JP2001219072A - Photocatalytic material having high orientation titanium oxide crystal-oriented film - Google Patents

Photocatalytic material having high orientation titanium oxide crystal-oriented film

Info

Publication number
JP2001219072A
JP2001219072A JP2000032344A JP2000032344A JP2001219072A JP 2001219072 A JP2001219072 A JP 2001219072A JP 2000032344 A JP2000032344 A JP 2000032344A JP 2000032344 A JP2000032344 A JP 2000032344A JP 2001219072 A JP2001219072 A JP 2001219072A
Authority
JP
Japan
Prior art keywords
crystal
titanium dioxide
film
substrate
crystal orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000032344A
Other languages
Japanese (ja)
Other versions
JP4573221B2 (en
Inventor
Hidetoshi Saito
秀俊 斎藤
Norio Tanaka
教雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSEI KK
Original Assignee
KOSEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSEI KK filed Critical KOSEI KK
Priority to JP2000032344A priority Critical patent/JP4573221B2/en
Publication of JP2001219072A publication Critical patent/JP2001219072A/en
Application granted granted Critical
Publication of JP4573221B2 publication Critical patent/JP4573221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalytic material remarkably excellent in photocatalytic characteristics such as antibacterial action, station-proofing action and super-hydrophilic action. SOLUTION: This photocatalytic material is obtained by forming a titanium oxide crystal-oriented film oriented in the direction vertical with respect to the crystal face i.e. in (112) direction on the surface of a substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属、ガラス、陶
磁器、セラミックスやプラスチック等の各種基材の表面
に、二酸化チタンからなる結晶配向膜を有する光触媒材
料に関する。本発明の二酸化チタン結晶配向膜を有する
光触媒材料は、抗菌作用、防汚作用、超親水性作用等の
優れた特性を有し、調理器具、食器、冷蔵庫等の厨房用
品、医療用器具、トイレや洗面所用材料、エアコンのフ
イルター、電子部品、建築材料、道路関連資材等に巾広
く用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalytic material having a crystal orientation film made of titanium dioxide on the surface of various substrates such as metal, glass, ceramics, ceramics and plastics. The photocatalyst material having a titanium dioxide crystal orientation film of the present invention has excellent properties such as antibacterial action, antifouling action, superhydrophilic action, etc., kitchen utensils, tableware, kitchenware such as refrigerators, medical utensils, and toilets. It is widely used for materials for toilets and toilets, filters for air conditioners, electronic components, building materials, road-related materials, and the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】二酸化
チタン薄膜が光触媒反応による種々の機能を持つことは
従来から知られており、金属材料、半導体素子、プラス
チック材料等の各種基材表面に二酸化チタン薄膜を形成
して反射防止材料、センサー材料、絶縁材料等として用
いることも公知である。また、これらの基材表面に二酸
化チタン薄膜を形成する方法としては、コーティング
法、浸漬法、スパッタリング法や、酸素ガス雰囲気内に
加熱蒸発させた金属蒸気を導入して反応させる熱CVD
法等が知られている。
2. Description of the Related Art It has been known that a titanium dioxide thin film has various functions by a photocatalytic reaction, and a titanium dioxide thin film is formed on a surface of various base materials such as a metal material, a semiconductor element and a plastic material. It is also known to form a titanium thin film and use it as an antireflection material, a sensor material, an insulating material, or the like. As a method of forming a titanium dioxide thin film on the surface of these substrates, there are a coating method, an immersion method, a sputtering method, and a thermal CVD in which a metal vapor heated and evaporated is introduced into an oxygen gas atmosphere and reacted.
The law is known.

【0003】これら従来の二酸化チタン薄膜形成方法の
うち、コーティング法や浸漬法では二酸化チタンの結晶
配向膜を得ることはできず、スパッタリング法において
は、得られる薄膜の結晶構造を制御することは困難であ
る。また、従来の熱CVD法においては、基材表面に結
晶性の二酸化チタン薄膜を形成させるためには、基材を
通常500〜800℃程度の高温に加熱し、且つ薄膜の
形成を密閉されたメッキ室で減圧下で行う必要があっ
た。この従来の熱CVD法では、二酸化チタン薄膜の堆
積速度はきわめて遅く、得られる薄膜の結晶構造を制御
することは困難であり、ある特定方向に配向された結晶
配向膜を得ることはできなかった。
[0003] Among these conventional methods of forming a titanium dioxide thin film, a crystal orientation film of titanium dioxide cannot be obtained by a coating method or an immersion method, and it is difficult to control the crystal structure of the obtained thin film by a sputtering method. It is. Further, in the conventional thermal CVD method, in order to form a crystalline titanium dioxide thin film on the surface of the substrate, the substrate is usually heated to a high temperature of about 500 to 800 ° C., and the formation of the thin film is sealed. This had to be performed under reduced pressure in the plating chamber. In this conventional thermal CVD method, the deposition rate of the titanium dioxide thin film is extremely low, it is difficult to control the crystal structure of the obtained thin film, and it has not been possible to obtain a crystal orientation film oriented in a specific direction. .

【0004】本発明者らは、先に気化させたチタンアル
コキシドを担体となる不活性ガスとともに、大気圧開放
下で加熱された基材表面に吹き付けて得られる、基材表
面に二酸化チタン結晶配向膜を有する材料が優れた光触
媒特性を発揮することを見出し、特開平10−1523
96号公報として提案した。本発明者らは、二酸化チタ
ン結晶配向膜の光触媒特性についてさらに検討した結
果、基材表面にある特定方向に配向された二酸化チタン
結晶配向膜を有する材料が、他の二酸化チタン結晶配向
膜を有する材料に比較して格段に優れた光触媒特性を発
揮することを見出し、本発明を完成したものである。す
なわち、本発明は、抗菌作用、防汚作用、超親水性作用
等の光触媒特性が著しく優れた光触媒材料を提供するこ
とを目的とするものである。
The present inventors have proposed that titanium dioxide crystallized on a substrate surface obtained by spraying a titanium alkoxide previously vaporized together with an inert gas serving as a carrier onto a substrate surface heated under atmospheric pressure. It has been found that a material having a film exhibits excellent photocatalytic properties.
No. 96 was proposed. The present inventors have further examined the photocatalytic properties of the titanium dioxide crystal orientation film, and found that the material having the titanium dioxide crystal orientation film oriented in a specific direction on the substrate surface has another titanium dioxide crystal orientation film. The present invention has been found to exhibit remarkably excellent photocatalytic properties as compared with materials, and has completed the present invention. That is, an object of the present invention is to provide a photocatalytic material having remarkably excellent photocatalytic properties such as an antibacterial action, an antifouling action, and a superhydrophilic action.

【0005】[0005]

【課題を解決するための手段】本発明の高配向二酸化チ
タン結晶配向膜を有する光触媒材料は、つぎの構成を有
する。 1.基材表面に、結晶表面と垂直方向に(112)方向
に配向された二酸化チタン結晶配向膜を有する光触媒材
料。 2.結晶配向膜の厚さが0.1μm以上であることを特
徴とする1に記載の光触媒材料。 3.結晶配向膜を形成する結晶の粒径が0.01〜10
μmであり、粒径分布が実質的に平均値±100%であ
ることを特徴とする1又は2に記載の光触媒材料。 4.結晶配向膜が網目構造を有するものであることを特
徴とする1〜3のいずれか1項に記載の光触媒材料。 5.基材が金属であることを特徴とする1〜4のいずれ
か1項に記載の光触媒材料。 6.基材がガラス、陶磁器、セラミックス、またはプラ
スチックであることを特徴とする1〜4のいずれか1項
に記載の光触媒材料。 7.基材が単結晶配向膜を有する材料であることを特徴
とする1〜6のいずれか1項に記載の光触媒材料。 8.7に記載の光触媒材料により構成された電子部品。
Means for Solving the Problems The photocatalyst material having a highly oriented titanium dioxide crystal oriented film of the present invention has the following constitution. 1. A photocatalytic material having, on a substrate surface, a titanium dioxide crystal orientation film oriented in the (112) direction perpendicular to the crystal surface. 2. 2. The photocatalyst material according to 1, wherein the thickness of the crystal orientation film is 0.1 μm or more. 3. The grain size of the crystal forming the crystal orientation film is 0.01 to 10
3. The photocatalytic material according to 1 or 2, wherein the photocatalyst material has a particle size distribution of substantially ± 100%. 4. 4. The photocatalyst material according to any one of items 1 to 3, wherein the crystal orientation film has a network structure. 5. The photocatalyst material according to any one of claims 1 to 4, wherein the substrate is a metal. 6. The photocatalyst material according to any one of claims 1 to 4, wherein the substrate is glass, porcelain, ceramics, or plastic. 7. 7. The photocatalyst material according to any one of 1 to 6, wherein the substrate is a material having a single crystal orientation film. An electronic component comprising the photocatalyst material according to 8.7.

【0006】本発明において、二酸化チタン結晶配向膜
とは、二酸化チタンの単結晶からなる配向膜ならびに多
結晶からなる配向膜を意味する。ここで、単結晶配向膜
とは、材料学の分野で通常用いられるように、配向膜全
体が単一の結晶で構成されたものだけではなく、配向膜
が三次元方向の結晶方位が一致する多数の結晶により構
成されたものをも包含するものである。上記本発明の特
定方向に配向された二酸化チタン結晶配向膜を有する材
料は、気化させたチタンアルコキシド(原料錯体)を担
体となる不活性ガスとともに、大気圧開放下で加熱され
た基材表面に吹き付けることによって、製造することが
できる。
In the present invention, the titanium dioxide crystal oriented film means an oriented film made of a single crystal of titanium dioxide and an oriented film made of a polycrystal. Here, the single-crystal alignment film is not limited to a single-crystal alignment film, which is generally used in the field of materials science, and the alignment film has the same three-dimensional crystal orientation as the alignment film. It also includes those composed of a large number of crystals. The material having a titanium dioxide crystal oriented film oriented in a specific direction according to the present invention is obtained by coating a vaporized titanium alkoxide (raw material complex) together with an inert gas serving as a carrier on the surface of a substrate heated under atmospheric pressure. It can be manufactured by spraying.

【0007】[0007]

【発明の実施の形態】本発明の二酸化チタン結晶配向膜
を有する材料に用いられる基材としては、特に制限はな
く、二酸化チタンの吹き付け時の加熱に耐えられる材料
はいずれも使用可能であるが、通常は金属、ガラス、セ
ラミックス、陶磁器及びプラスチック等を使用する。好
適な材料としては、例えばステンレス鋼や鉄等の金属、
Si単結晶、窒化珪素や炭化珪素の焼結体、チタン酸ス
トロンチウム、酸化マグネシウムやサファイア等の酸化
物単結晶等が挙げられる。基材としてSi単結晶、チタ
ン酸ストロンチウム単結晶、酸化マグネシウムやサファ
イア等の酸化物単結晶等の単結晶配向膜を有する基材を
使用した場合には、超伝導特性が改善され、レーザー発
振を起こす等電子部品材料として好ましい性状を有する
ものとなる。これらの単結晶配向膜を有する基材として
は、市販品を使用することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The substrate used for the material having a crystal orientation film of titanium dioxide of the present invention is not particularly limited, and any material that can withstand the heating during spraying of titanium dioxide can be used. Usually, metals, glasses, ceramics, ceramics, plastics and the like are used. Suitable materials include, for example, metals such as stainless steel and iron,
Examples thereof include a single crystal of Si, a sintered body of silicon nitride and silicon carbide, and a single crystal of oxide such as strontium titanate, magnesium oxide and sapphire. When a substrate having a single crystal oriented film such as a single crystal of Si, a single crystal of strontium titanate, or a single crystal of oxide such as magnesium oxide or sapphire is used as a substrate, the superconducting properties are improved and laser oscillation is improved. It has properties that are preferable as electronic component materials such as raised. Commercially available products can be used as the substrate having these single crystal alignment films.

【0008】二酸化チタン結晶配向膜を形成する原料と
しては、一般式 Ti(OR)で表されるチタンアル
コキシドを使用する。(式中、Rは炭素数2〜10のア
ルキル基を表す。)これらのチタンアルコキシドの中で
は、Ti(OC(以下、「TTE」と略
記する)、Ti(O−i−C(以下、
「TTIP」と略記する)、Ti(O−n−C
(以下、「TTNB」と略記する)が好まし
く、中でもTTIPは二酸化チタンの堆積速度が速く、
得られる配向膜の結晶構造の制御も容易であることか
ら、特に好ましい原料である。
As a raw material for forming a titanium dioxide crystal orientation film, a titanium alkoxide represented by the general formula Ti (OR) 4 is used. (In the formula, R represents an alkyl group having 2 to 10 carbon atoms.) Among these titanium alkoxides, Ti (OC 2 H 5 ) 4 (hereinafter abbreviated as “TTE”), Ti (O-i -C 3 H 7 ) 4 (hereinafter, referred to as
Abbreviated as “TTIP”), Ti (On-C 4 H)
9 ) 4 (hereinafter abbreviated as “TTNB”) is preferable, and among them, TTIP has a high deposition rate of titanium dioxide,
This is a particularly preferable raw material because the crystal structure of the obtained alignment film can be easily controlled.

【0009】本発明では、上記原料錯体を気化器で気化
し、担体となる不活性ガスとともに、大気圧開放下で加
熱された基材表面に吹き付け、基材表面に二酸化チタン
の結晶配向膜を形成する。担体となる不活性ガスとして
は、特に制限はなく、窒素、ヘリウム、アルゴン等通常
用いられる不活性ガスはいずれも使用可能であるが、経
済性等の点で窒素ガスを使用することが好ましく、中で
も液体窒素を通して水分を除去した窒素ガスを使用する
ことが特に好ましい。原料錯体の気化温度は、原料の種
類に応じて調整するが、例えばTTE、TTIP、TT
NBの場合には、70〜150℃とすることが好まし
い。
In the present invention, the raw material complex is vaporized in a vaporizer and sprayed together with an inert gas serving as a carrier onto the surface of the heated substrate under atmospheric pressure to form a crystal orientation film of titanium dioxide on the surface of the substrate. Form. The inert gas serving as a carrier is not particularly limited, and any commonly used inert gas such as nitrogen, helium, and argon can be used.However, it is preferable to use nitrogen gas from the viewpoint of economy and the like. Among them, it is particularly preferable to use nitrogen gas from which water has been removed through liquid nitrogen. The vaporization temperature of the raw material complex is adjusted according to the type of the raw material, for example, TTE, TTIP, TT
In the case of NB, the temperature is preferably set to 70 to 150 ° C.

【0010】不活性ガス担体により運ばれた原料錯体
を、大気圧開放下で加熱された基材表面に吹き付けるに
あたっては、図1にみられるように、加熱炉10内の加
熱台11上に基材20を載置し、スリット型のノズル9
から基材に吹き付ける。また、基材をローラー、ベル
ト、チェイン等の搬送体上に載置して加熱炉内を移動さ
せ、スリット型のノズルから移動する基材表面に原料錯
体を吹き付けるようにした場合には、板状、棒状、線
状、パイプ状等の長尺状の基材や、皿、トレー等種々の
形状にあらかじめ成形した基材の表面に、連続的に二酸
化チタンの結晶配向膜を形成することが可能となる。ノ
ズルから不活性担体ガスとともに大気中に噴出した原料
錯体は、空気中の水により加水分解され、加熱された基
材表面で二酸化チタン結晶配向膜を形成する。
In spraying the raw material complex carried by the inert gas carrier onto the surface of the substrate heated under atmospheric pressure, the base is placed on a heating table 11 in a heating furnace 10 as shown in FIG. The material 20 is placed on the slit type nozzle 9
Spray on the substrate. When the substrate is placed on a carrier such as a roller, a belt, or a chain and moved in the heating furnace, and the raw material complex is sprayed on the surface of the substrate moving from the slit-type nozzle, It is possible to continuously form a crystalline orientation film of titanium dioxide on the surface of a long base material such as rod, line, pipe, or various shapes such as dishes and trays. It becomes possible. The raw material complex ejected into the atmosphere together with the inert carrier gas from the nozzle is hydrolyzed by water in the air, and forms a titanium dioxide crystal orientation film on the heated substrate surface.

【0011】本発明の、基材表面に結晶表面と垂直方向
に(112)方向に配向された二酸化チタン結晶配向膜
を有する光触媒材料は、基材の種類と温度、原料の種類
と気化温度、担体ガスの流量等を調整することによっ
て、所望の膜の厚さ、結晶の粒径や粒度分布を有するも
のとすることができる。本発明の光触媒材料は、次のよ
うな光触媒作用が、他の方向に配向された二酸化チタン
結晶配向膜を有するものに比較して、著しく優れたもの
であることが判明した。
The photocatalyst material of the present invention having a titanium dioxide crystal oriented film oriented on the surface of the substrate in the direction (112) perpendicular to the crystal surface, comprises: the type and temperature of the substrate; By adjusting the flow rate of the carrier gas and the like, it is possible to obtain a desired film thickness, crystal grain size, and particle size distribution. It has been found that the photocatalytic material of the present invention has significantly the following photocatalytic effects as compared with those having a titanium dioxide crystal oriented film oriented in other directions.

【0012】(1)顕著な抗菌作用(制菌作用及び滅菌
作用)を有するとともに、死滅した菌や毒素等の菌の産
生物を分解することができるので、汚れを防止し持続性
のある抗菌作用を発揮する。 (2)汚れの付着を防止するとともに、付着した汚れを
分解し、自然に降る雨や水洗により簡単に除去して表面
の光沢を維持する。 (3)臭いの元となる物質を分解し、脱臭、消臭作用を
有する。 (4)紫外線照射により水との接触角が減少して0度に
近くなり、水を弾かなくなる。したがって、表面に水滴
が形成されず一様な水膜となり、曇りを防止することが
できる。 (5)空気中の窒素酸化物(NOx)や硫黄酸化物(S
0x)を分解し、空気を浄化する。 (6)有機ハロゲン化合物や油分等の水中の汚染物質を
分解し、水を浄化する。したがって、これら特定方向に
配向された二酸化チタン結晶配向膜を表面に有する材料
は、上記の特性を生かして医療器具、食器、調理用具、
冷蔵庫、冷蔵車両、洗面所や台所用品、内装材、外装材
ほか各種の建築材料、道路関連資材、エアコンのフイル
ター、電子部品等の材料として、巾広く使用することが
できるものである。
(1) It has a remarkable antibacterial action (bacteriostatic action and sterilizing action) and can decompose dead bacteria and products of fungi such as toxins. It works. (2) Prevents the adhesion of dirt, decomposes the dirt, and easily removes it by naturally falling rain or water washing to maintain the surface gloss. (3) It decomposes substances that cause odor, and has a deodorizing and deodorizing action. (4) The contact angle with water decreases due to the irradiation of ultraviolet rays, becomes close to 0 degrees, and water does not repel. Therefore, no water droplets are formed on the surface and a uniform water film is formed, so that fogging can be prevented. (5) Nitrogen oxides (NOx) and sulfur oxides (S
0x) to purify the air. (6) Purify water by decomposing contaminants in water such as organic halogen compounds and oils. Therefore, a material having a titanium dioxide crystal orientation film oriented in these specific directions on the surface is a medical device, tableware, cooking utensil,
It can be widely used as a material for refrigerators, refrigerated vehicles, washrooms and kitchenware, interior materials, exterior materials, various building materials, road-related materials, air conditioner filters, electronic components, and the like.

【0013】本発明によれば、基材表面に形成する結晶
配向膜の膜厚は、所望のものとすることができるが、膜
厚を0.1μm以上とすることによって基材に抗菌性を
はじめとする種々の特性を付与することができるので、
通常は0.1〜10μm、好ましくは0.2〜2.0μ
mとする。また、配向膜を形成する結晶の粒径は、可視
光線及び紫外線の波長と同程度とした場合に抗菌性等の
光触媒特性が特に優れたものが得られ、特に、粒径分布
のそろった結晶配向膜とした場合にはその効果が著し
い。したがって、結晶粒径として、0.1〜10μm、
粒径分布が実質的に平均値±100%である結晶配向膜
とすることが好ましく、粒径分布が平均値±50%であ
る結晶配向膜とすることが特に好ましい。本発明におけ
る結晶の粒径分布は、材料学の分野での常法に従い、つ
ぎのようにして算出する。すなわち、図2にみられるよ
うに、横軸に配向膜を構成する各結晶の粒径(最大直
径)、縦軸に結晶の個数をとって描いたヒストグラムに
おいて、縦軸の最大値Yの50%以上のものを対象
として(図2の斜線部)、結晶粒径の平均値及び粒径分
布を算出するものである。また、他の好ましい材料とし
ては、二酸化チタンの結晶配向膜が網目構造を有するも
のが挙げられる。これらの材料としては、必要に応じて
基材表面に二酸化チタンの結晶配向膜形成後に、酸素雰
囲気下でアニーリング処理を施したものを使用すること
ができる。本発明で、結晶配向膜が網目構造を有すると
は、針状の結晶が交差した状態のものや、ハニカム状に
配列した状態のものを意味する。そして、酸素雰囲気下
でアニーリング処理をするとは、二酸化チタンからなる
結晶配向膜を大気圧下、電気炉を用いて酸素気流中で3
00℃〜600℃の任意の温度で数時間加熱することを
意味する。
According to the present invention, the thickness of the crystal orientation film formed on the surface of the substrate can be any desired value. Since various properties can be given, including
Usually 0.1 to 10 μm, preferably 0.2 to 2.0 μm
m. In addition, when the particle size of the crystal forming the alignment film is about the same as the wavelength of visible light and ultraviolet light, a photocatalytic property such as antibacterial property can be obtained, and in particular, a crystal having a uniform particle size distribution can be obtained. The effect is remarkable when an orientation film is used. Therefore, the crystal grain size is 0.1 to 10 μm,
It is preferable that the crystal orientation film has a particle size distribution of substantially an average value ± 100%, and it is particularly preferable that the crystal orientation film has a particle size distribution of an average value ± 50%. The particle size distribution of the crystals in the present invention is calculated as follows according to a conventional method in the field of materials science. That is, as seen in FIG. 2, the particle size of the crystals constituting the alignment film on the horizontal axis (maximum diameter), in the vertical axis of the histogram depicting taking the number of the crystal, the vertical axis of the maximum value Y 1 The average value of the crystal grain size and the grain size distribution are calculated for 50% or more (shaded portions in FIG. 2). Further, as another preferable material, a material in which the crystal orientation film of titanium dioxide has a network structure can be cited. As these materials, if necessary, after forming a crystal orientation film of titanium dioxide on the surface of the base material, those subjected to an annealing treatment in an oxygen atmosphere can be used. In the present invention, that the crystal orientation film has a network structure means a state in which needle-like crystals intersect or a state in which the crystals are arranged in a honeycomb shape. Then, annealing treatment in an oxygen atmosphere means that a crystal orientation film made of titanium dioxide is placed in an oxygen gas stream at atmospheric pressure using an electric furnace.
This means heating at an arbitrary temperature of 00C to 600C for several hours.

【0014】[0014]

【実施例】つぎに、本発明を実施例により説明するが、
本発明がこれらの実施例により限定されるものではない
ことは言うまでもない。図1は、以下の実施例において
使用する大気圧開放型熱CVD装置を示す模式図であ
る。図1において、符号1はボンベ等の窒素ガス供給
源、符号2は流量計、符号3は液体窒素を入れたトラッ
プ、符号4、5、6は配管中に設けられたバルブを表
す。符号7は原料となるチタンアルコキシド8の気化
器、符号9は下部に所定幅のスリットを設けたスリット
型ノズル、また符号10は加熱炉(電気炉)、符号11
は基材20を載置する加熱台を表す。窒素ガス供給源1
から供給された窒素ガスは、流量計2を通して液体窒素
を入れたトラップ3に送られ、水分を除去した後にバル
ブ4及び6に送られる。バルブ4を通った窒素ガスは、
気化器7内の液状のチタンアルコキシド8中に気泡とし
て放出されチタンアルコキシドの気化を助ける。気化さ
れたチタンアルコキシドと窒素ガスとの混合ガスは、バ
ルブ5を経てバルブ6から送られた窒素ガスと混合さ
れ、スリット型ノズル9に送られて、加熱炉10内の加
熱台11上で加熱された基材20の表面に吹き付けら
れ、二酸化チタン結晶配向膜が形成される。
Next, the present invention will be described with reference to examples.
It goes without saying that the present invention is not limited by these examples. FIG. 1 is a schematic diagram showing an atmospheric pressure open type thermal CVD apparatus used in the following examples. In FIG. 1, reference numeral 1 denotes a nitrogen gas supply source such as a cylinder, reference numeral 2 denotes a flow meter, reference numeral 3 denotes a trap containing liquid nitrogen, and reference numerals 4, 5, and 6 denote valves provided in piping. Reference numeral 7 denotes a vaporizer of titanium alkoxide 8 serving as a raw material, reference numeral 9 denotes a slit type nozzle having a slit having a predetermined width at a lower portion, reference numeral 10 denotes a heating furnace (electric furnace), and reference numeral 11
Represents a heating table on which the substrate 20 is placed. Nitrogen gas supply source 1
Is supplied through a flow meter 2 to a trap 3 containing liquid nitrogen, and after removing moisture, is sent to valves 4 and 6. The nitrogen gas passing through the valve 4
It is released as bubbles into the liquid titanium alkoxide 8 in the vaporizer 7 to help vaporize the titanium alkoxide. The mixed gas of the vaporized titanium alkoxide and the nitrogen gas is mixed with the nitrogen gas sent from the valve 6 via the valve 5, sent to the slit type nozzle 9, and heated on the heating table 11 in the heating furnace 10. Is sprayed on the surface of the base material 20 thus formed, and a titanium dioxide crystal orientation film is formed.

【0015】(実施例1)原料錯体としてTTIPを用
い、気化器温度120℃、窒素ガス流量1.5l/mi
nでTTIPを気化させた。基材として、厚さ0.5m
mで20mm×20mmの石英ガラス基材を、350℃
に加熱した加熱炉内の吹き出しスリットの下、20mm
の位置に置き、気化させたTTIPを吹き付けた。TT
IPは大気中の水と反応して二酸化チタンとなり、石英
ガラス基材上に堆積して、優先配向方向が結晶表面と垂
直方向に(112)方向である、膜厚1μmのアナター
ゼ型二酸化チタン結晶配向膜が生成した。この配向膜の
結晶の粒径は0.05〜0.25μmで、粒径分布は
0.15±0.10μmであった。この配向膜のX線回
折の結果を図3に、また表面のSEM写真を図4に示
す。
Example 1 TTIP was used as a starting material complex, a vaporizer temperature was 120 ° C., and a nitrogen gas flow rate was 1.5 l / mi.
n vaporized TTIP. 0.5m thick as base material
20 mm x 20 mm quartz glass substrate at 350 ° C
20mm below the blowing slit in the heating furnace
And sprayed with vaporized TTIP. TT
The IP reacts with water in the atmosphere to form titanium dioxide, which is deposited on a quartz glass substrate, and has a 1 μm-thick anatase-type titanium dioxide crystal having a preferred orientation direction (112) perpendicular to the crystal surface. An alignment film was formed. The crystal grain size of this alignment film was 0.05 to 0.25 μm, and the grain size distribution was 0.15 ± 0.10 μm. FIG. 3 shows the result of X-ray diffraction of this alignment film, and FIG. 4 shows an SEM photograph of the surface.

【0016】(比較例1)気化器温度100℃、加熱炉
温度400℃としたほかは、実施例1と同様にして、石
英ガラス基材上にアナターゼ型二酸化チタン結晶配向膜
を形成した。この結晶配向膜の優先配向方向は、結晶表
面と垂直方向に(110)方向であった。
Comparative Example 1 An anatase-type titanium dioxide crystal oriented film was formed on a quartz glass substrate in the same manner as in Example 1 except that the vaporizer temperature was set to 100 ° C. and the heating furnace temperature was set to 400 ° C. The preferred orientation direction of this crystal orientation film was the (110) direction perpendicular to the crystal surface.

【0017】(比較例2)気化器温度130℃、加熱炉
温度400℃としたほかは、実施例1と同様にして、石
英ガラス基材上にアナターゼ型二酸化チタン結晶配向膜
を形成した。この結晶配向膜の優先配向方向は、結晶表
面と垂直方向に(001)方向であった。
Comparative Example 2 An anatase-type titanium dioxide crystal oriented film was formed on a quartz glass substrate in the same manner as in Example 1 except that the vaporizer temperature was 130 ° C. and the heating furnace temperature was 400 ° C. The preferred orientation direction of this crystal orientation film was (001) perpendicular to the crystal surface.

【0018】(比較例3)気化器温度60℃、加熱炉温
度500℃としたほかは、実施例1と同様にして、石英
ガラス基材上にアナターゼ型二酸化チタン結晶配向膜を
形成した。この結晶配向膜の優先配向方向は、結晶表面
と垂直方向に(100)方向であった。
Comparative Example 3 An anatase-type titanium dioxide crystal oriented film was formed on a quartz glass substrate in the same manner as in Example 1 except that the vaporizer temperature was 60 ° C. and the heating furnace temperature was 500 ° C. The preferred orientation direction of this crystal orientation film was the (100) direction perpendicular to the crystal surface.

【0019】(メチレンブルー還元試験)上記各例で得
られた、基材表面に二酸化チタン結晶配向膜を形成した
光触媒材料から10mm×10mmの試験片をそれぞれ
作製し、光触媒活性を測定するために、つぎのようにし
てメチレンブルーの還元試験を行った。一般に、メチレ
ンブルーの還元速度が速いほど、光触媒活性が大きいと
理解されている。内寸法が縦10mm、横10mm、深
さ1mmのパイレックスガラス製セル中に濃度1mmo
l/lのメチレンブルー水溶液を滴下し、各試験片を封
入した。各試験片上には直径8mm、厚さ25μmのス
ペーサを載置し、各試験片上に存在するメチレンブルー
溶液の量を1.25mmとした。このセルに、30m
mの距離から中心波長352nmの紫外線蛍光ランプを
照射した。試験片上の紫外線強度は1mW/cmであ
った。未照射及び5分照射後のメチレンブルーの波長5
80nmにおける吸光度を色差計で測定し、メチレンブ
ルーが完全に還元されたときの相対吸光度を0として各
試験片の相対吸光度を算出した結果を表1に示した。比
較のため、二酸化チタン結晶配向膜を形成していない石
英ガラス基材自体についても相対吸光度を算出し、表1
に記載した。
(Methylene blue reduction test) Test pieces of 10 mm x 10 mm were prepared from the photocatalyst material obtained by forming the titanium dioxide crystal orientation film on the substrate surface obtained in each of the above examples, and the photocatalytic activity was measured. A methylene blue reduction test was performed as follows. It is generally understood that the faster the reduction rate of methylene blue, the greater the photocatalytic activity. Concentration of 1 mmo in Pyrex glass cell with inner dimensions of 10 mm length, 10 mm width and 1 mm depth
A 1 / l methylene blue aqueous solution was dropped, and each test piece was sealed. A spacer having a diameter of 8 mm and a thickness of 25 μm was placed on each test piece, and the amount of the methylene blue solution present on each test piece was 1.25 mm 3 . 30m in this cell
An ultraviolet fluorescent lamp having a center wavelength of 352 nm was irradiated from a distance of m. The ultraviolet intensity on the test piece was 1 mW / cm 2 . Methylene blue wavelength 5 after unirradiated and after 5 minutes irradiation
The absorbance at 80 nm was measured with a color difference meter, and the relative absorbance of each test piece was calculated assuming that the relative absorbance when methylene blue was completely reduced was 0, and the results are shown in Table 1. For comparison, relative absorbance was also calculated for the quartz glass substrate itself on which the titanium dioxide crystal orientation film was not formed.
It described in.

【0020】[0020]

【表1】 [Table 1]

【0021】(抗菌性試験)上記各例で得られた、基材
表面に二酸化チタン結晶配向膜を形成した光触媒材料か
ら、20mm×20mmの試験片をそれぞれ作製し、次
のようにして抗菌性試験を行った。予め、増菌、計測し
た液体培養の一般細菌(Bacillus subtilis)を、10
オーダーになるように上記各試験片に塗布し、これに
ブラックライトを30mmの距離で、3時間照射する。
試験片上の紫外線強度は、1mW/cmであった。そ
の後、生理食塩水9mlを入れ、よく混和し、常法(衛
生試験法:日本薬学会編1980年度版)に従い、定量
採り標準寒天培地にて、35℃で48時間培養、計測し
た。比較のために、二酸化チタン結晶配向膜を有さない
ステンレス鋼試験片及び石英ガラス基板試験片について
も同様に処理して、菌数を計測した。結果を表2に示
す。
(Antibacterial test) From the photocatalyst material obtained in each of the above examples and having a titanium dioxide crystal orientation film formed on the substrate surface, test pieces of 20 mm x 20 mm were prepared, and the antibacterial properties were as follows. The test was performed. In general, 10 bacteria of Bacillus subtilis, which had been enriched and measured, were
The test piece is applied to each of the above test pieces so as to have an order of 5 and black light is irradiated on the test piece at a distance of 30 mm for 3 hours.
The ultraviolet intensity on the test piece was 1 mW / cm 2 . Thereafter, 9 ml of physiological saline was added thereto, mixed well, and quantified according to a conventional method (sanitary test method: edited by the Japan Pharmaceutical Association, 1980 edition), and cultured and measured on a standard agar medium at 35 ° C. for 48 hours. For comparison, a stainless steel test piece having no titanium dioxide crystal orientation film and a quartz glass substrate test piece were similarly treated, and the number of bacteria was measured. Table 2 shows the results.

【0022】[0022]

【表2】 [Table 2]

【0023】(油分解試験1)上記各例で得られた光触
媒材料から、10mm×10mmの試験片をそれぞれ作
製し、表面に親指の指紋をつけた後に、30mmの距離
から中心波長352nmの紫外線蛍光ランプを照射し
て、指紋の消失状況を目視により観察した結果を表3に
示す。比較のために、二酸化チタン結晶配向膜を有さな
いステンレス鋼試験片及び石英ガラス基板試験片につい
ても同様に処理して観察した結果を表3に示す。
(Oil decomposition test 1) Test pieces of 10 mm x 10 mm were prepared from the photocatalyst material obtained in each of the above examples, and a fingerprint of the thumb was attached to the surface, and then ultraviolet rays having a center wavelength of 352 nm from a distance of 30 mm. Table 3 shows the results of visually observing the disappearance of fingerprints by irradiation with a fluorescent lamp. For comparison, Table 3 shows the results obtained by similarly treating and observing a stainless steel test piece having no titanium dioxide crystal orientation film and a quartz glass substrate test piece.

【0024】[0024]

【表3】 [Table 3]

【0025】(油分解試験2)上記油分解試験1と同様
の各試験片に、市販のサラダオイル各0.1mgを塗付
し、油分解試験1と同様にして紫外線蛍光ランプを24
時間照射した後の、サラダオイルの残留量を測定した結
果を表4に示す。
(Oil Decomposition Test 2) Commercially available salad oil (0.1 mg) was applied to each of the same test pieces as in Oil Decomposition Test 1, and an ultraviolet fluorescent lamp was applied in the same manner as in Oil Decomposition Test 1.
Table 4 shows the results of measuring the residual amount of salad oil after irradiation for an hour.

【0026】[0026]

【表4】 [Table 4]

【0027】上記各試験の結果によれば、本発明の基材
表面に結晶表面と垂直方向に(112)方向に配向され
た二酸化チタン結晶配向膜を有する光触媒材料は、光触
媒作用が他の方向に配向された二酸化チタン結晶配向膜
を有するものに比較して、著しく優れたものであること
がわかる。
According to the results of the above tests, the photocatalytic material having the titanium dioxide crystal oriented film oriented on the substrate surface in the direction (112) perpendicular to the crystal surface in the direction of the crystal of the present invention has a photocatalytic effect in the other direction. It can be seen that the film is remarkably excellent as compared with the film having the titanium dioxide crystal oriented film which is oriented in the following manner.

【0028】(実施例2)基材として厚さ0.5mm
で、20mm×20mmの単結晶サファイア(000
1)面を有する市販の基材を使用し、気化器温度100
℃、加熱炉温度450℃としたほかは、実施例1と同様
にして基材上にアナターゼ型二酸化チタン結晶配向膜を
形成した。この結晶配向膜の優先配向方向は、結晶表面
と垂直方向に(112)方向であり、膜厚は1μmで、
結晶の粒径は0.1〜0.6μmで、粒径分布は0.3
5±0.25μmであった。この配向膜のX線回折の結
果を図5に、また表面のSEM写真を図6に示す。この
結晶配向膜を有する光触媒材料は、実施例1のものと同
様に優れた光触媒活性を示した。
(Example 2) 0.5 mm thick as a substrate
And a 20 mm × 20 mm single crystal sapphire (000
1) Using a commercially available base material having a surface and a vaporizer temperature of 100
Except that the temperature was set to 450 ° C. and the heating furnace temperature was set to 450 ° C., an anatase type titanium dioxide crystal orientation film was formed on the substrate in the same manner as in Example 1. The preferred orientation direction of this crystal orientation film is the (112) direction perpendicular to the crystal surface, the film thickness is 1 μm,
The grain size of the crystal is 0.1-0.6 μm and the grain size distribution is 0.3
It was 5 ± 0.25 μm. FIG. 5 shows the result of X-ray diffraction of this alignment film, and FIG. 6 shows an SEM photograph of the surface. The photocatalytic material having this crystal orientation film exhibited excellent photocatalytic activity as in the case of Example 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二酸化チタン結晶配向膜を有する光触
媒材料の製造に使用する大気圧開放型熱CVD装置を示
す模式図である。
FIG. 1 is a schematic view showing an atmospheric pressure open type thermal CVD apparatus used for manufacturing a photocatalytic material having a titanium dioxide crystal orientation film of the present invention.

【図2】結晶の粒径分布の算出方法を説明する図であ
る。
FIG. 2 is a diagram illustrating a method for calculating a crystal particle size distribution.

【図3】本発明の二酸化チタン結晶配向膜を有する光触
媒材料の表面に形成した二酸化チタン多結晶配向膜の1
例のX線回折図である。
FIG. 3 shows a titanium dioxide polycrystalline alignment film 1 formed on the surface of a photocatalytic material having a titanium dioxide crystal alignment film of the present invention.
It is an X-ray diffraction diagram of an example.

【図4】本発明の二酸化チタン結晶配向膜を有する光触
媒材料の表面に形成した二酸化チタン多結晶配向膜の1
例のSEM写真である。
FIG. 4 shows a titanium dioxide polycrystalline alignment film 1 formed on the surface of a photocatalytic material having a titanium dioxide crystal alignment film of the present invention.
It is a SEM photograph of an example.

【図5】本発明の二酸化チタン結晶配向膜を有する光触
媒材料の表面に形成した二酸化チタン多結晶配向膜の他
の例のX線回折図である。
FIG. 5 is an X-ray diffraction diagram of another example of the titanium dioxide polycrystalline alignment film formed on the surface of the photocatalytic material having the titanium dioxide crystal alignment film of the present invention.

【図6】本発明の二酸化チタン結晶配向膜を有する光触
媒材料の表面に形成した二酸化チタン多結晶配向膜の他
の例のSEM写真である。
FIG. 6 is an SEM photograph of another example of the titanium dioxide polycrystalline alignment film formed on the surface of the photocatalytic material having the titanium dioxide crystal alignment film of the present invention.

【符号の説明】[Explanation of symbols]

4、5、6 熱CVD装置の配管中に設けたバルブ 7 気化室 8 液状チタンアルコキシド 9 スリット型ノズル 10 加熱炉 11 加熱台 20 基材 4, 5, 6 Valve provided in piping of thermal CVD apparatus 7 Vaporization chamber 8 Liquid titanium alkoxide 9 Slit nozzle 10 Heating furnace 11 Heating table 20 Base material

フロントページの続き Fターム(参考) 4G047 CA02 CB04 CC03 CD02 CD07 4G069 AA03 AA08 BA04A BA04B BA13A BA14A BA14B BA17 BA22A BA48A CA01 CA11 EA07 EB15X EB15Y EB18X EB18Y EC22Y EC27 ED02 FA03 FB01 FB03 FB34 Continued on front page F term (reference) 4G047 CA02 CB04 CC03 CD02 CD07 4G069 AA03 AA08 BA04A BA04B BA13A BA14A BA14B BA17 BA22A BA48A CA01 CA11 EA07 EB15X EB15Y EB18X EB18Y EC22Y EC27 ED02 FA03 FB01 FB03 FB03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に、結晶表面と垂直方向に(1
12)方向に配向された二酸化チタン結晶配向膜を有す
る光触媒材料。
1. The method according to claim 1, wherein the surface of the substrate is perpendicular to the crystal surface.
12) A photocatalyst material having a titanium dioxide crystal orientation film oriented in a direction.
【請求項2】 結晶配向膜の厚さが0.1μm以上であ
ることを特徴とする請求項1に記載の光触媒材料。
2. The photocatalyst material according to claim 1, wherein the thickness of the crystal orientation film is 0.1 μm or more.
【請求項3】 結晶配向膜を形成する結晶の粒径が0.
01〜10μmであり、粒径分布が実質的に平均値±1
00%であることを特徴とする請求項1又は2に記載の
光触媒材料。
3. The grain size of a crystal forming a crystal orientation film is 0.
01 to 10 μm, and the particle size distribution is substantially average value ± 1.
The photocatalyst material according to claim 1 or 2, wherein the content is 00%.
【請求項4】 結晶配向膜が網目構造を有するものであ
ることを特徴とする請求項1〜3のいずれか1項に記載
の光触媒材料。
4. The photocatalyst material according to claim 1, wherein the crystal orientation film has a network structure.
【請求項5】 基材が金属であることを特徴とする請求
項1〜4のいずれか1項に記載の光触媒材料。
5. The photocatalyst material according to claim 1, wherein the substrate is a metal.
【請求項6】 基材がガラス、陶磁器、セラミックス、
またはプラスチックであることを特徴とする請求項1〜
4のいずれか1項に記載の光触媒材料。
6. The base material is glass, porcelain, ceramics,
Or a plastic.
5. The photocatalyst material according to any one of 4.
【請求項7】 基材が単結晶配向膜を有する材料である
ことを特徴とする請求項1〜6のいずれか1項に記載の
光触媒材料。
7. The photocatalyst material according to claim 1, wherein the substrate is a material having a single crystal orientation film.
【請求項8】 請求項7に記載の光触媒材料により構成
された電子部品。
8. An electronic component comprising the photocatalyst material according to claim 7.
JP2000032344A 2000-02-09 2000-02-09 Photocatalytic material having highly oriented titanium dioxide crystal orientation film Expired - Fee Related JP4573221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032344A JP4573221B2 (en) 2000-02-09 2000-02-09 Photocatalytic material having highly oriented titanium dioxide crystal orientation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032344A JP4573221B2 (en) 2000-02-09 2000-02-09 Photocatalytic material having highly oriented titanium dioxide crystal orientation film

Publications (2)

Publication Number Publication Date
JP2001219072A true JP2001219072A (en) 2001-08-14
JP4573221B2 JP4573221B2 (en) 2010-11-04

Family

ID=18556960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032344A Expired - Fee Related JP4573221B2 (en) 2000-02-09 2000-02-09 Photocatalytic material having highly oriented titanium dioxide crystal orientation film

Country Status (1)

Country Link
JP (1) JP4573221B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2009066497A (en) * 2007-09-12 2009-04-02 Bridgestone Corp Photocatalyst thin film of titanium oxide and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340422A (en) * 1991-09-17 1994-12-13 Ishihara Sangyo Kaisha Ltd Production of thin titanium oxide film
JPH10152396A (en) * 1996-09-24 1998-06-09 Kosei Kk Material having crystalline oriented membrane of titanium dioxide and its production
JP2000239047A (en) * 1998-12-03 2000-09-05 Nippon Sheet Glass Co Ltd Hydrophilic photocatalytic member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340422A (en) * 1991-09-17 1994-12-13 Ishihara Sangyo Kaisha Ltd Production of thin titanium oxide film
JPH10152396A (en) * 1996-09-24 1998-06-09 Kosei Kk Material having crystalline oriented membrane of titanium dioxide and its production
JP2000239047A (en) * 1998-12-03 2000-09-05 Nippon Sheet Glass Co Ltd Hydrophilic photocatalytic member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2009066497A (en) * 2007-09-12 2009-04-02 Bridgestone Corp Photocatalyst thin film of titanium oxide and its production method

Also Published As

Publication number Publication date
JP4573221B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
KR100291482B1 (en) Material having titanium dioxide crystal aligning film and manufacturing method thereof
Marchand et al. Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication
Kačiulis et al. Surface analysis of biocompatible coatings on titanium
Baba et al. Synthesis and properties of TiO2 thin films by plasma source ion implantation
JP3455653B2 (en) Material having titanium dioxide crystal orientation film and method for producing the same
WO2007051996A1 (en) Antimicrobial films
Lee et al. Thickness dependence of microstructure and properties of ZnO thin films deposited by metal-organic chemical vapor deposition using ultrasonic nebulization
Berbecaru et al. First stages of bioactivity of glass-ceramics thin films prepared by magnetron sputtering technique
Srivatsa et al. Synthesis of anatase titania nanostructures at room temperature by PECVD technique
Lee et al. Effects of the deposition condition on the microstructure and properties of ZnO thin films deposited by metal organic chemical vapor deposition with ultrasonic nebulization
EP0967008B1 (en) Process for preparing a film of titanium dioxide and silicon dioxide
JP4573221B2 (en) Photocatalytic material having highly oriented titanium dioxide crystal orientation film
Srivatsa et al. Pure brookite titania crystals with large surface area deposited by plasma enhanced chemical vapour deposition technique
JPH1071337A (en) Photocatalyst and its production
Sato et al. Preparation of hydroxyapatite and calcium phosphate films by MOCVD
JP2002370027A (en) Columnar titanium oxide crystal photocatalyst material and applied article thereof
Nebi et al. Effect of heat treatment on the structural properties of TiO2 films produced by sol-gel spin coating technique
Huang et al. Preparation of rutile TiO2 thin films by mist plasma evaporation
JPH119093A (en) Material for activating plant
Choy Fabrication of ceramic coatings using flame assisted vapour deposition
Rivera et al. CVD deposition of cobalt oxide (CO3O4) from Co (acac) 2
JP3013346B2 (en) Containers for storing medical instruments and medical materials
Sato et al. Preparation of functionally graded bio-ceramic film by MOCVD
JP3013345B2 (en) Container made of antibacterial material
Zhao et al. The Structure and Photocatalytic Activity of CeO2 Doped TiO2 Films Deposited onto Glass by Magnetron Sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees