JP3708703B2 - 半導体光メモリ - Google Patents

半導体光メモリ Download PDF

Info

Publication number
JP3708703B2
JP3708703B2 JP06297298A JP6297298A JP3708703B2 JP 3708703 B2 JP3708703 B2 JP 3708703B2 JP 06297298 A JP06297298 A JP 06297298A JP 6297298 A JP6297298 A JP 6297298A JP 3708703 B2 JP3708703 B2 JP 3708703B2
Authority
JP
Japan
Prior art keywords
layer
light absorption
electrode
optical memory
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06297298A
Other languages
English (en)
Other versions
JPH11261016A (ja
Inventor
信彦 須佐
栄一 倉持
二郎 天明
敏昭 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06297298A priority Critical patent/JP3708703B2/ja
Publication of JPH11261016A publication Critical patent/JPH11261016A/ja
Application granted granted Critical
Publication of JP3708703B2 publication Critical patent/JP3708703B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、量子箱もしくは量子細線を用いた光吸収層による半導体光メモリに関する。
【0002】
【従来の技術】
図5を用いて、従来よりある半導体光メモリの構成に関して説明する。
この半導体光メモリは、材料としてあるGaAs系、光吸収層として量子箱を用いた場合を例に説明する。
この半導体光メモリは、図5(a)に示すように、GaAsからなる基板501上に、まず、InAsからなるサイズが10nm程度の量子箱からなる光吸収層502が形成されている。また、その光吸収層502を覆うように、基板501上にGaAsからなる埋め込み層503が形成されている。そして、その埋め込み層503上に、ショットキー接合してショットキー電極504が形成され、一方、基板501裏面にオーミック接合したオーミック電極505が形成されているる。
【0003】
次に、この半導体光メモリの動作を、図5(b)のバンドギャップを用いて説明する。このバンドギャップは、逆バイアスを印加した動作時の状態を示している。
書き込みのための光を入射すると、この光は光吸収層502で吸収され、電子と正孔の対である電子・正孔対がこの光吸収層502の層で生成される。
この光吸収層502内で生成された電子は、有効質量が小さいために熱励起やトンネル効果により光吸収層502の層から脱出し、印加電界によりオーミック電極505側に流れ、光電流として外部から観測できる。一方、正孔は有効質量が大きいために光吸収層502の層にとどまることになる。これが光情報の記録(光メモリ状態)になる。
【0004】
引き続いて読み出し光を照射すると、光吸収層502内には書き込みのための光入射により生成して残った正孔が存在するため、その読み出し光の吸収は起こらず、光吸収層502において電子・正孔対は生成されない。したがって、光電流は流れない。このように、読み出し光に対する、オーミック電極505側に流れる光電流の有/無で、この半導体光メモリに記憶された光情報を読みとることができる。
【0005】
【発明が解決しようとする課題】
ところで、上述した光半導体メモリでは、ショットキー電極504とオーミック電極505との間に印加するバイアス電圧が0の場合、書き込みのための光入射により生成した正孔が、光吸収層502にとどまるため、この半導体光メモリに新たな書き込みをするためには、その正孔を掃き出さなくてはならない。この、正孔を光り吸収層502より掃き出すためには、−15V以上の逆バイアス電圧の印加が必要となる。このように大きな逆バイアス電圧の印加をすると、ブレークダウンが起きたり、暗電流が大きくなる。一方、逆バイアス電圧を常に印加しておく場合、印加している電界により光り吸収層502における正孔が掃き出される結果、光メモリ時間が1msと短かった。
すなわち、上述した構成の従来の半導体光メモリでは、一度データの書き込みを行うと、これを消去するために高い電圧を印加する必要があり、素子に対するダメージが大きいという問題があった。また、消去をしやすくするために、常に逆バイアスをかけておくようにすると、光メモリ状態の保持時間が1msと短いという問題があった。
【0006】
この発明は、以上のような問題点を解消するためになされたものであり、素子に対してダメージを与えることなく光メモリ状態を消去できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
この発明の半導体光メモリは、半導体基板上に形成された量子箱から構成された光吸収層と、その光吸収層よりバンドギャップエネルギーが大きく半導体基板に格子整合して光吸収層を覆うように半導体基板上に形成された埋め込み層と、その埋め込み層よりバンドギャップエネルギーが大きく半導体基板に格子整合して埋め込み層上にヘテロ接合して形成されたバリア層と、そのバリア層上にオーミック接合して形成されたゲート電極と、そのゲート電極を挾むようにバリア層上にオーミック接合して形成されたソース電極およびドレイン電極と、埋め込み層とバリア層との界面に接触してソース電極およびドレイン電極下に形成されたソース領域およびドレイン領域と、基板裏面にオーミック接合して形成された電極とを備えるようにした。
したがって、光の入射により光吸収層の量子箱で生成された電子・正孔対の電子が、ヘテロ界面に蓄積され、ソース・ドレイン間に電流が流れるようになる。そして、その蓄積された電子は、ゲート電極に負の電圧が印加されることで、光吸収層に押し出され、正孔と再結合して消滅する。
また、この発明の半導体装置は、半導体基板上に形成された量子細線から構成された光吸収層と、その光吸収層よりバンドギャップエネルギーが大きく半導体基板に格子整合して光吸収層を覆うように半導体基板上に形成された埋め込み層と、その埋め込み層よりバンドギャップエネルギーが大きく半導体基板に格子整合して埋め込み層上にヘテロ接合して形成されたバリア層と、そのバリア層上にオーミック接合して形成されたゲート電極と、そのゲート電極を挾んで量子細線の延在方向に対して垂直な方向に配置されてバリア層上にオーミック接合して形成されたソース電極およびドレイン電極と、埋め込み層とバリア層との界面に接触してソース電極およびドレイン電極下に形成されたソース領域およびドレイン領域と、基板裏面にオーミック接合して形成された電極とを備えるようにした。
したがって、光の入射により光吸収層の量子細線で生成された電子・正孔対の電子が、ヘテロ界面に蓄積され、ソース・ドレイン間に電流が流れるようになる。そして、その蓄積された電子は、ゲート電極に負の電圧が印加されることで、光吸収層に押し出され、正孔と再結合して消滅する。
【0008】
【発明の実施の形態】
以下この発明の実施の形態を図を参照して説明する。
図1は、この発明の実施の形態における半導体光メモリの構成を示す概略的な断面図であり、ここでは、AlGaAs/GaAs系を例にする。
この半導体光メモリは、まず、GaAsからなる厚さ400nm程度の基板101上に、InAsの量子箱からなる光吸収層102が形成されている。この量子箱は、大きさが10nm程度に形成すればよい。また、光吸収層102を覆うように、基板101上にノンドープのGaAsからなる膜厚200nm程度の埋め込み層103形成されている。また、埋め込み層103上には、ノンドープのAl0.3Ga0.7Asからなる膜厚320nmのバリア層104が形成されている。
【0009】
また、バリア層104上には、ゲート電極105が形成され、そのバリア層104上で、ゲート電極105を挾むようにソース電極106およびドレイン電極107が形成されている。
また、ソース電極106下には、埋め込み層103に一部がかかるように不純物が導入されたソース領域108が形成されている。同様に、ドレイン電極107下には、埋め込み層103に一部がかかるように不純物が導入されたドレイン領域109が形成されている。
そして、基板101裏面には、書き込み光や読み出し光が入射できるように、リング状の電極110が形成されている。
【0010】
なお、ゲート電極105およびソース電極106,ドレイン電極107が良好なオーミック接合となるために、ドナー不純物を高濃度に添加したn+-GaAsからなる薄い層をバリア層104上に備えるようにしてもよい。
同様に、電極110が良好なオーミック接合となるために、ドナー不純物を高濃度に添加したn+-GaAsからなる薄い層を、基板101裏面に備えるようにしてもよい。
また、上述では、光吸収層102として量子箱を用いるようにしたが、これに限るものではない。ソース・ドレイン方向に対して垂直な方向に延在する量子細線を用いるようにしてもよい。そして、この場合、細線の断面の大きさが、例えば10nm程度となるようにすればよい。
【0011】
以下、この実施の形態における半導体光メモリの動作について説明する。
図1に示した半導体光メモリのバンド構造は、図2に示すようになる。図2では、ゲート電圧Vg =0の状態である。この状態で書き込み光を照射すると、この光は光吸収層102で吸収され、電子・正孔対が光吸収層102内に生成される。そして、光吸収層102内で生成された電子は、熱励起あるいはトンネル効果により光吸収層102から吐き出され、埋め込み層103とバリア層104とのヘテロ界面に蓄積される。この界面に蓄積された電子により、ソース領域108とドレイン領域109との間に電流が流れる。
【0012】
なお、入射光の波長は、光吸収層で吸収される光の波長を選択する。ただし、入射する光の波長によっては、熱励起あるいはトンネル効果によらず、電子が直接伝導帯に生成されることもある。
また、埋め込み層103を適当に薄くすることや、ゲート電極105に正の電圧を印加することにより、光吸収層102内の電子の脱出トンネル確率を増加させることができる。
【0013】
以上の電子に対して、光吸収層102内に生成した正孔は、有効質量が大きく電界が加わっていないので、そのまま光吸収層102内にとどまる。このような状態の時に、例えば読み出し光を照射しても、すでに光吸収層102内に正孔が存在するので光吸収は起こらない。したがって、埋め込み層103とバリア層104とのヘテロ界面の電子数が増加しないので、ソース領域108とドレイン領域109との間の電流は変化しない。
【0014】
ここで、ゲート電極105に例えば−1.0Vの負の電圧を印加すると、図2(b)に示すように、埋め込み層103とバリア層104とのヘテロ界面から電子が光吸収層102に戻り、そこに残っていた正孔と再結合して消滅する。
そして、光吸収層の正孔と再結合しない限り埋め込み層103とバリア層104とのヘテロ界面には電子が存在しているので、この半導体光メモリでは、ソース領域108(ソース電極106)とドレイン領域109(ドレイン電極107)の間に適当な電圧を印加すると、常に電流が流れる。そして、この光メモリ状態は、数時間から数日にもおよんで長時間保持される。
【0015】
このように、この実施の形態によれば、まず、一度書き込み光の照射することで、光吸収層102に正孔,埋め込み層103とバリア層104とのヘテロ界面に電子が蓄積された光メモリ状態が長時間保持されるようになる。そして、ゲート電極105に負の電圧を印加することで、容易にメモり状態を解消することができる。
なお、上述では、光吸収層102を1層としたが、これに限るものではなく、複数層備えるようにすれば、書き込み光による光メモリ状態と非光メモリ状態との電流変化分が大きくとれる。
【0016】
ところで、上述では、まず、ゲート電圧Vg =0、ソース・ドレイン間電圧Vsdの状態で書き込み光を照射して光メモリ状態とし(図3(a))、その後で、ソース・ドレイン間に電圧を印加し(図3(b))、そのときに流れる電流の大小で光りメモり情報を読み出す。そして、その後で、リセットすることで、光メモリ状態を消去するようにしていた(図3(b))。
しかし、それらに限るものではなく、図4に示すように、光メモリ状態で読み出し光を入射した場合と、非光メモリ状態で読み出し光を入射した場合との差を見るようにしてもよい。
【0017】
すなわち、まず、ソース・ドレイン間に電圧を印加した状態とする。このとき図4(a),(b)に示すように、書き込み光を照射する前までは、ソース・ドレイン電流は流れない。次いで、書き込み光を照射すると、ソース・ドレイン電流が流れる。ここで、書き込み光を照射した後で、読み出し光を照射しても、ソース・ドレイン電流は流れたままであり、変化はない。次いで、リセットすると、ソース・ドレイン電流は流れなくなる。そしてこの後、読み出し光を照射すると、今度はソース・ドレイン電流が流れるようになる。
【0018】
ところで、上述では、バリア層としてAlGaAsを用いるようにしたが、酸化しやすいアルミニウムを含まず、GaAsに格子整合したInGaPやInGaAsPをバリア層に用いるようにしてもよい。
また、光吸収層を埋め込むように形成する埋め込み層として、GaInNAs(例えばGa0.97In0.030.01As0.99)を用い、量子箱もしくは量子細線をGaInNAs(例えばGa0.6In0.40.01As0.99)を用い、バリア層としてGaAsを用いるようにしてもよい。
【0019】
また、InPを基板として用い、これに格子整合するInAlGaAsもしくはInGaAsPからなる量子箱もしくは量子細線を光吸収層に用い、GaAsに格子整合するAlInAsもしくはInGaAsPをバリア層に用いるようにしてもよい。
また、SiC,GaNあるいはサファイア(0001)C面を用い、量子箱や量子細線としてInGaN(In0.43Ga0.57N)を用い、その埋め込み層としてAlGaN(Al0.1Ga0.9N)、そして、バリア層としてGaNを用いるようにしてもよい。
【0020】
【発明の効果】
以上説明したように、この発明では、半導体基板上に形成された量子箱から構成された光吸収層と、その光吸収層よりバンドギャップエネルギーが大きく半導体基板に格子整合して光吸収層を覆うように半導体基板上に形成された埋め込み層と、その埋め込み層よりバンドギャップエネルギーが大きく半導体基板に格子整合して埋め込み層上にヘテロ接合して形成されたバリア層と、そのバリア層上にオーミック接合して形成されたゲート電極と、そのゲート電極を挾むようにバリア層上にオーミック接合して形成されたソース電極およびドレイン電極と、埋め込み層とバリア層との界面に接触してソース電極およびドレイン電極下に形成されたソース領域およびドレイン領域と、基板裏面にオーミック接合して形成された電極とを備えるようにした。
また、その光吸収層を量子細線から構成し、ソース電極およびドレイン電極が、ゲート電極を挾んで量子細線の延在方向に対して垂直な方向に配置されるようにした。
【0021】
したがって、光の入射により光吸収層の量子細線で生成された電子・正孔対の電子が、ヘテロ界面に蓄積され、ソース・ドレイン間に電流が流れるようになる。そして、その蓄積された電子は、ゲート電極に負の電圧が印加されることで、光吸収層に押し出され、正孔と再結合して消滅する。すなわち、ヘテロ接合面に電子が蓄積されることによる光メモリ状態は、ゲート電極に負の電圧を印加することで容易に消去できるようになり、素子にダメージを与えることなく消去が可能となる。また、バイアス電圧を印加しておく必要がないので、その光メモリ状態は、数時間から数日にもおよんで長時間保持することが可能となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態における半導体光メモリの構成を示す概略的な断面図である。
【図2】 図1に示した半導体光メモリのバンド構造を示すバンド図である。
【図3】 書き込みと読み出しの状態を示す説明図である。
【図4】 書き込みと読み出しの状態を示す説明図である。
【図5】 従来の半導体光メモリの構成を示す構成図である。
【符号の説明】
101…基板、102…光吸収層、103…埋め込み層、104…バリア層、105…ゲート電極、106…ソース電極、107…ドレイン電極、108…ソース領域、109…ドレイン領域、110…電極。

Claims (3)

  1. 半導体基板上に形成された量子箱から構成された光吸収層と、
    前記光吸収層よりバンドギャップエネルギーが大きく前記半導体基板に格子整合し、前記光吸収層を覆うように前記半導体基板上に形成された埋め込み層と、
    前記埋め込み層よりバンドギャップエネルギーが大きく前記半導体基板に格子整合し、前記埋め込み層上にヘテロ接合して形成されたバリア層と、
    前記バリア層上にオーミック接合して形成されたゲート電極と、
    前記ゲート電極を挾むように前記バリア層上にオーミック接合して形成されたソース電極およびドレイン電極と、
    前記埋め込み層と前記バリア層との界面に接触して前記ソース電極および前記ドレイン電極下に形成されたソース領域およびドレイン領域と、
    前記基板裏面にオーミック接合して形成された電極と
    を備えたことを特徴とする半導体光メモリ。
  2. 半導体基板上に形成された量子細線から構成された光吸収層と、
    前記光吸収層よりバンドギャップエネルギーが大きく前記半導体基板に格子整合し、前記光吸収層を覆うように前記半導体基板上に形成された埋め込み層と、
    前記埋め込み層よりバンドギャップエネルギーが大きく前記半導体基板に格子整合し、前記埋め込み層上にヘテロ接合して形成されたバリア層と、
    前記バリア層上にオーミック接合して形成されたゲート電極と、
    前記ゲート電極を挾んで前記量子細線の延在方向に対して垂直な方向に配置され、前記バリア層上にオーミック接合して形成されたソース電極およびドレイン電極と、
    前記埋め込み層と前記バリア層との界面に接触して前記ソース電極および前記ドレイン電極下に形成されたソース領域およびドレイン領域と、
    前記基板裏面にオーミック接合して形成された電極と
    を備えたことを特徴とする半導体光メモリ。
  3. 請求項1または2記載の半導体光メモリにおいて、
    前記光吸収層が、前記埋め込み層内に複数層形成されていることを特徴とする半導体光メモリ。
JP06297298A 1998-03-13 1998-03-13 半導体光メモリ Expired - Fee Related JP3708703B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06297298A JP3708703B2 (ja) 1998-03-13 1998-03-13 半導体光メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06297298A JP3708703B2 (ja) 1998-03-13 1998-03-13 半導体光メモリ

Publications (2)

Publication Number Publication Date
JPH11261016A JPH11261016A (ja) 1999-09-24
JP3708703B2 true JP3708703B2 (ja) 2005-10-19

Family

ID=13215785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06297298A Expired - Fee Related JP3708703B2 (ja) 1998-03-13 1998-03-13 半導体光メモリ

Country Status (1)

Country Link
JP (1) JP3708703B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406911B1 (ko) * 2008-01-04 2014-06-16 한국과학기술원 광 검출 소자 및 그 제조방법
JP6506453B2 (ja) 2017-06-13 2019-04-24 旭化成株式会社 Msm型紫外線受光素子、msm型紫外線受光装置

Also Published As

Publication number Publication date
JPH11261016A (ja) 1999-09-24

Similar Documents

Publication Publication Date Title
JP4963120B2 (ja) 光電界効果トランジスタ,及びそれを用いた集積型フォトディテクタ
US6342716B1 (en) Semiconductor device having dot elements as floating gate
KR100952401B1 (ko) 발광 반도체 장치 및 그 형성 방법
US5936258A (en) Optical semiconductor memory device and read/write method therefor
US7244997B2 (en) Magneto-luminescent transducer
JPH0421336B2 (ja)
US8217424B2 (en) Semiconductor device having stacked InGaP and GaAs layers, and method of making same
JP2000040753A (ja) メモリ素子
JPH08148669A (ja) 半導体装置
US8045595B2 (en) Self aligned diode fabrication method and self aligned laser diode
JP3708703B2 (ja) 半導体光メモリ
JP2009147193A (ja) 量子ドット型赤外線検知器
JP5217140B2 (ja) 光半導体装置
CA2442127C (en) Negative-resistance field-effect element
JP2973876B2 (ja) 化合物半導体メモリ
GB2352087A (en) Single photon detector
JP2803719B2 (ja) 半導体量子ドット素子とその製造方法
US10741714B2 (en) Infrared detection device, infrared detection apparatus, and manufacturing method of infrared detection device
JPS58107679A (ja) 電界効果トランジスタ
JP2001156298A (ja) 半導体素子
JPH05343731A (ja) 受光素子
JP2817718B2 (ja) トンネルトランジスタおよびその製造方法
US20200194556A1 (en) Compound semiconductor device, manufacturing method thereof, and infrared detector
JPH07131056A (ja) 光検出器
GB2440569A (en) A photon detector and a method of fabricating the detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees