【0001】
【産業上の利用分野】
本発明は、繊維製品または繊維加工製品にハイブリット光触媒粒子であるアパタイト被覆型光触媒酸化チタン粒子を付着させ、アパタイトの吸着作用と光触媒酸化チタンの光触媒作用との相乗効果により、強力で効果的な消臭機能と抗菌機能が付加された繊維製品または繊維加工製品を具現化する技術に関する。
【0002】
【従来の技術】
従来から、酸化チタンは光触媒反応を起こす金属として知られており、そのためには、適正な精錬と結晶化と物質表面にアナタース型酸化チタンが必要とされている。即ち、当該酸化チタンの一結晶系であるアナターゼ粒子の大きさが小さくなると、触媒として太陽光や蛍光灯などから出る光のエネルギーによって、空気中の水分や酸素から強力な酸化分解能力を持つ働きを作り出す。これを酸化チタンの光触媒作用と称して、抗菌・殺菌作用、空気清浄による消臭作用、紫外線カットによる防錆作用、親水性による曇り止め作用、汚れ分解作用を発現することが知られている。
【0003】
そのため、アナターゼ型二酸化チタンからなる光触媒を用いて、抗菌性タイル、セルフ・クリーニング建材、超親水性材料、脱臭・消臭材料、水の浄化、癌の治療等を行えることが知られ(光クリーン革命(藤嶋昭他))、種々の用途開発が活発に行われている。具体的には、例えば、WO94/11092号には室内照明下における光触媒による空気処理方法が開示されている。特開平7−102678号には、光触媒を用いた院内感染の防止方法が開示されている。特開平8−67835号公報及び特開平8−164334号公報には抗菌性塗料が開示されている。さらにWO96/29375には超親水性材料が開示されている。
【0004】
【発明が解決しようとする課題】
しかし、これらのように光触媒技術の実用化には、いくつかの問題点がある。その中で大きな問題は、酸化チタンを固定化する方法である。光触媒反応を起こす酸化チタンは、粉状、粒子状であるため、これを固定させるために、従来は接着剤やバインダーや塗料に混ぜて使用するか、塗布したうえ焼き付ける方法がとられていた。
【0005】
しかるに、接着剤やバインダーや塗料に混ぜて使用する方法では、表面に顔を出す酸化チタンが少なくなってしまい充分な効果が期待できない。そこで表面積を増やそうとすると、今度は、酸化チタンが剥がれ易くなる等の問題点がある。また、バインダーそのものも酸化チタンの光触媒作用によって分解されてしまい、これも結晶の剥離や脱落を招くという問題点もある。即ち、光触媒の有効性と酸化チタンの耐久性を両立し得るバインダーの開発が困難な技術的課題であった。
【0006】
固定するもう一方の方法として、有機チタン化合物の溶液を色々な方法で塗布し、焼き付けることによって固定化する方法があるが、この方法も焼き付ける為には500℃以上の温度が必要であったり、溶剤が酸やアルカリの強い薬品であるため、人体、環境共に有毒、有害になるうえ、溶剤が酸やアルカリの対象となる材料を限定するなど問題点が多くあった。
【0007】
然るに、近年、従来の短所を克服できるぺルオキソチタン アモルファス超微粒子ゾル(特許第2938376号)やぺルオキソ基修飾アナターゼ超微粒子ゾル(特許第2875993号)や両者の混合溶液が開発された。
【0008】
上記従来技術を、更に詳細に説明すると、具体的なチタニア膜形成方法は、酸化チタン粉体スラリーあるいは塩化チタンや硫酸チタンの水溶液を基体に塗布後焼成する塗布法、金属アルコキシドの加水分解で作製したゾルを基体に塗布後焼成するゾルゲル法、高真空中で酸化物のタ−ゲットをスパッタリングし基体上に成膜するスパッタ法、有機金属やハロゲン化物を揮発させ電気炉の中で分解して基体上に膜を作製するCVD法、固体粒子を大気中で発生させたプラズマ中で溶融し基体表面にたたき付けるプラズマ溶射等である。
【0009】
前記酸化チタン粉末の塗布法は簡単であるが、緻密で密着性良好な膜は得られ難く、合成温度が一般に高いため基体の種類にかなりの制限がある。塩化チタンや硫酸チタン等の水溶液を塗布焼成する方法は有害なハロゲン化合物を生成し、また、焼成温度も数百度以上を必要とし、前記の産業上の利用分野には利用されない。
【0010】
他方、プラズマ溶射は固体をプラズマ中で溶融し基体表面にたたき付ける成膜法で成膜速度は速いが、緻密な膜が得られ難く、均一で密着性に富んだ酸化物膜を作製することができなかった。
【0011】
また、スパッタ法やCVD法などは減圧下でなければ良好な膜が得られず、真空排気できる反応容器が必要であり、一般に成膜速度が遅く、緻密な膜を得るためには数百度以上に基体を加熱しなければならない欠点がある。
【0012】
ゾルゲル法で作製された市販のTiO2ゾルは塗布や含浸処理が可能で、大面積コーティング、低温合成が可能で工業的な利点が多いが、チタンテトライソプロポキサイドやテトラブチルチタネイトなどの有機金属を利用して合成しなければならなかったため、原料が高価で、しかも原料が化学的に不安定で温度制御や雰囲気に影響されやすく取り扱い難いという課題があった。
【0013】
また、ゾルゲル法は原料ゾル中に酸や有機物質を含むので焼成除去するのに500℃以上の加熱が必要であり、酸に侵されやすい材料には不向きで、低温焼成では多孔質になりやすい。また、ゾルゲル法は工程が煩雑で、有害な有機溶媒を使用しなければならない。更に、ゾルゲル法によって作製したTiO2ゾル中には、酸やアルカリあるいは有機物が加えられており、被コーティング材の腐蝕の問題や有機物消却のための温度(500℃以上)が必要で、加熱焼成中に有害なハロゲン化物や窒素酸化物などが副成する等の欠点があった。
【0014】
以上のように、従来の方法では密度の高い結晶性チタニア膜を低温で作製することが困難であり、比較的低温で作製できるゾルゲル法では有機物質や酸等を熱処理で分解消失させることが必要で、そのことが多孔質化しやすくする原因にもなり、密度の高い膜を作製するには熱処理温度を比較的高くしなければならなかった。また、それらの助剤が熱処理によって窒素酸化物や有機気体等の有害物質を生成する欠点もあった。比較的低温合成ができるゾルゲル法でも、1回の塗布では0.1から0.3μm程度の膜厚のものしか密着性良く形成できなかった。
【0015】
前述のような問題点を解決する技術として、第1に、ぺルオキソチタン アモルファス超微粒子ゾルであるチタニア膜形成用塗布液体(特許第2938376号)は、次のような全く新しい手段によって合成することに成功した。これは、水と酸素と酸化チタンだけから出来ている中性の無機質の液体で長期間安定している光触媒酸化チタンである。それは、塩化チタンや硫酸チタン水溶液とアンモニアや苛性ソーダ等のアルカリ溶液からオルトチタン酸と呼ばれる水酸化チタンゲルを沈殿させる。水を用いたデカンテーションによって水洗し、水酸化チタンゲルを分離する。さらに過酸化水素水を加え、余分な過酸化水素を分解除去することにより、「チタニア膜形成用液体において、チタンを含む水溶液と塩基性物質から作製した水酸化チタンゲルに過酸化水素水を作用させた後に、80℃以上において加熱処理あるいはオートクレーブ中において加熱処理したことによってアナターゼからなる酸化チタン微粒子を生成させたことを特徴とするチタニア膜形成用液体」の黄色の透明粘性液体を得ることができた。
【0016】
この液体は、後述するように、過酸化状態の水酸化チタンを含んでいると考えられ、市販のTiO2ゾルとは本質的に異なるものである。更に、当該チタニア膜形成用液体の液体を80℃以上で加熱処理を行うと、結晶化した酸化チタンの超微粒子を含む液体が得られる。この液体は中性で、チタン、酸素及び水素以外の物質を含まないので、市販のTiO2ゾルとは本質的に異なるものである。これらの2つの液体を基体上に塗布乾燥、または低温で加熱処理することにより付着性に優れた緻密なチタニア膜を形成できる。また、1回の塗布で1μm以上のチタニア膜を剥離することなく密着性よく形成できるものである。
【0017】
第2に、「アナターゼ分散液において、表面をぺルオキソ基で修飾したアナターゼ超微粒子が水中に分散していることを特徴とするアナターゼ分散液」(特許第2875993号)が開発された。このアナターゼ分散液は長期安定であり、従来よりも高密度の密着性に優れたアナターゼ膜を低温で作製可能であり、焼成によって有害な副生成物が出ず、中性なので取り扱いやすく、種々の基体上に塗布することが出来る。
【0018】
以上のように当該チタニア膜形成用液体やアナターゼ分散液は、中性の無機質の液体であるため、基材をえらばず、水と酸素と酸化チタンだけから出来ているので、環境や健康に対する心配も無く安全で容易に取り扱うことができ、長期間安定している。また、当該チタニア膜形成用液体やアナターゼ分散液は、密着性が良く基体上に塗布して乾燥するか、または低温で加熱処理することにより付着性に優れた緻密なチタニア膜を形成できる。このように当該チタニア膜形成用液体やアナターゼ分散液は、バインダーなしでも基材に定着するので、酸化チタンの結晶がすべて表面に露出していて光触媒作用の効率がよい。そのため、当該チタニア膜形成用液体やアナターゼ分散液は、白磁器、金属、建材、プラスチック等の各種材料へ塗布、乾燥あるいは低温で焼き付けるといった簡単な操作と手段によって、酸化チタンからなる保護皮膜、光触媒、伝導体膜、半導体膜、紫外線カット被膜、着色コーティングなどを容易に形成することができるようになった。これは従来のものより大幅に利用しやすく実用性の高い光触媒酸化チタンの出現である。
【0019】
本発明者は、当該チタニア膜形成用液体やアナターゼ分散液などのチタニア膜形成用液を繊維製品や繊維加工製品に付着してみたところ、太陽光や蛍光灯の光により光触媒反応を効率良く起こし、その強い酸化力により有機質の汚れや臭いを分解し、細菌類を死滅させることができたことは確認できた。しかし、基材が有機質繊維製品や有機質繊維加工製品である場合には、その基材有機質繊維そのものを分解して当該製品の品質を劣化させてしまう欠点があった。
【0020】
そこで本発明者は、色々の用途がある酸化チタン光触媒粒子の表面を光触媒活性がないセラミックスで部分的に覆ったハイブリット光触媒粒子の開発を想起し、種々研究開発をした。その結果、光触媒活性のないセラミックスとしてアパタイトを使用することが望ましいことが解った。
【0021】
当該酸化チタン光触媒粒子の表面を光触媒活性がないアパタイトで部分的に覆ったアパタイト被覆型光触媒酸化チタン粒子を、基材である有機質繊維や有機質繊維加工製品の表面に付着させたところ、光触媒活性を持たないアパタイトが酸化チタン光触媒と繊維が接触するのを防ぐため、有機質繊維が分解し壊されるのを抑えることが出来る。しかも、当該アパタイトは、その物性として、多孔性構造体で蛋白質の吸着能を有しており、細菌やウイルスや多様な臭気の吸着に有用である。従って、アパタイト被覆型光触媒酸化チタン粒子は、アパタイト部分で塵や細菌やウイルスや臭気を吸着し、光触媒酸化チタン部分で有機性塵や細菌やウイルスや臭気を分解し死滅させることができる。この相反する機能を並行して進めるので、半永久的に使用できる多機能性材料となるとともに、有機性繊維を不用意に分解してしまうこともないことを確認した。
【0022】
本発明は、上記のような技術的知見に基づいて、繊維製品または繊維加工製品にハイブリット光触媒粒子であるアパタイト被覆型光触媒酸化チタン粒子を付着させ、アパタイトの吸着作用と光触媒酸化チタンの光触媒作用との相乗効果により、強力で効果的な消臭・抗菌機能が付加された繊維製品または繊維加工製品を具現化せんとしたものである。
【0023】
【課題を解決するための手段】
特許を受けようとする第1発明は、糸、布、織物、編物などの繊維製品原料に、光触媒酸化チタンの表面をアパタイトで被覆してなるアパタイト被覆型光触媒酸化チタン粒子を練り込み、その吸着作用と光触媒作用により消臭・抗菌機能を付加したことを特徴とする消臭・抗菌繊維製品である。
【0024】
特許を受けようとする第2発明は、糸、布、織物、編物などの繊維製品原料に、光触媒酸化チタンの表面をアパタイトで被覆してなるアパタイト被覆型光触媒酸化チタン粒子を練り込み、その吸着作用と光触媒作用により消臭・抗菌機能を付加した消臭・抗菌繊維製品を用いて加工製造したことを特徴とする布製品、織物製品、編物製品などの消臭・抗菌繊維加工製品である。
【0025】
特許を受けようとする第3発明は、糸、布、織物、編物などの繊維製品に、光触媒酸化チタンの表面をアパタイトで被覆してなるアパタイト被覆型光触媒酸化チタン粒子を含むチタニア膜形成液を塗布若しくは吹き付けるか、又は前記繊維製品を前記アパタイト被覆型光触媒酸化チタン粒子の含むチタニア膜形成液に浸漬することにより、前記繊維製品の表面に、チタニア膜を付着し、その吸着作用と光触媒作用により消臭・抗菌機能を付加するようにしたことを特徴とする消臭・抗菌繊維製品である。
【0026】
特許を受けようとする第4発明は、布製品、織物製品、編物製品などの繊維加工製品に、光触媒酸化チタンの表面をアパタイトで被覆してなるアパタイト被覆型光触媒酸化チタン粒子を含むチタニア膜形成液を塗布若しくは吹き付けるか、又は前記繊維加工製品を前記アパタイト被覆型光触媒酸化チタン粒子の含むチタニア膜形成液に浸漬することにより、前記繊維加工製品の表面にチタニア膜を付着し、その吸着作用と光触媒作用により消臭・抗菌機能を付加するようにしたことを特徴とする消臭・抗菌繊維加工製品である。
【0027】
前記第1乃至第4発明における光触媒酸化チタンは、二酸化チタン光触媒などアナターゼ型酸化チタンであり、それは従来一般に紫外線に応答して光触媒反応する型酸化チタン(紫外線応答型酸化チタン光触媒)であったが、これに限る必要はなく、可視光線にも応答する酸化チタン(可視光線応答型酸化チタン光触媒、例えば特許2000−399193号)を使用してもよいこと、勿論である。
当該光触媒酸化チタンは、その光触媒作用を利用して、有害化学物質を分解・無害化することができるため、水処理や、大気浄化、抗菌材料、防臭材料などとして利用されている。しかし、これには細菌や臭い成分や蛋白質などを積極的に吸着する能力はないため、表面に接触した菌しか殺菌・分解できない。
【0028】
一方、アパタイトは、蛋白質の吸着能があり、細菌やウイルスや臭い吸着に有用で、抗菌材料などとして利用されている。しかも、一旦吸着した蛋白質系の物質は、分解することなくいつまでも吸着しているため使用期限が限られる。
【0029】
そこで、前記光触媒酸化チタンとアパタイトを複合化することにより、アパタイトが蛋白質系物資を積極的に吸着し、これを前記光触媒酸化チタンが光触媒作用によって分解する半永久的に使用できる多機能性複合材料を具現化できた。また、当該多機能性複合材料は、光触媒酸化チタンが基材を分解してしまうといった問題も解決できるため、いままで不可能であった繊維などの有機性基材への練り込みも可能になる。特に、アパタイトは、多孔質で接触面積が広いので臭気や細菌などの吸着能において特に優れており、基材保護しながら強力な消臭・抗菌機能が付加することが出来るのである。
【0030】
尚、アパタイト被覆型光触媒酸化チタンは、使用に際して、粒子状のままだけでなく、これをぺルオキソチタン酸と酸化チタンとの混合水溶液にしたり、表面をぺルオキソ基で修飾したアナターゼ微粒子を水中に分散しているアナターゼ分散液上にしていても良く、また、酸化チタンをカルシウムとリン酸を溶解させた溶液に浸漬してアパタイトを酸化チタンの表面に析出生成したり、アパタイトが生成し易いように組成、pH等を制御した擬似体液を開発し、人の体温に近い温度で、酸化チタン粒子を1日(約24時間)浸漬し、その表面にアパタイトを数nmの薄膜として生成したものなど、その態様は限定するものではない。
【0031】
当該多機能性複合材料であるアパタイト被覆型光触媒酸化チタンを用いることにより、従来極めて困難とされた糸、布、織物、編物などの繊維製品だけでなく、衣類やインテリアのクロス、カーテンや証明器具などの布製品、織物製品、編物製品などの繊維加工製品に消臭機能や抗菌機能を付加することが出来ることとなった。
【0032】
【実施例】
本発明を図示実施例に基づいて詳細に説明すると、図1は、本発明に係るアパタイト被覆型光触媒酸化チタンを有機質繊維基体に付着させることにより、有機質繊維基体を保護しながら消臭作用や抗菌作用を発揮させる状態を説明する模式説明図であり、図2は光触媒酸化チタンの表面をアパタイトで被覆し、繊維に使用可能なるようにしたアパタイト被覆型光触媒酸化チタン粒子を示す模式説明図であり、図3は、当該光触媒酸化チタンの表面にアパタイトで被覆してなるアパタイト被覆型光触媒酸化チタン粒子を簡単に調製する方法を示した模式説明図である。実施例では、アパタイトが生成し易いように組成、pH等を制御した擬似体液に代わって、図3に示すように酸化チタンをカルシウムとリン酸を溶解させた溶液に浸漬して、反応条件を検討した結果、10分程度の短時間にアパタイトを酸化チタンの表面に析出生成することができた。
【0033】
こうして製造されたアパタイト被覆型光触媒酸化チタン粒子(図2)を練り込んだ消臭・抗菌繊維製品を材料として用いてナイロン製のカーペットとウール製カーペットを消臭・抗菌繊維加工製品として製造した。
【0034】
<消臭加工品の性能評価試験>
次に、こうして製造されたナイロン製のカーペットとウール製カーペットを消臭・抗菌繊維加工製品として用意するとともに、同じ材質でアパタイト被覆型光触媒酸化チタン粒子を付着しないナイロン製のカーペットとウール製カーペットを未加工繊維加工製品として用意する。この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品(ナイロン製のカーペットとウール製カーペット)とを試料として、消臭加工品の性能評価試験を行った。それは、前記消臭加工処理を行ったカーペット2種類について、タバコの煙の含有成分である酢酸、アセトアルデヒド、ピリジン、及びアンモニアとホルマリンについて、光照射時の脱臭性能の経時変化を測定したものである。その試験結果報告書が、図4乃至図9である。
【0035】
その結果を要約すると、第1に、本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品とは、その消臭機能において大きな差異があり、本発明の有効性が顕著である。第2に、本発明は、繊維に対して強固にアパタイト被覆型光触媒酸化チタンが固定しているので、クリーニング後も消臭効果が急激に低下することなく、長期的な消臭機能を持続する。第3に、アパタイト被覆型光触媒酸化チタン粒子が微粉末(粒径28〜30μm)のため、商品色相などの変化や品質への影響がない。第4に、光触媒によって臭気を分解するため、繊維から臭気を再放出されることがない。
【0036】
尚、光触媒酸化チタンによる各臭気原因物質の消臭メカニズムは、図10の通りである。
【0037】
【効果】
本発明は、繊維製品原料や繊維製品に、アパタイト被覆型光触媒酸化チタンを付着し、その吸着作用と光触媒作用により消臭・抗菌機能を付加したことを特徴とする消臭・抗菌繊維製品や消臭・抗菌繊維加工製品を具現化したものである。
当該アパタイト被覆型光触媒酸化チタンは、多機能性複合であり、次のような特徴がある。(1)光が当たらなくともアパタイトが有機系物質を吸着する。(2)光が当たるとアパタイトが吸着した物質を光触媒酸化チタンが分解する。(3)アパタイトが、スペーサーとなるため、繊維など有機系の材料にも混合できる。(4)光触媒酸化チタンは、有機物を分解するのに一定の時間が必要であるが、アパタイトで有害物質を捕らえるので確実に分解することができる。(5)光触媒酸化チタンを付着する基材が有機質であっても、アパタイトが酸化チタン光触媒と繊維が接触するのを防ぐため、当該有機質基材を分解したり壊したりしない。そのため、このアパタイト被覆型光触媒酸化チタンを繊維に付着した場合、アパタイト部分で塵や細菌やウイルスや臭気を吸着し、光触媒酸化チタン部分で有機性塵や細菌やウイルスや臭気を分解し死滅させることができる。このように相反する二つの機能を並行して進めるので、半永久的に使用できる多機能性材料となるとともに、有機性繊維を不用意に分解してしまうこともない。
【0038】
即ち、本発明は、繊維製品または繊維加工製品にハイブリット光触媒粒子であるアパタイト被覆型光触媒酸化チタン粒子を付着させ、アパタイトの吸着作用と光触媒酸化チタンの光触媒作用との相乗効果により、強力で効果的な消臭・抗菌機能が付加された繊維製品または繊維加工製品を具現化したものである。
【図面の簡単な説明】
【図1】本発明に係るアパタイト被覆型光触媒酸化チタンを有機質繊維基体に付着させることにより、有機質繊維基体を保護しながら消臭作用や抗菌作用を発揮させる状態を説明する模式説明図である。
【図2】光触媒酸化チタンの表面をアパタイトで被覆し、繊維に使用可能なるようにしたアパタイト被覆型光触媒酸化チタン粒子を示す模式説明図である。
【図3】当該光触媒酸化チタンの表面にアパタイトで被覆してなるアパタイト被覆型光触媒酸化チタン粒子を簡単に調製する方法を示した模式説明図である。
【図4】この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品の消臭加工品についての性能評価試験結果報告書の表紙である。
【図5】この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品の消臭加工品についての性能評価試験結果報告書中のアンモニア脱臭率を測定した結果を示す表とグラフである。
【図6】この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品の消臭加工品についての性能評価試験結果報告書中の酢酸脱臭率を測定した結果を示す表とグラフである。
【図7】この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品の消臭加工品についての性能評価試験結果報告書中のホルマリン脱臭率を測定した結果を示す表とグラフである。
【図8】この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品の消臭加工品についての性能評価試験結果報告書中のアセトアルデヒド脱臭率を測定した結果を示す表とグラフである。
【図9】この本発明に係る消臭・抗菌繊維加工製品と未加工繊維加工製品の消臭加工品についての性能評価試験結果報告書中のピリジン脱臭率を測定した結果を示す表とグラフである。
【図10】光触媒酸化チタンによる各臭気原因物質の消臭メカニズムを示す説明図である。
【符号の説明】
1…アパタイト被覆型光触媒酸化チタン
2…アパタイト被覆型光触媒酸化チタン
3…アパタイト被覆型光触媒酸化チタン
4…有機質繊維
5…酸化チタンをカルシウムとリン酸を溶解させた溶液[0001]
[Industrial applications]
According to the present invention, apatite-coated photocatalyst titanium oxide particles, which are hybrid photocatalyst particles, are adhered to a fiber product or a fiber processed product, and a powerful and effective quenching effect is obtained by a synergistic effect of an apatite adsorption action and a photocatalytic titanium oxide photocatalysis action. The present invention relates to a technique for realizing a fiber product or a fiber processed product having an odor function and an antibacterial function.
[0002]
[Prior art]
Conventionally, titanium oxide has been known as a metal that causes a photocatalytic reaction, and for that purpose, appropriate refining, crystallization, and anatase-type titanium oxide are required on the material surface. That is, when the size of the anatase particles, which is a single crystal system of the titanium oxide, is reduced, the energy of light emitted from sunlight or a fluorescent lamp as a catalyst causes a strong oxidative decomposition ability from moisture and oxygen in the air. To produce This is called the photocatalytic action of titanium oxide, and is known to exhibit an antibacterial / sterilizing action, a deodorizing action by air cleaning, a rust preventing action by UV cut, a fogging preventing action by hydrophilicity, and a soil decomposing action.
[0003]
Therefore, it is known that an antibacterial tile, a self-cleaning building material, a superhydrophilic material, a deodorizing / deodorizing material, a water purification, a treatment for cancer, etc. can be performed using a photocatalyst composed of anatase type titanium dioxide. The revolution (Akira Fujishima et al.)) And various applications are being actively developed. Specifically, for example, WO 94/11092 discloses an air treatment method using a photocatalyst under indoor lighting. JP-A-7-102678 discloses a method for preventing hospital-acquired infection using a photocatalyst. JP-A-8-67835 and JP-A-8-164334 disclose antibacterial paints. Further, WO96 / 29375 discloses superhydrophilic materials.
[0004]
[Problems to be solved by the invention]
However, there are some problems in putting the photocatalytic technology into practical use as described above. One of the major problems is how to fix titanium oxide. Since titanium oxide that causes a photocatalytic reaction is in the form of powder and particles, in order to fix the powder, a method of mixing with an adhesive, a binder, or a paint, or applying and baking has been conventionally used.
[0005]
However, in the method in which the titanium oxide is mixed with an adhesive, a binder, or a paint, the amount of titanium oxide exposed on the surface is reduced, and a sufficient effect cannot be expected. Therefore, when the surface area is to be increased, there is a problem that the titanium oxide is easily peeled off. In addition, the binder itself is also decomposed by the photocatalytic action of titanium oxide, which also causes a problem that the crystal is separated or dropped. That is, it was a technical problem that it was difficult to develop a binder capable of achieving both the effectiveness of the photocatalyst and the durability of titanium oxide.
[0006]
As another method of fixing, there is a method of applying a solution of an organic titanium compound by various methods and fixing by baking, but this method also requires a temperature of 500 ° C. or more to bake, Since the solvent is a chemical having a strong acid or alkali, it is toxic or harmful to the human body and the environment, and the solvent has many problems such as limiting the materials to which the acid or alkali is applied.
[0007]
However, in recent years, peroxotitanium amorphous ultrafine particle sol (Japanese Patent No. 2938376), peroxogroup-modified anatase ultrafine particle sol (Japanese Patent No. 2875993), which can overcome the conventional disadvantages, and a mixed solution of both have been developed.
[0008]
The above-mentioned prior art will be described in more detail. A specific titania film forming method is a coating method in which a titanium oxide powder slurry or an aqueous solution of titanium chloride or titanium sulfate is applied to a substrate and then baked, and is prepared by hydrolysis of a metal alkoxide. A sol-gel method in which the sol is applied to a substrate and then baked, a sputtering method in which an oxide target is sputtered in a high vacuum to form a film on the substrate, and an organic metal or halide is volatilized and decomposed in an electric furnace. Examples include a CVD method for forming a film on a substrate, and plasma spraying in which solid particles are melted in plasma generated in the atmosphere and beaten to the substrate surface.
[0009]
The method of applying the titanium oxide powder is simple, but it is difficult to obtain a dense and good-adhesion film, and the synthesis temperature is generally high, so that the type of the substrate is considerably limited. The method of applying and firing an aqueous solution of titanium chloride or titanium sulfate generates a harmful halogen compound, requires a firing temperature of several hundred degrees or more, and is not used in the above-mentioned industrial application fields.
[0010]
On the other hand, plasma spraying is a film formation method in which a solid is melted in plasma and beaten to the substrate surface, but the film formation rate is fast, but it is difficult to obtain a dense film, and a uniform and highly adherent oxide film is produced. Could not.
[0011]
In addition, in the case of a sputtering method or a CVD method, a good film cannot be obtained unless the pressure is reduced, and a reaction vessel that can be evacuated is required. In general, a film formation rate is slow, and several hundred degrees or more is required to obtain a dense film. Has the disadvantage that the substrate must be heated.
[0012]
Commercially available TiO2 sols made by the sol-gel method can be applied and impregnated, can be coated over large areas, can be synthesized at low temperatures, and have many industrial advantages. However, organic metals such as titanium tetraisopropoxide and tetrabutyl titanate can be used. Therefore, there is a problem that the raw material is expensive, and the raw material is chemically unstable, easily affected by temperature control and atmosphere, and is difficult to handle.
[0013]
In addition, the sol-gel method requires heating at 500 ° C. or more to bake and remove it because the raw material sol contains an acid or an organic substance, and is not suitable for a material that is easily attacked by an acid, and tends to be porous when fired at a low temperature. . In addition, the sol-gel method requires complicated steps and requires the use of harmful organic solvents. Further, the TiO2 sol produced by the sol-gel method contains an acid, an alkali or an organic substance, which requires a problem of corrosion of the material to be coated and a temperature (500 ° C. or higher) for eliminating the organic substance. Harmful halides, nitrogen oxides and the like are formed as by-products.
[0014]
As described above, it is difficult to produce a high-density crystalline titania film at a low temperature with the conventional method, and it is necessary to decompose and dissolve organic substances, acids, and the like by heat treatment in the sol-gel method that can be produced at a relatively low temperature. This also causes the porous body to be easily made porous, and the heat treatment temperature had to be relatively high in order to produce a film having a high density. In addition, there is a disadvantage that these auxiliaries generate harmful substances such as nitrogen oxides and organic gases by heat treatment. Even with the sol-gel method that can be synthesized at a relatively low temperature, only one having a film thickness of about 0.1 to 0.3 μm can be formed with good adhesion by one application.
[0015]
As a technique for solving the above-mentioned problems, first, a coating liquid for forming a titania film (Patent No. 2938376), which is a peroxotitanium amorphous ultrafine particle sol, is synthesized by an entirely new means as follows. Successful. This is a photocatalytic titanium oxide which is a neutral inorganic liquid made of only water, oxygen and titanium oxide and which is stable for a long time. It precipitates a titanium hydroxide gel called orthotitanic acid from an aqueous solution of titanium chloride or titanium sulfate and an alkaline solution such as ammonia or caustic soda. Wash with water by decantation with water to separate the titanium hydroxide gel. Furthermore, by adding hydrogen peroxide solution to decompose and remove excess hydrogen peroxide, the hydrogen peroxide solution acts on a titanium hydroxide gel made from an aqueous solution containing titanium and a basic substance in a liquid for forming a titania film. After that, a heat treatment at 80 ° C. or higher or a heat treatment in an autoclave was performed to produce titanium oxide fine particles composed of anatase, thereby obtaining a yellow transparent viscous liquid of the liquid for forming a titania film. Was.
[0016]
This liquid is considered to contain peroxidized titanium hydroxide as described later, and is substantially different from a commercially available TiO2 sol. Further, when the liquid for forming a titania film is subjected to a heat treatment at 80 ° C. or higher, a liquid containing ultrafine particles of crystallized titanium oxide is obtained. This liquid is essentially different from commercially available TiO2 sols because it is neutral and free of substances other than titanium, oxygen and hydrogen. By coating and drying these two liquids on a substrate or performing heat treatment at a low temperature, a dense titania film having excellent adhesion can be formed. Further, it can be formed with good adhesion without peeling off a titania film of 1 μm or more by one application.
[0017]
Secondly, "Anatase Dispersion, characterized in that anatase ultrafine particles whose surface has been modified with peroxo groups in anatase dispersion, are dispersed in water" (Japanese Patent No. 2887593) has been developed. This anatase dispersion is stable for a long period of time, can produce an anatase film excellent in adhesion at a higher density than before, at a low temperature, does not produce harmful by-products by firing, is neutral, and is easy to handle. It can be applied on a substrate.
[0018]
As described above, since the titania film-forming liquid and the anatase dispersion liquid are neutral inorganic liquids, they are made of only water, oxygen, and titanium oxide without selecting a base material. It is safe and easy to handle, and stable for a long time. The titania film-forming liquid or anatase dispersion liquid has good adhesion and can be applied on a substrate and dried, or can be heated at a low temperature to form a dense titania film with excellent adhesion. As described above, the liquid for forming a titania film and the anatase dispersion liquid are fixed to the base material without the binder, so that all the titanium oxide crystals are exposed on the surface, and the efficiency of the photocatalytic action is high. Therefore, the titania film forming liquid and the anatase dispersion liquid can be applied to various materials such as white porcelain, metal, building materials, plastics, and the like, and dried or baked at a low temperature. Thus, a conductor film, a semiconductor film, an ultraviolet cut film, a colored coating, and the like can be easily formed. This is the emergence of photocatalytic titanium oxide which is much easier to use and more practical than conventional ones.
[0019]
The present inventor tried to attach a titania film forming liquid such as the titania film forming liquid or an anatase dispersion liquid to a fiber product or a textile processed product, and efficiently caused a photocatalytic reaction by sunlight or light of a fluorescent lamp. It was confirmed that organic dirt and odor could be decomposed by the strong oxidizing power and bacteria could be killed. However, when the base material is an organic fiber product or an organic fiber processed product, there is a disadvantage that the base material organic fiber itself is decomposed to deteriorate the quality of the product.
[0020]
Therefore, the present inventor recalled the development of hybrid photocatalyst particles in which the surface of titanium oxide photocatalyst particles having various uses was partially covered with ceramics having no photocatalytic activity, and made various research and development. As a result, it was found that it is desirable to use apatite as a ceramic having no photocatalytic activity.
[0021]
When the apatite-coated photocatalytic titanium oxide particles, in which the surface of the titanium oxide photocatalyst particles was partially covered with apatite having no photocatalytic activity, were adhered to the surface of the organic fiber or organic fiber processed product as the base material, the photocatalytic activity was reduced. Since the apatite which does not have the contact between the titanium oxide photocatalyst and the fiber is prevented, it is possible to suppress the organic fiber from being decomposed and broken. Moreover, the apatite has, as its physical properties, a protein adsorption ability with a porous structure, and is useful for adsorption of bacteria, viruses and various odors. Therefore, the apatite-coated photocatalytic titanium oxide particles can adsorb dust, bacteria, viruses, and odors at the apatite portion, and can decompose and kill organic dust, bacteria, viruses, and odors at the photocatalytic titanium oxide portion. Since these contradictory functions are advanced in parallel, it has been confirmed that the material is a multifunctional material that can be used semi-permanently and that organic fibers are not inadvertently decomposed.
[0022]
The present invention is based on the technical knowledge as described above, to adhere apatite-coated photocatalytic titanium oxide particles, which are hybrid photocatalyst particles, to a fiber product or a fiber processed product, and to adsorb the apatite and the photocatalytic titanium oxide photocatalysis. The present invention realizes a fiber product or a fiber processed product to which a powerful and effective deodorant / antibacterial function is added due to the synergistic effect of the present invention.
[0023]
[Means for Solving the Problems]
The first invention to be patented is to knead apatite-coated photocatalyst titanium oxide particles obtained by coating the surface of a photocatalytic titanium oxide with apatite on a raw material of a fiber product such as yarn, cloth, woven fabric, or knitted fabric, and adsorb the adsorbed particles. A deodorant and antibacterial fiber product characterized by adding deodorant and antibacterial functions by action and photocatalysis.
[0024]
The second invention to be patented is to knead the apatite-coated photocatalyst titanium oxide particles obtained by coating the surface of the photocatalytic titanium oxide with apatite on the raw material of fiber products such as yarn, cloth, woven fabric and knitted fabric, and to adsorb it. Deodorized and antibacterial fiber processed products such as fabric products, woven products, and knitted products characterized by being processed and manufactured using deodorant and antibacterial fiber products that have added deodorant and antibacterial functions by action and photocatalysis.
[0025]
The third invention to be patented is a titania film forming liquid containing apatite-coated photocatalytic titanium oxide particles obtained by coating the surface of photocatalytic titanium oxide with apatite on a fiber product such as yarn, cloth, woven fabric, or knitted fabric. By applying or spraying, or by immersing the fiber product in a titania film forming liquid containing the apatite-coated photocatalytic titanium oxide particles, a titania film is adhered to the surface of the fiber product, and the adsorption and photocatalytic actions thereof are performed. A deodorant and antibacterial fiber product characterized by adding deodorant and antibacterial functions.
[0026]
The fourth invention to be patented is to form a titania film containing apatite-coated photocatalytic titanium oxide particles obtained by coating a photocatalytic titanium oxide surface with apatite on a textile product such as a cloth product, a woven product, or a knitted product. By applying or spraying a liquid, or by immersing the fiber processed product in a titania film forming liquid containing the apatite-coated photocatalytic titanium oxide particles, a titania film is attached to the surface of the fiber processed product, and its adsorption action and A deodorant / antibacterial fiber processed product characterized by adding a deodorant / antibacterial function by a photocatalytic action.
[0027]
The titanium oxide photocatalyst in the first to fourth inventions is an anatase type titanium oxide such as a titanium dioxide photocatalyst, which is a type titanium oxide which generally performs a photocatalytic reaction in response to ultraviolet rays (ultraviolet-responsive titanium oxide photocatalyst). However, the present invention is not limited to this, and it is a matter of course that titanium oxide which responds to visible light (a visible light responsive type titanium oxide photocatalyst, for example, Japanese Patent No. 2000-399193) may be used.
Since the photocatalytic titanium oxide can decompose and detoxify harmful chemical substances by using its photocatalytic action, it is used as a water treatment, air purification, antibacterial material, deodorant material and the like. However, it does not have the ability to positively adsorb bacteria, odorous components, proteins, etc., so that only bacteria in contact with the surface can be sterilized and decomposed.
[0028]
On the other hand, apatite has the ability to adsorb proteins, is useful for adsorbing bacteria, viruses and odors, and is used as an antibacterial material. Moreover, the protein-based substance once adsorbed has a limited expiration date because it is adsorbed forever without being decomposed.
[0029]
Therefore, by forming a composite of the photocatalytic titanium oxide and apatite, the apatite positively adsorbs protein-based materials, and a multifunctional composite material that can be used semipermanently, in which the photocatalytic titanium oxide is decomposed by photocatalysis. It could be embodied. In addition, the multifunctional composite material can solve the problem that the photocatalytic titanium oxide decomposes the base material, so that it can be kneaded into an organic base material such as a fiber, which has been impossible until now. . In particular, apatite is porous and has a wide contact area, so it is particularly excellent in the ability to adsorb odors and bacteria, and can add a powerful deodorant and antibacterial function while protecting the substrate.
[0030]
In addition, the apatite-coated photocatalytic titanium oxide is not only used in the form of particles, but also used as a mixed aqueous solution of peroxotitanic acid and titanium oxide, or anatase fine particles whose surface is modified with peroxo groups are dispersed in water. It may be on an anatase dispersion liquid that has been immersed in titanium oxide dissolved in a solution of calcium and phosphoric acid to precipitate and form apatite on the surface of titanium oxide, so that apatite is easily formed Developed a simulated body fluid with controlled composition, pH, etc., immersed titanium oxide particles at a temperature close to human body temperature for one day (about 24 hours), and generated apatite as a thin film of several nm on its surface. The embodiment is not limited.
[0031]
By using the apatite-coated photocatalytic titanium oxide, which is the multifunctional composite material, not only fiber products such as yarns, fabrics, woven fabrics, and knitted fabrics, but also cloths, interior cloths, curtains, and certification devices, which were extremely difficult in the past. It is now possible to add a deodorant function and an antibacterial function to textile products such as fabric products, woven products, and knitted products.
[0032]
【Example】
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows that the apatite-coated photocatalytic titanium oxide according to the present invention is adhered to an organic fiber substrate to protect the organic fiber substrate while protecting the organic fiber substrate. FIG. 2 is a schematic explanatory view illustrating a state in which an effect is exerted, and FIG. 2 is a schematic explanatory view illustrating apatite-coated type photocatalytic titanium oxide particles in which the surface of the photocatalytic titanium oxide is coated with apatite so as to be usable for fibers. FIG. 3 is a schematic explanatory view showing a method for easily preparing apatite-coated photocatalytic titanium oxide particles obtained by coating the surface of the photocatalytic titanium oxide with apatite. In the example, instead of a simulated body fluid whose composition, pH, etc. were controlled so that apatite was easily formed, titanium oxide was immersed in a solution in which calcium and phosphoric acid were dissolved as shown in FIG. As a result of the examination, apatite was able to be deposited and formed on the surface of titanium oxide in a short time of about 10 minutes.
[0033]
A carpet made of nylon and a carpet made of wool was manufactured as a deodorized and antibacterial fiber processed product using the deodorant and antibacterial fiber product into which the apatite-coated photocatalytic titanium oxide particles (FIG. 2) thus kneaded were kneaded.
[0034]
<Performance evaluation test of deodorized products>
Next, while preparing the nylon carpet and wool carpet thus manufactured as a deodorized and antibacterial fiber processed product, a nylon carpet and a wool carpet that are made of the same material and do not adhere to the apatite-coated photocatalytic titanium oxide particles are used. Prepare as a raw fiber processed product. Using the deodorized and antibacterial fiber processed product according to the present invention and the unprocessed fiber processed product (a nylon carpet and a wool carpet) as samples, a performance evaluation test of the deodorized processed product was performed. It is a measurement of the change over time of the deodorizing performance during light irradiation for acetic acid, acetaldehyde, pyridine, and ammonia and formalin, which are components of cigarette smoke, for two types of carpets that have been subjected to the deodorizing treatment. . The test result reports are shown in FIGS.
[0035]
To summarize the results, first, there is a great difference in the deodorizing function between the deodorized / antibacterial fiber processed product according to the present invention and the unprocessed fiber processed product, and the effectiveness of the present invention is remarkable. Secondly, in the present invention, since the apatite-coated photocatalytic titanium oxide is firmly fixed to the fiber, the deodorizing effect does not sharply decrease even after cleaning, and the long-term deodorizing function is maintained. . Third, since the apatite-coated photocatalytic titanium oxide particles are fine powder (particle size: 28 to 30 μm), there is no change in the hue of the product and the effect on the quality. Fourth, since the odor is decomposed by the photocatalyst, the odor is not re-emitted from the fiber.
[0036]
The deodorizing mechanism of each odor-causing substance by the photocatalytic titanium oxide is as shown in FIG.
[0037]
【effect】
The present invention provides a deodorant / antibacterial fiber product or a deodorant fiber product characterized in that an apatite-coated photocatalytic titanium oxide is attached to a fiber product raw material or a textile product, and the deodorant / antibacterial function is added by its adsorption action and photocatalytic action. It embodies odor and antibacterial fiber processed products.
The apatite-coated photocatalytic titanium oxide is a multifunctional composite and has the following features. (1) Apatite adsorbs organic substances even without light. (2) When exposed to light, the photocatalytic titanium oxide decomposes the substance on which apatite is adsorbed. (3) Since apatite serves as a spacer, it can be mixed with organic materials such as fibers. (4) Photocatalytic titanium oxide requires a certain period of time to decompose organic substances, but can reliably decompose titanium oxide because it captures harmful substances with apatite. (5) Even if the base material to which the photocatalytic titanium oxide is attached is organic, apatite prevents the titanium oxide photocatalyst from coming into contact with the fibers, so that the organic base material is not decomposed or broken. Therefore, when this apatite-coated photocatalytic titanium oxide adheres to the fiber, the apatite portion adsorbs dust, bacteria, viruses and odors, and the photocatalytic titanium oxide portion decomposes and kills organic dust, bacteria, viruses and odors. Can be. Since these two opposing functions are performed in parallel, a multifunctional material can be used semi-permanently, and the organic fibers are not inadvertently decomposed.
[0038]
That is, the present invention adheres apatite-coated photocatalyst titanium oxide particles, which are hybrid photocatalyst particles, to a fiber product or a fiber processed product, and is powerful and effective due to the synergistic effect of the apatite adsorption action and the photocatalytic titanium oxide photocatalysis action. It embodies a fiber product or a fiber processed product with an added deodorant and antibacterial function.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view illustrating a state in which an apatite-coated photocatalytic titanium oxide according to the present invention is adhered to an organic fiber substrate to exert a deodorizing effect and an antibacterial effect while protecting the organic fiber substrate.
FIG. 2 is a schematic explanatory diagram showing apatite-coated photocatalytic titanium oxide particles in which the surface of photocatalytic titanium oxide is coated with apatite so as to be usable for fibers.
FIG. 3 is a schematic explanatory view showing a method for easily preparing apatite-coated photocatalytic titanium oxide particles obtained by coating the surface of the photocatalytic titanium oxide with apatite.
FIG. 4 is a cover of a performance evaluation test result report for the deodorized and antibacterial fiber processed product according to the present invention and the deodorized processed product of an unprocessed fiber processed product.
FIG. 5 is a table and a graph showing the results of measuring the ammonia deodorization rate in the performance evaluation test result report for the deodorized and antibacterial fiber processed product according to the present invention and the deodorized processed product of the unprocessed fiber processed product. is there.
FIG. 6 is a table and a graph showing the results of measuring the acetic acid deodorization rate in the performance evaluation test result report for the deodorized / antibacterial fiber processed product according to the present invention and the deodorized processed product of the unprocessed fiber processed product. is there.
FIG. 7 is a table and a graph showing the results of measuring the formalin deodorization rate in the performance evaluation test result report for the deodorized and antibacterial fiber processed product according to the present invention and the deodorized processed product of the unprocessed fiber processed product. is there.
FIG. 8 is a table and a graph showing the results of measuring the acetaldehyde deodorization rate in the performance evaluation test result report for the deodorized and antibacterial fiber processed product according to the present invention and the deodorized processed product of the unprocessed fiber processed product. is there.
FIG. 9 is a table and a graph showing the results of measuring the pyridine deodorization rate in the performance evaluation test result report for the deodorized and antibacterial fiber processed product according to the present invention and the deodorized processed product of the unprocessed fiber processed product. is there.
FIG. 10 is an explanatory view showing a deodorizing mechanism of each odor-causing substance by photocatalytic titanium oxide.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Apatite coating type photocatalytic titanium oxide 2 ... Apatite coating type photocatalytic titanium oxide 3 ... Apatite coating type photocatalytic titanium oxide 4 ... Organic fiber 5 ... Solution of calcium oxide and phosphoric acid dissolved in titanium oxide