JP3219076B2 - Method of forming laminate - Google Patents

Method of forming laminate

Info

Publication number
JP3219076B2
JP3219076B2 JP11840699A JP11840699A JP3219076B2 JP 3219076 B2 JP3219076 B2 JP 3219076B2 JP 11840699 A JP11840699 A JP 11840699A JP 11840699 A JP11840699 A JP 11840699A JP 3219076 B2 JP3219076 B2 JP 3219076B2
Authority
JP
Japan
Prior art keywords
forming
laminate
thin film
tile
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11840699A
Other languages
Japanese (ja)
Other versions
JP2000026138A (en
Inventor
万也 辻道
博人 蓮生
秀紀 小林
義光 佐伯
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26456350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3219076(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP11840699A priority Critical patent/JP3219076B2/en
Publication of JP2000026138A publication Critical patent/JP2000026138A/en
Application granted granted Critical
Publication of JP3219076B2 publication Critical patent/JP3219076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた防汚力、耐
久性を発揮する付着汚れ除去性光触媒薄膜を表面層に有
する積層体の形成方法に関する。
The present invention relates to have excellent antifouling force, about a figure forming method of a laminate having a fouling removal photocatalyst film that exhibits durable surface layer.

【0002】[0002]

【従来の技術】酸化チタンは、光触媒活性に優れた材料
として広く知られ、様々な光触媒反応が知られている。
近年、紫外線照射により光励起した酸化チタン薄膜が高
い親水性を発現することが明らかとなった。その性質を
利用して、酸化チタン薄膜表面に付着した汚れ物質が水
洗により容易に除去可能であるという酸化チタン薄膜の
高い防汚力が示された。
2. Description of the Related Art Titanium oxide is widely known as a material having excellent photocatalytic activity, and various photocatalytic reactions are known.
In recent years, it has been clarified that a titanium oxide thin film photoexcited by ultraviolet irradiation exhibits high hydrophilicity. Utilizing this property, the high antifouling power of the titanium oxide thin film was demonstrated, in which the dirt attached to the surface of the titanium oxide thin film can be easily removed by washing with water.

【0003】従来、上記記載の防汚力を備え、かつ耐久
性の優れた酸化チタン薄膜を基材表面に作製する技術と
して、以下の方法が用いられてきた。
Conventionally, the following method has been used as a technique for producing a titanium oxide thin film having the above-described antifouling property and excellent durability on the surface of a substrate.

【0004】酸化チタン微粒子を溶媒に分散した酸化チ
タンゾルを、基材表面上のバインダー層を有する基材表
面に塗布し約700℃以上の高温で焼成することによ
り、酸化チタン粒子が基材またはバインダー層の内部に
埋没することなく表面上に均一かつ綿密な酸化チタン薄
膜を作製することができる。このようにして作製された
酸化チタン薄膜は紫外線照射下において、酸化チタンの
光触媒作用によって高い親水性を発現する。この効果に
より、酸化チタン薄膜はその表面に付着した有機分の汚
れを水洗により容易に除去できるという高い防汚力を発
揮する。
A titanium oxide sol obtained by dispersing titanium oxide fine particles in a solvent is applied to the surface of a substrate having a binder layer on the surface of the substrate and fired at a high temperature of about 700 ° C. or more, whereby the titanium oxide particles A uniform and detailed titanium oxide thin film can be produced on the surface without being buried inside the layer. The titanium oxide thin film thus produced exhibits high hydrophilicity under ultraviolet irradiation by the photocatalytic action of titanium oxide. Due to this effect, the titanium oxide thin film exhibits a high antifouling effect that organic dirt attached to the surface thereof can be easily removed by washing with water.

【0005】しかしながら、これらの方法は球状の酸化
チタン粒子を基材表面に固定化するため、表面には粒子
間の空隙や、粒子同士の凝集に起因する表面の粗さが存
在した。このため、表面の凹凸に入り込んだ汚れ物質の
除去が必ずしも容易ではないという問題があった。
However, in these methods, spherical titanium oxide particles are immobilized on the surface of the base material, so that the surface has voids between the particles and surface roughness due to aggregation of the particles. For this reason, there has been a problem that it is not always easy to remove a dirt substance that has entered the surface irregularities.

【0006】また、セラミック製品表面に要求される表
面の硬度や対摩耗性を満たすためには、酸化チタン薄膜
を約700℃以上の高温で、なおかつバインダー層を介
してセラミック等の基材に固定化する必要があるという
問題があった。
In order to satisfy the surface hardness and abrasion resistance required for a ceramic product surface, a titanium oxide thin film is fixed to a base material such as ceramic at a high temperature of about 700 ° C. or higher and via a binder layer. There was a problem that it was necessary to make it.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記課題を
解決するためになされたもので、本発明の目的は、基材
表面上に光触媒薄膜を固定化するにおいて、従来技術並
みの硬度と紫外線照射による親水性の増大及び有機物に
対する分解力を維持しつつ、固定化に要する加熱温度を
より低温で、バインダー層を必要とせず、なおかつ平滑
性のより高い付着汚れ除去性光触媒薄膜及びその製造方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to fix a photocatalytic thin film on a substrate surface with a hardness as high as that of the prior art. While maintaining an increase in hydrophilicity and the ability to decompose organic substances due to ultraviolet irradiation, the heating temperature required for immobilization is lower, the binder layer is not required, and the adhesion-removing photocatalytic thin film having higher smoothness and its production are provided. It is to provide a method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に研究を重ねた結果、金属アルコキシドの一種であるチ
タンアルコキシドを含む溶液を製膜原料とし、それを基
材表面に配設し、基材表面の熱、または基材の低温加熱
処理による熱によりチタンアルコキシドを熱分解、重合
(脱アルコール反応)させ、基材表面に酸化チタン薄膜
を形成することにより、従来技術並みの硬度と紫外線照
射による親水性の増大及び有機物に対する分解力を維持
しつつ、固定化に要する加熱温度をより低温で、バイン
ダー層を必要とせず、なおかつ平滑性のより高いために
表面の凹凸に汚れ物質が入り込むことが少ないという防
汚性の高い付着汚れ除去性を有する積層体の形成方法を
い出し、本発明をなすに至った。
As a result of repeated studies to solve the above-mentioned problems, a solution containing titanium alkoxide, which is a kind of metal alkoxide, was used as a film-forming material, and the solution was disposed on the surface of a base material. Titanium alkoxide is thermally decomposed and polymerized (dealcoholization reaction) by heat on the surface of the material or heat from low-temperature heat treatment of the base material, forming a titanium oxide thin film on the base material surface. While maintaining the increase in hydrophilicity and the decomposability against organic substances, the heating temperature required for immobilization is lower, no binder layer is required, and the smoothness is higher, so that dirt substances enter the surface irregularities. A method for forming a laminate having a high antifouling property and low stain resistance
Out we have seen, the present invention has been accomplished.

【0009】本発明に用いられるチタンアルコキシドと
してはTi−(OR)4 (ここでRはアルキル基を表
す)の化学式で表されるものであれば何れでも使用可能
であるが、特にチタンテトライソプロポキシドを用いる
ことが好ましい。
As the titanium alkoxide used in the present invention, any titanium alkoxide can be used as long as it is represented by the chemical formula of Ti- (OR) 4 (where R represents an alkyl group). It is preferred to use propoxide.

【0010】本発明に用いられるチタンアルコキシドは
溶媒に希釈して使用することも可能であり、この場合チ
タンアルコキシドに対する溶媒としては、チタンアルコ
キシドと相溶性の良くかつ、チタンアルコキシドを加水
分解しない有機溶媒が用いることができる。特にエタノ
ール、イソプロパノール、イソブタノールが好ましい。
The titanium alkoxide used in the present invention can be used after being diluted with a solvent. In this case, the solvent for the titanium alkoxide is an organic solvent having good compatibility with the titanium alkoxide and not hydrolyzing the titanium alkoxide. Can be used. Particularly, ethanol, isopropanol and isobutanol are preferred.

【0011】本発明に用いられるチタンアルコキシドの
溶媒に対する濃度は、特に限定されないが0.5〜20
重量%が好ましい。
The concentration of the titanium alkoxide used in the present invention with respect to the solvent is not particularly limited, but may be 0.5 to 20.
% By weight is preferred.

【0012】本発明に用いられる製膜原料として、溶媒
に希釈したチタンアルコキシド溶液に他の金属アルコキ
シドを添加したものも用いることができる。この場合、
添加する金属アルコキシド種は、チタンアルコキシドと
相溶性の良いものが望ましい。このような金属アルコキ
シドとして、シリコンアルコキシドの一種であるオルト
けい酸テトラエチルが挙げられる。
As the film forming raw material used in the present invention, a material obtained by adding another metal alkoxide to a titanium alkoxide solution diluted in a solvent can be used. in this case,
It is desirable that the metal alkoxide species to be added have good compatibility with titanium alkoxide. Examples of such a metal alkoxide include tetraethyl orthosilicate, which is a kind of silicon alkoxide.

【0013】本発明の、金属アルコキシドを基材表面に
配設する方法としては、いかなる方法を用いてもよい
が、金属アルコキシドの蒸気を基材表面に吹き付ける化
学蒸着法を用いれば、製膜後において基材の表面形状を
損なうことがないため、特に好適である。
As a method for disposing a metal alkoxide on the surface of a substrate according to the present invention, any method may be used. This is particularly preferable because the surface shape of the substrate is not impaired.

【0014】前記金属アルコキシドの蒸気を基材表面に
吹き付ける化学蒸着法とは、より具体的には、金属アル
コキシド種としてチタンアルコキシドを用いた場合、以
下の方法をとる。チタンアルコキシドを含む溶液の気化
により発生した蒸気を直接もしくはキャリアガスと混合
したものを基材に吹き付けることにより行う。また、よ
り簡便な方法としては、噴霧法の装置を利用して、チタ
ンアルコキシドの液滴を十分大きい流速を持つキャリア
ガス中に送り込み気化させたものを基材に吹き付ける方
法を用いることができる。いずれの方法においても、チ
タンアルコキシドの気化が速やかに行われるように、チ
タンアルコキシドを含む溶液を加熱し、その蒸気圧を高
めることが好ましい。
The chemical vapor deposition method in which the vapor of the metal alkoxide is sprayed onto the surface of the base material is more specifically, the following method is used when titanium alkoxide is used as the metal alkoxide species. This is performed by spraying the vapor generated by vaporizing the solution containing titanium alkoxide directly or mixed with a carrier gas onto the base material. Further, as a simpler method, a method in which droplets of titanium alkoxide are sent into a carrier gas having a sufficiently high flow rate and vaporized by using a spraying apparatus and sprayed on a substrate can be used. In any method, it is preferable to heat the solution containing the titanium alkoxide to increase the vapor pressure so that the titanium alkoxide is quickly vaporized.

【0015】前記記載の方法で、チタンアルコキシドを
含む溶液を基材表面に化学蒸着法等の方法で配設した
後、基材表面に酸化チタン薄膜を形成する方法として、
以下記載の(a)、(b)の方法のどちらかもしくは両
方を適宜選択することができる。これらの方法により、
高い平滑性と硬度を持つアナターゼ型酸化チタン薄膜を
基材上にバインダー層の介在を必要とせず得ることがで
きる。(a)チタンアルコキシドを含む溶液を基材表面
に前記化学蒸着法等の方法で配設する前に、予め基材表
面をその表面温度が50〜600℃になるように加熱し
ておき、基材表面に配設されたチタンアルコキシドの一
部若しくは全てを基材表面の熱により分解、重合させ基
材表面に酸化チタン薄膜を形成する方法。(b)チタン
アルコキシドを含む溶液を基材表面に前記化学蒸着法等
の方法で配設した基材を300〜600℃の温度環境下
で加熱処理し、基材表面に配設されたチタンアルコキシ
ドの一部若しくは全てを熱分解、重合させ基材表面に酸
化チタン薄膜を形成する方法。
According to the above-mentioned method, after disposing a solution containing titanium alkoxide on the surface of a substrate by a method such as a chemical vapor deposition method, a method of forming a titanium oxide thin film on the surface of the substrate is as follows.
Either or both of the following methods (a) and (b) can be appropriately selected. By these methods,
An anatase-type titanium oxide thin film having high smoothness and hardness can be obtained without requiring a binder layer on a substrate. (A) Before disposing a solution containing a titanium alkoxide on a substrate surface by a method such as the chemical vapor deposition method or the like, the substrate surface is previously heated to a surface temperature of 50 to 600 ° C. A method in which part or all of titanium alkoxide disposed on the surface of a material is decomposed and polymerized by heat of the surface of the substrate to form a titanium oxide thin film on the surface of the substrate. (B) Titanium alkoxide provided on a surface of a substrate, which is subjected to a heat treatment in a temperature environment of 300 to 600 ° C. on a substrate provided with a solution containing a titanium alkoxide on the surface of the substrate by a method such as the chemical vapor deposition method or the like. A method of forming a titanium oxide thin film on the surface of a substrate by thermally decomposing and polymerizing part or all of the above.

【0016】酸化チタン等の半導体酸化物と絶縁体酸化
物を共に配合して備える付着汚れ除去性光触媒薄膜の作
製には、半導体酸化物と絶縁体酸化物の金属種のアルコ
キシドを混合した溶液を製膜原料とし、上記記載の製膜
方法を用いることにより、基材表面に半導体酸化物粒子
と絶縁体酸化物が混在した薄膜を形成することができる
(図1参照)。このように作製した薄膜は半導体酸化物
と絶縁体酸化物が共に表面に露出しているため、半導体
酸化物の光触媒特性を維持することは勿論のことである
が、さらに絶縁体酸化物の化学的諸特性を表面に付与す
ることができる。また、半導体酸化物の金属種のアルコ
キシドと絶縁体酸化物の金属種のアルコキシドを交互に
表面に配設し、加熱処理により目的の酸化物薄膜を形成
することにより、半導体酸化物薄膜と絶縁体酸化物薄膜
を層状に基材表面上に形成することも可能である(図2
参照)。この場合酸化物の形成回数及び酸化物の形成順
序は限定されない。このように作製した薄膜の一例を図
2に示す。図2に示すように、基材と半導体酸化物層の
界面に前記両者と化学的に密着性の良い絶縁体酸化物層
を設けた場合、半導体酸化物層を基材上により強固に設
けることが可能となる。また、絶縁体酸化物層により基
材を構成する元素の半導体酸化物層への拡散が抑制され
半導体酸化物の諸特性が維持される。
In order to prepare a photocatalytic thin film having a stain-removing property, which comprises a semiconductor oxide such as titanium oxide and an insulator oxide, a solution in which an alkoxide of a metal species of the semiconductor oxide and the insulator oxide is mixed is used. By using the above-described film-forming method as a film-forming material, a thin film in which semiconductor oxide particles and insulator oxide are mixed can be formed on the surface of the base material (see FIG. 1). Since the semiconductor oxide and the insulator oxide are both exposed on the surface of the thin film formed in this manner, the photocatalytic properties of the semiconductor oxide are, of course, maintained. Target characteristics can be imparted to the surface. In addition, alkoxides of a metal species of a semiconductor oxide and alkoxides of a metal species of an insulator oxide are alternately provided on the surface, and a target oxide thin film is formed by heat treatment. It is also possible to form an oxide thin film in a layer on the substrate surface (FIG. 2).
reference). In this case, the number of oxide formations and the order of oxide formation are not limited. FIG. 2 shows an example of the thin film thus manufactured. As shown in FIG. 2, when an insulator oxide layer having good chemical adhesion is provided at the interface between the base material and the semiconductor oxide layer, the semiconductor oxide layer is provided more firmly on the base material. Becomes possible. Further, the diffusion of the element constituting the base material into the semiconductor oxide layer is suppressed by the insulator oxide layer, and various characteristics of the semiconductor oxide are maintained.

【0017】本発明の付着汚れ除去性光触媒薄膜に遷移
金属を備えることにより、付着汚れ除去性光触媒薄膜
に、より大きな有機物に対する分解力を付与することも
できる。本発明の付着汚れ除去性光触媒薄膜に銅、銀、
パラジウム、ニッケル、クロム、コバルト、白金等の遷
移金属を備える方法の一例として、前記遷移金属のイオ
ンが含まれる溶液を本発明の付着汚れ除去性光触媒薄膜
の表面に塗布、紫外線照射を行い、前記遷移金属イオン
を光還元し金属として本発明の付着汚れ除去性光触媒薄
膜上に担持する方法が例示できる。
By providing a transition metal in the thin film of the present invention, it is possible to impart a greater decomposing power to organic substances to the thin film of the photocatalyst for removing stains. Copper, silver,
As an example of a method including a transition metal such as palladium, nickel, chromium, cobalt, and platinum, a solution containing ions of the transition metal is applied to the surface of the adhered dirt-removing photocatalytic thin film of the present invention, and ultraviolet irradiation is performed. An example is a method in which a transition metal ion is photoreduced and supported as a metal on the adhered and soil-removable photocatalytic thin film of the present invention.

【0018】本発明における酸化チタン薄膜を形成する
基材としては、その融点が製膜に必要とされる基板の加
熱温度(300〜600℃)より低いものであればいか
なるものを用いてもよい。特にガラス、タイル等の陶磁
器、セメントまたはコンクリート製品等の酸化物からな
るセラミックスが好ましい。
As the substrate on which the titanium oxide thin film is formed in the present invention, any substrate may be used as long as its melting point is lower than the substrate heating temperature (300 to 600 ° C.) required for film formation. . In particular, ceramics such as glass, ceramics such as tiles, and oxides such as cement or concrete products are preferable.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施例により、特
に代表的なものをさらに具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, typical examples will be described more specifically with reference to examples of the present invention.

【0020】実施例1 まず、本発明の実施例品との対比を取るために、従来技
術を用いて酸化チタン薄膜をタイル上に作製したサンプ
ル(以下、比較例タイルと記載)および本発明の方法を
用いてタイル上に酸化チタン薄膜を作製したサンプル
(以下、実施例タイルと記載)を以下のように用意し
た。比較例タイルは酸化チタンが0.75重量%の割合
で含まれる市販の酸化チタンゾルをタイル表面に噴霧
し、約850℃で焼成したタイルであり、この時の酸化
チタン薄膜の膜厚は約0.5μmである。
Example 1 First, in order to compare with the product of the present invention, a sample in which a titanium oxide thin film was formed on a tile using a conventional technique (hereinafter referred to as a comparative tile) and a sample of the present invention were prepared. A sample in which a titanium oxide thin film was formed on a tile using the method (hereinafter, referred to as an example tile) was prepared as follows. The tile of the comparative example is a tile obtained by spraying a commercially available titanium oxide sol containing titanium oxide at a ratio of 0.75% by weight on the tile surface and firing at about 850 ° C. At this time, the thickness of the titanium oxide thin film is about 0%. 0.5 μm.

【0021】実施例タイルは、チタンアルコキシドとし
て市販のチタンテトライソプロポキシドを用い、その濃
度が10重量%となるように市販のイソプロピルアルコ
ールで希釈した20℃の溶液を、表面温度が100℃の
施釉タイル上に前記溶液の液滴を乾燥空気中に送り込み
気化させたものを基材に吹き付ける方法により、チタン
テトライソプロポキシドを施釉タイル表面上に配設し
た。続いて、前記施釉タイルを500℃の温度雰囲気下
で30分加熱処理し施釉タイル表面にアナターゼ型酸化
チタン薄膜を作製した。
The tiles used in the present invention were prepared by using a commercially available titanium tetraisopropoxide as a titanium alkoxide and diluting the solution with a commercially available isopropyl alcohol at a concentration of 10% by weight at a temperature of 20 ° C. with a surface temperature of 100 ° C. Titanium tetraisopropoxide was provided on the surface of the glazed tile by a method in which droplets of the solution were sent to dry air and vaporized on the glazed tile and sprayed onto the substrate. Subsequently, the glazed tile was subjected to a heat treatment at 500 ° C. for 30 minutes to produce an anatase-type titanium oxide thin film on the surface of the glazed tile.

【0022】得られた比較例タイルおよび実施例タイル
表面上の酸化チタン薄膜の平滑性、硬度、親水性、付着
汚れ除去性を評価した。前記2種の試料タイルの酸化チ
タン薄膜の平滑性は、(株)島津製作所製の原子間力顕
微鏡(SPM−9500)を用いた表面形状測定によ
る、試料タイル表面の5μm四方の領域における表面粗
さ(中心線平均粗さ)により評価した。また、試料タイ
ルの酸化チタン薄膜表面の硬度はモース硬度により評価
した。また、試料タイルの酸化チタン薄膜表面の親水性
は暗所に24時間設置した(以下の表において暗時と記
載)試料タイルおよび1.2mW/cm2の紫外線環境
下に24時間設置した(以下の表において明時と記載)
試料タイルの水の接触角を用いて評価した。また、試料
タイルの酸化チタン薄膜表面の付着汚れ除去性は1.2
mW/cm2の紫外線環境下に24時間設置した試料タ
イル表面約20cm上方から汚染液を1滴/秒の間隔で
5時間にわたって滴下した後の試料タイル表面の色値を
測定し、滴下開始前(試験開始前)の色値との比較値で
ある色差をもって評価した。ここで用いた汚染液は、5
重量%のカーボンブラック、67.5重量%のイエロー
オーカー、22.5重量%の関東ローム、1.0重量%
のシリカ粉を含む汚染物質を1g/リットルの濃度とな
るように水と混合したものである。
The smoothness, hardness, hydrophilicity, and stain removability of the titanium oxide thin films on the surfaces of the obtained tiles of the comparative example and the example were evaluated. The smoothness of the titanium oxide thin film of the two types of sample tiles was measured by measuring the surface roughness using an atomic force microscope (SPM-9500) manufactured by Shimadzu Corporation. (Center line average roughness). The hardness of the titanium oxide thin film surface of the sample tile was evaluated by Mohs hardness. The hydrophilicity of the titanium oxide thin film surface of the sample tile was set in a dark place for 24 hours (described as dark in the following table) and the sample tile was set in a 1.2 mW / cm 2 ultraviolet environment for 24 hours (hereinafter referred to as dark). In the table above)
Evaluation was made using the water contact angle of the sample tile. The stain removal property of the titanium oxide thin film surface of the sample tile is 1.2.
The color value of the sample tile surface was measured after the contaminated liquid was dropped at an interval of 1 drop / sec over a period of 5 hours from about 20 cm above the sample tile surface placed in an ultraviolet environment of mW / cm 2 for 24 hours. The evaluation was made based on a color difference which was a comparison value with the color value (before the test was started). The contaminated liquid used here is 5
Wt% carbon black, 67.5 wt% yellow ocher, 22.5 wt% Kanto loam, 1.0 wt%
Is mixed with water to a concentration of 1 g / liter.

【0023】比較例タイルおよび実施例タイルに対する
上記の評価結果と、基材の加熱条件を表1に示す。
Table 1 shows the evaluation results of the comparative example tile and the example tile, and the heating conditions of the base material.

【0024】[0024]

【表1】 [Table 1]

【0025】(2)実施例2 実施例タイルは、チタンアルコキシドとして市販のチタ
ンテトライソプロポキシドを用い、その濃度が5重量%
となるように市販のイソプロピルアルコールで希釈した
80℃に加熱した溶液を、表面温度が420℃の施釉タ
イル上に前記溶液の液滴を乾燥空気中に送り込み気化さ
せたものを基材に吹き付ける方法により、チタンテトラ
イソプロポキシドを施釉タイル表面上に配設した。実施
例1では行ったチタンテトライソプロポキシドを施釉タ
イル上に配設した後の加熱処理は実施例2では行わな
い。
(2) Example 2 In the example tile, commercially available titanium tetraisopropoxide was used as the titanium alkoxide, and the concentration was 5% by weight.
A method in which a solution heated to 80 ° C. diluted with commercially available isopropyl alcohol is heated so that droplets of the solution are sent into dry air on a glazed tile having a surface temperature of 420 ° C., and vaporized, and sprayed onto a substrate. The titanium tetraisopropoxide was placed on the glazed tile surface. In the second embodiment, the heat treatment after disposing titanium tetraisopropoxide on the glazed tile is not performed in the second embodiment.

【0026】実施例1と同様の方法を用いて、得られた
実施例1で用いた比較例タイルおよび実施例タイル表面
上の酸化チタン薄膜の平滑性、硬度、親水性、付着汚れ
除去性を評価した。
Using the same method as in Example 1, the smoothness, hardness, hydrophilicity, and stain removal property of the titanium oxide thin film on the surface of the comparative example tile and the example tile obtained in Example 1 were obtained. evaluated.

【0027】比較例タイルおよび実施例タイルに対する
上記の評価結果と、基材の加熱条件を表2に示す。
Table 2 shows the evaluation results of the comparative example tile and the example tile, and the heating conditions of the base material.

【0028】[0028]

【表2】 [Table 2]

【0029】(3)実施例3 比較例タイルは酸化チタンとシリカがそれぞれ0.75
重量%、0.095重量%となるように市販の酸化チタ
ンゾルとシリカゾルを蒸留水で希釈したゾルを施釉タイ
ル表面に噴霧し、約850℃で焼成したタイルであり、
この時の酸化チタン薄膜の膜厚は約0.5μmである。
実施例タイルは、チタンアルコキシドとして市販のチタ
ンテトライソプロポキシドおよび市販のオルトけい酸テ
トラエチルを、それらの濃度がそれぞれ5重量%、1重
量%となるように市販のイソプロピルアルコールで希釈
した20℃の溶液を、表面温度が130℃の施釉タイル
上に前記溶液の液滴を乾燥空気中に送り込み気化させた
ものを基材に吹き付ける方法により、チタンテトライソ
プロポキシドおよびオルトけい酸テトラエチルを施釉タ
イル表面上に配設した。続いて、前記施釉タイルを50
0℃の温度環境下で加熱処理し、施釉タイル表面に酸化
チタン−シリカ薄膜を作製した。
(3) Example 3 In the comparative example tile, titanium oxide and silica were 0.75 each.
Weight percent, a sol obtained by diluting a commercially available titanium oxide sol and silica sol with distilled water so as to be 0.095% by weight is sprayed on the glazed tile surface, and the tile is fired at about 850 ° C.
At this time, the thickness of the titanium oxide thin film is about 0.5 μm.
Example tiles were prepared by diluting commercially available titanium tetraisopropoxide and commercially available tetraethyl orthosilicate as titanium alkoxides with commercially available isopropyl alcohol such that their concentrations were 5% by weight and 1% by weight, respectively. The solution is sent to a glazed tile having a surface temperature of 130 ° C. by dropping the solution into dry air and spraying the vaporized product onto a substrate. Titanium tetraisopropoxide and tetraethyl orthosilicate are applied to the surface of the glazed tile. Arranged above. Then, apply the glazed tile to 50
Heat treatment was performed in a temperature environment of 0 ° C. to form a titanium oxide-silica thin film on the surface of the glazed tile.

【0030】実施例1と同様の方法を用いて、得られた
比較例タイルおよび実施例タイル表面上の酸化チタン−
シリカ薄膜の平滑性、硬度、親水性、付着汚れ除去性を
評価した。
Using the same method as in Example 1, the obtained comparative example tile and titanium oxide on the surface of the example tile were obtained.
The smoothness, hardness, hydrophilicity, and stain removal property of the silica thin film were evaluated.

【0031】比較例タイルおよび実施例タイルに対する
上記の評価結果と、基材の加熱条件を表3に示す。
Table 3 shows the evaluation results of the comparative example tile and the example tile, and the heating conditions of the base material.

【0032】[0032]

【表3】 [Table 3]

【0033】実施例1,2,3における比較例タイルと
実施例タイルの中心線平均粗さで示される表面粗さの相
違の発現の理由は以下記載のように推察される。比較例
タイルは製膜原料として酸化チタンゾルを用い、比較的
粒子径の大きな酸化チタン粒子を基材表面に固定化する
ため、表面には粒子間の空隙や、粒子同士の凝集に起因
する表面の粗さが存在する。一方、実施例タイルでは製
膜原料として個々の分子として存在するチタンアルコキ
シドおよびシリコンアルコキシドを用いるため、表面に
大きな粒子径を持つ酸化チタンおよびシリカの粒子が形
成されにくく、表面には粒子間の空隙や、粒子同士の凝
集に起因する表面の粗さが前者のそれらと比較して、相
対的に小さくなると考えられる。また、付着汚れ除去性
に関して、実施例1,2,3において実施例タイルが比
較例タイルより優れている理由としては、実施例タイル
の高い平滑性と親水性によると考えられる。
The reason why the difference in surface roughness expressed by the center line average roughness between the comparative example tile and the example tile in Examples 1, 2 and 3 is presumed as follows. In the comparative example tile, titanium oxide sol was used as a film forming raw material, and titanium oxide particles having a relatively large particle diameter were immobilized on the surface of the base material. There is roughness. On the other hand, in the example tile, since titanium alkoxide and silicon alkoxide existing as individual molecules are used as a film forming raw material, particles of titanium oxide and silica having a large particle diameter are hardly formed on the surface, and voids between the particles are formed on the surface. Also, it is considered that the surface roughness caused by the aggregation of the particles is relatively smaller than those of the former. Further, the reason why the example tile is superior to the comparative example tile in Examples 1, 2 and 3 with respect to the adhesion dirt removal property is considered to be due to the high smoothness and hydrophilicity of the example tile.

【0034】実施例4 前記実施例1で用いた実施例タイルの表面に、酢酸銅溶
液を塗布、紫外線照射を行い、銅イオンを光還元を利用
して、金属の銅として担持した。表面上の銅の重量は約
1.0μg/cm2である。このように作製した銅粒子
が表面に固着した酸化チタン薄膜の有機物に対する分解
力を大腸菌に対する抗菌力を用いて評価した。
Example 4 A copper acetate solution was applied to the surface of the example tile used in Example 1 and irradiated with ultraviolet rays, and copper ions were supported as metal copper using photoreduction. The weight of copper on the surface is about 1.0 μg / cm 2 . The decomposing ability of the titanium oxide thin film having the thus-prepared copper particles on the surface thereof against organic substances was evaluated using the antibacterial activity against Escherichia coli.

【0035】抗菌力の評価は、大腸菌(Escheri
chia coil w3110株)に対する抗菌効果の
有無で下すことにした。まず、上記実施例タイルおよび
ブランクタイル(光触媒を表面に持たない通常のタイ
ル)の表面を70%エタノールで殺菌し、その後、それ
ぞれのタイル表面に大腸菌菌液を0.15ml(1〜5
×104CFU)滴下した。このタイル表面に透明なガ
ラス板を載せて大腸菌をタイル表面に密着させてこれを
試料とし、この試料をそれぞれのタイルについて一対用
意した。次いで、実施例タイルとブランクタイルの一方
のタイルにはガラス板を通して蛍光灯を照射し、他方の
試料は遮光環境下に置いた。そして一定時間経過後の、
蛍光灯照射下の試料と遮光下の試料における大腸菌の生
存数を測定し、ブランクタイル上の大腸菌の生存数に対
する上記実施例タイル上の大腸菌の生存数の割合をもっ
て実施例タイルにおける大腸菌の生存率とした。さらに
その生存率から抗菌率(大腸菌が死滅若しくは増殖を停
止した割合)を求めた。
The antibacterial activity of the evaluation is, E. coli (Escheri
chia coil w3110 strain). First, the surfaces of the above example tiles and blank tiles (normal tiles having no photocatalyst) are sterilized with 70% ethanol, and then 0.15 ml (1 to 5 ml) of Escherichia coli is applied to each tile surface.
× 104CFU) beat drop. A transparent glass plate was placed on the tile surface, and Escherichia coli was brought into close contact with the tile surface, and this was used as a sample. A pair of this sample was prepared for each tile. Next, one of the example tile and the blank tile was irradiated with a fluorescent lamp through a glass plate, and the other sample was placed in a light-shielded environment. And after a certain time,
The survival number of E. coli in the sample under the fluorescent lamp and the sample under the shade were measured, and the survival rate of E. coli in the example tile was calculated by using the ratio of the number of E. coli on the above example tile to the number of E. coli on the blank tile. And Further, the antibacterial rate (the rate at which Escherichia coli was killed or stopped growing) was determined from the survival rate.

【0036】実施例タイルは蛍光灯照射下及び遮光環境
下において照射開始一時間後時点で、約99%の抗菌率
を示した。
The example tile exhibited an antibacterial rate of about 99% at one hour after the start of the irradiation under the fluorescent lamp irradiation and the light shielding environment.

【0037】[0037]

【発明の効果】以上説明したように、本発明の方法によ
れば基材上にバインダー層を介さず平滑性の高い酸化チ
タン薄膜を低温で固定化することが可能である。特に、
本方法で得られる酸化チタン薄膜は、その表面の平滑性
が高いために、日常一般に見られる汚れ物質が表面の凹
凸に入り込みその除去が困難になるということはほとん
ど起ないこと、および高い親水性を発現することにより
優れた防汚力を発揮する。また、膜表面の硬度も大き
く、日常の使用において膜の耐久性はなんら問題が無
い。また、本発明では、600℃以下の低温で基材上に
酸化チタン薄膜を作製できることから、加熱処理に要す
るエネルギー量を低減でき、また燃焼機関から排出され
る二酸化炭素等の大気汚染ガスの排出量を低減できると
いう特徴がある。
As described above, according to the method of the present invention, a titanium oxide thin film having high smoothness can be fixed on a substrate at a low temperature without a binder layer. In particular,
Since the titanium oxide thin film obtained by this method has a high surface smoothness, it is unlikely that dirt substances commonly found in daily life enter the unevenness of the surface and become difficult to remove, and have high hydrophilicity. By exhibiting excellent antifouling power. Further, the hardness of the film surface is large, and there is no problem in the durability of the film in daily use. Further, in the present invention, since a titanium oxide thin film can be formed on a substrate at a low temperature of 600 ° C. or lower, the amount of energy required for heat treatment can be reduced, and the emission of air pollutant gas such as carbon dioxide emitted from a combustion engine can be reduced. The feature is that the amount can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体酸化物と絶縁体酸化物が混在した状態で
基材表面上に形成された薄膜を模式的に示す図
FIG. 1 is a diagram schematically showing a thin film formed on a substrate surface in a state where a semiconductor oxide and an insulator oxide are mixed.

【図2】半導体酸化物と絶縁体酸化物が層状に配列した
状態で基材表面上に形成された薄膜を模式的に示す図
FIG. 2 is a diagram schematically showing a thin film formed on a substrate surface in a state where a semiconductor oxide and an insulator oxide are arranged in a layered manner.

【符号の説明】[Explanation of symbols]

1…半導体酸化物粒子 2…絶縁体酸化物粒子 3、6…基材 4…半導体酸化物層 5…絶縁体酸化物層 DESCRIPTION OF SYMBOLS 1 ... Semiconductor oxide particle 2 ... Insulator oxide particle 3, 6 ... Base material 4 ... Semiconductor oxide layer 5 ... Insulator oxide layer

フロントページの続き (51)Int.Cl.7 識別記号 FI C03C 17/27 C03C 17/27 (72)発明者 佐伯 義光 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (56)参考文献 特開 平10−101374(JP,A) 特開 平8−108075(JP,A) 特開 平10−231146(JP,A) 特開 平11−90237(JP,A) 特開 平11−290696(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 Continuation of the front page (51) Int.Cl. 7 Identification code FI C03C 17/27 C03C 17/27 (72) Inventor Yoshimitsu Saeki 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Totoki Co., Ltd. (56) References JP-A-10-101374 (JP, A) JP-A-8-108075 (JP, A) JP-A-10-231146 (JP, A) JP-A-11-90237 (JP, A) Kaihei 11-290696 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B32B 1/00-35/00

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材の表面に付着汚れ除去性光触媒薄
層を積層した積層体の形成方法であって、この方法は、
前記基材表面に金属アルコキシドを被覆する前に、予め
基材表面の温度が50℃以上になるように予備加熱する
工程と、基材表面に金属アルコキシドを被覆する工程
と、その後、予備加熱以上の温度で且つ600℃以下に
なるように加熱する工程を含むことを特徴とする積層
の形成方法
1. A attached to the surface of the substrate Chakuyogore removed photocatalyst thin film
A method for forming a laminate in which layers are stacked, the method comprising:
Before coating the substrate surface with the metal alkoxide,
Preheating so that the temperature of the substrate surface becomes 50 ° C or higher
Process and the process of coating the substrate surface with a metal alkoxide
And then at a temperature above preheating and below 600 ° C
Laminate characterized that you comprising heating such that
Formation method .
【請求項2】 前記金属アルコキシドは、チタンアルコ
キシドであることを特徴とする請求項1に記載の積層
の形成方法。
2. The method according to claim 1, wherein the metal alkoxide is titanium alcohol.
The laminate according to claim 1, characterized in that it is a Kishido
Formation method.
【請求項3】 請求項1に記載の積層体の形成方法にお
いて、前記薄膜は高い平滑性、硬度を有するとともに、
光励起により親水性が増大する特性及び有機物に対する
分解力を有し、前記薄膜表面の5μm四方の領域におい
て、その中心線平均粗さが2nm以上15nm以下であ
る平滑性を有することを特徴とする積層体の形成方法。
3. The method for forming a laminate according to claim 1, wherein
And the thin film has high smoothness and hardness,
The property that hydrophilicity is increased by photoexcitation and for organic substances
It has a decomposing power and is located in a 5 μm square area on the surface of the thin film.
And the center line average roughness is 2 nm or more and 15 nm or less.
Method of forming a laminate characterized and this with that smoothness.
【請求項4】 請求項3に記載の積層体の形成方法にお
いて、光励起後の前記付着汚れ除去性光触媒薄膜表面の
水の接触角が、光励起前の前記付着汚れ除去性光触媒薄
膜表面の水の接触角より5°以上30°以下の範囲で小
さくなる親水性を発現することを特徴とする積層体の形
成方法
4. The method for forming a laminate according to claim 3, wherein
Of the surface of the photocatalytic thin film after the photoexcitation
The contact angle of water is smaller than that of the photocatalytic thin film before the photoexcitation.
Smaller than the contact angle of water on the membrane surface in the range of 5 ° to 30 °
Form of laminate it characterized that you express fence made hydrophilic
Method .
【請求項5】 請求項3又は4に記載の積層体の形成方
法において、前記付着汚れ除去性光触媒薄膜が、光触媒
機能を呈する半導体酸化物である酸化チタン、酸化錫、
酸化亜鉛の少なくとも一つの酸化物から構成されるこ
を特徴とする積層体の形成方法
5. A method for forming a laminate according to claim 3 or 4.
The method according to claim 1, wherein the adhesion-removing photocatalytic thin film comprises a photocatalyst.
Titanium oxide, tin oxide, which are semiconductor oxides that exhibit functions,
At least one method of forming the laminate characterized and this consists of oxides of zinc oxide.
【請求項6】 請求項5に記載の積層体の形成方法にお
いて、前記付着汚れ除去性光触媒薄膜が、前記半導体酸
化物に、絶縁体酸化物を配合して構成されることを特徴
とする積層体の形成方法
6. A method for forming a laminate according to claim 5, wherein
Wherein the attached dirt removing photocatalytic thin film is
The product, the method of forming the laminate characterized and this constituted by blending insulator oxides.
【請求項7】 請求項5又は6に記載の積層体の形成方
法において、前記付着汚れ除去性光触媒薄膜が、遷移金
属または遷移金属酸化物を配合して構成されることを特
徴とする積層体の形成方法
7. A method for forming a laminate according to claim 5 or 6.
The method according to claim 1, wherein the adhesion-removing photocatalytic thin film comprises a transition metal.
Method of forming a genus or a transition metal oxide characterized and this constituted by blending a laminate.
【請求項8】 請求項3から請求項7に記載の積層体の
形成方法において、前記付着汚れ除去性光触媒薄膜にお
いて、光触媒粒子が露出してなることを特徴とする積層
体の形成方法
8. The laminate according to claim 3, wherein
In the forming method, the adhered dirt removing photocatalytic thin film is
There are, you characterized that you photocatalyst particles are exposed laminated
How the body is formed .
【請求項9】 請求項3から請求項8に記載の積層体の
形成方法において、前記積層体の表面のモース硬度が4
以上である硬度を有することを特徴とする積層体の形成
方法
9. The laminate according to claim 3, wherein
In the forming method, the surface of the laminate has a Mohs hardness of 4
Forming the laminate you characterized that you have a at which hardness than
How .
【請求項10】 請求項3から請求項9に記載の積層体
の形成方法において、前記積層体の基材が、ガラス、タ
イル等の陶磁器、セメントまたはコンクリート製品等の
酸化物からなるセラミックスであることを特徴とする積
層体の形成方法
10. A laminate according to claim 3, wherein
In the method of forming, the base material of the laminate is glass,
For porcelain such as il, cement or concrete products, etc.
Product it characterized that it is a ceramic made of an oxide
A method for forming a layer body .
JP11840699A 1998-04-24 1999-04-26 Method of forming laminate Expired - Lifetime JP3219076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11840699A JP3219076B2 (en) 1998-04-24 1999-04-26 Method of forming laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13117998 1998-04-24
JP10-131179 1998-04-24
JP11840699A JP3219076B2 (en) 1998-04-24 1999-04-26 Method of forming laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000096655A Division JP2000350938A (en) 1998-04-24 2000-03-31 Photocatalyst film of adhering stain-removing properties, laminate and its forming method

Publications (2)

Publication Number Publication Date
JP2000026138A JP2000026138A (en) 2000-01-25
JP3219076B2 true JP3219076B2 (en) 2001-10-15

Family

ID=26456350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11840699A Expired - Lifetime JP3219076B2 (en) 1998-04-24 1999-04-26 Method of forming laminate

Country Status (1)

Country Link
JP (1) JP3219076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5420978B2 (en) * 2009-06-10 2014-02-19 公益財団法人神奈川科学技術アカデミー Antireflection film and method for producing the same
JP2018187563A (en) * 2017-05-08 2018-11-29 株式会社イリス Method of coating titanium oxide

Also Published As

Publication number Publication date
JP2000026138A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
EP0684075B1 (en) Multi-functional material having photo-catalytic function and production method therefor
EP0816466B1 (en) Use of material having ultrahydrophilic and photocatalytic surface
US8349445B2 (en) Microbicidal substrate
EP0870530B1 (en) Photocatalyst and process for the preparation thereof
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
US7858201B2 (en) Titanium oxide photocatalyst, method for producing same and use thereof
JP3384284B2 (en) Hydrophilic coating, hydrophilic substrate provided with the same, and methods for producing them
WO2006095464A1 (en) Titanium oxide coating agent, and method for titanium oxide coating film formation
KR19990081917A (en) Agricultural and Pollution Resistant Glass Products
JPH1053437A (en) Coating with amorphous type titanium peroxide
JP2005290369A (en) Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP2010134462A (en) Method of depositing porous anti-reflecting layer, and glass having anti-reflecting layer
KR20060069890A (en) Titanium oxide sol, thin film, and processes for producing these
US6602607B2 (en) Titanium doxide photocatalyst carrier and process for its production
GB2442364A (en) Microbicidal substrate
JP2000239047A (en) Hydrophilic photocatalytic member
JP2013516383A (en) Photocatalytic material and glass sheet or photovoltaic cell containing the material
JP3219076B2 (en) Method of forming laminate
JP3381886B2 (en) Photocatalyst structure and manufacturing method thereof
JP2000350938A (en) Photocatalyst film of adhering stain-removing properties, laminate and its forming method
JP3885248B2 (en) Photocatalyst composition
JPH10286456A (en) Adsorbing functional body
JP2001031483A (en) Production of ceramic building material having photocatalytic function
JP2003176426A (en) Method for producing hydrophilic coated film and hydrophilic substrate, and hydrophilic film and hydrophilic substrate obtained thereby
JP2014069357A (en) Heat-resistant building material

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 13

EXPY Cancellation because of completion of term