射し、水滴接触角低下の大
きさ(水滴接触角回復量)を防曇回復性の指標とした。
尚、0.5mW/cm2の紫外線(340〜395n
m)照射強度は、冬季、晴天、正午で北緯35°の戸外
の太陽光からの直射日光に含まれる紫外線強度の約20
%に相当する。この紫外線によって水滴接触角が低下し
親水性が回復するならば、そのサンプルは非常に良好な
防曇回復性を有すると言える。接触角計(協和界面科学
株式会社製「CA−DT」)を用いて、30分間の光照
射の前及び後の、0.4mgの水滴に対する接触角を測
定し、紫外線照射により接触角がどれだけ低下したか
を、(30分間の光照射の後の接触角)/(光照射前の
接触角)の値で定義する水滴接触角比を求め、下記(表
2)に従い評価を行った。この水滴接触角比が小さいほ
ど、光照射による防曇回復性に優れるといえる。
Further, a sample having a reduced anti-fogging property due to standing in a room (having fogging in the breath test) was subjected to xenon lamp light (ultraviolet intensity: 0.5 mW / cm 2 : UV intensity meter UVR-2 manufactured by Topcon Corporation). / UD-36) was continuously irradiated for 30 minutes, and the magnitude of the decrease in the contact angle of the water droplet (the recovery amount of the contact angle of the water droplet) was used as an index of the anti-fogging recovery property.
In addition, an ultraviolet ray of 0.5 mW / cm 2 (340 to 395 n
m) The irradiation intensity is about 20 times the ultraviolet intensity contained in direct sunlight from outdoor sunlight at 35 ° N latitude at noon in winter, fine weather, and noon.
%. If the ultraviolet ray reduces the contact angle of the water droplet and restores the hydrophilicity, it can be said that the sample has a very good antifogging recovery property. Using a contact angle meter ("CA-DT" manufactured by Kyowa Interface Science Co., Ltd.), the contact angle with respect to a 0.4 mg water droplet before and after irradiation with light for 30 minutes was measured. The water droplet contact angle ratio defined by the value of (contact angle after light irradiation for 30 minutes) / (contact angle before light irradiation) was determined and evaluated according to the following (Table 2). It can be said that the smaller the water droplet contact angle ratio, the better the anti-fogging recovery property by light irradiation.

【0036】[0036]

【表2】 [Table 2]

【0037】上記サンプルAの各種評価結果を(表3)
及び(表4)に示す。サンプルAは防曇維持性、防曇回
復性に優れていることが分る。
The results of various evaluations of Sample A are shown in Table 3.
And (Table 4). Sample A was found to be excellent in antifogging maintenance and antifogging recovery.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】(実施例2)実施例1と同様にして、ガラ
ス板/下地膜(SiO2)(50nm)/酸化チタン層
(TiO2)(1000nm)/オーバーコート層(Si
2)(10nm)を形成した。このようにして得られ
たサンプルをBとする。サンプルBの各種防曇性評価結
果を(表3)及び(表4)に示した。
(Example 2) In the same manner as in Example 1, a glass plate / underlayer (SiO 2 ) (50 nm) / titanium oxide layer (TiO 2 ) (1000 nm) / overcoat layer (Si)
O 2 ) (10 nm). The sample thus obtained is designated as B. Various antifogging evaluation results of Sample B are shown in (Table 3) and (Table 4).

【0041】(比較例1)ガラス板/下地膜(SiO2
(50nm)/酸化チタン層(TiO2)(500nm)
を形成した。酸化チタン層の成膜時に基板加熱を行わ
ず、室温にて成膜した。このようにして得られたサンプ
ルをCとする。サンプルCの各種防曇性評価結果を(表
3)及び(表4)に示した。
(Comparative Example 1) Glass plate / underlayer (SiO 2 )
(50 nm) / titanium oxide layer (TiO 2 ) (500 nm)
Was formed. The substrate was not heated during the formation of the titanium oxide layer, but was formed at room temperature. The sample thus obtained is designated as C. Various antifogging evaluation results of Sample C are shown in (Table 3) and (Table 4).

【0042】(比較例2)ガラス板/下地膜(SiO2
(50nm)/酸化チタン層(TiO2)(200nm)
を形成した。このようにして得られたサンプルをDとす
る。サンプルDの各種防曇性評価結果を(表3)及び
(表4)に示した。
(Comparative Example 2) Glass plate / underlayer (SiO 2 )
(50 nm) / titanium oxide layer (TiO 2 ) (200 nm)
Was formed. The sample thus obtained is designated as D. Various antifogging evaluation results of Sample D are shown in (Table 3) and (Table 4).

【0043】(比較例3)比較例2と同様にして、ガラ
ス板/下地膜(SiO2)(50nm)/酸化チタン層
(TiO2)(50nm)を形成した。このようにして得
られたサンプルをEとする。サンプルEの各種防曇性評
価結果を(表3)及び(表4)に示した。
Comparative Example 3 In the same manner as in Comparative Example 2, a glass plate / underlayer (SiO 2 ) (50 nm) / titanium oxide layer (TiO 2 ) (50 nm) was formed. The sample thus obtained is referred to as E. The results of evaluating various antifogging properties of Sample E are shown in (Table 3) and (Table 4).

【0044】(比較例4)ガラス板/下地膜(SiO2
(50nm)/酸化チタン層(TiO2)(1000n
m)を形成した。酸化チタン層の成膜時に基板加熱を行
わず、室温にて成膜した。このようにして得られたサン
プルをFとする。サンプルFの各種防曇性評価結果を
(表3)及び(表4)に示した。
(Comparative Example 4) Glass plate / underlayer film (SiO 2 )
(50 nm) / titanium oxide layer (TiO 2 ) (1000 n)
m) was formed. The substrate was not heated during the formation of the titanium oxide layer, but was formed at room temperature. The sample thus obtained is designated as F. The results of evaluating various antifogging properties of Sample F are shown in (Table 3) and (Table 4).

【0045】(比較例5)オーバーコート層を形成しな
い点を除いて、実施例1と同様にして、ガラス板/下地
膜(SiO2)(50nm)/酸化チタン層(TiO2
(500nm)を形成した。このようにして得られたサ
ンプルをGとする。サンプルGの各種防曇性評価結果を
(表3)及び(表4)に示した。
Comparative Example 5 A glass plate / underlayer (SiO 2 ) (50 nm) / titanium oxide layer (TiO 2 ) was prepared in the same manner as in Example 1 except that no overcoat layer was formed.
(500 nm). The sample thus obtained is referred to as G. Various antifogging evaluation results of Sample G are shown in (Table 3) and (Table 4).

【0046】(比較例6)オーバーコート層を形成しな
い点を除いて、実施例2と同様にして、ガラス板/下地
膜(SiO2)(50nm)/酸化チタン層(TiO2
(1000nm)を形成した。このようにして得られた
サンプルをHとする。サンプルHの各種防曇性評価結果
を(表3)及び(表4)に示した。
Comparative Example 6 A glass plate / underlayer (SiO 2 ) (50 nm) / titanium oxide layer (TiO 2 ) was prepared in the same manner as in Example 2 except that no overcoat layer was formed.
(1000 nm). The sample thus obtained is designated as H. Various antifogging evaluation results of Sample H are shown in (Table 3) and (Table 4).

