JP3707088B2 - 排気再燃型コンバインドサイクルプラントにおけるNOx制御装置 - Google Patents

排気再燃型コンバインドサイクルプラントにおけるNOx制御装置 Download PDF

Info

Publication number
JP3707088B2
JP3707088B2 JP31876794A JP31876794A JP3707088B2 JP 3707088 B2 JP3707088 B2 JP 3707088B2 JP 31876794 A JP31876794 A JP 31876794A JP 31876794 A JP31876794 A JP 31876794A JP 3707088 B2 JP3707088 B2 JP 3707088B2
Authority
JP
Japan
Prior art keywords
oap
gas turbine
gmf
damper opening
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31876794A
Other languages
English (en)
Other versions
JPH08177412A (ja
Inventor
敏男 井上
さおり 谷崎
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP31876794A priority Critical patent/JP3707088B2/ja
Publication of JPH08177412A publication Critical patent/JPH08177412A/ja
Application granted granted Critical
Publication of JP3707088B2 publication Critical patent/JP3707088B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は排気再燃型コンバインドサイクルプラントにおけるNOx制御装置に関するものである。
【0002】
【従来の技術】
近年、熱効率の向上を図るため、発電機及び圧縮機を駆動した後のタービン排ガスを空気と混合して燃焼用ガスを生成し、該燃焼用ガスをボイラへ送給してボイラにおける燃料の燃焼に供するようにした排気再燃型コンバインドサイクルプラントが実用化されつつあり、斯かるプラントの一例は図13に示されている。
【0003】
図13中、1は火炉1a及び副側壁1b並に後部伝熱部1cを備えたボイラ本体、2は火炉1a下部に設置したバーナであり、バーナ2から噴射された燃料の燃焼により燃焼ガスG4が生成されるようになっている。
【0004】
3は外気をダクト4及び風箱5を介し燃焼用の空気Aとして火炉1a内へ送給する強圧通風機、6は後部伝熱部1cの下部に接続された排ガスダクトである。
【0005】
7は燃焼器8から送給された燃焼ガスにより駆動され、発電機9及び圧縮機10を駆動し得るようにしたガスタービンであり、燃焼器8では、噴射された燃料が圧縮機10から送給された圧縮空気と混合して燃焼を得るようになっている。
【0006】
11はガスタービン7から排出されたタービン排ガスG1をダクト4へ送給し得るよう、ダクト4の中途部に接続されたダクトであり、コンバインドサイクル運転時には、ガスタービン7から排出されたタービン排ガスG1は、ダクト11からダクト4へ導入され、強圧通風機3からの空気Aと合流、混合して燃焼用ガスG2が生成されるようになっている。
【0007】
12はダクト4の中途部にダクト4とダクト11の接続部よりもボイラ本体1側に位置するよう接続され且つ中途部に開閉可能なOAPダンパ(オーバエアポートダンパ)13を有するOAPダクト(オーバエアポートダクト)であり、該OAPダクト12の先端は、ボイラ本体1の火炉1a上部に接続され、強圧通風機3からの空気Aの一部、或いは強圧通風機3からの空気Aとガスタービン7からのタービン排ガスG1とが混合して生成された燃焼用ガスG2の一部を二段燃焼用のガスとして火炉1aの上部へ送給し得るようになっている。
【0008】
14は後端が排ガスダクト6の中途部に接続され、先端がダクト4のOAPダクト12接続部よりもボイラ本体1側に位置するよう接続された排ガス循環ダクトであり、排ガス循環ダクト14の中途部にはGMF(排ガス循環ファン)15が接続されている。
【0009】
而して、ボイラ本体1の後部伝熱部1cから排ガスダクト6へ排出されたボイラ排ガスG5の一部は排ガス循環ダクト14からダクト4へ送給され、ダクト4を通って送給された空気A或いは燃焼用ガスG2と合流、混合して燃焼用ガスG3が生成され、燃焼用ガスG3はダクト4から風箱5を介してボイラ本体1の火炉1a内へ導入され、バーナ2から噴射された燃料の燃焼に供し得るようになっている。
【0010】
16はボイラ本体1の伝熱部で加熱されて生成した主蒸気を過熱するためにボイラ本体1の副側壁1b内に格納した過熱器、17は過熱器16で過熱されて過熱蒸気管18を介し送給された過熱蒸気により駆動され且つ発電機19を駆動し得るようにした蒸気タービンである。
【0011】
上記排気再燃型コンバインドサイクルプラントにおいて、ボイラ排ガスG5中のNOx濃度を制御するためのNOx濃度制御装置の一例は図8に示されている。
【0012】
図8中、20は気力単独運転時に蒸気タービン出力指令PSOに対応してOAPダンパ開度指令XOAPSを出力し得るようにした関数発生器、21はコンバインドサイクル運転時に蒸気タービン出力指令PSOに対応してOAPダンパ開度指令XOAPCを出力し得るようにした関数発生器、22は気力単独運転時にac側へ切換ってOAPダンパ開度指令XOAPSを出力し、コンバインドサイクル運転時にbc側へ切換ってOAPダンパ開度指令XOAPCを出力する切換器であり、OAPダンパ13の開度は、OAPダンパ開度指令XOAPS又はXOAPCにより所定の開度に調整し得るようになっている。
【0013】
23は気力単独運転時に蒸気タービン出力指令PSOに対応してGMFダンパ開度指令XGMFSを出力し得るようにした関数発生器、24はコンバインドサイクル運転時に蒸気タービン出力指令PSOに対応してGMFダンパ開度指令XGMFCを出力し得るようにした関数発生器、25は気力単独運転時にac側へ切換ってGMFダンパ開度指令XGMFSを出力し、コンバインドサイクル運転時にbc側へ切換ってGMFダンパ開度指令XGMFCを出力する切換器であり、GMF15に内蔵されているダンパ(図示せず)の開度は、GMFダンパ開度指令XGMFS又はXGMFCにより所定の開度に調整し得るようになっている。
【0014】
上述のNOx濃度制御装置の関数発生器20,23には、図9、図11に示すように気力単独運転時の蒸気タービン出力指令PSOと、ボイラ排ガスG5中のNOx濃度を基準値以下にするために必要なOAPダンパ開度指令XOAPS及び、GMFダンパ開度指令XGMFSの関係が関数F1(x),F2(x)として設定され、関数発生器21,24には、図10、図12に示すようにコンバインドサイクル運転時の蒸気タービン出力指令PSOと、ボイラ排ガスG5中のNOx濃度を基準値以下にするために必要なOAPダンパ開度指令XOAPC及びGMFダンパ開度指令XGMFCの関係が、関数F3(x),F4(x)として設定されている。これらの関数発生器20,21,23,24に設定される各関数F1(x),F2(x),F3(x),F4(x)は、予め試運転時等に実験的に決定されている。
【0015】
上述の排気再燃型コンバインドサイクルプラントにおいては、蒸気タービン出力指令PSOが所定の値よりも低い場合には、蒸気タービン17のみが駆動される気力単独運転が行われ、蒸気タービン出力指令PSOが所定の値よりも高い場合には、蒸気タービン17とガスタービン7の両方が駆動されるコンバインドサイクル運転が行われる。
【0016】
而して、気力単独運転の場合は、ガスタービン7は停止している。このため、強圧通風機3から吐出された空気Aはダクト4を送給され、ダクト4の中途部で空気Aの一部はOAPダクト12へ入り、OAPダクト12を通ってボイラ本体1の火炉1a上部に導入され、残りの空気Aは更にダクト4を送給され、排ガス循環ダクト14から送給されたボイラ排ガスG5と混合して燃焼用ガスG3が生成され、生成した燃焼用ガスG3はダクト4、風箱5を通ってボイラ本体1の火炉1a内に導入される。
【0017】
一方、バーナ2から火炉1a内へ噴射された燃料は、火炉1a内へ導入された燃焼用ガスG3と混合し燃焼して燃焼ガスG4が生成され、燃焼ガスG4は火炉1a内を上昇しつつOAPダクト12から送給された空気Aを吹込まれて、いわゆる二次燃焼を行い、ボイラ本体1の伝熱管を流れる水、蒸気を加熱し且つ過熱器16を流れる主蒸気を過熱し、後部伝熱部1cからボイラ排ガスG5として排ガスダクト6へ排出される。
【0018】
排ガスダクト6へ排出されたボイラ排ガスG5の一部は、排ガス循環ダクト14へ導入され、GMF15により加圧されて更に排ガス循環ダクト14を通りダクト4へ循環、導入され、ダクト4を送給された空気Aと混合されて火炉1a内へ送給される燃焼用ガスG3が生成され、残りのボイラ排ガスG5は、排ガスダクト6を通って後処理工程へ送給される。
【0019】
ボイラ本体1の伝熱管で生成した蒸気は、過熱器16で過熱されたうえ過熱蒸気管18から蒸気タービン17へ送給され、蒸気タービン17を駆動して後抽気される。又蒸気タービン17の駆動により発電機19が駆動され、発電が行われる。
【0020】
上述の気力単独運転を行う際には、図8の切換器22,25はac側に切換っている。このため蒸気タービン出力指令PSOに対応して関数発生器20から出力されたOAPダンパ開度指令XOAPSは切換器22を経てOAPダンパ13へ与えられ、その開度が所定の開度に調整され、蒸気タービン出力指令PSOに対応して関数発生器23から出力されたGMFダンパ開度指令XGMFSは切換器25を経てGMF15のダンパへ与えられ、その開度が所定の開度に調整される。
【0021】
而して、OAPダンパ13の開度、GMF15のダンパの開度が夫々所定の開度に調整されることにより、OAPダクト12を通って火炉1aの上部へ導入される二段燃焼用の空気Aの単位時間当りの流量及び排ガス循環ダクト14、ダクト4、風箱5、を経て火炉1a内へ循環されるボイラ排ガスG5の単位時間当りの流量が制御され、その結果、火炉1a内へ供給される酸素の単位時間当りの重量流量を所定の値に調整でき、従って、火炉1a内で生成される燃焼ガスG4の温度をNOx発生量の少い低温の所定の温度に制御できるため、ボイラ排ガスG5のNOx濃度は基準値以下になるよう制御が行われる。
【0022】
コンバインドサイクル運転時には、蒸気タービン17及びガスタービン7の両方が駆動されている。すなわち、燃焼器8で燃料が燃焼することにより生成された燃焼ガスはガスタービン7へ導入されてガスタービン7が駆動され、ガスタービン7により発電機9及び圧縮機10が駆動され、ガスタービン7から排出されたタービン排ガスG1はダクト4へ送給される。このため、タービン排ガスG1は、強圧通風機3から吐出された空気Aと、ダクト4の途中で合流し混合して燃焼用ガスG2が生成され、ダクト4の中途部で燃焼用ガスG2の一部はOAPダクト12へ入り、OAPダクト12を通り二段燃焼用のガスとしてボイラ本体1の火炉1a内上部へ導入され、残りの燃焼用ガスG2は更にダクト4を送給され、排ガス循環ダクト14から送給されたボイラ排ガスG5と混合して燃焼用ガスG3が生成され、生成した燃焼用ガスG3はダクト4、風箱5を通ってボイラ本体1の火炉1a内に導入される。
【0023】
一方、バーナ2から火炉1a内へ噴射された燃料は、火炉1a内へ導入された燃焼用ガスG3と混合して燃焼し、燃焼ガスG4が生成され、燃焼ガスG4は火炉1a内を上昇しつつOAPダクト12から送給された燃焼ガスG2を吹込まれていわゆる二段燃焼を行い、ボイラ本体1の伝熱管を流れる水、蒸気を加熱し且つ過熱器16を流れる主蒸気を過熱し、後部伝熱部1cからボイラ排ガスG5として排ガスダクト6へ排出される。
【0024】
排ガスダクト6へ排出されたボイラ排ガスG5の一部は、排ガス循環ダクト14からダクト4へ循環、導入されて火炉1a内へ送給される燃焼用ガスG3が生成され、残りのボイラ排ガスG5は、排ガスダクト6を通って後処理工程へ送給されるのは、気力単独運転の場合と全く同じである。
【0025】
又、ボイラ本体1の伝熱管で生成した蒸気は、過熱器16で過熱されたうえ、過熱蒸気管18から蒸気タービン17へ送給され、蒸気タービン17の駆動により発電機19が駆動され、発電が行われる。
【0026】
斯かるコンバインドサイクル運転を行う際には、図8の切換器22,25はbc側に切換っている。このため、蒸気タービン出力指令PSOに対応して関数発生器21から出力されたOAPダンパ開度指令XOAPCは切換器22を経て、OAPダンパ13へ与えられ、その開度が所定の開度に調整され、蒸気タービン出力指令PSOに対応して関数発生器24から出力されたGMFダンパ開度指令XGMFCは切換器25を経てGMF15のダンパに与えられ、その開度が所定の開度に調整される。
【0027】
而して、OAPダンパ13の開度、GMF15のダンパの開度が夫々所定の開度に調整されることにより、OAPダクト12を通って火炉1aの上部へ導入される二段燃焼用の燃焼用ガスG2の単位時間当りの流量及び排ガス循環ダクト14、ダクト4、風箱5を経て火炉1a内へ循環されるボイラ排ガスG5の単位時間当りの流量が制御され、その結果燃焼ガスG4の温度はNOx発生量の少い所定の低温度に押えられるため、ボイラ排ガスG5中のNOx濃度は基準値以下になるよう、制御が行われる。
【0028】
上記排気再燃型コンバインドサイクルプラントで気力単独運転からコンバインドサイクル運転に切換え、蒸気タービン出力とガスタービン出力の合計出力を所定の値まで上げる場合の手順について、蒸気タービン出力PSとガスタービン出力PGの関係を示す図14を参照しつつ説明すると以下のようになる。すなわち、蒸気タービン17の駆動による蒸気タービン出力PSが定格出力の62%の出力PS62に上昇するまでは、図14の水平線Iに沿った気力単独運転を行い、蒸気タービン出力PSが定格出力の62%の出力PS62になったら、垂線IIに示すように蒸気タービン出力PSを定格出力の62%の出力PS62に保持した状態でガスタービン7を起動してコンバインドサイクル運転を開始し、ガスタービン出力PGを定格出力の50%の出力PG50まで上昇させ、ガスタービン出力PGが定格出力の50%出力PG50に達したら斜線IIIに示すごとく、蒸気タービン出力PS及びガスタービン出力PGを、蒸気タービン出力PSが定格出力の75%の出力PS75になり、ガスタービン出力PGが定格出力PG100になるまで上昇させ、ガスタービン出力PGが定格出力PG100に達したら、以後は水平線IVに示すように、蒸気タービン出力PSを定格出力PS100に達するまで上昇させる。
【0029】
而して、排気再燃型コンバインドサイクルプラントにおいて、気力単独運転からコンバインドサイクル運転に切換える際には、蒸気タービン17とガスタービン7の単位時間当りの出力の変化の割合の相違を考慮すると、両タービン17,7の出力のバランスをとるためには、図14の線I,II,III,IVに倣って出力を増加させることが望ましく、又この場合にもボイラ排ガスG5のNOx濃度は基準値以下になるようにする必要がある。
【0030】
【発明が解決しようとする課題】
しかしながら、従来の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置においては、
i)コンバインドサイクル運転時にも蒸気タービン出力指令PSOに基いてOAPダンパ13の開度及びGMF15のダンパの開度の調整を行っているだけであり、実際の蒸気タービン出力PSとガスタービン出力PGとは無関係にOAPダンパ13やGMF15のダンパの開度が調整されているため、ボイラ排ガスG5中のNOx濃度が基準値よりも高くなる虞れがあり、正確で安定したNOx濃度制御を行うことが難しい、
ii)蒸気タービン17とガスタービン7では単位時間当りの出力の増加割合である負荷追従性能が異なるが、従来のように負荷追従性能を考慮せずにOAPダンパ13、GMF15のダンパを調整するのでは、コンバインドサイクル運転を開始して蒸気タービン出力PSやガスタービン出力PGを定常状態まで上昇させる際に両タービン17,7の実際の運転状態が考慮されず、正確で安定したNOx濃度制御を行うことができない、
等の問題があった。
【0031】
本発明は上述の実情に鑑み、コンバインドサイクル運転時に蒸気タービン17とガスタービン7の実際の運転状態をも考慮をし、プラント運転時にボイラ排ガスG5中のNOx濃度が基準値以下になるようにすることを目的としてなしたものである。
【0032】
【課題を解決するための手段】
本発明のうち、第1の手段は、気力単独運転時及びコンバインドサイクル運転時の何れにおいてもボイラ本体1で生成された蒸気により駆動され且つ発電機19を駆動し得るようにした蒸気タービン17と、
コンバインドサイクル運転時に燃焼ガスにより駆動されて発電機9を駆動し得るようにしたガスタービン7と、通風機3からの空気A、或いは通風機3からの空気Aとガスタービン7からのタービン排ガスG1が混合して生成された燃焼用ガスG2をボイラ本体1の火炉1a内へ送給し得るようにしたダクト4と、
前記通風機3からの空気A、或いは通風機3からの空気Aとガスタービン7からのタービン排ガスG1が混合して生成された燃焼用ガスG2をボイラ本体1の火炉1aにおける燃焼ガスG4流れ方向下流側へ送給し得るよう、前記ダクト4に接続され且つ中途部にOAPダンパ13を有するOAPダクト12とを備えた排気再燃型コンバインドサイクルプラントにおいて、
蒸気タービン17の駆動により生じた蒸気タービン出力PSに対応してガスタービン出力指令PGOを出力する関数発生器26と、
該関数発生器26からのガスタービン出力指令PGOとガスタービン7の駆動により生じたガスタービン出力PGとの比をとってガスタービン出力比αを求める比率演算器27と、
該比率演算器27からのガスタービン出力比αに対応した係数βを出力する関数発生器28と、
蒸気タービン出力指令PSOに対応して基準OAPダンパ開度指令XOAPAを出力する関数発生器30と、
蒸気タービン出力指令PSOに対応して基準OAPダンパ開度指令XOAPBを出力する関数発生器31と、
関数発生器30,31からの基準OAPダンパ開度指令XOAPA,XOAPBの差をとってガスタービン駆動基準OAPダンパ開度偏差ΔXOAPを求める減算器32と、
該減算器32からのガスタービン駆動基準OAPダンパ開度偏差ΔXOAPと前記関数発生器28からの係数βを掛けてガスタービン駆動補正OAPダンパ開度指令XOAPGを求める掛算器33と、
前記関数発生器30からの基準OAPダンパ開度指令XOAPAと前記掛算器33からのガスタービン駆動補正OAPダンパ開度指令XOAPGを加算してOAPダンパ開度指令XOAPを求め、該指令XOAPを基に前記OAPダンパ13の開度調整を行う加算器34とを設けたものである。
【0033】
又、第2の手段は、気力単独運転時及びコンバインドサイクル運転時の何れにおいてもボイラ本体1で生成された蒸気により駆動され且つ発電機19を駆動し得るようにした蒸気タービン17と、
コンバインドサイクル運転時に燃焼ガスにより駆動されて発電機9を駆動し得るようにしたガスタービン7と、通風機3からの空気A、或いは通風機3からの空気Aとガスタービン7からのタービン排ガスG1が混合して生成された燃焼用ガスG2をボイラ本体1の火炉1a内へ送給し得るようにしたダクト4と、
ボイラ本体1から排出されたボイラ排ガスG5の一部をボイラ本体1の火炉1aへ循環させるよう、前記ダクト4に接続され且つ中途部にGMF15を有する排ガス循環ダクト14を備えた排気再燃型コンバインドサイクルプラントにおいて、
蒸気タービン17の駆動により生じた蒸気タービン出力PSに対応してガスタービン出力指令PGOを出力する関数発生器26と、
該関数発生器26からのガスタービン出力指令PGOとガスタービン7の駆動により生じたガスタービン出力PGとの比をとってガスタービン出力比αを求める比率演算器27と、
該比率演算器27からのガスタービン出力比αに対応した係数βを出力する関数発生器28と、
蒸気タービン出力指令PSOに対応して基準GMFダンパ開度指令XGMFAを出力する関数発生器35と、
蒸気タービン出力指令PSOに対応して基準GMFダンパ開度指令XGMFBを出力する関数発生器36と、
関数発生器35,36からの基準GMFダンパ開度指令XGMFA,XGMFBの差をとってガスタービン駆動基準GMFダンパ開度偏差ΔXGMFを求める減算器37と、
該減算器37からのガスタービン駆動基準GMFダンパ開度偏差ΔXGMFと前記関数発生器28からの係数βを掛けてガスタービン駆動補正GMFダンパ開度指令XGMFGを求める掛算器38と、
前記関数発生器35からの基準GMFダンパ開度指令XGMFAと前記掛算器38からのガスタービン駆動補正GMFダンパ開度指令XGMFGを加算してGMFダンパ開度指令XGMFを求め、該指令XGMFを基に前記GMF15のダンパの開度調整を行う加算器39を設けたものである。
【0034】
更に、第3の手段は、気力単独運転時及びコンバインドサイクル運転時の何れにおいてもボイラ本体1で生成された蒸気により駆動され且つ発電機19を駆動し得るようにした蒸気タービン17と、
コンバインドサイクル運転時に燃焼ガスにより駆動されて発電機9を駆動し得るようにしたガスタービン7と、
通風機3からの空気A、或いは通風機3からの空気Aとガスタービン7からのタービン排ガスG1が混合して生成された燃焼用ガスG2をボイラ本体1の火炉1a内へ送給し得るようにしたダクト4と、
前記通風機3からの空気A、或いは通風機3からの空気Aとガスタービン7からのタービン排ガスG1が混合して生成された燃焼用ガスG2をボイラ本体1の火炉1aにおける燃焼ガスG4流れ方向下流側へ送給し得るよう前記ダクト4に接続され且つ中途部にOAPダンパ13を有するOAPダクト12と、
ボイラ本体1から排出されたボイラ排ガスG5の一部をボイラ本体1の火炉1aへ循環させるよう、前記ダクト4のOAPダクト12接続部よりも空気A或いは燃焼用ガスG2の流れ方向下流側に接続され且つ中途部にGMF15を有する排ガス循環ダクト14を備えた排気再燃型コンバインドサイクルプラントにおいて、
蒸気タービン17の駆動により生じた蒸気タービン出力PSに対応してガスタービン出力指令PGOを出力する関数発生器26と、
該関数発生器26からのガスタービン出力指令PGOとガスタービン7の駆動により生じたガスタービン出力PGとの比をとってガスタービン出力比αを求める比率演算器27と、
該比率演算器27からのガスタービン出力比αに対応した係数βを出力する関数発生器28と、
蒸気タービン出力指令PSOに対応して基準OAPダンパ開度指令XOAPAを出力する関数発生器30と、
蒸気タービン出力指令PSOに対応して基準OAPダンパ開度指令XOAPBを出力する関数発生器31と、
関数発生器30,31からの基準OAPダンパ開度指令XOAPA,XOAPBの差をとってガスタービン駆動基準OAPダンパ開度偏差ΔXOAPを求める減算器32と、
該減算器32からのガスタービン駆動基準OAPダンパ開度偏差ΔXOAPと前記関数発生器28からの係数βを掛けてガスタービン駆動補正OAPダンパ開度指令XOAPGを求める掛算器33と、
前記関数発生器30からの基準OAPダンパ開度指令XOAPAと前記掛算器33からのガスタービン駆動補正OAPダンパ開度指令XOAPGを加算してOAPダンパ開度指令XOAPを求め、該指令XOAPを基に前記OAPダンパ13の開度調整を行う加算器34と、
蒸気タービン出力指令PSOに対応して基準GMFダンパ開度指令XGMFAを出力する関数発生器35と、
蒸気タービン出力指令PSOに対応して基準GMFダンパ開度指令XGMFBを出力する関数発生器36と、
関数発生器35,36からの基準GMFダンパ開度指令XGMFA,XGMFBの差をとってガスタービン駆動基準GMFダンパ開度偏差ΔXGMFを求める減算器37と、
該減算器37からのガスタービン駆動基準GMFダンパ開度偏差ΔXGMFと前記関数発生器28からの係数βを掛けてガスタービン駆動補正GMFダンパ開度指令XGMFGを求める掛算器38と、
前記関数発生器35からの基準GMFダンパ開度指令XGMFAと前記掛算器38からのガスタービン駆動補正GMFダンパ開度指令XGMFGを加算してGMFダンパ開度指令XGMFを求め、該指令XGMFを基に前記GMF15のダンパの開度調整を行う加算器39と、を設けたものである。
【0035】
上述の第1の手段においては、関数発生器28と掛算器33との間に、又第2の手段においては、関数発生器28と掛算器38との間に、更に第3の手段においては、関数発生器28と掛算器33,38との間に、夫々変化率制限器29を設けると良い。
【0036】
【作用】
気力単独運転時には、第1の手段では、蒸気タービン出力指令PSOに対応して関数発生器30から出力されるOAPダンパ開度指令XOAPに基づきOAPダンパ13の開度が調整され、ボイラ排ガスG5中のNOx濃度が基準値以下に制御され、第2の手段では蒸気タービン出力指令PSOに対応して関数発生器35から出力されるGMFダンパ開度指令XGMFに基づきGMF15のダンパの開度が調整され、ボイラ排ガスG5中のNOx濃度が基準値以下に制御され、第3の手段では、蒸気タービン出力指令PSOに対応して関数発生器30から出力されるOAPダンパ開度指令XOAPに基づきOAPダンパ13の開度が調整されると共に、蒸気タービン出力指令PSOに対応して関数発生器35から出力されるGMFダンパ開度指令XGMFに基づきGMF15のダンパの開度が調整され、ボイラ排ガスG5のNOx濃度は、基準値以下に制御される。
【0037】
コンバインドサイクル運転時、第1の手段においては、蒸気タービン出力PSに対応したガスタービン出力指令PGOとガスタービン出力PGとの比をとってガスタービン出力比αを求め、該比αから係数βを求め、一方、蒸気タービン出力指令PSOに対応して関数発生器30,31から出力された基準OAPダンパ開度指令XOAPAとXOAPBの差をとってガスタービン駆動基準OAPダンパ開度偏差ΔXOAPを求め、該偏差ΔXOAPに前記係数βを掛けてガスタービン駆動補正OAPダンパ開度指令XOAPGを求め、該指令XOAPGを前記基準OAPダンパ開度指令XOAPAに加算してOAPダンパ開度指令XOAPを求め、該指令XOAPを基にOAPダンパ13の開度を調整するため、ボイラ排ガスG5中のNOx濃度は、蒸気タービン出力PS及びガスタービン出力PGに対応して基準値以下に正確且つ確実に制御される。
【0038】
コンバインドサイクル運転時、第2の手段においては、蒸気タービン出力指令PSOに対して関数発生器35,36から出力された基準GMFダンパ開度指令XGMFAとXGMFBの差をとってガスタービン駆動基準GMFダンパ開度偏差ΔXGMFを求め、該偏差ΔXGMFに第1の手段におけると同様にして求めた係数βを掛けてガスタービン駆動補正GMFダンパ開度指令XGMFGを求め、該指令XGMFGを前記基準GMFダンパ開度指令XGMFAに加算してGMFダンパ開度指令XGMFを求め、該指令XGMFを基にGMF15のダンパ開度を調整するため、ボイラ排ガスG5中のNOx濃度は、蒸気タービン出力PS及びガスタービン出力PGに対応してNOx濃度は、基準値以下に正確且つ確実に制御される。
【0039】
コンバインドサイクル運転時、第3の手段においては、第1、第2の手段の場合と同様にして求めたOAPダンパ開度指令XOAPによりOAPダンパ13の開度を調整すると共にGMFダンパ開度指令XGMFによりGMF15のダンパの開度を調整するため、この場合も、蒸気タービン出力PS及びガスタービン出力PGに対応してNOx濃度は基準値以下に正確且つ確実に制御される。
【0040】
係数βを変化率制限器29を通して掛算器33,38に与える場合には、蒸気タービン出力PS或いはガスタービン出力PGの単位時間当りの変化率が大きい場合でも、OAPダンパ開度指令XOAP、GMFダンパ開度指令XGMFの単位時間当りの変化率を押えることができ、OAPダンパ13及びGMF15のダンパの開閉をゆっくりと行うことができるため、より一層安定したNOx濃度の制御を行うことができる。
【0041】
【実施例】
以下、本発明の実施例を添付図面を参照しつつ説明する。
【0042】
図1〜図7は本発明の一実施例で、NOx制御装置が適用される排気再燃型コンバインドサイクルプラント自体は、図13に示すプラントと全く同じである。而して、本実施例においては、蒸気タービン17(図13参照)の駆動により生じた蒸気タービン出力PSは、図1に示すように、発電機19を介して検出し得るようになっており、ガスタービン7(図13参照)の駆動により生じたガスタービン出力PGは、図1に示すように、発電機9を介して検出し得るようになっている。
【0043】
本実施例におけるNOx制御装置は図1に示され、図中、26は発電機19からの蒸気タービン出力PSに対応してガスタービン出力指令PGOを出力し得るようにした関数発生器、27は関数発生器26からのガスタービン出力指令PGOにより発電機9からのガスタービン出力PGを除算してガスタービン出力比αを求める比率演算器、28は比率演算器27からのガスタービン出力比αに対応した非線形補償係数βを出力する関数発生器、29は関数発生器28から与えられる非線形補償係数βの単位時間当りの変化率が予め定めた所定の変化率よりも大きい場合にその変化率を制限して非線形補償係数βを出力し得るようにした変化率制限器である。
【0044】
30は蒸気タービン出力指令PSOが気力単独運転時の値の場合には蒸気タービン17の駆動に伴い必要となる、蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPAを出力し、蒸気タービン出力指令PSOがコンバインドサイクル運転時の値の場合も蒸気タービン17のみを駆動したと仮定した場合に必要となる、蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPAを出力する関数発生器、31は気力単独運転時には蒸気タービン17の駆動に伴い、又コンバインドサイクル運転時には蒸気タービン17及びガスタービン7の駆動に伴い必要となる、蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPBを出力する関数発生器、32は関数発生器31からの基準OAPダンパ開度指令XOAPBと基準OAPダンパ開度指令XOAPAの差をとってガスタービン駆動基準OAPダンパ開度偏差ΔXOAPを求める減算器、33は減算器32からのガスタービン駆動基準OAPダンパ開度偏差ΔXOAPに関数発生器28から変化率制限器29を介して与えられた非線形補償係数βを掛けてガスタービン駆動補正OAPダンパ開度指令XOAPGを求める掛算器、34は気力単独運転時には、関数発生器30からの基準OAPダンパ開度指令XOAPAをOAPダンパ開度指令XOAPとしてOAPダンパ13へ与え、コンバインドサイクル運転時には、関数発生器30からの基準OAPダンパ開度指令XOAPAと掛算器33からのガスタービン駆動補正OAPダンパ開度指令XOAPGを加算してOAPダンパ開度指令XOAPを求め、OAPダンパ13へ与える加算器である。
【0045】
35は蒸気タービン出力指令PSOが気力単独運転時の値の場合には蒸気タービン17の駆動に伴い必要となる、蒸気タービン出力指令PSOに対応した基準GMFダンパ開度指令XGMFAを出力し、蒸気タービン出力指令PSOがコンバインドサイクル運転時の値の場合も蒸気タービン17のみを駆動したと仮定した場合に必要となる、蒸気タービン出力指令PSOに対応した基準GMFダンパ開度指令XGMFAを出力する関数発生器、36は気力単独運転時には蒸気タービン17の駆動に伴い、又コンバインドサイクル運転時には蒸気タービン17及びガスタービン7の駆動に伴い必要となる、蒸気タービン出力指令PSOに対応した基準GMFダンパ開度指令XGMFBを出力する関数発生器、37は関数発生器36からの基準GMFダンパ開度指令XGMFBと関数発生器35からの基準GMFダンパ開度指令XGMFAの差をとってガスタービン駆動基準GMFダンパ開度偏差ΔXGMFを求める減算器、38は減算器37からのガスタービン駆動基準GMFダンパ開度偏差ΔXGMFに関数発生器28から変化率制限器29を介して与えられた非線形補償係数βを掛けてガスタービン駆動補正GMFダンパ開度指令XGMFGを求める掛算器、39は気力単独運転時には、関数発生器35からの基準GMFダンパ開度指令XGMFAをGMFダンパ開度指令XGMFとしてGMF15のダンパへ与え、コンバインドサイクル運転時には、関数発生器35からの基準GMFダンパ開度指令XGMFAと掛算器38からのガスタービン駆動補正GMFダンパ開度指令XGMFGを加算してGMFダンパ開度指令XGMFを求め、GMF15のダンパへ与える加算器である。
【0046】
上述のNOx制御装置の関数発生器26,28,30,31,35,36には、図2、3、4、5、6、7に示すごとき関数F5(x),F6(x),F7(x),F8(x),F9(x),F10(x)が設定してある。
【0047】
而して、図2に示す関数F5(x)はコンバインドサイクル運転を行う際に蒸気タービン17とガスタービン7の出力のバランスや負荷追従性の相違を考慮して決定した蒸気タービン出力PSと蒸気タービン出力PSに対応したガスタービン出力指令PGOとの関係を表わすものであり、図3に示す関数F6(x)は、ガスタービン出力指令PGOと実際のガスタービン出力PGの比であるガスタービン出力比α=PG/PGOと、該出力比αにより定まる非線形補償係数βの関係を表わすものである。
【0048】
図4に示す関数F7(x)は、蒸気タービン出力指令PSOと、該指令PSOが気力単独運転時の値の場合には、蒸気タービン17の駆動に伴い必要となる、NOx濃度を基準値以下に押えるための基準OAPダンパ開度指令XOAPAの関係を表わすと共に、蒸気タービン出力指令PSOと、該指令PSOがコンバインドサイクル運転時の値の場合も蒸気タービン17のみを駆動したと仮定した場合に必要となる、NOx濃度を基準値以下に押えるための基準OAPダンパ開度指令XOAPAの関係を表わしている。
【0049】
図5に示す関数F8(x)は、蒸気タービン出力指令PSOと、気力単独運転時には蒸気タービン17の運転に伴い、又コンバインドサイクル運転時には蒸気タービン17及びガスタービン7の駆動に伴い必要となる、NOx濃度を基準値以下に押えるための基準OAPダンパ開度指令XOAPBの関係を表わしている。
【0050】
図6に示す関数F9(x)は、蒸気タービン出力指令PSOと、該指令PSOが気力単独運転時の値の場合には、蒸気タービン17の運転に伴い必要となる、NOx濃度を基準値以下に押えるための基準GMFダンパ開度指令XGMFAの関係を表わすと共に、蒸気タービン出力指令PSOと、該指令PSOがコンバインドサイクル運転時の値の場合も蒸気タービン17のみを駆動したと仮定した場合に必要となる、NOx濃度を基準値以下に押えるための基準GMFダンパ開度指令XGMFAの関係を表わしている。
【0051】
図7に示す関数F10(x)は、蒸気タービン出力指令PSOと、気力単独運転時には蒸気タービン17の運転に伴い、又コンバインドサイクル運転時には蒸気タービン17及びガスタービン7の駆動に伴い必要となる、NOx濃度を基準値以下に押えるための基準GMFダンパ開度指令XGMFBの関係を表わしている。
【0052】
各関数F5(x)〜F10(x)は、試運転等によりボイラ排ガスG5中のNOx濃度をチェックしながら実験的、理論的に決定される。
【0053】
なお、図2中、PS62は蒸気タービン出力PSの定格出力PS100の62%の出力、PS75は固定格出力PS100の75%の出力、PGO50はガスタービン出力指令PGOの最大値PGO100の50%の出力指令を表わしている。
【0054】
次に、本発明の作動について、図13をも参照しつつ説明する。
【0055】
蒸気タービン17のみが駆動される気力単独運転時には、所定の値の蒸気タービン出力指令PSOが関数発生器30,31、35,36に与えられる。
【0056】
このため、関数発生器30からは、蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPAが出力されて減算器32及び加算器34に与えられ、関数発生器31からは蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPBが出力されて減算器32に与えられ、減算器32では、基準OAPダンパ開度指令XOAPBとXOAPAK差がとられてガスタービン駆動基準OAPダンパ開度偏差ΔXOAP(=XOAPB−XOAPA)が求められるが、気力単独運転の場合はXOAPB=XOAPAのため、ガスタービン駆動基準OAPダンパ開度偏差ΔXOAP=0となり、減算器32からは信号の出力はない。
【0057】
又、関数発生器35からは、蒸気タービン出力指令PSOに対応した基準GMFダンパ開度指令XGMFAが出力されて減算器37及び加算器39に与えられ、減算器37では、基準GMFダンパ開度指令XGMFBとXGMFAの差がとられてガスタービン駆動基準GMFダンパ開度偏差ΔXGMF(=XGMFB−XGMFA)が求められるが、気力単独運転の場合はXGMFB=XGMFAのため、ガスタービン駆動基準GMFダンパ開度偏差ΔXGMF=0となり、減算器37からは信号の出力はない。
【0058】
一方、図13に示す蒸気タービン17の出力は発電機19を介し蒸気タービン出力PSとして関数発生器26に与えられるが、気力単独運転時には、関数発生器26からは何等指令が出力されない。又ガスタービン7は駆動されていないため、発電機9からはガスタービン出力PGは出力されず、比率演算器27で演算されるガスタービン出力比PG/PGO=0/0=0であり、関数発生器28からも何等指令は出力されない(β=0)。従って、掛算器33,38では、ガスタービン駆動補正OAPダンパ開度指令XOAPG、ガスタービン駆動補正GMFダンパ開度指令XGMFGとも零となり、掛算器33,38からガスタービン駆動補正OAPダンパ開度指令XOAPG、ガスタービン駆動補正GMFダンパ開度指令XGMFGが出力されることはない。
【0059】
このため、加算器34からは、関数発生器30からの基準OAPダンパ開度指令XOAPAがOAPダンパ開度指令XOAPとしてOAPダンパ13に与えられ、該ダンパ13の開度が調整され、加算器39からは、関数発生器35からの基準GMFダンパ開度指令XGMFAがGMFダンパ開度指令XGMFとしてGMF15のダンパに与えられ、該ダンパの開度が調整される。
【0060】
OAPダンパ13及びGMF15のダンパの開度が調整されると、気力単独運転時にOAPダクト12からボイラ本体1の火炉1a上部に供給される二段燃焼用の空気Aの流量が調整されると共にボイラ本体1の排ガスダクト6から分岐して排ガス循環ダクト14を送給され、ダクト4で空気Aと合流して、風箱5から火炉1a内へ送給されるボイラ排ガスG5の流量が調整され、その結果、排ガスダクト6を経て大気中へ排出されるボイラ排ガスG5中のNOx濃度は基準値以下となるよう制御される。
【0061】
コンバインドサイクル運転時には、蒸気タービン17及びガスタービン7の両方が駆動されている。このため、蒸気タービン17の出力は発電機19を介し蒸気タービン出力PSとして関数発生器26へ与えられ、ガスタービン7の出力は発電機9を介しガスタービン出力PGとして比率演算器27へ与えられる。
【0062】
而して、関数発生器26からは、図2に示すごとき、蒸気タービン出力PSに対応したガスタービン出力指令PGOが出力されて比率演算器27に与えられ、比率演算器27では、ガスタービン7からのガスタービン出力PGがガスタービン出力指令PGOにより除算されてガスタービン出力比αが求められ、求められた出力比αは関数発生器28へ与えられる。
【0063】
関数発生器28では、図3に示すごとく、ガスタービン出力比αに対応して、すなわち、ガスタービン出力指令PGOと実際に発生したガスタービン出力PGの違いに対応して非線形補償係数βが求められ、該非線形補償係数βは変化率制限器29を介して掛算器33,38へ与えられる。変化率制限器29においては、単位時間当りの変化率は予め定めてあるため、非線形補償係数βは急激に変化することはない。
【0064】
又、蒸気タービン出力指令PSOは関数発生器30,31、35,36に与えられる。
【0065】
このため、関数発生器30からは蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPAが出力されて減算器32及び加算器34に与えられ、関数発生器31からは蒸気タービン出力指令PSOに対応した基準OAPダンパ開度指令XOAPBが出力されて減算器32に与えられ、減算器32では、基準OAPダンパ開度指令XOAPBとXOAPAの差がとられてガスタービン駆動基準OAPダンパ開度偏差ΔXOAP(=XOAPB−XOAPA)が求められ、求められたガスタービン駆動基準OAPダンパ開度偏差ΔXOAPは掛算器33へ与えられる。
【0066】
掛算器33では、ガスタービン駆動基準OAPダンパ開度偏差ΔXOAPと非線形補償係数βが掛けられて、ガスタービン駆動補正OAPダンパ開度指令XOAPG(=β・ΔXOAP)が求められ、該ガスタービン駆動補正OAPダンパ開度指令XOAPGは加算器34に与えられ、加算器34では、関数発生器30からのOAPダンパ開度指令XOAPAと掛算器33からのガスタービン駆動補正OAPダンパ開度指令XOAPGを加算してOAPダンパ開度指令XOAP(=XOAPA+XOAPG)が求められ、求められたOAPダンパ開度指令XOAPはOAPダンパ13へ与えられ、該OAPダンパ13の開度が調整される。
【0067】
関数発生器35からは蒸気タービン出力指令PSOに対応した基準GMFダンパ開度指令XGMFAが出力されて減算器37及び加算器39に与えられ、関数発生器36からは蒸気タービン出力指令PSOに対応した基準GMFダンパ開度指令XGMFBが出力されて減算器37に与えられ、減算器37では、基準GMFダンパ開度指令XGMFBとXGMFAの差がとられてガスタービン駆動基準GMFダンパ開度偏差ΔXGMFが求められ、求められたガスタービン駆動基準GMFダンパ開度偏差ΔXGMFは掛算器38に与えられる。
【0068】
掛算器38では、ガスタービン駆動基準GMFダンパ開度偏差ΔXGMFと非線形補償係数βが掛けられて、ガスタービン駆動補正GMFダンパ開度指令XGMFG(=β・ΔXGMF)が求められ、求められたガスタービン駆動補正GMFダンパ開度指令XGMFGは加算器39に与えられ、加算器39では、関数発生器35からの基準GMFダンパ開度指令XGMFAと掛算器38からのガスタービン駆動補正GMFダンパ開度指令XGMFGが加算されてGMFダンパ開度指令XGMF(=XGMFA+XGMFG)が求められ、求められたGMFダンパ開度指令XGMFはGMF15のダンパへ与えられて該GMF15のダンパの開度が調整される。
【0069】
OAPダンパ13及びGMF15のダンパの開度が調整されると、コンバインドサイクル運転時にOAPダクト12からボイラ本体1の火炉1a内に供給される二段燃焼用の燃焼用ガスG2の流量が調整されると共にボイラ本体1の排ガスダクト6から分岐して排ガス循環ダクト14を送給され、ダクト4で燃焼用ガスG2と合流して風箱5から火炉1a内へ送給されるボイラ排ガスG5の流量が調整され、その結果、排ガスダクト6を経て大気へ排出されるボイラ排ガスG5中のNOx濃度は基準値以下となるよう制御される。
【0070】
又、コンバインドサイクル運転時には、上述のように関数発生器26において、蒸気タービン出力PSに対応してガスタービン出力指令PGOが決められ、実際の蒸気タービン出力PS及びガスタービン出力PGに対応してボイラ排ガスG5中のNOx濃度が制御されるため、従来の場合のように蒸気タービン出力指令PSOのみを基準としてボイラ排ガスG5中のNOx濃度を制御する場合よりも正確で安定した制御を行うことができる。
【0071】
本実施例において、気力単独運転からコンバインドサイクル運転に切換え、ガスタービン出力PGや蒸気タービン出力PSを定常運転状態まで上昇させる際にも、ボイラ排ガスG5中のNOx濃度の制御は、蒸気タービン出力指令PSOを基準とするのではなく、実際の蒸気タービン出力PSとガスタービン出力PGを基に図14の線II,III,IVに示すように制御する。すなわち、検出された蒸気タービン出力PSが定格出力PS100の62%よりも少い出力PS62以下の場合には、関数発生器26からガスタービン出力指令PGOは出力されないが、図2に示すように蒸気タービン出力PSが定格出力PS100の62%の出力PS62に達すると、蒸気タービン出力PSはPS62に保持されたままガスタービン7が起動され、ガスタービン7の出力は発電機9を介しガスタービン出力PGとして比率演算器27へ与えられる。
【0072】
このため、比率演算器27では、ガスタービン出力PGが関数発生器26からのガスタービン出力指令PGOにより除算されてガスタービン出力比αが求められ、求められたガスタービン出力比αは関数発生器28へ与えられ、関数発生器28ではガスタービン出力比αに対応した非線形補償係数βが求められ、該非線形補償係数βは掛算器33,38へ与えられる。
【0073】
一方、蒸気タービン出力指令PSOが定格出力PS100の62%の出力PS62に相当している場合には、蒸気タービン出力指令PSOに基いて関数発生器30,31から出力される基準OAPダンパ開度指令XOAPA,XOAPB、蒸気タービン出力指令PSOに基いて関数発生器35,36から出力される基準GMFダンパ開度指令XGMFA,XGMFBは変化せず、一定である。このため、掛算器33,38からは非線形補償係数βの変化に従い変化するガスタービン駆動補正OAPダンパ開度指令XOAPG、ガスタービン駆動補正GMFダンパ開度指令XGMFGが出力されて加算器34,39に与えられ、加算器34では、関数発生器30から与えられる一定の基準OAPダンパ開度指令XOAPAとガスタービン駆動補正OAPダンパ開度指令XOAPGが加算されてOAPダンパ開度指令XOAPが求められ、OAPダンパ13はOAPダンパ開度指令XOAPにより徐々に所定の開度まで開き、加算器39では、関数発生器35から与えられる一定の基準GMFダンパ開度指令XGMFAとガスタービン駆動補正GMFダンパ開度指令XGMFGが加算されてGMFダンパ開度指令XGMFが求められ、GMF15のダンパは、GMFダンパ開度指令XGMFにより徐々に所定の開度まで開く。而して、蒸気タービン出力指令PSOが出力PS62に相当する場合には、基準OAPダンパ開度指令XOAPA,XOAPB及び基準GMFダンパ開度指令XGMFA,XGMFBは一定の値であるため、OAPダンパ13及びGMF15のダンパの開度は、ガスタービン出力PGの上昇に従って開いて行くことになる。従って、コンバインドサイクル運転を開始してガスタービン出力PGをあげて行くような過渡的な場合においても、ボイラ排ガスG5中のNOx濃度を基準値内に収める制御を正確に且つ安定して行うことができる。
【0074】
図2においてガスタービン出力指令PGOがPGO50に到達すると、次いで、蒸気タービン出力PSをPS62からPS75まで上昇させつつ、蒸気タービン出力PSに対応してガスタービン出力指令PGOをPGO50からPGO100まであげる制御が行われるがこの場合には、蒸気タービン出力指令PSO、ガスタービン出力指令PGO、蒸気タービン出力PS、ガスタービン出力PGは経時的に上昇し、基準OAPダンパ開度指令XOAPA,XOAPB、基準GMFダンパ開度指令XGMFA,XGMFB、ガスタービン出力比α、非線形補償係数βも経時的に変化する。このため、OAPダンパ13を更に開くためのOAPダンパ開度指令XOAP、GMF15のダンパを更に開くためのGMFダンパ開度指令XGMFは、蒸気タービン出力指令PSO、ガスタービン出力指令PGO、蒸気タービン出力PS、ガスタービン出力PGの上昇に従い、上昇することになり、ボイラ排ガスG5中のNOx濃度を基準値以下に押える制御を安定して確実に行うことができる。
【0075】
図2において、蒸気タービン出力PSがPS75に達し、ガスタービン出力指令PGOがPGO100に達すると、ガスタービン出力指令PGOはPGO100のままで、蒸気タービン出力PSがPS100まで上昇するが、この場合は、OAPダンパ13を開くためのOAPダンパ開度指令XOAP、GMF15のダンパを開くためのGMFダンパ開度指令XGMFは蒸気タービン出力指令PSO、蒸気タービン出力PSの上昇に伴い上昇することになり、この場合もボイラ排ガスG5中のNOx濃度を基準値以下に押える制御を安定して確実に行うことができる。
【0076】
本実施例で変化率制限器29を設けてあるのは次のような理由による。すなわち、蒸気タービン出力PS、ガスタービン出力PGのうちの何れかが何等かの原因で急激に変化したような場合には、ガスタービン出力指令PGO延いてはガスタービン出力比αが急激に変化し、その結果、非線形補償係数βも急激に変化する。しかるに、非線形補償係数βが急激に変化すると、掛算器33,38から出力されるガスタービン駆動補正OAPダンパ開度指令XOAPG、ガスタービン駆動補正GMFダンパ開度指令XGMFGが急激に変化し、延いては加算器34,39から出力されるOAPダンパ開度指令XOAP、GMFダンパ開度指令XGMFも急激に変化するため、OAPダンパ13やGMF15のダンパの開度も急激に変化し、ボイラ排ガスG5中のNOx濃度が増減し、基準値以上になる虞れがある。しかるに変化率制限器29を設ければ、関数発生器28から出力される非線形補償係数βが単位時間当りに急激に変化しても変化率制限器29から出力される非線形補償係数βは単位時間当りに徐々に変化し、掛算器33,38から出力されるガスタービン駆動補正OAPダンパ開度指令XOAPG、ガスタービン駆動補正GMFダンパ開度指令XGMFGも徐々に変化するため、加算器34,39から出力されるOAPダンパ開度指令XOAP、GMFダンパ開度指令XGMFも徐々に変化する。従って、OAPダンパ13、GMF15のダンパの開度は徐々に調整され、ボイラ排ガスG5中のNOx濃度は急激に変化することがなく、より一層安定したNOx濃度制御を確実に行うことができる。
【0077】
上述のごとく、本実施例では、排気再燃型コンバインドサイクルプラントにおいて、気力単独運転からコンバインドサイクル運転に移行して蒸気タービン出力PS、ガスタービン出力PGを定常状態まで上昇させる際のボイラ排ガスG5中のNOx濃度も図14の線II,III,IVに示す望ましい蒸気タービン出力PSとガスタービン出力PGの関係を保持しつつ基準値以下となるよう制御することができ、従って設備の信頼性も向上する。
【0078】
なお、本発明の実施例においては、NOx濃度の制御を二段燃焼及び排ガス循環の両方により行う場合について説明したが、二段燃焼或いは排ガス循環のどちらか一方によっても行うことができること、その他、本発明の要旨を逸脱しない範囲内で種々変更を加え得ること、等は勿論である。
【0079】
【発明の効果】
本発明の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置によれば、請求項1〜3の場合には、コンバインドサイクル運転時において、気力単独運転からコンバインドサイクル運転に移行してガスタービン出力PGや蒸気タービン出力PSを定常状態まで上昇させる過渡的な状態の場合も含めて、蒸気タービン出力PSとガスタービン出力PGに対応してボイラ排ガス中のNOx濃度を基準値以下に押えるよう正確且つ安定した制御を行うことができ、請求項4〜6の場合にはより一層正確且つ安定したNOx濃度の制御が可能となる、等種々の優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置の一実施例のブロック図である。
【図2】図1の関数発生器26に設定される蒸気タービン出力PSとガスタービン出力指令PGOとの関係を表わすグラフである。
【図3】図1の関数発生器28に設定されるガスタービンの出力比PG/PGO=αと非線形補償係数βの関係を表わすグラフである。
【図4】図1の関数発生器30に設定される蒸気タービン出力指令PSOと基準OAPダンパ開度指令XOAPAの関係を表わすグラフである。
【図5】図1の関数発生器31に設定される蒸気タービン出力指令PSOと基準OAPダンパ開度指令XOAPBの関係を表わすグラフである。
【図6】図1の関数発生器35に設定される蒸気タービン出力指令PSOと基準GMFダンパ開度指令XGMFAの関係を表わすグラフである。
【図7】図1の関数発生器36に設定される蒸気タービン出力指令PSOと基準GMFダンパ開度指令XGMFBの関係を表わすグラフである。
【図8】従来の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置の一例のブロック図である。
【図9】図8の関数発生器20に設定される気力単独運転時の蒸気タービン出力指令PSOとOAPダンパ開度指令XOAPSの関係を表わすグラフである。
【図10】図8の関数発生器21に設定されるコンバインドサイクル運転時の蒸気タービン出力指令PSOとOAPダンパ開度指令XOAPCの関係を表わすグラフである。
【図11】図8の関数発生器23に設定される気力単独運転時の蒸気タービン出力指令PSOとGMFダンパ開度指令XGMFSの関係を表わすグラフである。
【図12】図8の関数発生器24に設定されるコンバインドサイクル運転時の蒸気タービン出力指令PSOとGMFダンパ開度指令XGMFCの関係を表わすグラフである。
【図13】排気再燃型コンバインドサイクルプラントの一般的な概略配置図である。
【図14】コンバインドサイクル運転時における蒸気タービン出力PSとガスタービン出力PGの関係を表わすグラフである。
【符号の説明】
1 ボイラ本体
1a 火炉
3 強圧通風機(通風機)
4 ダクト
7 ガスタービン
9 発電機
12 OAPダクト(オーバーエアポートダクト)
13 OAPダンパ
14 排ガス循環ダクト
15 GMF(排ガス循環ファン)
17 蒸気タービン
19 発電機
26 関数発生器
27 比率演算器
28 関数発生器
29 変化率制限器
30 関数発生器
31 関数発生器
32 減算器
33 掛算器
34 加算器
35 関数発生器
36 関数発生器
37 減算器
38 掛算器
39 加算器
A 空気
G1 タービン排ガス
G2 燃焼用ガス
G4 燃焼ガス
G5 ボイラ排ガス
SO 蒸気タービン出力指令
GO ガスタービン出力指令
S 蒸気タービン出力
G ガスタービン出力
OAPA 基準OAPダンパ開度指令
OAPB 基準OAPダンパ開度指令
GMFA 基準GMFダンパ開度指令
GMFB 基準GMFダンパ開度指令
ΔXOAP ガスタービン駆動基準OAPダンパ開度偏差
α ガスタービン出力比
β 非線形補償係数(係数)
OAPG ガスタービン駆動補正OAPダンパ開度指令
OAP OAPダンパ開度指令
ΔXGMF ガスタービン駆動基準GMFダンパ開度偏差
GMFG ガスタービン駆動補正GMFダンパ開度指令
GMF GMFダンパ開度指令

Claims (6)

  1. 気力単独運転時及びコンバインドサイクル運転時の何れにおいてもボイラ本体(1)で生成された蒸気により駆動され且つ発電機(19)を駆動し得るようにした蒸気タービン(17)と、
    コンバインドサイクル運転時に燃焼ガスにより駆動されて発電機(9)を駆動し得るようにしたガスタービン(7)と、通風機(3)からの空気(A)、或いは通風機(3)からの空気(A)とガスタービン(7)からのタービン排ガス(G1)が混合して生成された燃焼用ガス(G2)をボイラ本体(1)の火炉(1a)内へ送給し得るようにしたダクト(4)と、
    前記通風機(3)からの空気(A)、或いは通風機(3)からの空気(A)とガスタービン(7)からのタービン排ガス(G1)が混合して生成された燃焼用ガス(G2)をボイラ本体(1)の火炉(1a)における燃焼ガス(G4)流れ方向下流側へ送給し得るよう、前記ダクト(4)に接続され且つ中途部にOAPダンパ(13)を有するOAPダクト(12)とを備えた排気再燃型コンバインドサイクルプラントにおいて、
    蒸気タービン(17)の駆動により生じた蒸気タービン出力(PS)に対応してガスタービン出力指令(PGO)を出力する関数発生器(26)と、
    該関数発生器(26)からのガスタービン出力指令(PGO)とガスタービン(7)の駆動により生じたガスタービン出力(PG)との比をとってガスタービン出力比(α)を求める比率演算器(27)と、
    該比率演算器(27)からのガスタービン出力比(α)に対応した係数(β)を出力する関数発生器(28)と、
    蒸気タービン出力指令(PSO)に対応して基準OAPダンパ開度指令(XOAPA)を出力する関数発生器(30)と、
    蒸気タービン出力指令(PSO)に対応して基準OAPダンパ開度指令(XOAPB)を出力する関数発生器(31)と、
    関数発生器(30)(31)からの基準OAPダンパ開度指令(XOAPA)(XOAPB)の差をとってガスタービン駆動基準OAPダンパ開度偏差(ΔXOAP)を求める減算器(32)と、
    該減算器(32)からのガスタービン駆動基準OAPダンパ開度偏差(ΔXOAP)と前記関数発生器(28)からの係数(β)を掛けてガスタービン駆動補正OAPダンパ開度指令(XOAPG)を求める掛算器(33)と、
    前記関数発生器(30)からの基準OAPダンパ開度指令(XOAPA)と前記掛算器(33)からのガスタービン駆動補正OAPダンパ開度指令(XOAPG)を加算してOAPダンパ開度指令(XOAP)を求め、該指令(XOAP)を基に前記OAPダンパ(13)の開度調整を行う加算器(34)とを設けた
    ことを特徴とする排気再燃型コンバインドサイクルプラントにおけるNOx制御装置。
  2. 気力単独運転時及びコンバインドサイクル運転時の何れにおいてもボイラ本体(1)で生成された蒸気により駆動され且つ発電機(19)を駆動し得るようにした蒸気タービン(17)と、
    コンバインドサイクル運転時に燃焼ガスにより駆動されて発電機(9)を駆動し得るようにしたガスタービン(7)と、通風機(3)からの空気(A)、或いは通風機(3)からの空気(A)とガスタービン(7)からのタービン排ガス(G1)が混合して生成された燃焼用ガス(G2)をボイラ本体(1)の火炉(1a)内へ送給し得るようにしたダクト(4)と、
    ボイラ本体(1)から排出されたボイラ排ガス(G5)の一部をボイラ本体(1)の火炉(1a)へ循環させるよう、前記ダクト(4)に接続され且つ中途部にGMF(15)を有する排ガス循環ダクト(14)を備えた排気再燃型コンバインドサイクルプラントにおいて、
    蒸気タービン(17)の駆動により生じた蒸気タービン出力(PS)に対応してガスタービン出力指令(PGO)を出力する関数発生器(26)と、
    該関数発生器(26)からのガスタービン出力指令(PGO)とガスタービン(7)の駆動により生じたガスタービン出力(PG)との比をとってガスタービン出力比(α)を求める比率演算器(27)と、
    該比率演算器(27)からのガスタービン出力比(α)に対応した係数(β)を出力する関数発生器(28)と、
    蒸気タービン出力指令(PSO)に対応して基準GMFダンパ開度指令(XGMFA)を出力する関数発生器(35)と、
    蒸気タービン出力指令(PSO)に対応して基準GMFダンパ開度指令(XGMFB)を出力する関数発生器(36)と、
    関数発生器(35)(36)からの基準GMFダンパ開度指令(XGMFA)(XGMFB)の差をとってガスタービン駆動基準GMFダンパ開度偏差(ΔXGMF)を求める減算器(37)と、
    該減算器(37)からのガスタービン駆動基準GMFダンパ開度偏差(ΔXGMF)と前記関数発生器(28)からの係数(β)を掛けてガスタービン駆動補正GMFダンパ開度指令(XGMFG)を求める掛算器(38)と、
    前記関数発生器(35)からの基準GMFダンパ開度指令(XGMFA)と前記掛算器(38)からのガスタービン駆動補正GMFダンパ開度指令(XGMFG)を加算してGMFダンパ開度指令(XGMF)を求め、該指令(XGMF)を基に前記GMF(15)のダンパの開度調整を行う加算器(39)を設けた
    ことを特徴とする排気再燃型コンバインドサイクルプラントにおけるNOx制御装置。
  3. 気力単独運転時及びコンバインドサイクル運転時の何れにおいてもボイラ本体(1)で生成された蒸気により駆動され且つ発電機(19)を駆動し得るようにした蒸気タービン(17)と、
    コンバインドサイクル運転時に燃焼ガスにより駆動されて発電機(9)を駆動し得るようにしたガスタービン(7)と、
    通風機(3)からの空気(A)、或いは通風機(3)からの空気(A)とガスタービン(7)からのタービン排ガス(G1)が混合して生成された燃焼用ガス(G2)をボイラ本体(1)の火炉(1a)内へ送給し得るようにしたダクト(4)と、
    前記通風機(3)からの空気(A)、或いは通風機(3)からの空気(A)とガスタービン(7)からのタービン排ガス(G1)が混合して生成された燃焼用ガス(G2)をボイラ本体(1)の火炉(1a)における燃焼ガス(G4)流れ方向下流側へ送給し得るよう前記ダクト(4)に接続され且つ中途部にOAPダンパ(13)を有するOAPダクト(12)と、
    ボイラ本体(1)から排出されたボイラ排ガス(G5)の一部をボイラ本体(1)の火炉(1a)へ循環させるよう、前記ダクト(4)のOAPダクト(12)接続部よりも空気(A)或いは燃焼用ガス(G2)の流れ方向下流側に接続され且つ中途部にGMF(15)を有する排ガス循環ダクト(14)を備えた排気再燃型コンバインドサイクルプラントにおいて、
    蒸気タービン(17)の駆動により生じた蒸気タービン出力(PS)に対応してガスタービン出力指令(PGO)を出力する関数発生器(26)と、
    該関数発生器(26)からのガスタービン出力指令(PGO)とガスタービン(7)の駆動により生じたガスタービン出力(PG)との比をとってガスタービン出力比(α)を求める比率演算器(27)と、
    該比率演算器(27)からのガスタービン出力比(α)に対応した係数(β)を出力する関数発生器(28)と、
    蒸気タービン出力指令(PSO)に対応して基準OAPダンパ開度指令(XOAPA)を出力する関数発生器(30)と、
    蒸気タービン出力指令(PSO)に対応して基準OAPダンパ開度指令(XOAPB)を出力する関数発生器(31)と、
    関数発生器(30)(31)からの基準OAPダンパ開度指令(XOAPA)(XOAPB)の差をとってガスタービン駆動基準OAPダンパ開度偏差(ΔXOAP)を求める減算器(32)と、
    該減算器(32)からのガスタービン駆動基準OAPダンパ開度偏差(ΔXOAP)と前記関数発生器(28)からの係数(β)を掛けてガスタービン駆動補正OAPダンパ開度指令(XOAPG)を求める掛算器(33)と、
    前記関数発生器(30)からの基準OAPダンパ開度指令(XOAPA)と前記掛算器(33)からのガスタービン駆動補正OAPダンパ開度指令(XOAPG)を加算してOAPダンパ開度指令(XOAP)を求め、該指令(XOAP)を基に前記OAPダンパ(13)の開度調整を行う加算器(34)と、
    蒸気タービン出力指令(PSO)に対応して基準GMFダンパ開度指令(XGMFA)を出力する関数発生器(35)と、
    蒸気タービン出力指令(PSO)に対応して基準GMFダンパ開度指令(XGMFB)を出力する関数発生器(36)と、
    関数発生器(35)(36)からの基準GMFダンパ開度指令(XGMFA)(XGMFB)の差をとってガスタービン駆動基準GMFダンパ開度偏差(ΔXGMF)を求める減算器(37)と、
    該減算器(37)からのガスタービン駆動基準GMFダンパ開度偏差(ΔXGMF)と前記関数発生器(28)からの係数(β)を掛けてガスタービン駆動補正GMFダンパ開度指令(XGMFG)を求める掛算器(38)と、
    前記関数発生器(35)からの基準GMFダンパ開度指令(XGMFA)と前記掛算器(38)からのガスタービン駆動補正GMFダンパ開度指令(XGMFG)を加算してGMFダンパ開度指令(XGMF)を求め、該指令(XGMF)を基に前記GMF(15)のダンパの開度調整を行う加算器(39)とを設けた
    ことを特徴とする排気再燃型コンバインドサイクルプラントにおけるNOx制御装置。
  4. 関数発生器(28)と掛算器(33)との間に変化率制限器(29)を設けた請求項1に記載の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置。
  5. 関数発生器(28)と掛算器(38)との間に変化率制限器(29)を設けた請求項2に記載の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置。
  6. 関数発生器(28)と掛算器(33)(38)との間に変化率制限器(29)を設けた請求項3に記載の排気再燃型コンバインドサイクルプラントにおけるNOx制御装置。
JP31876794A 1994-12-21 1994-12-21 排気再燃型コンバインドサイクルプラントにおけるNOx制御装置 Expired - Fee Related JP3707088B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31876794A JP3707088B2 (ja) 1994-12-21 1994-12-21 排気再燃型コンバインドサイクルプラントにおけるNOx制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31876794A JP3707088B2 (ja) 1994-12-21 1994-12-21 排気再燃型コンバインドサイクルプラントにおけるNOx制御装置

Publications (2)

Publication Number Publication Date
JPH08177412A JPH08177412A (ja) 1996-07-09
JP3707088B2 true JP3707088B2 (ja) 2005-10-19

Family

ID=18102723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31876794A Expired - Fee Related JP3707088B2 (ja) 1994-12-21 1994-12-21 排気再燃型コンバインドサイクルプラントにおけるNOx制御装置

Country Status (1)

Country Link
JP (1) JP3707088B2 (ja)

Also Published As

Publication number Publication date
JPH08177412A (ja) 1996-07-09

Similar Documents

Publication Publication Date Title
JP3101823B2 (ja) 低NOx燃焼システムの制御方法
JP2004132255A (ja) 燃焼器制御装置
US5303544A (en) Gas turbine system with a tube-nested combustion chamber type combustor
JP3707088B2 (ja) 排気再燃型コンバインドサイクルプラントにおけるNOx制御装置
JP3707089B2 (ja) 排気再燃型コンバインドサイクルプラントにおけるプラント制御装置
JP4859512B2 (ja) 燃焼ボイラの制御方法
JP3707087B2 (ja) 排気再燃型コンバインドサイクルプラントにおける再熱器出側蒸気温度制御装置
JP3697731B2 (ja) 排気再燃型コンバインドサイクルプラントにおける主蒸気温度制御装置
JP5100338B2 (ja) 再熱蒸気制御方法及び再熱蒸気温度管理システム
JP2001041403A (ja) ボイラ制御装置
JP2002106831A (ja) 微粉炭焚ボイラ設備
JP3882294B2 (ja) 排気再燃型コンバインドサイクル発電プラントにおける燃焼用空気流量制御方法及び装置
JP3758240B2 (ja) 排気再燃型コンバインドサイクルプラントの空気流量制御方法及び装置
JP3830610B2 (ja) 発電用ボイラの再熱蒸気制御方法
JP2004069104A (ja) ボイラ排ガス中の酸素濃度制御方法及び装置
JP3845905B2 (ja) 排気再燃型コンバインドサイクルプラントにおけるガス高圧給水加熱器の出口給水温度制御装置
JP3758914B2 (ja) ガスタービン
JPH0510505A (ja) ボイラ起動時のバーナ空気比制御装置
JP4182414B2 (ja) 蒸気噴射ガスタービンの燃焼制御方法
JPH1054508A (ja) 主蒸気温度制御方法及び装置
JP3765430B2 (ja) 排気再燃ボイラ
JP3699735B2 (ja) ガスタービン設備の制御装置
JPH09303704A (ja) 排ガス再循環ボイラにおける燃焼用空気制御装置
JP3703615B2 (ja) ガスタービン装置
JP3455389B2 (ja) 外部燃焼式過熱器の制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees