JP3713941B2 - 微生物数測定装置 - Google Patents

微生物数測定装置 Download PDF

Info

Publication number
JP3713941B2
JP3713941B2 JP03838598A JP3838598A JP3713941B2 JP 3713941 B2 JP3713941 B2 JP 3713941B2 JP 03838598 A JP03838598 A JP 03838598A JP 3838598 A JP3838598 A JP 3838598A JP 3713941 B2 JP3713941 B2 JP 3713941B2
Authority
JP
Japan
Prior art keywords
microorganisms
electrodes
measurement
voltage
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03838598A
Other languages
English (en)
Other versions
JPH11237353A (ja
Inventor
八浪竜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03838598A priority Critical patent/JP3713941B2/ja
Publication of JPH11237353A publication Critical patent/JPH11237353A/ja
Application granted granted Critical
Publication of JP3713941B2 publication Critical patent/JP3713941B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶液中の微生物数を測定するための微生物数測定装置に関するものである。
【0002】
【従来の技術】
従来、溶液中の微生物数を測定する方法として特開昭57−50652号公報に記載されたもの等の多数の技術が知られている。
【0003】
しかし、従来の技術による微生物数の測定方法は、試料液に専用の薬剤、例えば酵素や色素を投入して生化学反応を起こさせ、その反応経過や結果を蛍光や発光によって測定するものであり、その測定感度は比較的高いが、微生物分野と生化学分野に関する専門知識が必要であったり、また専用で高価な大型の測定装置が必要となったり、さらには専任者による作業が必要となる等、とても一般的かつ簡易に微生物数を測定することができるものではなかった。
【0004】
そこで、特開昭59−91900号公報に記載されたものをはじめとする、物理的手段のみを使い、薬剤を一切用いないで、小型で、試料系に組み込んで自動測定ができ、簡易に測定できる微生物数検出装置が提案されたが、微生物数が10の8乗cells/ml(1ml中に微生物数が1億個)以上にならないと検出できないなどその応用範囲に著しい制限が加えられていた。
【0005】
【発明が解決しようとする課題】
このように、従来の技術による微生物数測定装置で測定感度を上げるためには、何らかの薬剤を使用したり、専用の測定装置,専門知識を持った専任者による操作が必要なものであった。また薬剤を使用しない簡易型の装置では、このような専任者を必要とはしないため簡易な測定が可能になるが、試料液に含まれた微生物数が非常に多くないと測定が難しく、これでは低感度の測定器しか得られないし、試料液中に薄い濃度で分布している微生物を移動させて局部的に濃度を上げて感度を向上させればよいが、これを実施できる簡易でメンテナンスフリーな手段がないという問題があった。
【0006】
そこでこれらの問題を解決するため本発明は、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能で、メンテナンスフリーの微生物数測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために本発明の微生物数測定装置は、セル中に誘電泳動力を発生させるための交流電圧と電気伝導率を測定するための直流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、微生物の数を測定するために前記電極間の電気伝導率を測定する測定手段を備え、前記セルには前記電極間に電界を集中させる電界集中部が設けられ、微生物含有の液体が導入されると微生物が前記電界集中部に誘電泳動によって移動され、前記測定部が前記電極間の電気伝導率を測定して微生物数を算出することを特徴とする。
【0008】
これにより、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0009】
【発明の実施の形態】
請求項1に記載された発明は、微生物含有の液体を導入することができ、内部に複数の電極を備えたセルと、前記セル中に誘電泳動力を発生させるための交流電圧と電気伝導率を測定するための直流または交流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、微生物の数を測定するために前記電極間の電気伝導率を測定する測定手段を備え、前記セルには前記電極間に電界を集中させる電界集中部が設けられ、微生物含有の液体が導入されると微生物が前記電界集中部に誘電泳動によって移動、前記電極集中部に集中され、前記測定部が前記電極間の電気伝導率を測定して電気伝導率の時間変化の傾きから微生物数を算出することを特徴とする微生物数測定装置であるから、微生物数の少ない試料においても微生物を電極付近に集中された後に電気的な手段によって微生物数を測定することができるため、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができる。
【0010】
請求項2に記載された発明は、前記制御手段が前記電極間に流す交流電流を一旦遮断した後、前記測定部が前記電極間の電気伝導率を測定することを特徴とするから、前記電界集中部に微生物を集中させた後に静的な状態でノイズの少ない測定を行なうことができるため、精度の高い測定結果を得ることができる。
【0012】
請求項に記載された発明は、微生物含有の液体を導入することができ、内部に複数の電極を備えたセルと、前記セル中に誘電泳動力を発生させるための交流電圧と電気伝導率を測定するための交流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、微生物の数を測定するために前記電極間に電界を集中させる電界集中部が設けられ、微生物含有の液体が導入されると微生物が前記電界集中部に誘電泳動によって移動され、前記測定部が前記電極間の交流電圧と交流電流の位相差を測定して微生物数を算出することを特徴とするから、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0013】
以下、本発明の実施の形態について、図1〜図3を用いて説明する。
(実施の形態1)
本発明の一実施の形態である微生物数測定装置について図面を参照しながら詳細に説明する。図1は本発明の実施の形態1、2、3における微生物数測定装置の全体構成図、図2は本発明の実施の形態1、2、3における電極の詳細説明および微生物の集中状態を説明するための図、図3は微生物数測定時に観察される電気伝導率の時間変化を説明するためのグラフである。
【0014】
図1および図2において、1はセル、2は電磁弁、3は電極、8は電源回路、10は測定手段、11は制御手段、12は試料系、14はメモリ、21は電極底部、22は針状突起、23はギャップである。そして24は電極3間に印加された交流電界によって発生する誘電泳動力によりギャップ23付近に移動した微生物である。
【0015】
図1および図2に示すように、誘電泳動によって試料液中の微生物を所定位置に移動させるために、電極3が微小なギャップ23を介して対向して設けられている。本実施の形態1においては電極3は円錐状の電極底部21と円錐先端から鋭く突き出した針状突起22を備えている。このギャップ23付近の構成が本実施の形態1の電界集中部にあたる。電界集中部は空間の中で局部的に電界が集中する構成であればよく、実施の形態1のように微少なギャップ23を挟んでの電極3の構成のように最もシンプルな構成でもよいし、絶縁体でセルに絞り部を形成して試料溶液を充たす構成等、いろいろの構成を採用できる。なお、電極底部21と針状突起22に関しては電極3の少なくとも一方がこの構成を備えるのでもよい。針状突起22は白金から構成され、ギャップ23を挟んで一直線上で対向するように設けられる。またここではギャップ23の間隔が100μmに設定されているが、ギャップ23の間隔は測定対象となる微生物の大きさ等の影響を受けるため必要に応じて調節される。例えば、酵母のような大きなものでは広く、リケッチアのように小さなものについては狭くする必要がある。また、ギャップ23の間隔は、広いほど大量の微生物を濃縮することができ、測定のダイナミックレンジも広くなるが、測定までの時間が長く必要になり、誘電泳動のために必要な電力も大きくなる。逆にギャップ23を狭くすると、電力と測定のために必要となる時間は少なくなるが、測定のダイナミックレンジは狭くなってしまうものである。以上のような理由から本実施の形態1においては、ギャップ23の間隔を100μmとしているが、この値は10〜300μmの範囲で適宜調節されることが望ましい。さらに図示されていないが、針状突起22の先端部分を除く部分と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティングが施されている。
【0016】
電源回路8は誘電泳動を起こすための交流電流を電極3間に供給するとともに、電極3間の直流の電気伝導率を測定するための直流電圧を印加することができる。本実施の形態1では、後述するように、誘電泳動を起こすための交流電流を一旦遮断し、直流による電気伝導率の測定を行っている。この電源回路8は電磁弁2等と共に制御手段11によって制御される。
【0017】
制御手段11は、図示しないマイクロプロセッサと、予め設定されたプログラムを保存するためのメモリ、タイマー、さらに測定手段10との間の信号の伝送路等から構成され、前記プログラムにしたがって電磁弁2の開閉を行い、電源回路8を制御して、電極3へ特定の周波数と電圧をもった交流電圧を印加する。さらに制御手段11は測定手段10と信号の送受信を行う。
【0018】
次に測定手段10は、図示しないマイクロプロセッサ、電極3間の電気伝導率を検出する検出回路、制御手段11との間の信号を伝える伝送路等から構成され、誘電泳動で捕捉された微生物に起因する電気伝導率変化を測定、算出する。また必要に応じて演算結果をメモリ14に格納したり、予め保存されているデータを読み出して比較を行なう等して、試料系に含まれている微生物数を算出する。なお、このマイクロプロセッサは制御手段11と測定手段10とで共用することができる。また測定手段10と制御手段11は、互いに通信することにより、予め設定されたプログラムに従って一連の測定動作を連携して円滑に進めることができる。
【0019】
以下、試料の導入からセル1内の微生物の濃縮、測定、洗浄にいたるまでの一連の流れを説明する。初期状態では試料系12とセル1を遮断するための電磁弁2は開放状態にあり、試料系12の液体はセル1内を自由に通過している。所定のタイミングで、予めプログラムによって設定された測定動作に入ると制御手段11は電磁弁2を閉状態にし、セル1を試料系12から遮断し、セル1内のみの閉鎖系を構成する。その後、制御手段11は、セル1内の液体の流動が収まると予想される予め設定された所定時間が経過すると、測定手段10に測定開始の信号を送って測定の開始を指令するとともに、電源回路8を制御して電極3間に0.1Vの直流電圧を印加する。
【0020】
測定開始の指令を受けた測定手段10は、直ちに電極3間に印加される直流電圧とこれに対応した直流電流を測定し、得られた2つの値から電気伝導率を算出する。そしてこの値を初期値としてメモリ14に格納し、初期値の測定が終了したことを信号を送って制御手段11に伝える。以下、制御手段11と測定手段10は必要に応じて適宜信号のやり取りを行い、予め設定されたプログラムにしたがった円滑な動作を行う。
【0021】
次いで制御手段11は電源回路8を制御して電極3間に周波数1MHzでピーク電圧100Vの正弦波交流電圧を印加させる。なお、ここで交流電圧というのは、正弦波のほか、ほぼ一定の周期で流れの向きを変える電圧のことであり、かつ両方向の電流の平均値が等しいものである。
【0022】
予め設定された所定時間が経過した後、制御手段11は電極3間に印加している交流電圧を遮断し、代わりに電気伝導率測定のための直流電圧を印加する。測定手段10は前述した方法で電気伝導率を算出し、その値をメモリ14に格納する。測定終了後、制御手段11は再び誘電泳動のための交流電圧を印加する。
【0023】
以下、予め設定された時間毎に、制御手段11と測定手段10は連携して電気伝導率の測定を繰り返す。測定手段は算出された電気伝導率をその都度メモリ14に格納する。このように、誘電泳動による微生物のギャップ23付近への移動と電気伝導率の測定を繰り返すことによって、電気伝導率の時間変化を調べることができる。
【0024】
ところで、高周波の交流電圧の印加によって発生する交流電界の作用で、セル1内の微生物はその誘電的な性質によって最も電場が強くかつ不均一な部分、すなわち電界集中部に泳動される。本実施の形態1では電極3のギャップ23付近の構成が電界集中部にあたり、中でも最も電界が集中するのはギャップ23である。従ってギャップ23部分に最も強く微生物が泳動される。
【0025】
図2に示すごとく、ギャップ23付近の微生物24は電極3間に生じる電界作用によってギャップ23へ向かって泳動される。ギャップ23付近の微生物24の移動状態は、試料液体中に存在する微生物数とギャップ23の間隔に依存するが、十分に微生物数が多い時にはギャップ23が微生物24から構成される鎖によって架橋されるほどになる。この際、当初からギャップ23付近に浮遊していた微生物は直ちにギャップ23部分へ移動するし、ギャップ23から離れたところに浮遊していた微生物は距離に応じて所定時間経過後にギャップ23部に至るため、一定時間後にギャップ23付近の所定領域に集まっている微生物の数はセル1内の微生物数に比例する。これは当然のことながら試料系12に存在する微生物数に比例するものである。
【0026】
誘電泳動のための交流電圧印加開始後予めプログラムされた所定の回数の電気伝導率の測定を行うと、測定手段10はメモリ14に格納されている複数の電気伝導率算出結果から、その時点までの電極3間の電気伝導率の時間変化の傾きを計算し、後述する変換式に従って試料系の微生物数を算出する。なぜ電気伝導率の時間変化の傾きを測定すれば微生物数を算出することができるかというと、微生物の表面を覆う細胞壁は表面にりん酸基などの電解性の物質を含み、それら電解質は液体中では電離してイオン化している。その結果、一般に微生物は液体中では負に帯電している。そして、電離した正イオンは微生物の周りを取り囲むように集まり電荷のバランスを保っている。つまり、微生物の周辺は荷電粒子であるイオンが豊富に存在している状態にある。したがって、誘電泳動によって微生物をギャップ23付近に集中させるとギャップ23付近はイオン濃度が上昇することになり、電気伝導率は上昇する。これを示したのが図3である。そして図3からも分かるように、測定初期の電気伝導率の時間変化の傾き(勾配)も電気伝導率の時間変化と同様に、微生物数に対応して増加しているのが分かる。電気伝導率の時間変化で微生物数を算出する場合、過渡状態をすぎて平衡状態になってから測定した方が正確であるから、どうしても時間が長くかかるが、測定初期の電気伝導率の時間変化の傾き(勾配)によって微生物数を算出する場合は、比較的短時間で微生物数を算出できるという特徴がある。
【0027】
さて、電気伝導率変化と試料系12の微生物数を関連付けるためには電気伝導率と微生物数間の変換式が必要である。この変換式は微生物数が明らかな校正用試料を、本実施の形態1で説明した微生物数測定装置の測定系を用いて予め測定し、その時の微生物数と電気伝導率の間の相関関係からばらつきを回帰分析して得られる曲線をあらわす関数をもちいる。この変換式をメモリ14に記憶させ、微生物数が未知の試料を測定する場合には、所定時間内における電気伝導率変化の値を代入することにより試料系の微生物数を算出できる。
【0028】
ここで実施の形態1の試料系としては、例えば酵母の培養液等の単一微生物系を想定しているが、混合微生物系であっても、微生物の種類とその構成比が大きく変化しない限り、前もって同様の変換式を算出しておいて測定することが可能である。
【0029】
以上説明したように、微生物数を算出後、予めプログラムされた所定の時間が経過すると、測定装置10は測定終了の通知を制御手段11に送る。これを受け、制御手段11は電極3への通電を停止するとともに電磁弁2を開放して洗浄に入る。ギャップ23付近に集まった微生物は、電磁弁2の開放により流入する試料系12の液体によって洗い流される。
【0030】
本実施の形態1においては電極3の針状突起22の先端を除いた部分と電極底部21の部分にフッソ系薄膜がコーティングされているため、移動してきた微生物は電極表面とほとんど相互作用して付着することなく洗い流され、一連の測定動作が終了する。
【0031】
このように本実施の形態1では、誘電泳動のための交流電圧と、電気伝導率測定のための直流電圧を交互に印加するため、誘電泳動による微生物の濃縮を行いながら、定期的に測定手段10による電極3間の電気伝導率を測定することができ、電気伝導率の時間変化を検出することができるので、比較的短時間で、簡易な構造でありながら、測定感度が高く、また自動測定も可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0032】
(実施の形態2)
本発明の実施の形態における微生物数測定装置について図面を参照しながら詳細に説明する。本実施の形態2は、実施の形態1の微生物数測定装置と重複する部分があるため、実施の形態1と異なる部分について詳細な説明を加える。
【0033】
実施の形態2における電源回路8は、誘電泳動力を発生するための交流電流と電気伝導率を測定するための交流電流を電極3間に供給することができる。本実施の形態2では、誘電泳動力を発生させるための交流は実施の形態1同様周波数1MHzでピーク電圧100Vの正弦波交流を用いる。電気伝導率を測定するための交流は、誘電泳動力を発生させるための交流と兼用することもできるが、誘電泳動のための交流は電圧が高い方が望ましいため測定回路が大がかりなものになってしまうことから、実施の形態2における電気伝導率を測定するための交流は、ピーク電圧を1Vとしている。
【0034】
このように実施の形態2と後述する実施の形態3においては、誘電泳動と測定の二つの交流を用いるが、表現が冗長になるので、以下、誘電泳動力を発生するための交流電流を誘電泳動のための交流、電気伝導率を測定するための交流電流を測定のための交流と記すことにする。
【0035】
図1、2において電源回路8は実施の形態1同様、制御手段11によって制御される。実施の形態2における測定手段10は、実施の形態1同様、図示しないマイクロプロセッサ、電極3間の電気伝導率を検出する検出回路、制御手段11との間の信号を伝える伝送路等から構成されている。測定手段10は誘電泳動で捕捉された微生物に起因する電気伝導率変化を測定することができる。また必要に応じて演算結果をメモリ14に格納したり、予め保存されているデータを読み出して比較を行なう等して、試料系に含まれている微生物数を算出する。
【0036】
実施の形態2における電極3は針状突起22の先端も含めた全部と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティングが施されている。実施の形態2においては、ギャップ23を介して対向する針状突起22は一つの静電容量を形成していると考えることができる。静電容量は一般に誘電体すなわち絶縁体を二枚の電極で挟んだ構造をしており、電極間に直流電流が連続的に流れることはない。しかし、交流電流に対しては充放電を繰り返しながら一定の電流が流れる。またこの時、静電容量にかかる電圧と電流量の関係は静電容量のインピーダンスによって決定され、インピーダンスは静電容量の大きさすなわち、電極間に挟まっている誘電体の誘電率に依存するものとなる。
【0037】
本実施の形態2においては、対向する電極としての針状突起22の間に絶縁性の薄膜と水と微生物の混合物という二つの誘電体が挟まった静電容量が形成されているものである。したがって、実施の形態2における電極3が針状突起22の先端も含めた全部と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティングが施されていても測定のために交流が使われる限り、電気伝導率はインピ−ダンスに起因する値になるため測定上の問題を生じることはない。
【0038】
以下、試料の導入からセル1内の微生物の濃縮、測定、洗浄にいたるまでの一連の流れのうち、実施の形態1と特に異なる部分について説明する。
【0039】
試料が導入されると、制御手段11は、セル1内の液体の流動が収まると予想される予め設定された所定時間が経過すると、測定手段10に測定開始の信号を送って測定の開始を指令するとともに、電源回路8を制御して電極3間にピーク電圧1Vで周波数0.1kHzの交流電圧を印加する。尚、前述したようにこの測定のための交流は誘電泳動のための交流と兼用することもできる。
【0040】
測定開始の指令を受けた測定手段10は、直ちに電極3間に印加される交流の交流電圧とこれに対応した交流電流とを測定し、得られた値から電気伝導率を算出する。そしてこの値を初期値としてメモリ14に格納し、測定終了を信号を送って制御手段11に伝える。
【0041】
電気伝導率の初期値を取得すると、制御手段11は電源回路8を制御して電極3間に周波数1MHzでピーク電圧100Vの正弦波交流電圧を印加させ、誘電泳動力を発生させてセル1内の微生物を移動電界集中部に移動させる。
【0042】
そして、予め設定された所定時間が経過した後、制御手段11は電極3間に印加している誘電泳動力を発生させるための交流電圧を遮断し、代わりに電気伝導率測定のための交流電圧を印加する。この時印加される交流電圧の周波数は、初期値を取得したときと同様ピーク電圧1Vで0.1kHzである。尚、この測定のための交流は電圧や周波数を適宜選択することにより、誘電泳動のための交流と兼用することもできる。その場合、誘電泳動による微生物の移動を継続したまま同時に電気伝導率の測定を行なうことが出来る。測定手段10は前述した方法で電気伝導率の算出を行い、その値をメモリ14に格納する。測定終了後、制御手段11は再び誘電泳動のための交流電圧を印加する。
【0043】
以下、予め設定された時間毎に、制御手段11と測定手段10は連携して電気伝導率の測定を複数回行ない、測定手段は算出された電気伝導率をその都度メモリ14に格納していく。
【0044】
このようにして、メモリ7内には、複数の経過時点における周波数0.1kHzでの電極3間の電気伝導率が格納され、測定が終了する。
【0045】
実施の形態2においても測定作業を行った後、電極3の洗浄を行うが、この洗浄を行うプロセスは、実施の形態1と同様である。実施の形態2においては、電極3の針状突起22の先端も含めた全部と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティングが施されているので、実施の形態1に比較しても更に洗浄性が向上する。
【0046】
測定終了後、測定手段10はメモリ14に格納されている周波数0.1kHzにおける電気伝導率の時間変化(図3参照)から、実施の形態1と同様の手法で電極3間の電気伝導率の時間変化の傾きを算出し、変換式に従って試料系の微生物数を算出する。
【0047】
このように本実施の形態2では、交流電圧を印加しての電気伝導率測定を行うことにより、試料中に存在している微生物数を知ることができるため、簡易な構造でありながら、測定感度が高く、また自動測定も可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0048】
(実施の形態3)
本発明の実施の形態3における微生物数測定装置について詳細に説明する。本実施の形態3は、実施の形態1及び2の微生物数測定装置と重複する部分があるため、実施の形態1及び2と異なる部分について詳細な説明を加える。図4は微生物数測定時に観察される測定用の交流の電圧と電流の位相差の時間変化を説明するための図、図5は測定用の交流の電圧波形と電流波形の位相差を検出する回路を説明するための図である。
【0049】
実施の形態3における電源回路8は、誘電泳動のための交流と、電圧波形と電流波形の位相差を測定するための測定用の交流を電極3間に供給することができる。本実施の形態3では、誘電泳動のための交流は実施の形態1同様周波数1MHzでピーク電圧100Vの正弦波交流を用いる。測定のための交流は、誘電泳動力を発生させるための交流と兼用することもできるが、誘電泳動のための交流は電圧が高いため実施の形態2同様測定回路が大がかりなものになってしまうことから、実施の形態3における測定用の交流は、ピーク電圧を1Vとしている。
【0050】
実施の形態3における測定手段10は、実施の形態1同様、図示しないマイクロプロセッサ、電極3間に印加される交流の電圧波形と電流波形の位相の差を検出する検出回路、制御手段11との間の信号を伝える伝送路等から構成されている。
【0051】
ここで、測定用の交流の電圧波形と電流波形の位相差を検出する回路について図5を用いて説明を行う。図5において31は測定のための交流を流す導線に直列に挿入されたホール素子、32は印加電圧の大きさに応じたデジタルデータをリアルタイムで出力するアナログ/デジタル変換器、33は後述するホール素子31からの出力電圧の大きさに応じたデジタルデータをリアルタイムで出力するアナログ/デジタル変換器である。
【0052】
ホール素子31は、導線を流れる電流が導線の周りに発生させる磁界の大きさを電圧として取り出すための素子であり、導線内を流れる電流を非接触で測定できるため、セルに流れる電流に影響を与えることがなく、高精度の測定を行うためには最適のものである。導線を流れる電流が導線の周りに発生させる磁界は、導線内を流れる電流の大きさに比例しているため、ホール素子31からの出力電圧の位相は導線内を流れる電流、即ちセルを流れる電流の位相に等しい。
【0053】
アナログ/デジタル変換器32,33はセル1に印加される電圧と、ホール素子31からの出力電圧をリアルタイムで測定手段10に組み込まれたマイクロプロセッサで演算できるデジタルデータに変換するためのものである。
【0054】
図5で説明した構成で測定を行う一連の流れを説明する。
測定のための交流がセル1に印加されると、アナログ/デジタル変換器32と33はそれぞれセル1に印加される電圧と電流の変化、即ち位相に応じたデジタルデータを出力する。測定手段10は測定手段10に組み込まれたマイクロプロセッサでアナログ/デジタル変換器32、33から出力されるデジタルデータを以下説明するように演算する。
【0055】
測定手段10に組み込まれたマイクロプロセッサで行われる演算はいわゆるゼロクロス検出といわれるものである。たとえば、セル1に印加された交流電圧の波形がマイナス側からプラス側に転じる時に電圧は一瞬0Vになる。この瞬間をアナログ/デジタル変換器32からのデータからみつけて位相差を算出するものである。セル1に印加される電圧と電流の周波数は同一であるので、ゼロクロスの時間差と、電流と電圧の位相差は比例することになる。
【0056】
セル1に印加される電圧と電流の位相が同じか、一定のずれであるときには、アナログ/デジタル変換器32から出力されるセル1に印加される交流電圧の波形がマイナス側からプラス側に転じる時のゼロクロスの時間と、アナログ/デジタル変換器33から出力されるホール素子31からの出力電圧、即ちセル1に印加される交流電流の波形がマイナス側からプラス側に転じる時のゼロクロスの時間は一致しているか、一定のずれのままである。
【0057】
しかしながら、誘電泳動に伴い微生物がギャップ23付近に移動し、セル1に印加される電流と電圧の位相が時間経過にしたがってずれてくると、電流と電圧それぞれのゼロクロス時間の間隔は変化していく。測定手段10に組み込まれたマイクロプロセッサはこのゼロクロス時間の間隔の変化を位相差として検出する。
【0058】
このようにして、測定手段10は誘電泳動で捕捉された微生物に影響された測定のための交流の電圧波形と電流波形の位相差を測定することができる。また必要に応じて演算結果をメモリ14に格納したり、予め保存されているデータを読み出して比較を行なう等して、試料系に含まれている微生物数を算出する。
【0059】
実施の形態3における電極3は実施の形態2同様、針状突起22の先端も含めた全部と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティングが施されている。実施の形態3においても、測定のために用いるのは交流のみであり直流は用いない。したがって実施の形態2で説明したように電極3は全面を絶縁性の薄膜で覆われていても動作に問題はない。
【0060】
以下、試料の導入からセル1内の微生物の濃縮、測定、洗浄にいたるまでの一連の流れのうち、実施の形態1及び2と特に異なる部分について説明する。
【0061】
試料が導入されると、制御手段11は、セル1内の液体の流動が収まると予想される予め設定された所定時間が経過すると、測定手段10に測定開始の信号を送って測定の開始を指令するとともに、電源回路8を制御して電極3間にピーク電圧1Vで周波数100kHzの交流電圧印加する。
【0062】
測定開始の指令を受けた測定手段10は、直ちに電極3間に印加される交流の交流電圧波形とこれに対応した交流電流波形とを前述した方法によって測定し、得られた値から交流電圧波形と交流電流波形の位相差を算出する。そしてこの値を初期値としてメモリ14に格納し、測定終了を信号を送って制御手段11に伝える。
【0063】
以下、制御手段11と測定手段10は連携しながら実施の形態2で説明したものと同様に各値を取得していく。実施の形態3が実施の形態2と異なるのは、測定されるものが実施の形態2では電気伝導率であったのに対し、本実施の形態3では測定のための交流の交流電圧波形と交流電流波形の位相差であるということである。
【0064】
測定周波数100kHzにおいて、試料中に存在する微生物の数と、誘電泳動に伴う測定のための交流の電圧波形と電流波形の位相差の時間変化は図4に示すような曲線となる。
【0065】
測定終了後、測定手段10はメモリ14に格納されている周波数100kHzにおける測定のための交流の電圧波形と電流波形の位相差の時間変化から、実施の形態1及び2と同様の手法で電極3間の位相差の時間変化の傾きを算出し、変換式に従って試料系の微生物数を算出する。
【0066】
実施の形態3においても一連の測定作業を行った後、電極3の洗浄を行い、その洗浄にいたる流れは、実施の形態1と同様である。実施の形態3においても実施の形態2同様に、電極3の針状突起22の先端も含めた全部と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティングが施されているので、実施の形態1に比較して更に洗浄性が向上している。
【0067】
このように本実施の形態3では、測定用の交流電圧を印加しての交流電圧波形と交流電流波形の位相差の測定を行うことにより、試料中に存在している微生物数を知ることができるため、簡易な構造でありながら、測定感度が高く、また自動測定も可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0068】
【発明の効果】
本願発明によれば、微生物数の少ない試料においても微生物を電極付近に集中させた後に電気的な手段によって微生物数を測定することができる。さらに、電気伝導率の時間変化の傾きから微生物数を算出することにより、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能でメンテナンスフリーの微生物数測定装置及び微生物数値測定方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1、2、3における微生物数測定装置の全体構成図
【図2】本発明の実施の形態1、2、3における電極の詳細説明および微生物の集中状態を説明するための図
【図3】微生物数測定時に観察される電気伝導率の時間変化を説明するためのグラフ
【図4】微生物数測定時に観察される測定用の交流電圧の交流電圧波形と交流電流波形の位相差の時間変化を説明するための図
【図5】測定用の交流の電圧波形と電流波形の位相差を検出する回路を説明するための図
【符号の説明】
1 セル
2 電磁弁
3 電極
8 電源回路
10 測定手段
11 制御手段
12 試料系
14 メモリ
21 電極底部
23 ギャップ
24 微生物
31 ホール素子
32、33 アナログ/デジタル変換器

Claims (3)

  1. 微生物含有の液体を導入することができ、内部に複数の電極を備えたセルと、前記セル中に誘電泳動力を発生させるための交流電圧と電気伝導率を測定するための直流または交流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、微生物の数を測定するために前記電極間の電気伝導率を測定する測定手段を備え、前記セルには前記電極間に電界を集中させる電界集中部が設けられ、微生物含有の液体が導入されると微生物が前記電界集中部に誘電泳動によって移動、前記電極集中部に集中され、前記測定部が前記電極間の電気伝導率を測定して電気伝導率の時間変化の傾きから微生物数を算出することを特徴とする微生物数測定装置。
  2. 前記制御手段が前記電極間に流す交流電流を一旦遮断した後、前記測定部が前記電極間の電気伝導率を測定することを特徴とする請求項1記載の微生物数測定装置。
  3. 微生物含有の液体を導入することができ、内部に複数の電極を備えたセルと、前記セル中に誘電泳動力を発生させるための交流電圧と電気伝導率を測定するための交流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、微生物の数を測定するために前記電極間に電界を集中させる電界集中部が設けられ、微生物含有の液体が導入されると微生物が前記電界集中部に誘電泳動によって移動され、前記測定部が前記電極間の交流電圧と交流電流の位相差を測定して微生物数を算出することを特徴とする微生物数測定装置。
JP03838598A 1998-02-20 1998-02-20 微生物数測定装置 Expired - Lifetime JP3713941B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03838598A JP3713941B2 (ja) 1998-02-20 1998-02-20 微生物数測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03838598A JP3713941B2 (ja) 1998-02-20 1998-02-20 微生物数測定装置

Publications (2)

Publication Number Publication Date
JPH11237353A JPH11237353A (ja) 1999-08-31
JP3713941B2 true JP3713941B2 (ja) 2005-11-09

Family

ID=12523822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03838598A Expired - Lifetime JP3713941B2 (ja) 1998-02-20 1998-02-20 微生物数測定装置

Country Status (1)

Country Link
JP (1) JP3713941B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330752A (ja) * 2001-05-08 2002-11-19 Sanden Corp 微生物数測定装置
JP4918237B2 (ja) * 2005-09-08 2012-04-18 株式会社Kri 生体の定量方法
JP4640104B2 (ja) * 2005-10-20 2011-03-02 パナソニック株式会社 微生物測定装置および微生物測定方法
IT201700044103A1 (it) * 2017-04-21 2018-10-21 Ali Group Srl Carpigiani Apparecchiatura e metodo per la determinazione di carica batterica in un prodotto liquido o semiliquido.
CN111727370A (zh) * 2018-02-28 2020-09-29 东阳特克尼卡株式会社 测量容器、测量系统及测量方法

Also Published As

Publication number Publication date
JPH11237353A (ja) 1999-08-31

Similar Documents

Publication Publication Date Title
JP2000125846A (ja) 微生物数測定装置及び微生物数測定方法
Prakash et al. Tracking cancer cell proliferation on a CMOS capacitance sensor chip
CA2229528A1 (en) Apparatus and method for analyzing particles
RU2000115708A (ru) Способ измерения концентрации анализируемого вещества (варианты), измерительный прибор для измерения концентрации анализируемого вещества
MY126044A (en) Sample detection to initiate timing of an electrochemical assay
JPWO2009037804A1 (ja) 微粒子測定装置および微粒子測定方法
Reyes-Romero et al. Dynamic thermal sensor for biofilm monitoring
US8262886B2 (en) Apparatus for analyzing characteristics of particulate with dielectrophoresis of particulate by applying angle-modulated wave and method for the same
JP3713941B2 (ja) 微生物数測定装置
JP6619367B2 (ja) 検体濃度測定
JP2003000224A (ja) 微生物活性測定装置及び微生物活性の測定方法
JP4918237B2 (ja) 生体の定量方法
JP2002330752A (ja) 微生物数測定装置
JPH071289B2 (ja) 分極の影響を除去した導電率測定方法及び装置
JP3765464B2 (ja) 微生物キャリア体、微生物数測定装置及び微生物数測定方法
JP3761128B2 (ja) 微生物数測定装置及び微生物数測定方法
CN114235675B (zh) 发动机排放系统腐蚀监测系统及方法
JPH11318491A (ja) 微生物数測定装置
JPH11127891A (ja) 微生物数測定装置及び微生物数測定方法
JP2007195426A (ja) 微生物数測定装置及び微生物数測定方法
US20180292352A1 (en) Methods and systems for identifying a particle using dielectrophoresis
RU2812415C1 (ru) Способ коммутационной хроноамперометрии
GB2117120A (en) Anodic stripping voltameter
Pethig Dielectric-based biosensors
Carminati et al. Theoretical and experimental comparison of microelectrode sensing configurations for impedimetric cell monitoring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term