【0047】(比較例7)実施例1と同様にして、ガラ
ス板/下地膜(SiO2)(50nm)/酸化チタン層
(TiO2)(500nm)/オーバーコート層(Si
2)(10nm)を形成した。酸化チタン層の成膜時
に基板加熱を行わず、室温にて成膜した。このようにし
て得られたサンプルをJとする。サンプルJの各種防曇
性評価結果を(表3)及び(表4)に示した。
Comparative Example 7 In the same manner as in Example 1, a glass plate / underlayer (SiO 2 ) (50 nm) / titanium oxide layer (TiO 2 ) (500 nm) / overcoat layer (Si)
O 2 ) (10 nm). The substrate was not heated during the formation of the titanium oxide layer, but was formed at room temperature. The sample thus obtained is designated as J. Various antifogging evaluation results of Sample J are shown in (Table 3) and (Table 4).

【0048】以上の図及び(表)から、光触媒の効果を
十分に発揮するには、少なくとも結晶面(101),(11
2)及び(211)が基材表面に対してほぼ平行に配向され
ていることが必要とされ、このためには、酸化チタン
(TiO2)層の厚みは200nm以上より好ましくは5
00nm以上、基板の温度(成膜温度)は約230℃以
上とすることが必要であることが分る。
From the above figures and tables, in order to sufficiently exert the effect of the photocatalyst, at least the crystal faces (101), (11)
It is necessary that (2) and (211) are oriented substantially parallel to the substrate surface, and for this purpose, the thickness of the titanium oxide (TiO 2 ) layer is 200 nm or more, preferably 5 nm or more.
It can be seen that it is necessary to set the substrate temperature (film formation temperature) to about 230 ° C. or more at 00 nm or more.

【0049】[0049]

【発明の効果】以上に説明したように、請求項1に係る
親水性光触媒部材は、基材表面に直接若しくはアルカリ
遮断用の下地膜を介して光触媒としての酸化チタン層が
形成され、この酸化チタン層の表面にオーバーコート層
が形成された親水性光触媒部材であって、前記酸化チタ
ン層はアナターゼ型の結晶構造を有し、結晶面(101),
(112)及び(211)が基材表面に対してほぼ平行に配向
された構成とし、また、請求項2に係る親水性光触媒部
材は、基材表面に直接若しくはアルカリ遮断用の下地膜
を介して光触媒としての酸化チタン層が形成され、この
酸化チタン層の表面にオーバーコート層が形成された親
水性光触媒部材であって、前記酸化チタン層の厚みを2
00nm以上とし、且つ酸化チタンの結晶子サイズを1
0nm以上50nm以下としたので、親水作用のみなら
ず、抗菌作用及び防汚作用等の光触媒作用が十分に発揮
される。
As described above, in the hydrophilic photocatalyst member according to the first aspect, the titanium oxide layer as the photocatalyst is formed on the surface of the base material directly or through the base film for blocking alkali. A hydrophilic photocatalyst member having an overcoat layer formed on a surface of a titanium layer, wherein the titanium oxide layer has an anatase-type crystal structure, and has a crystal face (101),
(112) and (211) are oriented substantially parallel to the surface of the base material, and the hydrophilic photocatalyst member according to claim 2 is provided directly on the base material surface or via a base film for blocking alkali. A titanium oxide layer as a photocatalyst is formed on the surface of the titanium oxide layer, and an overcoat layer is formed on the surface of the titanium oxide layer.
And the crystallite size of titanium oxide is 1
Since it is 0 nm or more and 50 nm or less, not only a hydrophilic action, but also a photocatalytic action such as an antibacterial action and an antifouling action is sufficiently exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)はそれぞれ本発明に係る親水
性光触媒部材の拡大断面図
FIGS. 1A and 1B are enlarged cross-sectional views of a hydrophilic photocatalyst member according to the present invention, respectively.

【図2】酸化チタン(TiO2)の結晶面を説明した図FIG. 2 is a diagram illustrating a crystal plane of titanium oxide (TiO 2 ).

【図3】酸化チタン(TiO2)層の厚みと結晶面との関
係を示すX線回折グラフ
FIG. 3 is an X-ray diffraction graph showing the relationship between the thickness of a titanium oxide (TiO 2 ) layer and the crystal plane.

【図4】基板処理温度と結晶面との関係を示すX線回折
グラフ
FIG. 4 is an X-ray diffraction graph showing a relationship between a substrate processing temperature and a crystal plane.

【図5】膜厚と成膜温度を変えて結晶面との関係を示す
X線回折グラフ
FIG. 5 is an X-ray diffraction graph showing the relationship between the film thickness and the crystal plane by changing the film formation temperature.

【符号の説明】[Explanation of symbols]

1…ガラス板、2…酸化チタン(TiO2)層、3…酸化
珪素(SiO2)膜、4…下地膜。
1 ... glass plate, 2 ... a titanium oxide (TiO 2) layer, 3 ... silicon oxide (SiO 2) film, 4 ... base film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/00 C09K 3/00 S (72)発明者 荻野 悦男 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 堂下 和宏 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 3/00 C09K 3/00 S (72) Inventor Ogino Etsuo 3-5 Doshomachi, Chuo-ku, Osaka-shi, Osaka No. 11 Nippon Sheet Glass Co., Ltd. (72) Inventor Kazuhiro Doshita 3-5-11 Doshomachi, Chuo-ku, Osaka City, Osaka Inside Nippon Sheet Glass Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に直接若しくはアルカリ遮断用
の下地膜を介して光触媒としての酸化チタン層が形成さ
れ、この酸化チタン層の表面にオーバーコート層が形成
された親水性光触媒部材であって、前記酸化チタン層は
アナターゼ型の結晶構造を有し、結晶面(101),(11
2)及び(211)が基材表面に対してほぼ平行に配向され
ていることを特徴とする親水性光触媒部材。
1. A hydrophilic photocatalyst member comprising a titanium oxide layer as a photocatalyst formed directly on the surface of a base material or through an alkali blocking layer, and an overcoat layer formed on the surface of the titanium oxide layer. The titanium oxide layer has an anatase-type crystal structure and has crystal faces (101), (11).
2) and (211) are oriented substantially parallel to the substrate surface.
【請求項2】 請求項1に記載の親水性光触媒部材にお
いて、結晶面(200)が基材表面に対してほぼ平行に配
向されていることを特徴とする親水性光触媒部材。
2. The hydrophilic photocatalyst member according to claim 1, wherein the crystal plane (200) is oriented substantially parallel to the substrate surface.
【請求項3】 基材表面に直接若しくはアルカリ遮断用
の下地膜を介して光触媒としての酸化チタン層が形成さ
れ、この酸化チタン層の表面にオーバーコート層が形成
された親水性光触媒部材であって、前記酸化チタン層の
厚みは200nm以上で且つ酸化チタンの結晶子サイズ
が10nm以上50nm以下であることを特徴とする親
水性光触媒部材。
3. A hydrophilic photocatalyst member comprising a titanium oxide layer as a photocatalyst formed directly on a surface of a base material or via an alkali-shielding base film, and an overcoat layer formed on the surface of the titanium oxide layer. A thickness of the titanium oxide layer is 200 nm or more, and a crystallite size of the titanium oxide is 10 nm or more and 50 nm or less.
【請求項4】 請求項1乃至請求項3のいずれかに記載
の親水性光触媒部材において、前記酸化チタン層または
オーバーコート層の表面平均粗さ(Ra)を0.5〜2
5nmとしたことを特徴とする親水性光触媒部材。
4. The hydrophilic photocatalyst member according to claim 1, wherein the titanium oxide layer or the overcoat layer has a surface average roughness (Ra) of 0.5 to 2.
A hydrophilic photocatalyst member having a thickness of 5 nm.
【請求項5】 請求項1乃至請求項4のいずれかに記載
の親水性光触媒部材において、前記オーバーコート層
は、酸化珪素、酸化アルミニウム、酸化ジルコニウム、
酸化セリウム及び酸化チタンと他の酸化物との混合物か
ら選択される少なくとも1種からなることを特徴とする
親水性光触媒部材。
5. The hydrophilic photocatalyst member according to claim 1, wherein the overcoat layer comprises silicon oxide, aluminum oxide, zirconium oxide,
A hydrophilic photocatalyst member comprising at least one selected from a mixture of cerium oxide, titanium oxide, and another oxide.
【請求項6】 請求項1乃至請求項5のいずれかに記載
の親水性光触媒部材において、前記オーバーコート層の
厚みは0.1〜50nmであることを特徴とする親水性
光触媒部材。
6. The hydrophilic photocatalyst member according to claim 1, wherein the thickness of the overcoat layer is 0.1 to 50 nm.
【請求項7】 請求項1乃至請求項6のいずれかに記載
の親水性光触媒部材において、前記オーバーコート層
は、酸化珪素を80wt%以上含むことを特徴とする親
水性光触媒部材。
7. The hydrophilic photocatalyst member according to claim 1, wherein the overcoat layer contains silicon oxide in an amount of 80 wt% or more.
【請求項8】 請求項1乃至請求項7のいずれかに記載
の親水性光触媒部材において、この親水性部材は基材裏
面、基材と酸化チタン層の間または下地膜と酸化チタン
層の間に金属薄膜を形成したミラーであることを特徴と
する親水性光触媒部材。
8. The hydrophilic photocatalyst member according to claim 1, wherein the hydrophilic member is located between the back surface of the base material, between the base material and the titanium oxide layer, or between the base film and the titanium oxide layer. A hydrophilic photocatalyst member, which is a mirror having a metal thin film formed thereon.
JP34461199A 1998-12-03 1999-12-03 Hydrophilic photocatalytic member Expired - Fee Related JP3904355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34461199A JP3904355B2 (en) 1998-12-03 1999-12-03 Hydrophilic photocatalytic member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34470798 1998-12-03
JP10-344707 1998-12-03
JP34461199A JP3904355B2 (en) 1998-12-03 1999-12-03 Hydrophilic photocatalytic member

Publications (2)

Publication Number Publication Date
JP2000239047A true JP2000239047A (en) 2000-09-05
JP3904355B2 JP3904355B2 (en) 2007-04-11

Family

ID=26577815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34461199A Expired - Fee Related JP3904355B2 (en) 1998-12-03 1999-12-03 Hydrophilic photocatalytic member

Country Status (1)

Country Link
JP (1) JP3904355B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219072A (en) * 2000-02-09 2001-08-14 Kosei Kk Photocatalytic material having high orientation titanium oxide crystal-oriented film
WO2003028885A1 (en) * 2001-09-28 2003-04-10 Shibaura Mechatronics Corporation Photocatalyst element, method and device for preparing the same
JP2004323946A (en) * 2003-04-28 2004-11-18 New Industry Research Organization Micropatterning method by liquid phase deposition
US6997570B2 (en) 2003-04-03 2006-02-14 Kabushiki Kaisha Tokai-Rika-Denki Seisakusho Reflecting mirror
JP2007508933A (en) * 2003-10-23 2007-04-12 サン−ゴバン グラス フランス Substrate comprising at least one photocatalyst layer and an underlayer for heteroepitaxial growth of the layer, in particular a glass substrate
KR100718597B1 (en) 2006-01-23 2007-05-16 인터테크 주식회사 A method of making hydrophilic thin film
JP2007512154A (en) * 2003-10-23 2007-05-17 サン−ゴバン グラス フランス Substrates with a photocatalytic layer coated with a protective thin layer, in particular glass substrates
EP2035492A1 (en) * 2006-06-01 2009-03-18 Carrier Corporation Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
JP2009512573A (en) * 2005-10-21 2009-03-26 サン−ゴバン グラス フランス Antifouling material and method for producing the same
WO2010110729A1 (en) * 2009-03-24 2010-09-30 Oesterlund Lars Highly reactive photocatalytic material and manufacturing thereof
US8617478B2 (en) 2008-04-04 2013-12-31 Carrier Corporation Photocatalytic device with mixed photocatalyst/silica structure
WO2014080726A1 (en) * 2012-11-21 2014-05-30 株式会社 村上開明堂 Hydrophilic member and method for producing same
US8795588B2 (en) 2006-06-01 2014-08-05 Carrier Corporation Systems and methods for removal of contaminants from fluid streams
WO2016060165A1 (en) * 2014-10-17 2016-04-21 旭硝子株式会社 Transparent member, method for manufacturing transparent member and method for evaluating degree of soiling of surface of transparent member
CN112844384A (en) * 2020-12-25 2021-05-28 北京印刷学院 Photocatalytic device based on titanium dioxide/copper composite film and preparation method and application thereof
WO2022097661A1 (en) * 2020-11-04 2022-05-12 パナソニックIpマネジメント株式会社 Catalyst for food processing use, food processing apparatus, food processing method, and method for producing catalyst for food processing use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600168A (en) * 2020-10-26 2022-04-27 Pilkington Group Ltd Use of coated substrates

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573221B2 (en) * 2000-02-09 2010-11-04 国立大学法人長岡技術科学大学 Photocatalytic material having highly oriented titanium dioxide crystal orientation film
JP2001219072A (en) * 2000-02-09 2001-08-14 Kosei Kk Photocatalytic material having high orientation titanium oxide crystal-oriented film
KR100948542B1 (en) * 2001-09-28 2010-03-18 시바우라 메카트로닉스 가부시끼가이샤 Photocatalyst element, method and device for preparing the same
WO2003028885A1 (en) * 2001-09-28 2003-04-10 Shibaura Mechatronics Corporation Photocatalyst element, method and device for preparing the same
EP1442793A1 (en) * 2001-09-28 2004-08-04 Shibaura Mechatronics Corporation Photocatalyst element, method and device for preparing the same
US8022011B2 (en) 2001-09-28 2011-09-20 Shibaura Mechatronics Corporation Photocatalyst element, method and device for preparing the same
EP1442793A4 (en) * 2001-09-28 2007-04-25 Shibaura Mechatronics Corp Photocatalyst element, method and device for preparing the same
US7799731B2 (en) 2001-09-28 2010-09-21 Shibaura Mechatronics Corporation Photocatalyst element, method and device for preparing the same
US6997570B2 (en) 2003-04-03 2006-02-14 Kabushiki Kaisha Tokai-Rika-Denki Seisakusho Reflecting mirror
JP2004323946A (en) * 2003-04-28 2004-11-18 New Industry Research Organization Micropatterning method by liquid phase deposition
JP2007512154A (en) * 2003-10-23 2007-05-17 サン−ゴバン グラス フランス Substrates with a photocatalytic layer coated with a protective thin layer, in particular glass substrates
JP2007508933A (en) * 2003-10-23 2007-04-12 サン−ゴバン グラス フランス Substrate comprising at least one photocatalyst layer and an underlayer for heteroepitaxial growth of the layer, in particular a glass substrate
JP2009512573A (en) * 2005-10-21 2009-03-26 サン−ゴバン グラス フランス Antifouling material and method for producing the same
KR101402175B1 (en) * 2005-10-21 2014-06-19 쌩-고벵 글래스 프랑스 Antifouling material and production method thereof
KR100718597B1 (en) 2006-01-23 2007-05-16 인터테크 주식회사 A method of making hydrophilic thin film
EP2035492A1 (en) * 2006-06-01 2009-03-18 Carrier Corporation Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
EP2035492A4 (en) * 2006-06-01 2012-01-04 Carrier Corp Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
US8795588B2 (en) 2006-06-01 2014-08-05 Carrier Corporation Systems and methods for removal of contaminants from fluid streams
US8617478B2 (en) 2008-04-04 2013-12-31 Carrier Corporation Photocatalytic device with mixed photocatalyst/silica structure
EP2411143A4 (en) * 2009-03-24 2014-01-29 Lars Oesterlund Highly reactive photocatalytic material and manufacturing thereof
WO2010110729A1 (en) * 2009-03-24 2010-09-30 Oesterlund Lars Highly reactive photocatalytic material and manufacturing thereof
EP2411143A1 (en) * 2009-03-24 2012-02-01 Österlund, Lars Highly reactive photocatalytic material and manufacturing thereof
WO2014080726A1 (en) * 2012-11-21 2014-05-30 株式会社 村上開明堂 Hydrophilic member and method for producing same
JP2014100871A (en) * 2012-11-21 2014-06-05 Murakami Corp Hydrophilic member and method for manufacturing the same
US10042090B2 (en) 2012-11-21 2018-08-07 Murakami Corporation Hydrophilic member and method for manufacturing same
WO2016060165A1 (en) * 2014-10-17 2016-04-21 旭硝子株式会社 Transparent member, method for manufacturing transparent member and method for evaluating degree of soiling of surface of transparent member
WO2022097661A1 (en) * 2020-11-04 2022-05-12 パナソニックIpマネジメント株式会社 Catalyst for food processing use, food processing apparatus, food processing method, and method for producing catalyst for food processing use
JPWO2022097661A1 (en) * 2020-11-04 2022-05-12
JP7325004B2 (en) 2020-11-04 2023-08-14 パナソニックIpマネジメント株式会社 Food processing photocatalyst, food processing apparatus, food processing method, and method for producing food processing photocatalyst
CN112844384A (en) * 2020-12-25 2021-05-28 北京印刷学院 Photocatalytic device based on titanium dioxide/copper composite film and preparation method and application thereof
CN112844384B (en) * 2020-12-25 2023-08-11 北京印刷学院 Photocatalytic device based on titanium dioxide/copper composite film and preparation method and application thereof

Also Published As

Publication number Publication date
JP3904355B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP4414361B2 (en) Substrate with photocatalytic coating
JP3781888B2 (en) Hydrophilic substrate and method for producing the same
KR101265729B1 (en) Substrate having a photocatalytic coating
KR101131157B1 (en) Substrate, in particular glass substrate, supporting a photocatalytic layer coated with a protective thin layer
JP2000239047A (en) Hydrophilic photocatalytic member
JP5101789B2 (en) Visible light-responsive photoactive coating, coated article, and method for producing the same
US7842338B2 (en) Methods of obtaining photoactive coatings and/or anatase crystalline phase of titanium oxides
US7985443B2 (en) Self-cleaning lighting device
JP2014133700A (en) Photo-induced hydrophilic article and production method thereof
JP2004535922A (en) Photoactive coatings, coated articles and methods of making the same
JPH09225387A (en) Hydrophilic member and method to make surface of member hydrophilic
RU2481364C2 (en) Intermediate layers providing improved top layer functionality
WO2010032445A1 (en) Hydrophilic films and components and structures using same
WO2004108283A1 (en) Photocatalyst member
US6602607B2 (en) Titanium doxide photocatalyst carrier and process for its production
TW201141805A (en) Photocatalytic material and glazing or photovoltaic cell comprising this material
JP3518240B2 (en) Manufacturing method of laminate
GB2327428A (en) Photocatalytic glass article
WO2002042517A1 (en) Composite element and method for preparation thereof
JP2002309225A (en) Hydrophilization treatment of substrate
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JPH11180736A (en) Glass provided with multilayer film
JP3440230B2 (en) Low emissivity antifouling coating on glass substrates
JP3925179B2 (en) Anti-fogging and antifouling article and method for producing the same
JP5991794B2 (en) Light-induced hydrophilic article and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees