JP4573221B2 - Photocatalytic material having highly oriented titanium dioxide crystal orientation film - Google Patents
Photocatalytic material having highly oriented titanium dioxide crystal orientation film Download PDFInfo
- Publication number
- JP4573221B2 JP4573221B2 JP2000032344A JP2000032344A JP4573221B2 JP 4573221 B2 JP4573221 B2 JP 4573221B2 JP 2000032344 A JP2000032344 A JP 2000032344A JP 2000032344 A JP2000032344 A JP 2000032344A JP 4573221 B2 JP4573221 B2 JP 4573221B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium dioxide
- crystal
- alignment film
- substrate
- crystal orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 114
- 239000013078 crystal Substances 0.000 title claims description 96
- 239000000463 material Substances 0.000 title claims description 68
- 239000004408 titanium dioxide Substances 0.000 title claims description 57
- 230000001699 photocatalysis Effects 0.000 title claims description 33
- 239000000758 substrate Substances 0.000 claims description 40
- 239000000919 ceramic Substances 0.000 claims description 8
- 239000011941 photocatalyst Substances 0.000 claims description 8
- 238000002441 X-ray diffraction Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 238000010586 diagram Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 description 75
- 238000012360 testing method Methods 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 14
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 14
- 239000010936 titanium Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- -1 titanium alkoxide Chemical class 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000000844 anti-bacterial effect Effects 0.000 description 8
- 239000006200 vaporizer Substances 0.000 description 8
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 7
- 229960000907 methylthioninium chloride Drugs 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 235000012045 salad Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 238000013274 transthoracic needle biopsy Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属、ガラス、陶磁器、セラミックスやプラスチック等の各種基材の表面に、二酸化チタンからなる結晶配向膜を有する光触媒材料に関する。本発明の二酸化チタン結晶配向膜を有する光触媒材料は、抗菌作用、防汚作用、超親水性作用等の優れた特性を有し、調理器具、食器、冷蔵庫等の厨房用品、医療用器具、トイレや洗面所用材料、エアコンのフイルター、電子部品、建築材料、道路関連資材等に巾広く用いられるものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
二酸化チタン薄膜が光触媒反応による種々の機能を持つことは従来から知られており、金属材料、半導体素子、プラスチック材料等の各種基材表面に二酸化チタン薄膜を形成して反射防止材料、センサー材料、絶縁材料等として用いることも公知である。また、これらの基材表面に二酸化チタン薄膜を形成する方法としては、コーティング法、浸漬法、スパッタリング法や、酸素ガス雰囲気内に加熱蒸発させた金属蒸気を導入して反応させる熱CVD法等が知られている。
【0003】
これら従来の二酸化チタン薄膜形成方法のうち、コーティング法や浸漬法では二酸化チタンの結晶配向膜を得ることはできず、スパッタリング法においては、得られる薄膜の結晶構造を制御することは困難である。また、従来の熱CVD法においては、基材表面に結晶性の二酸化チタン薄膜を形成させるためには、基材を通常500〜800℃程度の高温に加熱し、且つ薄膜の形成を密閉されたメッキ室で減圧下で行う必要があった。この従来の熱CVD法では、二酸化チタン薄膜の堆積速度はきわめて遅く、得られる薄膜の結晶構造を制御することは困難であり、ある特定方向に配向された結晶配向膜を得ることはできなかった。
【0004】
本発明者らは、先に気化させたチタンアルコキシドを担体となる不活性ガスとともに、大気圧開放下で加熱された基材表面に吹き付けて得られる、基材表面に二酸化チタン結晶配向膜を有する材料が優れた光触媒特性を発揮することを見出し、特開平10−152396号公報として提案した。
本発明者らは、二酸化チタン結晶配向膜の光触媒特性についてさらに検討した結果、基材表面にある特定方向に配向された二酸化チタン結晶配向膜を有する材料が、他の二酸化チタン結晶配向膜を有する材料に比較して格段に優れた光触媒特性を発揮することを見出し、本発明を完成したものである。
すなわち、本発明は、抗菌作用、防汚作用、超親水性作用等の光触媒特性が著しく優れた光触媒材料を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明の高配向二酸化チタン結晶配向膜を有する光触媒材料は、つぎの構成を有する。
1.基材表面に、結晶表面と垂直方向に<112>方向に配向された、X線回折図において回折ピーク<112>を有し二酸化チタンに由来する他の回折ピークを有さない、二酸化チタン結晶配向膜を有する光触媒材料。
2. 結晶配向膜の厚さが0.1μm以上であることを特徴とする1に記載の光触媒材料。
3. 結晶配向膜を形成する結晶の粒径が0.01〜10μmであり、粒径分布が平均値±100%であることを特徴とする1又は2に記載の光触媒材料。
4.結晶配向膜が網目構造を有するものであることを特徴とする1〜3のいずれか1項に記載の光触媒材料。
5.基材が金属であることを特徴とする1〜4のいずれか1項に記載の光触媒材料。
6.基材がガラス、陶磁器、セラミックス、またはプラスチックであることを特徴とする1〜4のいずれか1項に記載の光触媒材料。
7.基材が単結晶配向膜を有する材料であることを特徴とする1〜6のいずれか1項に記載の光触媒材料。
【0006】
本発明において、二酸化チタン結晶配向膜とは、二酸化チタンの単結晶からなる配向膜ならびに多結晶からなる配向膜を意味する。ここで、単結晶配向膜とは、材料学の分野で通常用いられるように、配向膜全体が単一の結晶で構成されたものだけではなく、配向膜が三次元方向の結晶方位が一致する多数の結晶により構成されたものをも包含するものである。
上記本発明の特定方向に配向された二酸化チタン結晶配向膜を有する材料は、気化させたチタンアルコキシド(原料錯体)を担体となる不活性ガスとともに、大気圧開放下で加熱された基材表面に吹き付けることによって、製造することができる。
【0007】
【発明の実施の形態】
本発明の二酸化チタン結晶配向膜を有する材料に用いられる基材としては、特に制限はなく、二酸化チタンの吹き付け時の加熱に耐えられる材料はいずれも使用可能であるが、通常は金属、ガラス、セラミックス、陶磁器及びプラスチック等を使用する。好適な材料としては、例えばステンレス鋼や鉄等の金属、Si単結晶、窒化珪素や炭化珪素の焼結体、チタン酸ストロンチウム、酸化マグネシウムやサファイア等の酸化物単結晶等が挙げられる。
基材としてSi単結晶、チタン酸ストロンチウム単結晶、酸化マグネシウムやサファイア等の酸化物単結晶等の単結晶配向膜を有する基材を使用した場合には、超伝導特性が改善され、レーザー発振を起こす等電子部品材料として好ましい性状を有するものとなる。これらの単結晶配向膜を有する基材としては、市販品を使用することができる。
【0008】
二酸化チタン結晶配向膜を形成する原料としては、一般式 Ti(OR)4 で表されるチタンアルコキシドを使用する。(式中、Rは炭素数2〜10のアルキル基を表す。)
これらのチタンアルコキシドの中では、Ti(OC2 H5 )4(以下、「TTE」と略記する)、Ti(O−i−C3 H7 )4 (以下、「TTIP」と略記する)、Ti(O−n−C4 H9 )4 (以下、「TTNB」と略記する)が好ましく、中でもTTIPは二酸化チタンの堆積速度が速く、得られる配向膜の結晶構造の制御も容易であることから、特に好ましい原料である。
【0009】
本発明では、上記原料錯体を気化器で気化し、担体となる不活性ガスとともに、大気圧開放下で加熱された基材表面に吹き付け、基材表面に二酸化チタンの結晶配向膜を形成する。担体となる不活性ガスとしては、特に制限はなく、窒素、ヘリウム、アルゴン等通常用いられる不活性ガスはいずれも使用可能であるが、経済性等の点で窒素ガスを使用することが好ましく、中でも液体窒素を通して水分を除去した窒素ガスを使用することが特に好ましい。
原料錯体の気化温度は、原料の種類に応じて調整するが、例えばTTE、TTIP、TTNBの場合には、70〜150℃とすることが好ましい。
【0010】
不活性ガス担体により運ばれた原料錯体を、大気圧開放下で加熱された基材表面に吹き付けるにあたっては、図1にみられるように、加熱炉10内の加熱台11上に基材20を載置し、スリット型のノズル9から基材に吹き付ける。また、基材をローラー、ベルト、チェイン等の搬送体上に載置して加熱炉内を移動させ、スリット型のノズルから移動する基材表面に原料錯体を吹き付けるようにした場合には、板状、棒状、線状、パイプ状等の長尺状の基材や、皿、トレー等種々の形状にあらかじめ成形した基材の表面に、連続的に二酸化チタンの結晶配向膜を形成することが可能となる。ノズルから不活性担体ガスとともに大気中に噴出した原料錯体は、空気中の水により加水分解され、加熱された基材表面で二酸化チタン結晶配向膜を形成する。
【0011】
本発明の、基材表面に結晶表面と垂直方向に<112>方向に配向された二酸化チタン結晶配向膜を有する光触媒材料は、基材の種類と温度、原料の種類と気化温度、担体ガスの流量等を調整することによって、所望の膜の厚さ、結晶の粒径や粒度分布を有するものとすることができる。
本発明の光触媒材料は、次のような光触媒作用が、他の方向に配向された二酸化チタン結晶配向膜を有するものに比較して、著しく優れたものであることが判明した。
【0012】
(1)顕著な抗菌作用(制菌作用及び滅菌作用)を有するとともに、死滅した菌や毒素等の菌の産生物を分解することができるので、汚れを防止し持続性のある抗菌作用を発揮する。
(2)汚れの付着を防止するとともに、付着した汚れを分解し、自然に降る雨や水洗により簡単に除去して表面の光沢を維持する。
(3)臭いの元となる物質を分解し、脱臭、消臭作用を有する。
(4)紫外線照射により水との接触角が減少して0度に近くなり、水を弾かなくなる。したがって、表面に水滴が形成されず一様な水膜となり、曇りを防止することができる。
(5)空気中の窒素酸化物(NOx)や硫黄酸化物(S0x)を分解し、空気を浄化する。
(6)有機ハロゲン化合物や油分等の水中の汚染物質を分解し、水を浄化する。
したがって、これら特定方向に配向された二酸化チタン結晶配向膜を表面に有する材料は、上記の特性を生かして医療器具、食器、調理用具、冷蔵庫、冷蔵車両、洗面所や台所用品、内装材、外装材ほか各種の建築材料、道路関連資材、エアコンのフイルター、電子部品等の材料として、巾広く使用することができるものである。
【0013】
本発明によれば、基材表面に形成する結晶配向膜の膜厚は、所望のものとすることができるが、膜厚を0.1μm以上とすることによって基材に抗菌性をはじめとする種々の特性を付与することができるので、通常は0.1〜10μm、好ましくは0.2〜2.0μmとする。
また、配向膜を形成する結晶の粒径は、可視光線及び紫外線の波長と同程度とした場合に抗菌性等の光触媒特性が特に優れたものが得られ、特に、粒径分布のそろった結晶配向膜とした場合にはその効果が著しい。したがって、結晶粒径として、0.1〜10μm、粒径分布が実質的に平均値±100%である結晶配向膜とすることが好ましく、粒径分布が平均値±50%である結晶配向膜とすることが特に好ましい。
本発明における結晶の粒径分布は、材料学の分野での常法に従い、つぎのようにして算出する。すなわち、図2にみられるように、横軸に配向膜を構成する各結晶の粒径(最大直径)、縦軸に結晶の個数をとって描いたヒストグラムにおいて、縦軸の最大値Y1 の50%以上のものを対象として(図2の斜線部)、結晶粒径の平均値及び粒径分布を算出するものである。
また、他の好ましい材料としては、二酸化チタンの結晶配向膜が網目構造を有するものが挙げられる。これらの材料としては、必要に応じて基材表面に二酸化チタンの結晶配向膜形成後に、酸素雰囲気下でアニーリング処理を施したものを使用することができる。
本発明で、結晶配向膜が網目構造を有するとは、針状の結晶が交差した状態のものや、ハニカム状に配列した状態のものを意味する。
そして、酸素雰囲気下でアニーリング処理をするとは、二酸化チタンからなる結晶配向膜を大気圧下、電気炉を用いて酸素気流中で300℃〜600℃の任意の温度で数時間加熱することを意味する。
【0014】
【実施例】
つぎに、本発明を実施例により説明するが、本発明がこれらの実施例により限定されるものではないことは言うまでもない。
図1は、以下の実施例において使用する大気圧開放型熱CVD装置を示す模式図である。図1において、符号1はボンベ等の窒素ガス供給源、符号2は流量計、符号3は液体窒素を入れたトラップ、符号4、5、6は配管中に設けられたバルブを表す。符号7は原料となるチタンアルコキシド8の気化器、符号9は下部に所定幅のスリットを設けたスリット型ノズル、また符号10は加熱炉(電気炉)、符号11は基材20を載置する加熱台を表す。
窒素ガス供給源1から供給された窒素ガスは、流量計2を通して液体窒素を入れたトラップ3に送られ、水分を除去した後にバルブ4及び6に送られる。バルブ4を通った窒素ガスは、気化器7内の液状のチタンアルコキシド8中に気泡として放出されチタンアルコキシドの気化を助ける。気化されたチタンアルコキシドと窒素ガスとの混合ガスは、バルブ5を経てバルブ6から送られた窒素ガスと混合され、スリット型ノズル9に送られて、加熱炉10内の加熱台11上で加熱された基材20の表面に吹き付けられ、二酸化チタン結晶配向膜が形成される。
【0015】
(実施例1)
原料錯体としてTTIPを用い、気化器温度120℃、窒素ガス流量1.5l/minでTTIPを気化させた。基材として、厚さ0.5mmで20mm×20mmの石英ガラス基材を、350℃に加熱した加熱炉内の吹き出しスリットの下、20mmの位置に置き、気化させたTTIPを吹き付けた。TTIPは大気中の水と反応して二酸化チタンとなり、石英ガラス基材上に堆積して、優先配向方向が結晶表面と垂直方向に<112>方向である、膜厚1μmのアナターゼ型二酸化チタン結晶配向膜が生成した。
この配向膜の結晶の粒径は0.05〜0.25μmで、粒径分布は0.15±0.10μmであった。この配向膜のX線回折の結果を図3に、また表面のSEM写真を図4に示す。
【0016】
(比較例1)
気化器温度100℃、加熱炉温度400℃としたほかは、実施例1と同様にして、石英ガラス基材上にアナターゼ型二酸化チタン結晶配向膜を形成した。この結晶配向膜の優先配向方向は、結晶表面と垂直方向に<110>方向であった。
【0017】
(比較例2)
気化器温度130℃、加熱炉温度400℃としたほかは、実施例1と同様にして、石英ガラス基材上にアナターゼ型二酸化チタン結晶配向膜を形成した。この結晶配向膜の優先配向方向は、結晶表面と垂直方向に<001>方向であった。
【0018】
(比較例3)
気化器温度60℃、加熱炉温度500℃としたほかは、実施例1と同様にして、石英ガラス基材上にアナターゼ型二酸化チタン結晶配向膜を形成した。この結晶配向膜の優先配向方向は、結晶表面と垂直方向に<100>方向であった。
【0019】
(メチレンブルー還元試験)
上記各例で得られた、基材表面に二酸化チタン結晶配向膜を形成した光触媒材料から10mm×10mmの試験片をそれぞれ作製し、光触媒活性を測定するために、つぎのようにしてメチレンブルーの還元試験を行った。一般に、メチレンブルーの還元速度が速いほど、光触媒活性が大きいと理解されている。
内寸法が縦10mm、横10mm、深さ1mmのパイレックスガラス製セル中に濃度1mmol/lのメチレンブルー水溶液を滴下し、各試験片を封入した。
各試験片上には直径8mm、厚さ25μmのスペーサを載置し、各試験片上に存在するメチレンブルー溶液の量を1.25mm3とした。このセルに、30mmの距離から中心波長352nmの紫外線蛍光ランプを照射した。試験片上の紫外線強度は1mW/cm2であった。未照射及び5分照射後のメチレンブルーの波長580nmにおける吸光度を色差計で測定し、メチレンブルーが完全に還元されたときの相対吸光度を0として各試験片の相対吸光度を算出した結果を表1に示した。比較のため、二酸化チタン結晶配向膜を形成していない石英ガラス基材自体についても相対吸光度を算出し、表1に記載した。
【0020】
【表1】
【0021】
(抗菌性試験)
上記各例で得られた、基材表面に二酸化チタン結晶配向膜を形成した光触媒材料から、20mm×20mmの試験片をそれぞれ作製し、次のようにして抗菌性試験を行った。
予め、増菌、計測した液体培養の一般細菌(Bacillus subtilis)を、105オーダーになるように上記各試験片に塗布し、これにブラックライトを30mmの距離で、3時間照射する。試験片上の紫外線強度は、1mW/cm2であった。その後、生理食塩水9mlを入れ、よく混和し、常法(衛生試験法:日本薬学会編1980年度版)に従い、定量採り標準寒天培地にて、35℃で48時間培養、計測した。
比較のために、二酸化チタン結晶配向膜を有さないステンレス鋼試験片及び石英ガラス基板試験片についても同様に処理して、菌数を計測した。結果を表2に示す。
【0022】
【表2】
【0023】
(油分解試験1)
上記各例で得られた光触媒材料から、10mm×10mmの試験片をそれぞれ作製し、表面に親指の指紋をつけた後に、30mmの距離から中心波長352nmの紫外線蛍光ランプを照射して、指紋の消失状況を目視により観察した結果を表3に示す。
比較のために、二酸化チタン結晶配向膜を有さないステンレス鋼試験片及び石英ガラス基板試験片についても同様に処理して観察した結果を表3に示す。
【0024】
【表3】
【0025】
(油分解試験2)
上記油分解試験1と同様の各試験片に、市販のサラダオイル各0.1mgを塗付し、油分解試験1と同様にして紫外線蛍光ランプを24時間照射した後の、サラダオイルの残留量を測定した結果を表4に示す。
【0026】
【表4】
【0027】
上記各試験の結果によれば、本発明の基材表面に結晶表面と垂直方向に<112>方向に配向された二酸化チタン結晶配向膜を有する光触媒材料は、光触媒作用が他の方向に配向された二酸化チタン結晶配向膜を有するものに比較して、著しく優れたものであることがわかる。
【0028】
(実施例2)
基材として厚さ0.5mmで、20mm×20mmの単結晶サファイア<0001>面を有する市販の基材を使用し、気化器温度100℃、加熱炉温度450℃としたほかは、実施例1と同様にして基材上にアナターゼ型二酸化チタン結晶配向膜を形成した。この結晶配向膜の優先配向方向は、結晶表面と垂直方向に<112>方向であり、膜厚は1μmで、結晶の粒径は0.1〜0.6μmで、粒径分布は0.35±0.25μmであった。この配向膜のX線回折の結果を図5に、また表面のSEM写真を図6に示す。この結晶配向膜を有する光触媒材料は、実施例1のものと同様に優れた光触媒活性を示した。
【図面の簡単な説明】
【図1】本発明の二酸化チタン結晶配向膜を有する光触媒材料の製造に使用する大気圧開放型熱CVD装置を示す模式図である。
【図2】結晶の粒径分布の算出方法を説明する図である。
【図3】本発明の二酸化チタン結晶配向膜を有する光触媒材料の表面に形成した二酸化チタン多結晶配向膜の1例のX線回折図である。
【図4】本発明の二酸化チタン結晶配向膜を有する光触媒材料の表面に形成した二酸化チタン多結晶配向膜の1例のSEM写真である。
【図5】本発明の二酸化チタン結晶配向膜を有する光触媒材料の表面に形成した二酸化チタン多結晶配向膜の他の例のX線回折図である。
【図6】本発明の二酸化チタン結晶配向膜を有する光触媒材料の表面に形成した二酸化チタン多結晶配向膜の他の例のSEM写真である。
【符号の説明】
4、5、6 熱CVD装置の配管中に設けたバルブ
7 気化室
8 液状チタンアルコキシド
9 スリット型ノズル
10 加熱炉
11 加熱台
20 基材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic material having a crystal orientation film made of titanium dioxide on the surface of various substrates such as metal, glass, ceramics, ceramics and plastics. The photocatalytic material having the titanium dioxide crystal alignment film of the present invention has excellent properties such as antibacterial action, antifouling action, and superhydrophilic action, and is used for kitchen utensils such as cooking utensils, tableware, and refrigerators, medical utensils, and toilets. It is widely used for toilet materials, toilet filters, air conditioner filters, electronic parts, building materials, road-related materials, etc.
[0002]
[Prior art and problems to be solved by the invention]
It has been known that titanium dioxide thin films have various functions due to photocatalytic reactions, and titanium dioxide thin films are formed on the surface of various substrates such as metal materials, semiconductor elements, plastic materials, antireflection materials, sensor materials, It is also known to use it as an insulating material or the like. In addition, as a method of forming a titanium dioxide thin film on the surface of these base materials, there are a coating method, a dipping method, a sputtering method, a thermal CVD method in which a metal vapor heated and evaporated in an oxygen gas atmosphere is introduced and reacted. Are known.
[0003]
Of these conventional titanium dioxide thin film forming methods, a titanium dioxide crystal orientation film cannot be obtained by the coating method or the dipping method, and it is difficult to control the crystal structure of the resulting thin film by the sputtering method. Further, in the conventional thermal CVD method, in order to form a crystalline titanium dioxide thin film on the surface of the base material, the base material is usually heated to a high temperature of about 500 to 800 ° C., and the formation of the thin film is sealed. It was necessary to carry out under reduced pressure in the plating chamber. In this conventional thermal CVD method, the deposition rate of the titanium dioxide thin film is extremely slow, and it is difficult to control the crystal structure of the resulting thin film, and a crystal orientation film oriented in a specific direction cannot be obtained. .
[0004]
The present inventors have a titanium dioxide crystal alignment film on the substrate surface obtained by spraying the previously vaporized titanium alkoxide together with an inert gas serving as a carrier onto the substrate surface heated under atmospheric pressure release. It has been found that the material exhibits excellent photocatalytic properties, and has been proposed as JP-A-10-152396.
As a result of further study on the photocatalytic properties of the titanium dioxide crystal alignment film, the present inventors have found that the material having the titanium dioxide crystal alignment film oriented in a specific direction on the substrate surface has another titanium dioxide crystal alignment film. The present inventors have found that photocatalytic properties that are remarkably superior to those of materials are exhibited, and the present invention has been completed.
That is, an object of the present invention is to provide a photocatalyst material that is remarkably excellent in photocatalytic properties such as antibacterial action, antifouling action, and superhydrophilic action.
[0005]
[Means for Solving the Problems]
The photocatalytic material having the highly oriented titanium dioxide crystal orientation film of the present invention has the following configuration.
1. A titanium dioxide crystal having a diffraction peak <112> in an X-ray diffraction diagram and having no other diffraction peak derived from titanium dioxide , oriented in the <112> direction perpendicular to the crystal surface on the substrate surface A photocatalytic material having an alignment film.
2. 2. The photocatalytic material according to 1, wherein the crystal orientation film has a thickness of 0.1 μm or more.
3. 3. The photocatalytic material according to 1 or 2, wherein the crystal grain forming the crystal orientation film has a grain size of 0.01 to 10 μm and a grain size distribution of an average value ± 100% .
4). 4. The photocatalytic material according to any one of 1 to 3, wherein the crystal orientation film has a network structure.
5). 5. The photocatalytic material according to any one of 1 to 4, wherein the substrate is a metal.
6). 5. The photocatalytic material according to any one of 1 to 4, wherein the substrate is glass, ceramic, ceramics, or plastic.
7). 7. The photocatalytic material according to any one of 1 to 6, wherein the base material is a material having a single crystal alignment film.
[0006]
In the present invention, the titanium dioxide crystal alignment film means an alignment film made of a single crystal of titanium dioxide and an alignment film made of polycrystal. Here, the single crystal alignment film is not only the one in which the entire alignment film is composed of a single crystal, as is usually used in the field of materials science, but the alignment film has the same crystal orientation in the three-dimensional direction. Also included are those composed of a large number of crystals.
The material having a titanium dioxide crystal alignment film oriented in a specific direction according to the present invention is formed on a substrate surface heated under atmospheric pressure release together with an inert gas serving as a carrier for vaporized titanium alkoxide (raw material complex). It can be manufactured by spraying.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The substrate used for the material having the titanium dioxide crystal alignment film of the present invention is not particularly limited, and any material that can withstand the heating during the spraying of titanium dioxide can be used, but usually metal, glass, Use ceramics, ceramics and plastics. Examples of suitable materials include metals such as stainless steel and iron, Si single crystals, sintered bodies of silicon nitride and silicon carbide, oxide single crystals such as strontium titanate, magnesium oxide and sapphire.
When a substrate having a single crystal orientation film such as a single crystal of Si, strontium titanate single crystal, oxide single crystal such as magnesium oxide or sapphire is used as the base material, the superconducting characteristics are improved and laser oscillation is improved. It has properties preferable as an electronic component material, such as waking up. Commercially available products can be used as the substrate having these single crystal alignment films.
[0008]
A titanium alkoxide represented by the general formula Ti (OR) 4 is used as a raw material for forming the titanium dioxide crystal alignment film. (In the formula, R represents an alkyl group having 2 to 10 carbon atoms.)
Among these titanium alkoxides, Ti (OC 2 H 5 ) 4 (hereinafter abbreviated as “TTE”), Ti (Oi-C 3 H 7 ) 4 (hereinafter abbreviated as “TTIP”), Ti (On-C 4 H 9 ) 4 (hereinafter abbreviated as “TTNB”) is preferable. Among them, TTIP has a high titanium dioxide deposition rate and can easily control the crystal structure of the resulting alignment film. Therefore, it is a particularly preferable raw material.
[0009]
In the present invention, the raw material complex is vaporized by a vaporizer, and sprayed onto the surface of the substrate heated under atmospheric pressure together with an inert gas serving as a carrier to form a titanium dioxide crystal alignment film on the substrate surface. There are no particular restrictions on the inert gas used as a carrier, and any of the normally used inert gases such as nitrogen, helium, and argon can be used, but it is preferable to use nitrogen gas in terms of economy and the like, Among these, it is particularly preferable to use nitrogen gas from which moisture has been removed through liquid nitrogen.
Although the vaporization temperature of a raw material complex is adjusted according to the kind of raw material, in the case of TTE, TTIP, TTNB, it is preferable to set it as 70-150 degreeC.
[0010]
In spraying the raw material complex carried by the inert gas carrier onto the surface of the substrate heated under the release of atmospheric pressure, the
[0011]
The photocatalyst material having a titanium dioxide crystal alignment film oriented in the <112> direction perpendicular to the crystal surface on the surface of the substrate of the present invention comprises the type and temperature of the substrate, the type and vaporization temperature of the raw material, the carrier gas By adjusting the flow rate or the like, the desired film thickness, crystal grain size, or particle size distribution can be obtained.
It has been found that the photocatalytic material of the present invention has the following photocatalytic action that is remarkably superior to those having a titanium dioxide crystal alignment film oriented in other directions.
[0012]
(1) It has a remarkable antibacterial action (antibacterial action and sterilization action), and can decompose bacteria products such as dead bacteria and toxins, thus preventing soiling and exerting a durable antibacterial action To do.
(2) While preventing the adhesion of dirt, the adhered dirt is decomposed and easily removed by rain or water washing that naturally falls to maintain the gloss of the surface.
(3) Decomposes the odor source and has deodorizing and deodorizing actions.
(4) The contact angle with water decreases due to ultraviolet irradiation and approaches 0 degrees, so that water cannot be repelled. Therefore, water droplets are not formed on the surface, and a uniform water film is formed, and fogging can be prevented.
(5) Decompose nitrogen oxides (NOx) and sulfur oxides (S0x) in the air to purify the air.
(6) Decompose contaminants in water such as organic halogen compounds and oils to purify water.
Therefore, the material having a titanium dioxide crystal alignment film oriented in a specific direction on the surface is a medical instrument, tableware, cooking utensils, refrigerator, refrigerated vehicle, toilet or kitchen utensils, interior materials, exteriors taking advantage of the above characteristics. It can be widely used as a material for various building materials, road-related materials, air conditioner filters, electronic parts, etc.
[0013]
According to the present invention, the crystal orientation film formed on the surface of the base material can have a desired film thickness, but the base material has antibacterial properties by setting the film thickness to 0.1 μm or more. Since various characteristics can be imparted, it is usually 0.1 to 10 μm, preferably 0.2 to 2.0 μm.
In addition, when the grain size of the crystal forming the alignment film is about the same as the wavelength of visible light and ultraviolet light, a photocatalytic property such as antibacterial property is particularly excellent. When the alignment film is used, the effect is remarkable. Therefore, it is preferable that the crystal grain size is 0.1 to 10 μm, and the grain size distribution is substantially an average value ± 100%, and the grain size distribution is an average value ± 50%. It is particularly preferable that
The crystal grain size distribution in the present invention is calculated as follows in accordance with a conventional method in the field of materials science. That is, as shown in FIG. 2, in the histogram drawn with the horizontal axis representing the grain size (maximum diameter) of each crystal constituting the alignment film and the vertical axis representing the number of crystals, the maximum value Y 1 on the vertical axis The average value of the crystal grain size and the grain size distribution are calculated for those with 50% or more (shaded area in FIG. 2).
Another preferred material is one in which the crystal orientation film of titanium dioxide has a network structure. As these materials, those subjected to annealing treatment in an oxygen atmosphere after forming a crystal orientation film of titanium dioxide on the surface of the substrate can be used as necessary.
In the present invention, the crystal orientation film having a network structure means a state in which needle-like crystals intersect or a state in which the crystals are arranged in a honeycomb shape.
And annealing treatment in an oxygen atmosphere means that the crystal orientation film made of titanium dioxide is heated at an arbitrary temperature of 300 ° C. to 600 ° C. for several hours in an oxygen stream using an electric furnace under atmospheric pressure. To do.
[0014]
【Example】
EXAMPLES Next, the present invention will be described with reference to examples, but it goes without saying that the present invention is not limited to these examples.
FIG. 1 is a schematic diagram showing an atmospheric pressure open type thermal CVD apparatus used in the following examples. In FIG. 1,
Nitrogen gas supplied from the nitrogen
[0015]
Example 1
TTIP was vaporized at a vaporizer temperature of 120 ° C. and a nitrogen gas flow rate of 1.5 l / min using TTIP as a raw material complex. As a substrate, a quartz glass substrate having a thickness of 0.5 mm and 20 mm × 20 mm was placed at a position of 20 mm under a blowing slit in a heating furnace heated to 350 ° C., and vaporized TTIP was sprayed. TTIP reacts with water in the atmosphere to form titanium dioxide, which is deposited on a quartz glass substrate and has a preferential orientation direction of <112> in the direction perpendicular to the crystal surface. An alignment film was formed.
The crystal grain size of this alignment film was 0.05 to 0.25 μm, and the particle size distribution was 0.15 ± 0.10 μm. The result of X-ray diffraction of this alignment film is shown in FIG. 3, and the SEM photograph of the surface is shown in FIG.
[0016]
(Comparative Example 1)
An anatase-type titanium dioxide crystal alignment film was formed on a quartz glass substrate in the same manner as in Example 1 except that the vaporizer temperature was 100 ° C. and the heating furnace temperature was 400 ° C. The preferred orientation direction of this crystal orientation film was the <110> direction perpendicular to the crystal surface.
[0017]
(Comparative Example 2)
An anatase-type titanium dioxide crystal alignment film was formed on a quartz glass substrate in the same manner as in Example 1 except that the vaporizer temperature was 130 ° C. and the heating furnace temperature was 400 ° C. The preferred orientation direction of this crystal orientation film was the <001> direction perpendicular to the crystal surface.
[0018]
(Comparative Example 3)
An anatase-type titanium dioxide crystal alignment film was formed on a quartz glass substrate in the same manner as in Example 1 except that the vaporizer temperature was 60 ° C. and the heating furnace temperature was 500 ° C. The preferred orientation direction of this crystal orientation film was the <100> direction perpendicular to the crystal surface.
[0019]
(Methylene blue reduction test)
A 10 mm × 10 mm test piece was prepared from each photocatalyst material obtained by forming a titanium dioxide crystal alignment film on the surface of the substrate obtained in each of the above examples, and in order to measure the photocatalytic activity, methylene blue was reduced as follows. A test was conducted. In general, it is understood that the faster the reduction rate of methylene blue, the greater the photocatalytic activity.
A methylene blue aqueous solution having a concentration of 1 mmol / l was dropped into a Pyrex glass cell having internal dimensions of 10 mm in length, 10 mm in width, and 1 mm in depth, and each test piece was sealed.
A spacer having a diameter of 8 mm and a thickness of 25 μm was placed on each test piece, and the amount of the methylene blue solution present on each test piece was set to 1.25 mm 3 . This cell was irradiated with an ultraviolet fluorescent lamp having a center wavelength of 352 nm from a distance of 30 mm. The ultraviolet intensity on the test piece was 1 mW / cm 2 . Table 1 shows the results of calculating the relative absorbance of each test piece by measuring the absorbance of the methylene blue at a wavelength of 580 nm after unirradiation and irradiation for 5 minutes with a color difference meter and setting the relative absorbance when methylene blue is completely reduced to 0. It was. For comparison, the relative absorbance was also calculated for the quartz glass substrate itself on which the titanium dioxide crystal alignment film was not formed, and is shown in Table 1.
[0020]
[Table 1]
[0021]
(Antimicrobial test)
Test pieces of 20 mm × 20 mm were prepared from the photocatalyst materials obtained in each of the above examples and having a titanium dioxide crystal alignment film formed on the substrate surface, and antibacterial tests were performed as follows.
The bacterial cultures (Bacillus subtilis) that have been enriched and measured in advance are applied to each test piece so as to be on the order of 10 5 , and this is irradiated with black light at a distance of 30 mm for 3 hours. The ultraviolet intensity on the test piece was 1 mW / cm 2 . Thereafter, 9 ml of physiological saline was added, mixed well, and according to a conventional method (sanitary test method: edited by Japan Pharmaceutical Association, 1980 edition), a quantitative sample was taken and cultured and measured at 35 ° C. for 48 hours.
For comparison, a stainless steel test piece and a quartz glass substrate test piece not having a titanium dioxide crystal alignment film were similarly treated to count the number of bacteria. The results are shown in Table 2.
[0022]
[Table 2]
[0023]
(Oil decomposition test 1)
A test piece of 10 mm × 10 mm was prepared from the photocatalyst material obtained in each of the above examples, a thumb fingerprint was attached to the surface, and an ultraviolet fluorescent lamp with a central wavelength of 352 nm was irradiated from a distance of 30 mm to Table 3 shows the result of visual observation of disappearance.
For comparison, Table 3 shows the results of processing and observing stainless steel specimens and quartz glass substrate specimens not having a titanium dioxide crystal alignment film in the same manner.
[0024]
[Table 3]
[0025]
(Oil decomposition test 2)
Residual amount of salad oil after applying 0.1 mg of commercially available salad oil to each test piece similar to the
[0026]
[Table 4]
[0027]
According to the results of the above tests, the photocatalytic material having the titanium dioxide crystal alignment film oriented in the <112> direction perpendicular to the crystal surface on the surface of the substrate of the present invention has the photocatalytic action oriented in the other direction. It can be seen that it is remarkably superior to those having a titanium dioxide crystal alignment film.
[0028]
(Example 2)
Example 1 except that a commercially available substrate having a thickness of 0.5 mm and a single crystal sapphire <0001> surface of 20 mm × 20 mm was used as the substrate, and the vaporizer temperature was 100 ° C. and the furnace temperature was 450 ° C. In the same manner, an anatase-type titanium dioxide crystal alignment film was formed on a substrate. The preferred orientation direction of this crystal orientation film is the <112> direction perpendicular to the crystal surface, the film thickness is 1 μm, the crystal grain size is 0.1 to 0.6 μm, and the grain size distribution is 0.35. It was ± 0.25 μm. The result of X-ray diffraction of this alignment film is shown in FIG. 5, and the SEM photograph of the surface is shown in FIG. The photocatalytic material having this crystal orientation film showed excellent photocatalytic activity as in Example 1.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an atmospheric pressure open type thermal CVD apparatus used for producing a photocatalytic material having a titanium dioxide crystal alignment film of the present invention.
FIG. 2 is a diagram illustrating a method for calculating a crystal grain size distribution.
FIG. 3 is an X-ray diffraction pattern of an example of a titanium dioxide polycrystalline alignment film formed on the surface of a photocatalytic material having a titanium dioxide crystal alignment film of the present invention.
FIG. 4 is an SEM photograph of one example of a titanium dioxide polycrystalline alignment film formed on the surface of a photocatalytic material having a titanium dioxide crystal alignment film of the present invention.
FIG. 5 is an X-ray diffraction pattern of another example of the titanium dioxide polycrystalline alignment film formed on the surface of the photocatalytic material having the titanium dioxide crystal alignment film of the present invention.
FIG. 6 is an SEM photograph of another example of the titanium dioxide polycrystalline alignment film formed on the surface of the photocatalyst material having the titanium dioxide crystal alignment film of the present invention.
[Explanation of symbols]
4, 5, 6
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000032344A JP4573221B2 (en) | 2000-02-09 | 2000-02-09 | Photocatalytic material having highly oriented titanium dioxide crystal orientation film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000032344A JP4573221B2 (en) | 2000-02-09 | 2000-02-09 | Photocatalytic material having highly oriented titanium dioxide crystal orientation film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001219072A JP2001219072A (en) | 2001-08-14 |
JP4573221B2 true JP4573221B2 (en) | 2010-11-04 |
Family
ID=18556960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000032344A Expired - Fee Related JP4573221B2 (en) | 2000-02-09 | 2000-02-09 | Photocatalytic material having highly oriented titanium dioxide crystal orientation film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4573221B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005279366A (en) * | 2004-03-29 | 2005-10-13 | Mitsubishi Materials Corp | Porous photocatalyst film |
JP2009066497A (en) * | 2007-09-12 | 2009-04-02 | Bridgestone Corp | Photocatalyst thin film of titanium oxide and its production method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06340422A (en) * | 1991-09-17 | 1994-12-13 | Ishihara Sangyo Kaisha Ltd | Production of thin titanium oxide film |
JPH10152396A (en) * | 1996-09-24 | 1998-06-09 | Kosei Kk | Material having crystalline oriented membrane of titanium dioxide and its production |
JP2000239047A (en) * | 1998-12-03 | 2000-09-05 | Nippon Sheet Glass Co Ltd | Hydrophilic photocatalytic member |
-
2000
- 2000-02-09 JP JP2000032344A patent/JP4573221B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06340422A (en) * | 1991-09-17 | 1994-12-13 | Ishihara Sangyo Kaisha Ltd | Production of thin titanium oxide film |
JPH10152396A (en) * | 1996-09-24 | 1998-06-09 | Kosei Kk | Material having crystalline oriented membrane of titanium dioxide and its production |
JP2000239047A (en) * | 1998-12-03 | 2000-09-05 | Nippon Sheet Glass Co Ltd | Hydrophilic photocatalytic member |
Also Published As
Publication number | Publication date |
---|---|
JP2001219072A (en) | 2001-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100291482B1 (en) | Material having titanium dioxide crystal aligning film and manufacturing method thereof | |
Kim et al. | Preparation of TiO2 thin film by liquid sprayed mist CVD method | |
Kačiulis et al. | Surface analysis of biocompatible coatings on titanium | |
JP3455653B2 (en) | Material having titanium dioxide crystal orientation film and method for producing the same | |
Baba et al. | Synthesis and properties of TiO2 thin films by plasma source ion implantation | |
JP2009513479A (en) | Antibacterial film | |
Darr et al. | Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings | |
Lee et al. | Thickness dependence of microstructure and properties of ZnO thin films deposited by metal-organic chemical vapor deposition using ultrasonic nebulization | |
Piszczek et al. | CVD of TiO2 and TiO2/Ag antimicrobial layers: Deposition from the hexanuclear μ-oxo Ti (IV) complex as a precursor, and the characterization | |
Berbecaru et al. | First stages of bioactivity of glass-ceramics thin films prepared by magnetron sputtering technique | |
Avram et al. | In-vitro antibacterial activity of novel nanostructured composites based on forsterite and silver nanoparticles | |
JP4573221B2 (en) | Photocatalytic material having highly oriented titanium dioxide crystal orientation film | |
Srivatsa et al. | Synthesis of anatase titania nanostructures at room temperature by PECVD technique | |
Blalock et al. | A study on microstructure and properties of calcium phosphate coatings processed using ion beam assisted deposition on heated substrates | |
EP0967008B1 (en) | Process for preparing a film of titanium dioxide and silicon dioxide | |
Verestiuc et al. | Chemical growth of calcium phosphate layers on magnetron sputtered HA films | |
Sikder et al. | Surface engineering of metal–diamond composite coatings on steel substrates using chemical vapour deposition and electroplating routes | |
JP2002370027A (en) | Columnar titanium oxide crystal photocatalyst material and applied article thereof | |
Apátiga et al. | Surface morphology of nanostructured anatase thin films prepared by pulsed liquid injection MOCVD | |
Katsui et al. | Bio-ceramic coating of Ca–Ti–O system compound by laser chemical vapor deposition | |
JPH119093A (en) | Material for activating plant | |
Huang et al. | Preparation of rutile TiO2 thin films by mist plasma evaporation | |
JP5514455B2 (en) | Treatment method for coating calcium phosphate compound on structure having three-dimensional void shape and method for producing the structure | |
Sato et al. | Preparation of functionally graded bio-ceramic film by MOCVD | |
JP3013345B2 (en) | Container made of antibacterial material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070205 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070508 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |