JP3518240B2 - Manufacturing method of laminate - Google Patents

Manufacturing method of laminate

Info

Publication number
JP3518240B2
JP3518240B2 JP08965797A JP8965797A JP3518240B2 JP 3518240 B2 JP3518240 B2 JP 3518240B2 JP 08965797 A JP08965797 A JP 08965797A JP 8965797 A JP8965797 A JP 8965797A JP 3518240 B2 JP3518240 B2 JP 3518240B2
Authority
JP
Japan
Prior art keywords
oxide
film
main component
oxide film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08965797A
Other languages
Japanese (ja)
Other versions
JPH10278165A (en
Inventor
すすむ 鈴木
諭司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP08965797A priority Critical patent/JP3518240B2/en
Publication of JPH10278165A publication Critical patent/JPH10278165A/en
Application granted granted Critical
Publication of JP3518240B2 publication Critical patent/JP3518240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は積層体の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a laminate.

【0002】[0002]

【従来の技術】窓ガラスには様々な物質の汚れが付く。
汚れは窓ガラスの透過性を落とし、居住空間の快適性を
減ずる。汚れの除去には多大な労力と費用を必要とする
ばかりでなく、高層ビルの窓ガラスの場合などでは危険
を伴う。カーボン等の有機物は窓ガラスの汚れの代表的
な物質であり、室外側の有機物の汚れは工場等からの煤
煙、車等からの排気ガスに由来し、室内側の有機物の汚
れは、たばこの煙、空調排気口からの煤、厨房からの油
蒸気、人の皮膚の油などに由来する。また室内側におい
ては、冷房または暖房の使用により昼夜で乾燥、結露を
繰り返すことが多く、そのため、窓ガラス表面にかびが
発生することもある。
2. Description of the Related Art A window glass is stained with various substances.
Dirt reduces the transparency of the window glass and reduces the comfort of the living space. Not only is it extremely labor intensive and costly to remove dirt, but it is also dangerous in the case of window glass of a high-rise building. Organic substances such as carbon are typical substances for window glass stains.Outdoor organic stains are derived from soot from factories and exhaust gases from cars, and indoor organic stains are derived from cigarettes. It is derived from smoke, soot from air conditioning exhausts, oil vapor from the kitchen, and oil on human skin. Further, in the indoor side, drying and condensation are often repeated day and night due to the use of cooling or heating, so that mold may occur on the surface of the window glass.

【0003】近年、チタニア(TiO2 )等の金属酸化
物半導体の光触媒性を利用し、これらの有機物の汚れを
分解する、または、かびの発生を防ぐという研究が注目
を浴びてきている。例えば、特開平6−198196、
特開平6−278241にはTiO2 と光触媒活性を向
上させる貴金属等を混合した例が述べられている。ま
た、特開平8−267646には基材に光触媒活性層を
形成して、親水化し、防汚性を付与する例が述べられて
いる。
In recent years, attention has been paid to studies that utilize the photocatalytic properties of metal oxide semiconductors such as titania (TiO 2 ) to decompose the stains of these organic substances or prevent the formation of mold. For example, JP-A-6-198196,
JP-A-6-278241 describes an example in which TiO 2 and a noble metal or the like for improving the photocatalytic activity are mixed. Further, Japanese Patent Application Laid-Open No. 8-267646 describes an example in which a photocatalytic active layer is formed on a substrate to make it hydrophilic and impart antifouling property.

【0004】従来の検討では光触媒活性を示すTiO2
膜の形成方法として、TiO2 の微粒子を有機または無
機のバインダーにより固定したり、チタン有機金属溶液
からゾルゲル法で形成する等、ウェット法が主として検
討されてきた。この方法ではTiO2 の大きな光触媒活
性を引き出すことができるが、窓ガラスのような大面積
へのコートに対しては、膜厚の均一性を出すのが難し
く、また膜の耐擦傷性が不充分であった。また、原料で
あるコート液を一定の状態に保管するのに注意を必要と
した。
According to the conventional studies, TiO 2 which exhibits photocatalytic activity
As a method of forming a film, a wet method such as fixing fine particles of TiO 2 with an organic or inorganic binder or forming a titanium organic metal solution by a sol-gel method has been mainly studied. This method can bring out the large photocatalytic activity of TiO 2 , but it is difficult to obtain a uniform film thickness for coating a large area such as window glass, and the scratch resistance of the film is poor. It was enough. Moreover, it was necessary to be careful to store the coating liquid as a raw material in a certain state.

【0005】一方、従来より建築用、自動車用熱線反射
ガラスの製造で用いられているDCスパッタリング法は
大面積への均一なコーティングが容易で、かつ膜の基板
への密着性も優れている。また、スパッタリングターゲ
ットの保管には特別な注意を必要としない。しかしなが
ら、通常のスパッタリング法よるTiO2 膜は膜質が
ウェット法による膜に比べて劣るため、充分な光触媒活
性は得られなかった。
On the other hand, the DC sputtering method, which has been conventionally used in the production of heat ray reflective glass for buildings and automobiles, can easily coat a large area uniformly and has excellent adhesion of the film to the substrate. In addition, no special care is required for storing the sputtering target. However, TiO 2 film by usual sputtering film quality is inferior as compared with the film by the wet method, sufficient photocatalytic activity was obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、耐擦傷性が
改善され、充分な光触媒活性を有する酸化物膜が形成さ
れた積層体の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a laminate having an oxide film having improved scratch resistance and having sufficient photocatalytic activity.

【0007】[0007]

【課題を解決するための手段】本発明は、基体上に、ス
パッタリング法によりTiの酸化物を主成分とする酸化
物膜を成膜してなる積層体の製造方法において、該Ti
の酸化物を主成分とする酸化物膜、主としてアナター
型結晶粒を有し、かつ、大気中で測定時の仕事関数が
4.5〜6.0eVの範囲であり、光量1μWで一定値
以上のエネルギーの紫外線を当てたときに出てくる電子
数の紫外線エネルギーに対する傾きが8.5Y/eV
であることを特徴とする積層体の製造方法を提供す
る。
The present invention SUMMARY OF] is on a substrate, the manufacturing method of the scan <br/> sputtering method is formed by depositing an oxide film mainly containing oxides of Ti by laminate , The Ti
The oxide film to the oxide as the main component, having a predominantly anatase crystal grain, and the work function of the time of measurement in air in the range of 4.5~6.0EV, constant amount 1μW provides a method for producing a laminate which tilt relative to come out ultraviolet energy of electron number when irradiated with ultraviolet light of greater than or equal to energy, characterized in der Rukoto below 8.5 Y / eV.

【0008】Tiを主成分とする酸化物膜(以下、単に
Ti酸化物膜という)をTiを主成分とする金属ターゲ
ットから基板無加熱で酸化性雰囲気で反応性DCスパッ
タリング法で形成する技術は現在非常にポピュラーであ
り、熱線反射ガラス等の製造にすでに用いられている。
しかし、この方法によるTiO2 膜はX線的にはアモル
ファスであり、ほとんど光触媒活性を示さない。光触媒
活性を得るためには、まず膜に光触媒活性の大きいアナ
ターゼ型の結晶粒を成長させなければならない。また、
Ti酸化物膜の酸化度も重要な因子である。Ti酸化物
膜が還元気味であると、バンド中に金属Ti等の準位が
できてバンドギャップが不鮮明になり、光触媒性能が低
下する傾向にある。
A technique for forming an oxide film containing Ti as a main component (hereinafter, simply referred to as a Ti oxide film) from a metal target containing Ti as a main component by a reactive DC sputtering method in an oxidizing atmosphere without heating the substrate is used. At present, it is very popular and has already been used for manufacturing heat-reflecting glass and the like.
However, the TiO 2 film formed by this method is amorphous in terms of X-ray and exhibits almost no photocatalytic activity. In order to obtain photocatalytic activity, first, anatase-type crystal grains having high photocatalytic activity must be grown on the film. Also,
The degree of oxidation of the Ti oxide film is also an important factor. When the Ti oxide film tends to be reduced, a level of metallic Ti or the like is formed in the band, the band gap becomes unclear, and the photocatalytic performance tends to deteriorate.

【0009】Ti酸化物膜の酸化度は表面分析装置(理
研計器製AC−1)により大気中で測定したときの、
1)仕事関数と、2)一定値以上のエネルギーの紫外線
を当てたときに出てくる電子数とにより評価できる。図
1に紫外線エネルギー(eV)と膜から出てくる光量1
μWあたりの電子数(Y)との関係の模式図を示す。紫
外線の単位エネルギーに対する傾き(Y/eV)を測定
したデータの模式図を示す。膜の酸化度が高ければ、出
てくる電子は少ないため、傾きは小さくなる。本発明
においては、仕事関数が4.5〜6.0eVの範囲であ
り、光量1μWで一定値以上のエネルギーの紫外線を当
てたときに出てくる電子数の紫外線エネルギーに対する
傾きが8.5Y/eV以下となるように形成することが
重要である。前記「一定値」はその測定条件にもよる
が、約5.8eVである。また、光量が0.35μWの
場合に換算すると、傾きは3.0Y/eV以下となるよ
うに形成する。
The degree of oxidation of the Ti oxide film is measured by a surface analyzer (AC-1 manufactured by Riken Keiki) in the atmosphere,
It can be evaluated by 1) the work function and 2 ) the number of electrons that appear when an ultraviolet ray having an energy of a certain value or more is applied. Figure 1 shows the ultraviolet energy (eV) and the amount of light emitted from the film 1
The schematic diagram of the relationship with the number of electrons per μW (Y) is shown. The schematic diagram of the data which measured the inclination (Y / eV) with respect to the unit energy of ultraviolet rays is shown. If the degree of oxidation of the film is high, the number of emitted electrons is small and the inclination becomes small. In the present invention, the work function is in the range of 4.5 to 6.0 eV, and the inclination of the number of electrons that appears when ultraviolet rays having an energy of 1 μW or more and a certain energy or more are applied to the ultraviolet energy is 8.5 Y. It is important to form so as to be less than / eV . The “constant value” is about 5.8 eV, although it depends on the measurement conditions. Further, when converted to the case where the light quantity is 0.35 μW, the inclination is 3.0 Y / eV or less.

【0010】本発明者らは種々の方法を検討した結果、
特定の操作を行うことによりアナターゼ型の結晶粒を成
長させ、かつ、Ti酸化物膜の酸化度を充分なものとす
ることができることを見い出した。
The present inventors have studied various methods, and as a result,
It was found that by performing a specific operation, anatase type crystal grains can be grown and the degree of oxidation of the Ti oxide film can be made sufficient.

【0011】本発明においては、Ti酸化物膜を成膜中
に、基体を、100℃以上、基体の軟化温度以下の温度
に加熱し、かつ酸素分圧を4mTorr以上とすること
が好ましい。100℃より温度が低いと、アナターゼ型
結晶粒が充分に成長しない。また、実用上、基体として
ガラス基板を用いることが好ましく、したがって、前記
加熱温度の上限は650℃とすることが好ましい。65
0℃より高いと、ガラス基板が熱により軟化し、歪んで
しまう。特に、200〜650℃が好ましい。
In the present invention, during the formation of the Ti oxide film, the substrate is preferably heated to a temperature of 100 ° C. or higher and a softening temperature of the substrate or lower, and the oxygen partial pressure is set to 4 mTorr or higher. If the temperature is lower than 100 ° C, the anatase type crystal grains do not grow sufficiently. Further, in practice, it is preferable to use a glass substrate as the base, and therefore, the upper limit of the heating temperature is preferably 650 ° C. 65
If the temperature is higher than 0 ° C, the glass substrate is softened by heat and is distorted. Particularly, 200 to 650 ° C is preferable.

【0012】基体加熱はアナターゼ型結晶粒の成長の点
で重要な操作であるが、その条件次第では光触媒活性が
充分でないこともある。酸素分圧を4mTorr以上と
することで、Ti酸化物膜の酸化度を充分なものとする
ことができる。
The heating of the substrate is an important operation in terms of growth of anatase type crystal grains, but the photocatalytic activity may not be sufficient depending on the conditions. By setting the oxygen partial pressure to 4 mTorr or more, the degree of oxidation of the Ti oxide film can be made sufficient.

【0013】また、本発明においては、Ti酸化物膜を
成膜後、基体を、100℃以上基体の軟化温度以下の温
度に加熱することも好ましい。該温度範囲が好ましい理
由は前記と同様の理由からであり、特に、200〜65
0℃が好ましい。成膜中に加熱し、さらに成膜後にも加
熱すれば、アナターゼ型結晶粒の成長はより完全なもの
となる。
In the present invention, it is also preferable that after the Ti oxide film is formed, the substrate is heated to a temperature of 100 ° C. or higher and a softening temperature of the substrate or lower. The reason why the temperature range is preferable is for the same reason as described above, and particularly 200 to 65
0 ° C is preferred. If the heating is performed during the film formation and further after the film formation, the growth of the anatase type crystal grains becomes more complete.

【0014】ガラス基板の上にTi酸化物膜を成膜する
場合には、ガラス中のナトリウムのTi酸化物膜への拡
散を防ぐため、ガラス基板とTi酸化物膜の間にアルカ
リバリアのアンダーコートが必要である。通常Siの酸
化物を主成分とする膜が用いられる。Siの酸化物を主
成分とする膜はどのような方法で成膜してもよい。図2
に、本発明により得られる積層体の一例の断面図を示
す。1はアルカリバリア膜、2はTi酸化物膜、11
体を示す。
[0014] In the case of forming a Ti oxide film on a glass substrate in order to prevent diffusion into the Ti oxide film of sodium in the glass, under the alkali barrier between the glass substrate and the Ti oxide film I need a coat. Usually, a film containing an oxide of Si as a main component is used. The film containing Si oxide as a main component may be formed by any method. Figure 2
FIG. 3 shows a cross-sectional view of an example of the laminated body obtained by the present invention. 1 A Rukaribari A film, 2 T i oxide film, 11
A group member.

【0015】Siの酸化物を主成分とする膜の幾何学的
膜厚は1〜100nmであることが好ましい。1nm未
満ではアルカリバリア性能が充分でなく、また100n
m超としてもアルカリバリア性能に差はなく、効率が悪
い。また、Tiの酸化物の幾何学的膜厚は3〜500
nmであることが好ましい。3nm未満では光触媒活性
が充分でなく、また500nm超としても光触媒活性に
差はなく、効率が悪い。
Geometry of a film whose main component is an oxide of Si
The film thickness is preferably 1 to 100 nm. If it is less than 1 nm, the alkali barrier performance is not sufficient,
Even if it exceeds m, there is no difference in alkali barrier performance and the efficiency is poor. The geometric thickness of the oxide film of Ti is from 3 to 500
It is preferably nm. If it is less than 3 nm, the photocatalytic activity is insufficient, and if it exceeds 500 nm, there is no difference in the photocatalytic activity and the efficiency is poor.

【0016】本発明においては、ガラスとTi酸化物膜
の間に、金属酸化物、金属窒化物および金属炭化物から
なる群から選ばれる1種以上の機能性膜を形成すること
もできる。機能性膜はどのような方法で成膜してもよ
い。機能性膜がアルカリバリア性能を有する場合にはア
ルカリバリアのアンダーコートは必要としない。
In the present invention, one or more functional films selected from the group consisting of metal oxides, metal nitrides and metal carbides can be formed between the glass and the Ti oxide film. The functional film may be formed by any method. Undercoat alkali barrier when functional film having an alkali barrier property is not required.

【0017】[0017]

【作用】本発明において、成膜中の基体加熱、または成
膜後の後加熱によりTi酸化物膜中にアナターゼ型結晶
粒が成長する。成膜中に酸素分圧を上げることによりT
i酸化物膜の酸化度は充分なものとなる。また、スパッ
タリング法を用いるため、膜の基体への密着性が強く、
膜の耐擦傷性が強い膜が得られる。
In the present invention, the anatase type crystal grains grow in the Ti oxide film by heating the substrate during film formation or after heating after film formation. By increasing the oxygen partial pressure during film formation, T
The i-oxide film has a sufficient degree of oxidation. Also, since the sputtering method is used, the adhesion of the film to the substrate is strong,
A film having strong scratch resistance can be obtained.

【0018】[0018]

【実施例】以下の例で例1〜5は本発明の実施例を、例
6〜11は比較例を示す。実施例および比較例において
用いた膜の成膜条件は表1に示すとおりである。これら
の膜の光触媒活性は次のようにして評価した。大きさ
4.5cm×5.0cm×2mmのサンプル膜面を上
にしてパイレックス製容器(容量3リットル)に入れ、
アセトアルデヒド蒸気を数百ppm入れた。次に容器の
外側からサンプルの膜面に6Wのブラックライト4本で
紫外光を当てた。一定時間おきに容器の中のアセトアル
デヒド濃度をガス検知管により測定し、アセトアルデヒ
ド濃度の減少速度を測定した。これらの膜の耐擦傷性は
テーバー試験(摩耗輪CS−10F、荷重500g)に
よりテーバー100回転前後のヘーズ値変化ΔHを求め
て評価した。ΔHが5未満の場合を○、5以上の場合を
×とした。
EXAMPLES In the following examples, Examples 1 to 5 are examples of the present invention, and Examples 6 to 11 are comparative examples. The film forming conditions of the films used in Examples and Comparative Examples are as shown in Table 1. The photocatalytic activity of these films was evaluated as follows. The film surface of the sample size 4.5 cm × 5.0 cm × 2 mm face up to the path Irekkusu steel container (3 liter capacity),
Several hundred ppm of acetaldehyde vapor was added. Next, ultraviolet light was applied from the outside of the container to the film surface of the sample with four 6 W black lights. The acetaldehyde concentration in the container was measured at regular intervals with a gas detector tube, and the rate of decrease of the acetaldehyde concentration was measured. Scratch resistance of these films Taber test (abrasion wheel CS-10F, load 500 g) was evaluated Te <br/> seek haze value change ΔH of about Taber 100 rotated by. The case where ΔH was less than 5 was evaluated as ◯, and the case where ΔH was 5 or more was evaluated as x.

【0019】膜の酸化度は、表面分析装置(理研計器製
AC−1)により、仕事関数および電子数の紫外線エネ
ルギーに対する傾きを求めて評価した。なお、傾きを求
めたときの光量は0.35μWとした。結果は表2にま
とめた。表中の「濃度減少速度」は、アセトアルデヒド
濃度減少速度(ppm/時間)の意である。
The degree of oxidation of the film was evaluated by determining the slope of the work function and the number of electrons with respect to the ultraviolet energy using a surface analyzer (AC-1 manufactured by Riken Keiki). The amount of light when the slope was calculated was 0.35 μW. The results are summarized in Table 2. The "concentration reduction rate" in the table means the acetaldehyde concentration reduction rate (ppm / hour).

【0020】[例1] 洗浄した厚さ2mmのフロートガラス板をスパッタリン
グ装置内にセットし、10-6Torr台まで排気した。
次に表1の条件で、SiO2 膜(幾何学的膜厚50n
m)/Ti酸化物膜−1(200nm)を成膜した。こ
の膜は充分な光触媒活性を示し、また実用上充分な耐擦
傷性を示した。( )内の数字は幾何学的膜厚であり、
以下も同様である。表2における( )内の数字は幾何
学的膜厚(nm)である。また、表1〜2においては、
Ti酸化物膜−1を単にTiO2 −1と示し、以下も同
様とする。
[Example 1] A washed float glass plate having a thickness of 2 mm was set in a sputtering apparatus and exhausted to a level of 10 -6 Torr.
Next, under the conditions shown in Table 1, a SiO 2 film (geometric film thickness 50 n
m) / Ti oxide film-1 (200 nm) was formed. This film exhibited sufficient photocatalytic activity and also showed practically sufficient scratch resistance. The numbers in parentheses are the geometrical film thickness,
The same applies to the following. The number in parentheses in Table 2 is the geometric film thickness (nm). In addition, in Tables 1 and 2,
Simply indicated as TiO 2 -1 the Ti oxide film -1, is also the same or less.

【0021】[例2] 例1と同様にして、SiO2 膜(50nm)/Ti酸化
物膜−1(20nm)を成膜した。この膜は充分な光触
媒活性を示し、また実用上充分な耐擦傷性を示した。
Example 2 In the same manner as in Example 1, a SiO 2 film (50 nm) / Ti oxide film-1 (20 nm) was formed. This film exhibited sufficient photocatalytic activity and also showed practically sufficient scratch resistance.

【0022】[例3] 1と同様にして、SiO2 膜(50nm)/Ti酸化
物膜−3(200nm)を成膜した。成膜後この膜を空
気中で600℃、1時間熱処理した。この膜は充分な光
触媒活性を示し、また実用上充分な耐擦傷性を示した。
Example 3 In the same manner as in Example 1, a SiO 2 film (50 nm) / Ti oxide film-3 (200 nm) was formed. After the film formation, this film was heat-treated in air at 600 ° C. for 1 hour. This film exhibited sufficient photocatalytic activity and also showed practically sufficient scratch resistance.

【0023】[例4] 1と同様にして、TiNx 膜(30nm)/Ti酸化
物膜−1(200nm)を成膜した。この膜は充分な光
触媒活性を示し、また実用上充分な耐擦傷性を示した。
Example 4 A TiN x film (30 nm) / Ti oxide film-1 (200 nm) was formed in the same manner as in Example 1. This film exhibited sufficient photocatalytic activity and also showed practically sufficient scratch resistance.

【0024】[例5] 1と同様にして、Ti酸化物膜−3(50nm)/T
iNx (10nm)/Ti酸化物膜−3(20nm)/
Ti酸化物膜−1(200nm)を成膜した。この膜は
充分な光触媒活性を示し、また実用上充分な耐擦傷性を
示した。
Example 5 In the same manner as in Example 1, Ti oxide film-3 (50 nm) / T.
iN x (10 nm) / Ti oxide film-3 (20 nm) /
A Ti oxide film-1 (200 nm) was formed. This film exhibited sufficient photocatalytic activity and also showed practically sufficient scratch resistance.

【0025】[例6] 1と同様にして、SiO2 膜(50nm)/Ti酸化
物膜−2(200nm)を成膜した。この膜は実用上充
分な耐擦傷性を示したが、光触媒活性は例1より劣るこ
とが確認された。
Example 6 In the same manner as in Example 1, a SiO 2 film (50 nm) / Ti oxide film-2 (200 nm) was formed. This film showed practically sufficient scratch resistance, but it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0026】[例7] 1と同様にして、SiO2 膜(50nm)/Ti酸化
物膜−3(200nm)を成膜した。この膜は実用上充
分な耐擦傷性を示したが、光触媒活性は例1より劣るこ
とが確認された。
Example 7 In the same manner as in Example 1, a SiO 2 film (50 nm) / Ti oxide film-3 (200 nm) was formed. This film showed practically sufficient scratch resistance, but it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0027】[例8] 1と同様にして、SiO2 膜(50nm)/Ti酸化
物膜−4(200nm)を成膜した。この膜は実用上充
分な耐擦傷性を示したが、光触媒活性は例1より劣るこ
とが確認された。
Example 8 In the same manner as in Example 1, a SiO 2 film (50 nm) / Ti oxide film-4 (200 nm) was formed. This film showed practically sufficient scratch resistance, but it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0028】[例9] ゾルゲル法により、SiO2 膜(50nm)/Ti酸化
物(200nm)を成膜した。この膜は充分な光触媒活
性を示したが、耐擦傷性は例1より劣ることを確認し
た。
Example 9 A SiO 2 film (50 nm) / Ti oxide (200 nm) was formed by the sol-gel method. This film showed sufficient photocatalytic activity, but it was confirmed that the scratch resistance was inferior to that of Example 1.

【0029】[例10] 1と同様にして、TiNx (30nm)を成膜した。
この膜は実用上充分な耐擦傷性を示したが、光触媒活性
は例1より劣ることが確認された。
Example 10 In the same manner as in Example 1, TiN x (30 nm) was deposited.
This film showed practically sufficient scratch resistance, but it was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0030】[例11] 1と同様にして、Ti酸化物膜−3(50nm)/T
iNx (10nm)/Ti酸化物膜−3(20nm)を
成膜した。この膜は実用上充分な耐擦傷性を示したが、
光触媒活性は例1より劣ることが確認された。
Example 11 In the same manner as in Example 1, Ti oxide film-3 (50 nm) / T.
iN x (10 nm) / Ti oxide film-3 (20 nm) was formed. Although this film showed sufficient scratch resistance in practical use,
It was confirmed that the photocatalytic activity was inferior to that of Example 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明によれば、ウェット法によるチタ
ン酸化物膜と同等の光触媒活性を持ちながら、耐擦傷性
に優れている積層体を得ることができる。したがって特
に耐擦傷性向上のための施策を講ずることもなく、その
ままビル用の窓ガラスに使用できる。
According to the present invention, it is possible to obtain a laminate having a photocatalytic activity equivalent to that of a titanium oxide film formed by the wet method and having excellent scratch resistance. Therefore, it can be used as it is for a window glass for a building without taking any measures for improving scratch resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】紫外線エネルギーと膜から出てくる電子数との
関係の模式図
FIG. 1 is a schematic diagram of the relationship between ultraviolet energy and the number of electrons emitted from a film.

【図2】本発明により得られる積層体の一例の断面図FIG. 2 is a sectional view of an example of a laminate obtained by the present invention.

【符号の説明】[Explanation of symbols]

1:アルカリバリア膜 2:Ti酸化物膜 11:基体1: alkaline burr A film 2: Ti oxide film 11: substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 14/34 C23C 14/34 M ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C23C 14/34 C23C 14/34 M

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体上に、Tiを主成分とする金属ターゲ
ットから酸化性雰囲気で反応性DCスパッタリング法に
より、成膜中に基体を100℃以上基体の軟化温度以下
の温度に加熱し、かつ酸素分圧を4mTorr以上とす
ることによりTiの酸化物を主成分とする酸化物膜を成
膜してなる積層体の製造方法において、該Tiの酸化物
を主成分とする酸化物膜は、主としてアナターゼ型結晶
粒を有し、かつ、大気中で測定時の仕事関数が4.5〜
6.0eVの範囲であり、光量1μWで一定値以上のエ
ネルギーの紫外線を当てたときに出てくる電子数の紫外
線エネルギーに対する傾きが8.5Y/eV以下である
ことを特徴とする積層体の製造方法。
1. A substrate is deposited on a substrate by a reactive DC sputtering method in an oxidizing atmosphere from a metal target containing Ti as a main component to form a substrate having a temperature of 100 ° C. or higher and a softening temperature of the substrate or lower.
And the oxygen partial pressure should be 4 mTorr or more.
As a result, in the method for manufacturing a laminated body in which an oxide film containing Ti oxide as a main component is formed, the oxide film containing Ti oxide as a main component mainly contains anatase type crystal grains. And the work function when measured in the atmosphere is 4.5 to
It is in the range of 6.0 eV, and the inclination of the number of electrons emitted when an ultraviolet ray having a light amount of 1 μW and an energy of a certain value or more is applied to the ultraviolet energy is 8.5 Y / eV or less. Production method.
【請求項2】Tiの酸化物を主成分とする酸化物膜を成
膜後、基体を100℃以上基体の軟化温度以下の温度に
加熱する請求項1に記載の積層体の製造方法。
2. The method for producing a laminate according to claim 1, wherein after the oxide film containing an oxide of Ti as a main component is formed, the base is heated to a temperature of 100 ° C. or higher and a softening temperature of the base or lower.
【請求項3】Tiの酸化物を主成分とする酸化物膜の幾
何学的膜厚が、3〜500nmである請求項1または2
に記載の積層体の製造方法。
3. The geometric film thickness of the oxide film containing Ti oxide as a main component is 3 to 500 nm.
The method for producing a laminated body according to.
【請求項4】基体とTiの酸化物を主成分とする酸化物
膜との間に、Siの酸化物を主成分とする膜が用いられ
る請求項1〜3いずれか1項に記載の積層体の製造方
法。
4. The laminated film according to claim 1, wherein a film containing Si oxide as a main component is used between the substrate and the oxide film containing Ti oxide as a main component. Body manufacturing method.
【請求項5】Siの酸化物を主成分とする膜の幾何学的
膜厚が、1〜100nmである請求項4に記載の積層体
の製造方法。
5. The method for producing a laminate according to claim 4, wherein the film containing Si oxide as a main component has a geometric film thickness of 1 to 100 nm.
JP08965797A 1997-04-08 1997-04-08 Manufacturing method of laminate Expired - Fee Related JP3518240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08965797A JP3518240B2 (en) 1997-04-08 1997-04-08 Manufacturing method of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08965797A JP3518240B2 (en) 1997-04-08 1997-04-08 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JPH10278165A JPH10278165A (en) 1998-10-20
JP3518240B2 true JP3518240B2 (en) 2004-04-12

Family

ID=13976836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08965797A Expired - Fee Related JP3518240B2 (en) 1997-04-08 1997-04-08 Manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP3518240B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025666A (en) * 1999-07-14 2001-01-30 Nippon Sheet Glass Co Ltd Laminate and its production
WO2001071055A1 (en) 2000-03-22 2001-09-27 Nippon Sheet Glass Co., Ltd. Substrate with photocatalytic film and method for producing the same
FR2814094B1 (en) * 2000-09-20 2003-08-15 Saint Gobain SUBSTRATE WITH PHOTOCATALYTIC COATING AND MANUFACTURING METHOD THEREOF
CN1620336A (en) 2001-12-21 2005-05-25 日本板硝子株式会社 Member having photocatalytic function and method for manufacture thereof
US20070082205A1 (en) * 2003-06-09 2007-04-12 Toshiaki Anzaki Photocatalytic member
JP2008505841A (en) 2004-07-12 2008-02-28 日本板硝子株式会社 Low maintenance coating
JP2007319731A (en) * 2006-05-30 2007-12-13 Ykk Ap株式会社 Photocatalytically active film-coated article
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
JP2008229419A (en) * 2007-03-16 2008-10-02 Bridgestone Corp Photocatalytic nitrogen-doped titanium oxide thin film and its depositing method
FR2949774B1 (en) 2009-09-08 2011-08-26 Saint Gobain MATERIAL COMPRISING A GLASS SUBSTRATE COATED WITH A THIN FILM STACK
FR2950543B1 (en) * 2009-09-25 2011-12-16 Centre Nat Rech Scient ULTRA-POROUS PHOTOCATALYTIC MATERIAL, MANUFACTURING METHOD AND USES
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology

Also Published As

Publication number Publication date
JPH10278165A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
JP6247141B2 (en) Light-induced hydrophilic article and method for producing the same
US7884047B2 (en) Substrate, in particular glass substrate, supporting a photocatalytic layer coated with a protective thin layer
EP2069252B1 (en) Low-maintenance coating technology
JP3518240B2 (en) Manufacturing method of laminate
US6194346B1 (en) Photocatalyst and method of making
JP5101789B2 (en) Visible light-responsive photoactive coating, coated article, and method for producing the same
JP4414361B2 (en) Substrate with photocatalytic coating
US8679580B2 (en) Nanostructured coatings and related methods
JP2004535922A (en) Photoactive coatings, coated articles and methods of making the same
JP3904355B2 (en) Hydrophilic photocatalytic member
MXPA02004454A (en) Transparent substrate provided with a silicon derivative layer.
EP0901991A3 (en) Photocatalytic glass pane and method for producing same
JPS62148344A (en) Composite organic mineral compound accumulated on glass substrate coated with optional more than one thin film metallayer
JP2005507974A6 (en) Visible light-responsive photoactive coating, coated article, and method for producing the same
JP2002533284A (en) Antifouling coating on glass surface
US7687148B2 (en) Coated glass
EP1608793B1 (en) Titania coatings
WO2002018287A1 (en) Process for coating glass
JP3925179B2 (en) Anti-fogging and antifouling article and method for producing the same
JP2001130928A (en) Article with photocatalytic activity
JPH1060665A (en) Hydrophilic coating film and its production
JP2000192226A (en) Formation of titanium oxide film
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JPH11147277A (en) Hydrophilic film forming base material and its production
JP2009173546A (en) Photo-induced hydrophilic article and method of producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees