JP2000192226A - Formation of titanium oxide film - Google Patents

Formation of titanium oxide film

Info

Publication number
JP2000192226A
JP2000192226A JP10365140A JP36514098A JP2000192226A JP 2000192226 A JP2000192226 A JP 2000192226A JP 10365140 A JP10365140 A JP 10365140A JP 36514098 A JP36514098 A JP 36514098A JP 2000192226 A JP2000192226 A JP 2000192226A
Authority
JP
Japan
Prior art keywords
film
titanium oxide
oxide film
oxygen
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10365140A
Other languages
Japanese (ja)
Inventor
Susumu Suzuki
すすむ 鈴木
Satoshi Takeda
諭司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10365140A priority Critical patent/JP2000192226A/en
Publication of JP2000192226A publication Critical patent/JP2000192226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a film having a high photocatalytic activity and excellent abrasion resistance by sputtering a metallic target contg. Ti by using a gaseous mixture of oxygen and a specified ratio of helium as atmospheric gas. SOLUTION: The content of helium is controlled to 20 to 90 vol.% to the total of oxygen and helium. Making electric power to the target is controlled to 0.1 to 5.0 W/cm2. Moreover, the pressure of the atmospheric gas is preferably controlled to >=1 m Torr. As the geometrical film thickness of the titanium oxide film, 5 to 1000 nm is suitable. Desirably, substrate heating is executed at 100 to 650 deg.C heating temp. in the process of the film formation or the titanium film is subjected to post-heating in the air or in an atmosphere contg. oxygen after the film formation. The space between the glass substrate and the titanium oxide film may be provided with a functional film such as a metallic oxide film, a metallic nitride film, a metallic carbide film or the like. In the case of the substrate heating or the post-heating after the film formation, as a functional film, a silica film is provided to prevent the diffusion of sodium in glass into the titanium oxide film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化チタン膜の成膜
方法に関する。
The present invention relates to a method for forming a titanium oxide film.

【0002】[0002]

【従来の技術】近年、酸化チタン(酸化チタン)によ
る、親水、抗菌、防汚コーティングの研究が注目を集め
ている。これらは、酸化チタンの光触媒効果を利用して
いる。報告例としては、酸化チタン膜がコートされた親
水防汚コート(特開平8−267646)、貴金属等と
の混合による光触媒活性向上方法(特開平6−1981
96)などがある。
2. Description of the Related Art In recent years, research on hydrophilic, antibacterial, and antifouling coatings using titanium oxide (titanium oxide) has attracted attention. These utilize the photocatalytic effect of titanium oxide. Examples of the report include a hydrophilic antifouling coat coated with a titanium oxide film (JP-A-8-267646), and a method for improving photocatalytic activity by mixing with a noble metal (JP-A-6-1981).
96).

【0003】従来、光触媒活性を示す酸化チタン膜の形
成方法として、酸化チタンの微粒子を有機または無機の
バインダにより固定する方法や、チタンアルコキシドか
らゾルゲル法で形成するなどの湿式法が検討されてき
た。これらの方法は熱平衡プロセスであり、これらの方
法で得られた酸化チタン膜の光触媒活性は高い。
Hitherto, as a method for forming a titanium oxide film exhibiting photocatalytic activity, a method of fixing fine particles of titanium oxide with an organic or inorganic binder, and a wet method of forming a titanium alkoxide by a sol-gel method have been studied. . These methods are thermal equilibrium processes, and the photocatalytic activity of the titanium oxide film obtained by these methods is high.

【0004】しかし、湿式法では、窓ガラスのような大
面積へのコートに成膜した際の膜厚均一性の点、また
は、膜の耐擦傷性の点で不十分である。さらに、塗布液
を一定の状態に保管するのに細心の注意を必要とする。
[0004] However, the wet method is insufficient in terms of uniformity of film thickness when a film is formed on a large-area coat such as a window glass or scratch resistance of the film. Furthermore, it is necessary to take great care to keep the coating liquid in a constant state.

【0005】一方、建築用、自動車用熱線反射ガラスな
どの製造に用いられている直流(DC)スパッタリング
法は、大面積への均一なコーティングが容易で、かつ膜
の基板への密着性にも優れる。また、スパッタリングタ
ーゲットの保管には特別な注意を必要としない。しか
し、従来スパッタリング法では充分な光触媒活性を示す
酸化チタン膜は得られなかった。
On the other hand, direct current (DC) sputtering, which is used in the production of heat-reflective glass for architectural and automobile use, allows uniform coating on a large area and also facilitates adhesion of the film to a substrate. Excellent. Further, no special care is required for storing the sputtering target. However, a titanium oxide film exhibiting a sufficient photocatalytic activity has not been obtained by the conventional sputtering method.

【0006】[0006]

【発明が解決しようとする課題】本発明は、光触媒活性
が高く、耐擦傷性に優れる酸化チタン膜の成膜方法の提
供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a titanium oxide film having high photocatalytic activity and excellent scratch resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、Tiを含有す
る金属ターゲットを用いスパッタリング法により酸化チ
タン膜を成膜する方法において、雰囲気ガスとして、酸
素とヘリウムとの混合ガスを用い、ヘリウムを酸素とヘ
リウムとの総量に対して20〜90体積%とする酸化チ
タン膜の成膜方法を提供する。
According to the present invention, there is provided a method of forming a titanium oxide film by a sputtering method using a metal target containing Ti, wherein a mixed gas of oxygen and helium is used as an atmosphere gas, and Provided is a method for forming a titanium oxide film in which the content is 20 to 90% by volume based on the total amount of oxygen and helium.

【0008】スパッタリング法でTiターゲットを用い
酸化度雰囲気で得られる酸化チタン膜が高い光触媒活性
を示さない原因としては、スパッタリング法は非平衡プ
ロセスであり、スパッタリング法では、電子と正孔の再
結合中心となる格子欠陥が、湿式法による場合と比べて
膜中に多く存在するためと考えられている。
[0008] The reason that the titanium oxide film obtained in a oxidizing atmosphere using a Ti target by the sputtering method does not show high photocatalytic activity is that the sputtering method is a non-equilibrium process, and the sputtering method recombines electrons and holes. It is considered that the lattice defects serving as the center exist in the film more than in the case of the wet method.

【0009】膜中の欠陥は主として酸素欠陥である。す
なわち、スパッタリング法では、酸化チタンの酸化度が
完全ではなく、酸素が化学量論量よりも不足しているも
のと考えられている。高い光触媒活性を発現させるため
には、酸化チタンの酸化度を完全なものとする必要があ
る。
The defects in the film are mainly oxygen defects. That is, in the sputtering method, it is considered that the degree of oxidation of titanium oxide is not perfect, and oxygen is less than the stoichiometric amount. In order to exhibit high photocatalytic activity, it is necessary to complete the oxidation degree of titanium oxide.

【0010】本発明者らは、酸化チタンの酸化度を向上
させるための方策として、1)成膜中の酸素分圧の増
加、2)基板加熱、が有効であることことを見出した
(特開平10−278165)。しかし、窓ガラスのよ
うな大面積基板に対し、均一に基板加熱することは困難
である。そこで、低温で酸化チタンの酸化度を上げるた
めには、酸化性雰囲気の酸化活性を上げることが必要で
ある。
The present inventors have found that 1) increasing the oxygen partial pressure during film formation and 2) substrate heating are effective as measures for improving the degree of oxidation of titanium oxide. Kaihei 10-278165). However, it is difficult to uniformly heat a large area substrate such as a window glass. Therefore, in order to increase the degree of oxidation of titanium oxide at a low temperature, it is necessary to increase the oxidation activity in an oxidizing atmosphere.

【0011】本発明者らは、雰囲気ガスとして酸素とヘ
リウムの混合ガスを用いることが有効であることを見出
した。ヘリウムはプラズマ中でエネルギー準位の高い準
安定粒子になる。酸素ガスが前記準安定粒子と衝突し、
酸素原子のイオン化率が上がり、高励起状態となり、酸
素の酸化力が著しく増加する。
The present inventors have found that it is effective to use a mixed gas of oxygen and helium as an atmosphere gas. Helium becomes a metastable particle with a high energy level in the plasma. Oxygen gas collides with the metastable particles,
The ionization rate of oxygen atoms increases, the state becomes highly excited, and the oxidizing power of oxygen increases significantly.

【0012】本発明においては、ヘリウムを酸素とヘリ
ウムとの総量に対して20〜90体積%とすることが重
要である。20体積%未満では、酸素の酸化活性が増加
せず、また、90体積%超では、再び酸化活性が減少す
る。
In the present invention, it is important to make helium 20 to 90% by volume based on the total amount of oxygen and helium. If it is less than 20% by volume, the oxidizing activity of oxygen does not increase, and if it exceeds 90% by volume, the oxidizing activity decreases again.

【0013】ターゲットへの投入電力は、例えば、0.
1〜5.0W/cm2とする。また、雰囲気ガスの圧力
は、放電安定性の観点から、1mTorr以上が好まし
い。
The power supplied to the target is, for example, 0.
1 to 5.0 W / cm 2 . The pressure of the atmospheric gas is preferably 1 mTorr or more from the viewpoint of discharge stability.

【0014】酸化チタン膜の幾何学的膜厚は5〜100
0nmであることが好ましい。5nm未満では充分な光
触媒活性を示さず、また1000nm超では、膜表面の
平滑性が損なわれ、摩擦係数が増大して、膜強度が低下
する。
The geometric thickness of the titanium oxide film is 5 to 100.
It is preferably 0 nm. If it is less than 5 nm, sufficient photocatalytic activity is not exhibited, and if it exceeds 1000 nm, the smoothness of the film surface is impaired, the friction coefficient increases, and the film strength decreases.

【0015】本発明においては、成膜中に基板加熱を行
うか、成膜後に酸化チタン膜を空気中または酸素を含む
雰囲気中で後加熱することが好ましい。加熱温度は10
0〜650℃が好ましい。100℃未満では、酸化チタ
ンの酸化度は加熱をしない場合と変わらず、また、65
0℃超ではガラス基板の場合、基板が軟化する。また、
本発明においては、ガラス基板と酸化チタン膜の間に機
能性膜を設けることができる。機能性膜としては、金属
酸化物膜、金属窒化物膜、金属炭化物膜が挙げられる。
機能性膜の製造方法は特に限定されない。
In the present invention, it is preferable to heat the substrate during the film formation or to post-heat the titanium oxide film after the film formation in air or in an atmosphere containing oxygen. Heating temperature is 10
0-650 ° C is preferred. If the temperature is lower than 100 ° C., the degree of oxidation of titanium oxide is the same as that without heating, and
If the temperature exceeds 0 ° C., the glass substrate is softened. Also,
In the present invention, a functional film can be provided between the glass substrate and the titanium oxide film. Examples of the functional film include a metal oxide film, a metal nitride film, and a metal carbide film.
The method for producing the functional film is not particularly limited.

【0016】前記の基板加熱または成膜後の後加熱をす
る場合には、ガラス中のナトリウムが酸化チタン膜への
拡散することを防ぐため、機能性膜として、シリカ膜を
設けることが好ましい。機能性膜は2層以上設けること
もでき、例えば、基板側から、シリカ膜、その他の機能
性膜を順次形成することもできる。
In the case of heating the substrate or post-heating after film formation, it is preferable to provide a silica film as a functional film in order to prevent sodium in the glass from diffusing into the titanium oxide film. Two or more functional films can be provided. For example, a silica film and other functional films can be sequentially formed from the substrate side.

【0017】[0017]

【実施例】以下の例で例1〜5は実施例、例6〜11は
比較例に相当する。
EXAMPLES In the following examples, Examples 1 to 5 correspond to Examples, and Examples 6 to 11 correspond to Comparative Examples.

【0018】[例1]洗浄した厚さ2mmのフロートガ
ラス基板をスパッタリング装置内にセットし、10-6
orr台まで排気した。次に表1の条件で、TiO2
1(200nm)を成膜した。 TiO2−1の成膜条件
は表1に示すとおりである。
Example 1 A washed float glass substrate having a thickness of 2 mm was set in a sputtering apparatus, and 10 -6 T was used.
The air was exhausted to the orr level. Next, under the conditions shown in Table 1, TiO 2
1 (200 nm) was formed. Conditions for forming the TiO 2 -1 are shown in Table 1.

【0019】得られた膜付きガラスの光触媒活性は次の
ようにして評価した。大きさ4.5cm×5.0cm×
2mmのサンプルを膜面を上にしてパイレックス(岩城
硝子(株)製)製容器(容量3リットル)に入れ、アセ
トアルデヒド蒸気を数百ppm入れた。次に容器の外側
からサンプルの膜面に6Wのブラックライト蛍光燈4本
で紫外光を当てた。一定時間おきに容器の中のアセトア
ルデヒド濃度をガス検知管により測定し、アセトアルデ
ヒド濃度の減少速度を測定し、アセトアルデヒド(CH
3CHO)分解速度を求めた。結果を表2に示す。
The photocatalytic activity of the obtained glass with a film was evaluated as follows. 4.5cm × 5.0cm ×
A sample of 2 mm was placed in a Pyrex (Iwaki Glass Co., Ltd.) container (capacity: 3 liters) with the membrane surface facing up, and several hundred ppm of acetaldehyde vapor was charged. Next, ultraviolet light was applied to the film surface of the sample from the outside of the container with four 6 W black light fluorescent lamps. The acetaldehyde concentration in the container was measured at regular intervals using a gas detector tube, and the rate of decrease in the acetaldehyde concentration was measured.
3 CHO) decomposition rate was determined. Table 2 shows the results.

【0020】[例2〜11]例1と同様にして、表2に
示す各種の膜を形成した。例2〜11で用いた6種類の
酸化チタン膜(TiO2−1〜TiO2−6)およびその
他の各膜の成膜条件は表1に示すとおりである。なお、
例3については、成膜後に空気中で、600℃、1時間
の熱処理をした。例1と同様にアセトアルデヒド(CH
3CHO)分解速度を求めた結果を表2に示す。
Examples 2 to 11 In the same manner as in Example 1, various films shown in Table 2 were formed. Deposition conditions for six titanium oxide film (TiO 2 -1~TiO 2 -6) and each additional film used in Example 2 to 11 are shown in Table 1. In addition,
In Example 3, a heat treatment was performed at 600 ° C. for one hour in air after the film formation. Acetaldehyde (CH
Table 2 shows the results obtained for the 3 CHO) decomposition rate.

【0021】また、例1〜5で得られた膜付きガラスの
耐擦傷性をテーバー試験(試験荷重500g、摩耗輪C
S−10F)で評価した。比較のために、湿式法により
ガラス基板上に酸化チタン膜を成膜した膜付きガラスに
ついても同様に評価した。その結果、湿式法により得ら
れた膜付きガラスでは、テーバー回転100回で膜がと
れてしまうのに対し、例1〜5で得られた膜付きガラス
では300回でも膜がとれず、高い耐擦傷性を示した。
The abrasion resistance of the glass with a film obtained in each of Examples 1 to 5 was evaluated by a Taber test (test load: 500 g, wear wheel C:
S-10F). For comparison, a film-coated glass in which a titanium oxide film was formed on a glass substrate by a wet method was similarly evaluated. As a result, in the case of the glass with the film obtained by the wet method, the film could be removed in 100 times of Taber rotation, whereas in the case of the glass with the film obtained in Examples 1 to 5, the film could not be removed even in 300 times, and the high glass resistance was high. It showed abrasion.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明によれば、光触媒活性の高い酸化
チタン膜が得られる。また、スパッタリング法により成
膜するため、大面積に均一な膜厚分布で、基板への膜の
密着性が強く、膜の耐擦傷性に優れる。したがって耐擦
傷性向上のための対策を特に講ずることなく、ビル用の
窓ガラスとして使用できる。
According to the present invention, a titanium oxide film having high photocatalytic activity can be obtained. Further, since the film is formed by the sputtering method, the film has a uniform film thickness distribution over a large area, has strong adhesion to the substrate, and has excellent scratch resistance. Therefore, it can be used as a window glass for a building without taking special measures for improving the scratch resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Tiを含有する金属ターゲットを用いスパ
ッタリング法により酸化チタン膜を成膜する方法におい
て、雰囲気ガスとして、酸素とヘリウムとの混合ガスを
用い、ヘリウムを酸素とヘリウムとの総量に対して20
〜90体積%とする酸化チタン膜の成膜方法。
In a method of forming a titanium oxide film by a sputtering method using a metal target containing Ti, a mixed gas of oxygen and helium is used as an atmosphere gas, and helium is added to the total amount of oxygen and helium. 20
A method for forming a titanium oxide film having a volume ratio of about 90% by volume.
【請求項2】雰囲気ガスの圧力が1mTorr以上であ
る請求項1に記載の成膜方法。
2. The film forming method according to claim 1, wherein the pressure of the atmosphere gas is 1 mTorr or more.
【請求項3】酸化チタン膜を5〜1000nmの幾何学
的膜厚で形成する請求項1または2に記載の成膜方法。
3. The film forming method according to claim 1, wherein the titanium oxide film is formed with a geometric thickness of 5 to 1000 nm.
JP10365140A 1998-12-22 1998-12-22 Formation of titanium oxide film Pending JP2000192226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10365140A JP2000192226A (en) 1998-12-22 1998-12-22 Formation of titanium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10365140A JP2000192226A (en) 1998-12-22 1998-12-22 Formation of titanium oxide film

Publications (1)

Publication Number Publication Date
JP2000192226A true JP2000192226A (en) 2000-07-11

Family

ID=18483529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10365140A Pending JP2000192226A (en) 1998-12-22 1998-12-22 Formation of titanium oxide film

Country Status (1)

Country Link
JP (1) JP2000192226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510051A (en) * 2000-09-20 2004-04-02 サン−ゴバン グラス フランス Substrate with photocatalytic coating
US7483226B2 (en) 2004-09-27 2009-01-27 Nidec Copal Corporation ND filter, manufacturing method thereof, and aperture device
JP2013505820A (en) * 2009-09-25 2013-02-21 エクス−マルセイユ ユニヴェルシテ Superporous photocatalytic material, method for producing the same, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510051A (en) * 2000-09-20 2004-04-02 サン−ゴバン グラス フランス Substrate with photocatalytic coating
US7483226B2 (en) 2004-09-27 2009-01-27 Nidec Copal Corporation ND filter, manufacturing method thereof, and aperture device
JP2013505820A (en) * 2009-09-25 2013-02-21 エクス−マルセイユ ユニヴェルシテ Superporous photocatalytic material, method for producing the same, and use thereof

Similar Documents

Publication Publication Date Title
US9534293B2 (en) Process for depositing a thin layer and product obtained thereby
JP4475952B2 (en) Hydrophilic DLC on UV exposed substrate
US8349445B2 (en) Microbicidal substrate
US6414213B2 (en) Titanium oxide particle-coated interior member or indoor equipment
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
EP1786740A1 (en) Nanostructured coatings and related methods
JP3518240B2 (en) Manufacturing method of laminate
JPWO2005056870A1 (en) Ti oxide film having photocatalytic activity in visible light and method for producing the same
JP2006521470A (en) Titania coating
JP2001340757A (en) Titanium dioxide photocatalyst carring body and method of producing the same
JP2000192226A (en) Formation of titanium oxide film
JP2000109342A (en) Method for depositing layer consisting essentially of metal oxide on glass substrate, and glass base material coated with the same
JPH05186872A (en) Method of plasma-promoted chemical vapor deposition for oxide film laminated body
JPH1071337A (en) Photocatalyst and its production
JP2001347162A (en) Photocatalytic material with thin titanium dioxide film
JP2001073116A (en) Production of thin film
JP2009102188A (en) Ordinary temperature glass, ordinary temperature glass coating material, and method for forming ordinary temperature glass
Kawahara et al. A Large-Area Patterned TiO 2/SnO 2 Bilayer Type Photocatalyst Prepared by Gravure Printing
JP2014524404A (en) Anti-reflective glazing unit with porous coating
JP4096606B2 (en) Method for producing titanium compound film-coated article
JPH01312088A (en) Production of electrode for dry etching device and cvd device
JP4214327B2 (en) Method for producing titanium oxide film and photocatalytic film
JP2003342722A (en) Sputtering system and sputtering method
JP2003117404A (en) Method for preparing photocatalyst and photocatalyst
JPH07204581A (en) Production of laminated body