JP3706644B2 - Variable magnification optical system with anti-vibration function - Google Patents

Variable magnification optical system with anti-vibration function Download PDF

Info

Publication number
JP3706644B2
JP3706644B2 JP22244394A JP22244394A JP3706644B2 JP 3706644 B2 JP3706644 B2 JP 3706644B2 JP 22244394 A JP22244394 A JP 22244394A JP 22244394 A JP22244394 A JP 22244394A JP 3706644 B2 JP3706644 B2 JP 3706644B2
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
optical system
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22244394A
Other languages
Japanese (ja)
Other versions
JPH0862541A (en
Inventor
慎吾 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22244394A priority Critical patent/JP3706644B2/en
Priority to US08/404,870 priority patent/US6124972A/en
Publication of JPH0862541A publication Critical patent/JPH0862541A/en
Priority to US09/176,264 priority patent/US6373639B2/en
Priority to US09/506,595 priority patent/US6646803B2/en
Priority to US09/984,164 priority patent/US6563643B2/en
Application granted granted Critical
Publication of JP3706644B2 publication Critical patent/JP3706644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【産業上の利用分野】
本発明は光学系の振動による撮影画像のブレを補正する機能、所謂防振機能を有した変倍光学系に関し、特に防振用の可動レンズ群を例えば光軸と直交する方向に移動させて、防振効果を発揮させたときの光学性能の低下の防止を図った防振機能を有した変倍光学系に関するものである。
【0002】
【従来の技術】
進行中の車や航空機等移動物体上から撮影をしようとすると撮影系に振動が伝わり撮影画像にブレが生じる。
【0003】
従来より撮影画像のブレを防止する機能を有した防振光学系が、例えば特開昭50−80147号公報や特公昭56−21133号公報、特開昭61−223819号公報等で提案されている。
【0004】
特開昭50−80147号公報では2つのアフォーカルの変倍系を有するズームレンズにおいて第1の変倍系の角倍率をM1 、第2の変倍系の角倍率をM2 としたときM1 =1−1/M2 なる関係を有するように各変倍系で変倍を行うと共に、第2の変倍系を空間的に固定して画像のブレを補正して画像の安定化を図っている。
【0005】
特公昭56−21133号公報では光学装置の振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。
【0006】
特開昭61−223819号公報では最も被写体側に屈折型可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該屈折型可変頂角プリズムの頂角を変化させて画像を偏向させて画像の安定化を図っている。
【0007】
この他、特公昭56−34847号公報、特公昭57−7414号公報等では撮影系の一部に振動に対して空間的に固定の光学部材を配置し、この光学部材の振動に対して生ずるプリズム作用を利用することにより撮影画像を偏向させ結像面上で静止画像を得ている。
【0008】
又、加速度センサーを利用して撮影系の振動を検出し、このとき得られる信号に応じ、撮影系の一部のレンズ群を光軸と直交する方向に振動させることにより静止画像を得る方法も行なわれている。
【0009】
【発明が解決しようとする課題】
一般に撮影系の一部のレンズ群を振動させて撮影画像のブレをなくし、静止画像を得る機構には画像のブレの補正量が大きいことやブレ補正の為に振動させるレンズ群(可動レンズ群)の移動量や回転量が少ないこと、そして駆動手段が小型軽量であること等が要望されている。
【0010】
又、可動レンズ群を偏心させたとき偏心コマ、偏心非点収差、偏心色収差、そして偏心像面湾曲収差等が多く発生すると画像のブレを補正したとき偏心収差の為、画像がボケてくる。例えば偏心歪曲収差が多く発生すると光軸上の画像の移動量と周辺部の画像の移動量が異なってくる。この為、光軸上の画像を対象に画像のブレを補正しようと可動レンズ群を偏心させると、周辺部では画像のブレと同様な現象が発生してきて光学特性を著しく低下させる原因となってくる。
【0011】
このように防振機能を有した変倍光学系においては可動レンズ群を光軸と直交する方向に移動させて偏心状態にしたとき偏心収差発生量が少なく光学性能の低下の少ないこと、可動レンズ群の少ない移動量で大きな画像のブレを補正することができる、所謂偏心敏感度(単位移動量ΔHに対する画像のブレの補正量Δxとの比Δx/ΔH)が大きいこと等が要求されている。
【0012】
これに対して従来の防振光学系として振動に対して空間的に固定となる光学部材を配置する構成の防振光学系は、この光学部材の支持方法が難しく、また小型の光学系を実現することが困難であるため、小型軽量の装置の構成には適していない。また撮影光学系の最も被写体側に可変頂角プリズムを配置する防振光学系は、防振補正時に偏心色収差以外の収差の発生がほとんどないという利点はあるが、駆動部材が大型になり、またプリズムによって発生する偏心色収差の簡易的な補正が困難であるという問題点があった。
【0013】
また撮影光学系の一部のレンズ群を偏心させる防振光学系では、偏心させるレンズ群を適切に選択、配置することにより、装置を小型にすることが可能と考えられるが、偏心によって発生する諸収差、即ち偏心コマ収差、偏心非点収差、偏心像面湾曲等を良好に補正しつつ、十分に少ない駆動量で十分に大きい防振補正を実現することが難しいという問題点があった。
【0014】
本発明は変倍光学系の一部のレンズ群を光軸と直交する方向に移動させて画像のブレを補正する際、可動レンズ群として小型軽量のレンズ群を用い、かつ少ない移動量で大きな画像のブレを補正することができ、更に可動レンズ群を移動させて平行偏心させたときの前述の各種の偏心収差の発生量が少なく良好なる光学性能が得られる防振機能を有した変倍光学系の提供を目的とする。
【0015】
【課題を解決するための手段】
請求項1の発明の防振機能を有した変倍光学系は
物体側より順に、正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、負の屈折力の第4群、正の屈折力の第5群、そして負の屈折力の第6群の6つのレンズ群から成り、第i群と第(i+1)群の広角端と望遠端での間隔を各々DiW,DiTとするとき、
D1W<D1T
D2W>D2T
D3W<D3T
D5W>D5T
なる条件を満足するように、該第2群は移動せずに他の所定のレンズ群が移動することで各レンズ群の間隔を変化させて変倍を行うズームレンズであって、該第2群を光軸と略垂直方向に移動させて撮影画像のブレを補正すると共に、前記第2群の焦点距離をfa、広角端と望遠端における全系の焦点距離を各々fW,fTとするとき、
【数2】

Figure 0003706644
なる条件を満足することを特徴としている。
【0018】
【実施例】
図1,図2は各々本発明に係る変倍光学系に対して参考例として示す5つのレンズ群より成る後述する数値実施例1の近軸屈折力配置とレンズ断面図である。図3,図4は各々本発明に係る変倍光学系の後述する数値実施例2の近軸屈折力配置とレンズ断面図である。図1,図3の近軸屈折力配置において(A)は広角端、(B)は望遠端を示している。また矢印は広角端から望遠端への変倍に伴う各レンズ群の移動軌跡を示している。図2,図4のレンズ断面図において(A)は広角端、(B)は中間、(C)は望遠端を示している。
【0019】
図1,図2の数値実施例1において、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は正の屈折力の第4群、L5は負の屈折力の第5群、SPは絞り、IPは像面である。広角端から望遠端への変倍は第2群を固定とし、第1,第3,第4,第5群を矢印の如く移動させて各レンズ群間隔を変えることにより行っている。また第2群を偏心レンズ群として光軸と垂直方向に移動させて、光学系が振動したときの撮影画像のブレを補正している。
【0020】
図3,図4の数値実施例2において、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は負の屈折力の第4群、L5は正の屈折力の第5群、L6は負の屈折力の第6群、SPは絞り、IPは像面である。広角端から望遠端への変倍は第2群と第4群を固定とし、第1,第3,第5,第6群を矢印の如く移動させて各レンズ群間隔を変えることにより行っている。また第2群を偏心レンズ群として光軸と垂直方向に移動させて光学系が振動したときの撮影画像のブレを補正している。
【0021】
以上のように本発明では変倍光学系を全体として少なくとも3つ以上のレンズ群で構成し、このうち少なくとも2つ以上のレンズ群を光軸上を移動させることによって変倍を行い、変倍の際に移動する複数のレンズ群の間に変倍の際に固定のレンズ群を有するようにしている。そして変倍の際に固定のレンズ群を光軸と垂直な方向に移動させることによって光学系が振動したときの撮影画像のブレを補正している。
【0022】
特に本発明では変倍光学系を物体側から順に変倍に際して光軸上を移動する正の屈折力を有する第1群、変倍に際して固定の負の屈折力を有する第2群、そして変倍に際して光軸上を移動する少なくとも1つ又は複数のレンズ群で構成され全体として正の屈折力を有する像側レンズ群の6つのレンズ群で構成し、第2群を光軸と垂直な方向に移動させることによって、光学系が振動したときの撮影画像のブレを補正している。
【0023】
本発明は以上のような構成により、撮影画像のブレを補正すると共に第2群を光軸と垂直方向に移動(偏心)させたときの偏心収差の発生を少なくし、光学性能を良好に維持している。
【0024】
図1,図2の数値実施例1では、広角端から望遠端の変倍に際して、該第i群と第(i+1)群の広角端と望遠端での間隔を各々DiW,DiTとしたとき、
D1W<D1T ・・・・(1a)
D2W>D2T ・・・・(2a)
D4W>D4T ・・・・(3a)
なる条件を満足するように所定のレンズ群を移動させている。
【0025】
数値実施例1では変倍に際して、条件式(1a)〜(3a)を満足するように各レンズ群を移動させており、これによりレンズ系全体の小型化を図りつつ、高変倍比の変倍光学系を得ている。尚、本実施例において第2群を変倍に際して光軸上移動させても良い。これによれば高変倍化が容易になり、また変倍に伴う収差変動を良好に補正することができる。
【0026】
また図3,図4の数値実施例2では、広角端から望遠端の変倍に際して、該第i群と第(i+1)群の広角端と望遠端での間隔を各々DiW,DiTとしたとき、
D1W<D1T ・・・・(1b)
D2W>D2T ・・・・(2b)
D3W<D3T ・・・・(3b)
D5W>D5T ・・・・(4b)
なる条件を満足するように所定のレンズ群を移動させている。
【0027】
数値実施例2では変倍に際して条件式(1b)〜(4b)を満足するように各レンズ群を移動させており、これによりレンズ系全体の小型化を図りつつ、高変倍比の変倍光学系を得ている。尚、数値実施例2において第2群を変倍に際して光軸上移動させても良い。これによれば高変倍化が容易になり、また変倍に伴う収差変動を良好に補正することができる。
【0028】
本発明の数値実施例2においては更に次の条件を満足させるのが、レンズ系全体の小型化図りつつ、撮影画像のブレを補正する際の偏心収差の発生を少なくし、光学性能を良好に維持するのに好ましい。
【0029】
(2−1)前記第2群の焦点距離をfa、広角端と望遠端における全系の焦点距離を各々fW,fTとしたとき、
【0030】
【数3】
Figure 0003706644
なる条件を満足することである。
【0031】
条件式(5)は、変倍光学系の広角端、及び望遠端の焦点距離に対する偏心レンズ群(第2群)の焦点距離の比を規定する式である。条件式(5)の下限値を越えて偏心レンズ群の焦点距離が短くなると、変倍の際の諸収差の変動を良好に補正することが難しくなり、変倍比を大きくすることができないという問題や、偏心レンズ群を少枚数のレンズで構成できなくなる為にコンパクト化に向かないという問題点が生じてくる。
【0032】
また、逆に条件式(5)の上限値を越えて偏心レンズ群の焦点距離が長くなると、諸収差の補正の為には有利となるが、偏心レンズ群の偏心敏感度(撮影画像の変位量に対する偏心レンズ群の変位量の比)を大きくすることができなくなり、この為振動補償の為の偏心レンズ群の駆動量を大きくすることが必要となるという問題や、変倍の際の各レンズ群の移動量が大きくなってコンパクト化に向かないという問題点が生じてくる。
【0037】
次に本発明の防振機能を有した変倍光学系の光学的特徴について説明する。
【0038】
一般に光学系の一部のレンズ群を平行偏心させて画像のブレを補正しようとすると偏心収差の発生により結像性能が低下してくる。そこで次に任意の屈折力配置において可動レンズ群を光軸と直交する方向に移動させて画像のブレを補正するときの偏心収差の発生について収差論的な立場より、第23回応用物理学講演会(1962年)に松居より示された方法に基づいて説明する。
【0039】
変倍光学系の一部のレンズ群PをEだけ平行偏心させたときの全系の収差量ΔY1は(a)式の如く偏心前の収差量ΔYと偏心によって発生した偏心収差量ΔY(E)との和になる。ここで収差量ΔYは球面収差(I)、コマ収差(II)、非点収差(III)、ペッツバール和(P)、歪曲収差(Y)で表される。又偏心収差ΔY(E)は(C)式に示すように1次の偏心コマ収差(II E)、1次の偏心非点収差(III E)、1次の偏心像面弯曲(PE)、1次の偏心歪曲収差(VE1)、1次の偏心歪曲附加収差(VE2)、そして1次の原点移動(ΔE)で表される。
【0040】
又(d)式から(i)式の(ΔE)〜(VE2)までの収差はレンズ群Pを平行偏心させる変倍光学系においてレンズ群Pへの光線の入射角をαP ,αaP としたときにレンズ群Pの収差係数IP ,IIP ,IIIP,PP ,VP と、又同様にレンズ群Pより像面側に配置したレンズ群を全体として1つの第qレンズ群としたときの収差係数をIq ,IIq ,IIIq,Pq ,Vq を用いて表される。
【0041】
【数4】
Figure 0003706644
Figure 0003706644
以上の式から偏心収差の発生を小さくする為にはレンズ群Pの諸収差係数IP ,IIP , IIIP,PP ,VP を小さな値とするか、若しくは(a)式〜(i)式に示すように諸収差係数を互いに打ち消し合うようにバランス良く設定することが必要となってくる。
【0042】
次に本発明の防振機能を有した変倍光学系の光学的作用を図17に示した撮影光学系の一部のレンズ群を光軸と直交する方向に偏心駆動させて撮影画像の変位を補正する防振光学系を想定したモデルについて説明する。
【0043】
まず十分に少ない偏心駆動量で十分に大きい変位補正を実現する為には上記の1次の原点移動(ΔE)を十分に大きくする必要がある。このことを踏まえた上で1次の偏心像面湾曲(PE)を補正する条件を考える。図17は撮影光学系を物体側から順に第o群、第p群、第q群の3つのレンズ群で構成し、このうち第p群を光軸と直交する方向に平行移動させて画像のブレを補正している。
【0044】
ここで第o群、第p群、第q群の屈折力をそれぞれφ,φ,φとし、各レンズ群への近軸軸上光線と軸外光線の入射角をα,αa、近軸軸上光線と軸外光線の入射高をh,ha及び収差係数にも同様のsuffixを付して表記する。又各レンズ群はそれぞれ少ないレンズ枚数で構成されるものとし、各収差係数はそれぞれ補正不足の傾向を示すものとする。
【0045】
このような前提のもとに各レンズ群のペッツバール和に着目すると各レンズ群のペッツバール和Po ,Pp ,Pq は各レンズ群の屈折力φopq に比例し、略
o=Cφo
p=Cφp
q=Cφq (但しCは定数)
なる関係を満足する。従って第p群を平行偏心させたときに発生する1次の偏心像面湾曲(PE)は上式と代入して次のように整理することができる。
【0046】
(PE)=Cφp(hp φq −αp
従って偏心像面湾曲(PE)を補正するためにはφp=0またはφq =αp/hp とすることが必要となる。ところがφp=0とすると1次の原点移動(ΔE)が0となって変位補正ができなくなるためφq=αp/hp を満足する解を求めなければならない。即ちhp>0であるため、少なくともαp とφq を同符号とすることが必要となるわけである。
【0047】
(イ) αp >0のとき
偏心像面湾曲の補正のためφq >0、又必然的にφo >0となる。更にこのときφp >0とすると0<αp <α´p <1、1次の原点移動(ΔE)は次のようになる。
【0048】
(ΔE)=−2(αp´−αp )>−2
即ち偏心敏感度(偏心レンズ群の単位変位量に対する撮影画像のブレの変位量との比)が1より小さくなる。又前述のようにφp =0では偏心敏感度は0となる。従って、このような場合にはφp <0としなければならない。
【0049】
(ロ) αp <0のとき
偏心像面湾曲(PE)の補正の為φq <0、又必然的にφo <0、従って更に必然的にφp >0となる。
【0050】
以上より1次の原点移動(ΔE)を十分に大きくしつつ、1次の偏心像面湾曲(PE)を補正することの可能となる光学系の屈折力配置は次のようなものが適する。
【0051】
【表1】
Figure 0003706644
このような屈折力配置のレンズ構成を図示すると、それぞれ図18(A)及び図18(B)のようになる。
【0052】
本発明では、このような屈折力配置を利用して変倍光学系を構成している。一般に変倍光学系においては、各レンズ群の屈折力を適切に設定することにより、コンパクトなレンズ構成で十分に大きい変倍効果を実現すると同時に、諸収差を良好に補正している。この際、変倍光学系の変倍に寄与する各レンズ群は、レンズ系全体をコンパクトなレンズ構成とする為に比較的強い屈折力を有するのが良い。また変倍時の諸収差の変動を良好に補正する為に各レンズ群内の残存収差量を少なくしたものが良い。
【0053】
変倍光学系の一部のレンズ群を光軸と直交する方向に平行偏心させて撮影画像の変位を補正する防振機能を有した変倍光学系を構成する方法として、偏心敏感度を十分に大きくすることができるという点と、偏心収差の補正が比較的容易になるという点から、平行偏心させるレンズ群として、変倍に寄与するレンズ群をそのまま適用する方法がある。
【0054】
一方、装置自体のコンパクト化を図る為、平行偏心させるレンズ群として、レンズ外径の比較的小さなレンズ群を選択するのが望ましい。また機構の複雑化を防止する為、平行偏心させる偏心レンズ群として、変倍に際して固定のレンズ群を選択するのが機構上望ましい。
【0055】
本発明では以上の観点から、基本的なレンズ構成を図18(A),(B)に示す屈折力配置を有すると共に、第o群及び第q群を変倍に際して光軸上移動させ、第p群を固定とする変倍光学系を採用している。
【0056】
本発明において変倍に際して可動とするレンズ群はこのような基本的なレンズ構成のみではなく、前述の第o群及び第q群をそれぞれ1つまたは複数のレンズ群に分割しても良く、これによれば諸収差を良好に補正した変倍光学系を実現することができる。尚、以上の各実施例において、第2群を平行偏心させると共に、または平行偏心の代わりに光軸上の一点を中心に回動させることにより撮影画像のブレを補正するようにしても良い。
【0057】
次に参考例と本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。
(参考例)
(数値実施例1)
R 1= 101.63 D 1= 2.8 N 1=1.80518 ν 1= 25.4
R 2= 65.89 D 2= 6.8 N 2=1.51633 ν 2= 64.2
R 3= 1548.66 D 3= 0.2
R 4= 207.11 D 4= 4.2 N 3=1.48749 ν 3= 70.2
R 5= -337.94 D 5=可変
R 6= -125.77 D 6= 1.5 N 4=1.77250 ν 4= 49.6
R 7= 151.03 D 7= 2.8
R 8= -67.50 D 8= 1.5 N 5=1.61800 ν 5= 63.4
R 9= 44.49 D 9= 3.4 N 6=1.84666 ν 6= 23.8
R10= 125.21 D10=可変
R11=(絞り) D11= 1.5
R12= 157.70 D12= 3.7 N 7=1.48749 ν 7= 70.2
R13= -86.24 D13= 0.2
R14= 46.44 D14= 5.7 N 8=1.60311 ν 8= 60.7
R15= -78.17 D15= 1.5 N 9=1.83400 ν 9= 37.2
R16= 308.70 D16=可変
R17= 159.74 D17= 4.6 N10=1.60311 ν10= 60.7
R18= -35.11 D18= 1.5 N11=1.80518 ν11= 25.4
R19= -118.95 D19= 0.2
R20= 38.80 D20= 4.0 N12=1.51633 ν12= 64.2
R21= 2284.84 D21=可変
R22= -68.32 D22= 1.5 N13=1.77250 ν13= 49.6
R23= 34.06 D23= 3.6
R24= -162.72 D24= 1.5 N14=1.69680 ν14= 55.5
R25= 98.00 D25= 0.2
R26= 49.20 D26= 4.3 N15=1.80518 ν15= 25.4
R27= -185.92
【0058】
【表2】
Figure 0003706644
【0059】
【数5】
Figure 0003706644
本発明の数値実施例2)
R 1= 104.82 D 1= 2.8 N 1=1.80518 ν 1= 25.4
R 2= 65.22 D 2= 6.6 N 2=1.51633 ν 2= 64.2
R 3= 1064.41 D 3= 0.2
R 4= 157.35 D 4= 4.6 N 3=1.51633 ν 3= 64.2
R 5= -339.86 D 5=可変
R 6= -172.44 D 6= 1.5 N 4=1.77250 ν 4= 49.6
R 7= 63.56 D 7= 4.9
R 8= -34.89 D 8= 1.5 N 5=1.51633 ν 5= 64.2
R 9= 78.96 D 9= 3.5 N 6=1.84666 ν 6= 23.8
R10= -270.70 D10=可変
R11= 63.23 D11= 4.4 N 7=1.60311 ν 7= 60.7
R12= -77.78 D12= 0.2
R13= 57.33 D13= 4.8 N 8=1.48749 ν 8= 70.2
R14= -59.18 D14= 1.5 N 9=1.83400 ν 9= 37.2
R15= 210.50 D15= 3.0
R16=(絞り) D16=可変
R17= -58.16 D17= 2.5 N10=1.60311 ν10= 60.7
R18= -77.22 D18=可変
R19= 177.20 D19= 4.2 N11=1.60311 ν11= 60.7
R20= -42.39 D20= 1.5 N12=1.80518 ν12= 25.4
R21= -88.25 D21= 0.2
R22= 56.85 D22= 2.8 N13=1.51633 ν13= 64.2
R23= 218.49 D23=可変
R24= -44.17 D24= 1.5 N14=1.77250 ν14= 49.6
R25= 51.97 D25= 3.3 N15=1.80518 ν15= 25.4
R26= 2229.01
【0060】
【表3】
Figure 0003706644
【0061】
【数6】
Figure 0003706644
【0062】
【発明の効果】
本発明によれば以上のように各要素を設定することにより、変倍光学系の一部のレンズ群を光軸と直交する方向に移動させて画像のブレを補正する際、可動レンズ群として小型軽量のレンズ群を用い、かつ少ない移動量で大きな画像のブレを補正することができ、更に可動レンズ群を移動させて略平行偏心させたときの前述の各種の偏心収差の発生量が少なく良好なる光学性能が得られる防振機能を有した変倍光学系を達成することができる。
【0063】
特に本発明によれば、各種の偏心収差を良好に補正しつつ、十分に少ない偏心駆動量で十分に大きい変位補正を実現し、また偏心駆動させるレンズ群以外のレンズ群を光軸方向に移動させて変倍を行う構成として、小型計量で良好な画像の得られる防振機能を有した変倍光学系を達成することができる。
【図面の簡単な説明】
【図1】 本発明の参考例の数値実施例1の近軸屈折力配置の説明図
【図2】 本発明の参考例の数値実施例1のレンズ断面図
【図3】 本発明の数値実施例2の近軸屈折力配置の説明図
【図4】 本発明の数値実施例2のレンズ断面図
【図5】 本発明の参考例の数値実施例1の広角端での基準状態の収差図
【図6】 本発明の参考例の数値実施例1の広角端での1度の振動を補正したときの収差図
【図7】 本発明の参考例の数値実施例1の中間での基準状態の収差図
【図8】 本発明の参考例の数値実施例1の中間での1度の振動を補正したときの収差図
【図9】 本発明の参考例の数値実施例1の望遠端での基準状態の収差図
【図10】 本発明の参考例の数値実施例1の望遠端での1度の振動を補正したときの収差図
【図11】 本発明の数値実施例2の広角端での基準状態の収差図
【図12】 本発明の数値実施例2の広角端での1度の振動を補正したときの収差図
【図13】 本発明の数値実施例2の中間での基準状態の収差図
【図14】 本発明の数値実施例2の中間での1度の振動を補正したときの収差図
【図15】 本発明の数値実施例2の望遠端での基準状態の収差図
【図16】 本発明の数値実施例2の望遠端での1度の振動を補正したときの収差図
【図17】 本発明において偏心収差補正を説明する為のレンズ構成の摸式図
【図18】 本発明において偏心収差補正を説明する為のレンズ構成の摸式図[0001]
[Industrial application fields]
The present invention relates to a variable magnification optical system having a function of correcting a blur of a photographed image due to vibration of the optical system, that is, a so-called image stabilization function. In particular, the movable lens group for image stabilization is moved, for example, in a direction perpendicular to the optical axis. The present invention relates to a variable magnification optical system having an anti-vibration function that prevents a decrease in optical performance when the anti-vibration effect is exhibited.
[0002]
[Prior art]
If an attempt is made to take a picture from a moving object such as a car or an aircraft that is in progress, vibrations are transmitted to the photographing system, and the photographed image is blurred.
[0003]
Conventionally, an anti-vibration optical system having a function of preventing blurring of a photographed image has been proposed in, for example, Japanese Patent Application Laid-Open Nos. 50-80147, 56-21133, and 61-2223819. Yes.
[0004]
In Japanese Patent Laid-Open No. 50-80147, in a zoom lens having two afocal variable magnification systems, the angular magnification of the first variable magnification system is M 1 and the angular magnification of the second variable magnification system is M 2. Scaling is performed in each zooming system so as to have a relationship of M 1 = 1-1 / M 2 , and the second zooming system is spatially fixed to correct image blur to stabilize the image. I am trying.
[0005]
In Japanese Examined Patent Publication No. 56-21133, in accordance with an output signal from a detecting means for detecting the vibration state of the optical device, some optical members are moved in a direction that cancels the vibrational displacement of the image due to vibration. Stabilization is planned.
[0006]
In JP-A-61-223819, in an imaging system in which a refractive variable apex angle prism is arranged closest to the subject, an image is obtained by changing the apex angle of the refractive variable apex angle prism in response to vibration of the imaging system. The image is stabilized by deflecting.
[0007]
In addition, in Japanese Patent Publication No. 56-34847, Japanese Patent Publication No. 57-7414, etc., an optical member spatially fixed with respect to vibration is arranged in a part of the photographing system, and the optical member is caused by the vibration. The captured image is deflected by using the prism action to obtain a still image on the imaging plane.
[0008]
There is also a method of detecting still image vibration using an acceleration sensor and obtaining a still image by vibrating some lens groups of the photographing system in a direction perpendicular to the optical axis in accordance with the signal obtained at this time. It is done.
[0009]
[Problems to be solved by the invention]
In general, some lens groups in the shooting system are vibrated to eliminate blurring of the shot image, and a mechanism for obtaining a still image has a large amount of image blur correction and a lens group that vibrates for blur correction (movable lens group). ), And the drive means is small and light.
[0010]
Also, when the movable lens group is decentered, if a large amount of decentration coma, decentered astigmatism, decentered chromatic aberration, decentration field curvature aberration, etc. occur, the image will be blurred due to decentration aberration when image blur is corrected. For example, when a large amount of decentration distortion occurs, the amount of movement of the image on the optical axis differs from the amount of movement of the peripheral image. For this reason, if the movable lens group is decentered to correct the image blur for the image on the optical axis, a phenomenon similar to the image blur occurs in the peripheral portion, which causes a significant deterioration in optical characteristics. come.
[0011]
Thus, in a variable magnification optical system having an anti-vibration function, when the movable lens group is moved in a direction perpendicular to the optical axis to be in a decentered state, the amount of decentration aberration is small and the optical performance is not deteriorated. There is a demand for a so-called eccentric sensitivity (ratio Δx / ΔH of image blur correction amount Δx with respect to unit movement amount ΔH) that can correct a large image blur with a small amount of movement of the group. .
[0012]
On the other hand, the conventional anti-vibration optical system has a structure that arranges an optical member that is spatially fixed against vibration, and it is difficult to support this optical member, and a compact optical system is realized. Since it is difficult to do so, it is not suitable for the configuration of a small and lightweight device. The anti-vibration optical system in which the variable apex prism is arranged on the most object side of the photographic optical system has the advantage that almost no aberration other than decentration chromatic aberration occurs during the anti-vibration correction, but the drive member becomes large, and There has been a problem that it is difficult to simply correct the eccentric chromatic aberration generated by the prism.
[0013]
In addition, in a vibration-proof optical system that decenters a part of the lens group of the photographing optical system, it is considered that the device can be reduced in size by appropriately selecting and arranging the lens group to be decentered. There is a problem in that it is difficult to realize sufficiently large image stabilization with a sufficiently small driving amount while satisfactorily correcting various aberrations, that is, decentration coma, decentering astigmatism, decentration field curvature, and the like.
[0014]
The present invention uses a small and light lens group as a movable lens group and moves with a small amount of movement when correcting a blur of an image by moving a part of the lens group of the variable magnification optical system in a direction orthogonal to the optical axis. Variable magnification with anti-vibration function that can correct image blurring, and can produce good optical performance with less generation of the above-mentioned various decentration aberrations when the movable lens group is moved and decentered in parallel The purpose is to provide an optical system.
[0015]
[Means for Solving the Problems]
The variable magnification optical system having the image stabilization function of the invention of claim 1 is
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, a fourth group having a negative refractive power, a fifth group having a positive refractive power, When the distance between the wide-angle end and the telephoto end of the i-th group and the (i + 1) -th group is DiW and DiT, respectively.
D1W <D1T
D2W> D2T
D3W <D3T
D5W> D5T
In order to satisfy the following condition, the second lens group is not moved but another predetermined lens unit is moved to change the distance between the lens units to change the magnification. When the group is moved in a direction substantially perpendicular to the optical axis to correct the blur of the photographed image, the focal length of the second group is fa, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fW and fT, respectively. ,
[Expression 2]
Figure 0003706644
It is characterized by satisfying the following conditions .
[0018]
【Example】
FIGS. 1 and 2 are a paraxial refractive power arrangement and a lens cross-sectional view of Numerical Example 1 to be described later, each consisting of five lens groups shown as reference examples for the variable magnification optical system according to the present invention. 3 and 4 are a paraxial refractive power arrangement and a lens cross-sectional view of Numerical Example 2 described later of the variable magnification optical system according to the present invention. 1A and 1B, (A) shows the wide-angle end, and (B) shows the telephoto end. The arrows indicate the movement trajectory of each lens unit accompanying zooming from the wide-angle end to the telephoto end. 2A and 2B, (A) shows the wide-angle end, (B) shows the middle, and (C) shows the telephoto end.
[0019]
In Numerical Example 1 of FIGS. 1 and 2, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a positive refractive power. The fourth group of forces, L5 is the fifth group of negative refractive power, SP is the stop, and IP is the image plane. The zooming from the wide-angle end to the telephoto end is performed by fixing the second group and moving the first, third, fourth and fifth groups as indicated by arrows to change the distance between the lens groups. Further, the second group is moved as a decentered lens group in the direction perpendicular to the optical axis to correct blurring of the captured image when the optical system vibrates.
[0020]
3 and 4, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a negative refractive power. The fourth group of forces, L5 is the fifth group of positive refractive power, L6 is the sixth group of negative refractive power, SP is the stop, and IP is the image plane. The zooming from the wide-angle end to the telephoto end is performed by fixing the second group and the fourth group and moving the first, third, fifth and sixth groups as indicated by arrows to change the distance between the lens groups. Yes. In addition, the second group is used as an eccentric lens group to move in the direction perpendicular to the optical axis to correct blurring of the captured image when the optical system vibrates.
[0021]
As described above, in the present invention, the variable power optical system as a whole is composed of at least three lens groups, and at least two or more of these lens groups are moved on the optical axis to perform variable power, In this case, a fixed lens group is provided at the time of zooming between the plurality of lens groups that move during the zooming. Then, when zooming, the fixed lens group is moved in a direction perpendicular to the optical axis to correct blurring of the captured image when the optical system vibrates.
[0022]
In particular, in the present invention, a first optical unit having a positive refractive power that moves on the optical axis when zooming in order from the object side, a second group having a fixed negative refractive power when zooming, and zooming At this time, it is composed of at least one lens group that moves on the optical axis, and is composed of six lens groups of the image side lens group that has a positive refractive power as a whole, and the second group in a direction perpendicular to the optical axis. By moving it, the blur of the captured image when the optical system vibrates is corrected.
[0023]
With the configuration as described above, the present invention corrects the blur of the photographed image and reduces the occurrence of decentration aberrations when the second group is moved (eccentric) in the direction perpendicular to the optical axis, thereby maintaining good optical performance. are doing.
[0024]
In Numerical Example 1 of FIGS. 1 and 2, when zooming from the wide-angle end to the telephoto end, when the distance between the wide-angle end and the telephoto end of the i-th group and the (i + 1) th group is DiW and DiT,
D1W <D1T (1a)
D2W> D2T (2a)
D4W> D4T (3a)
The predetermined lens group is moved so as to satisfy the following condition.
[0025]
In the numerical value example 1, in zooming, each lens unit is moved so as to satisfy the conditional expressions (1a) to (3a), thereby reducing the size of the entire lens system and changing the zoom ratio. A double optical system is obtained. In the present embodiment, the second group may be moved on the optical axis upon zooming. According to this, high zooming can be facilitated and aberration fluctuations accompanying zooming can be corrected well.
[0026]
3 and 4, when zooming from the wide angle end to the telephoto end, the distance between the wide angle end and the telephoto end of the i-th group and the (i + 1) th group is DiW and DiT, respectively. ,
D1W <D1T (1b)
D2W> D2T (2b)
D3W <D3T (3b)
D5W> D5T (4b)
The predetermined lens group is moved so as to satisfy the following condition.
[0027]
In Numerical Example 2, each lens group is moved so as to satisfy the conditional expressions (1b) to (4b) at the time of zooming, thereby reducing the size of the entire lens system and zooming with a high zooming ratio. An optical system has been obtained. In Numerical Example 2 , the second group may be moved on the optical axis during zooming. According to this, high zooming can be facilitated and aberration fluctuations accompanying zooming can be corrected well.
[0028]
In Numerical Example 2 of the present invention, the following condition is further satisfied, while reducing the overall size of the lens system, reducing the occurrence of decentration aberrations when correcting blurring of the captured image, and improving the optical performance. Preferred to maintain.
[0029]
(2-1) When the focal length of the second group is fa, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fW and fT, respectively.
[0030]
[Equation 3]
Figure 0003706644
To satisfy the following conditions.
[0031]
Conditional expression (5) defines the ratio of the focal length of the decentered lens group (second group) to the focal length at the wide-angle end and the telephoto end of the variable-magnification optical system. If the focal length of the decentered lens unit becomes shorter than the lower limit of conditional expression (5), it will be difficult to satisfactorily correct variations in various aberrations during zooming, and the zoom ratio cannot be increased. There arises a problem and a problem that the decentered lens group cannot be made compact because it cannot be constituted by a small number of lenses.
[0032]
Conversely, if the focal length of the decentered lens unit is increased beyond the upper limit of conditional expression (5), it is advantageous for correcting various aberrations, but the decentering sensitivity (displacement of the captured image) of the decentered lens unit is advantageous. The ratio of the displacement amount of the decentered lens unit to the amount) cannot be increased, and therefore, it is necessary to increase the drive amount of the decentered lens unit for vibration compensation, There is a problem that the amount of movement of the lens group becomes large and is not suitable for downsizing.
[0037]
Next, the optical characteristics of the variable magnification optical system having the image stabilization function of the present invention will be described.
[0038]
In general, if a part of the lens group of the optical system is decentered in parallel to correct image blurring, the imaging performance is deteriorated due to the occurrence of decentering aberration. Therefore, from the viewpoint of aberration theory, the 23rd Applied Physics Lecture on the occurrence of decentration aberrations when correcting the image blur by moving the movable lens group in the direction perpendicular to the optical axis in any refractive power arrangement The explanation is based on the method presented by Matsui in the meeting (1962).
[0039]
When the partial lens group P of the variable magnification optical system is decentered parallel by E, the aberration amount ΔY1 of the entire system is the amount of decentering aberration ΔY (E ) Here, the aberration amount ΔY is expressed by spherical aberration (I), coma aberration (II), astigmatism (III), Petzval sum (P), and distortion aberration (Y). The decentration aberration ΔY (E) is expressed by the first-order decentering coma aberration (II E), the first-order decentering astigmatism (III E), the first-order decentering image surface curvature (PE), as shown in the equation (C). It is expressed by a first order eccentric distortion aberration (VE1), a first order eccentric distortion addition aberration (VE2), and a first origin movement (ΔE).
[0040]
The equation (d) (i) to equation (ΔE) ~ (VE2) an angle of incidence of the ray to the lens group P aberration in zooming optical system for parallel decentering lens group P to alpha P, and .alpha.a P In this case, the aberration coefficients I P , II P , III P , P P , and V P of the lens group P and the lens group disposed on the image plane side from the lens group P as a whole are combined with one qth lens group. The aberration coefficients are expressed using I q , II q , III q , P q , V q .
[0041]
[Expression 4]
Figure 0003706644
Figure 0003706644
From the above equation, in order to reduce the occurrence of decentration aberration, various aberration coefficients I P , II P , III P , P P , and V P of the lens group P are set to small values, or the equations (a) to (i) It is necessary to set the aberration coefficients in a well-balanced manner so as to cancel each other as shown in the equation (1).
[0042]
Next, the optical action of the variable magnification optical system having the image stabilization function of the present invention is such that a part of the lens group of the photographing optical system shown in FIG. 17 is decentered in the direction perpendicular to the optical axis to shift the photographed image. A model assuming a vibration-proof optical system that corrects the above will be described.
[0043]
First, in order to realize a sufficiently large displacement correction with a sufficiently small eccentric drive amount, it is necessary to sufficiently increase the primary origin movement (ΔE). Based on this, the conditions for correcting the first-order eccentric field curvature (PE) are considered. In FIG. 17, the photographing optical system is composed of three lens groups of the o-th group, the p-th group, and the q-th group in order from the object side, and among these, the p-th group is translated in a direction orthogonal to the optical axis. The blur is corrected.
[0044]
Here, the refractive powers of the o-th group, the p-th group, and the q-th group are φ o , φ p , and φ q , respectively, and the incident angles of the paraxial and off-axis rays to each lens group are α, αa, The incident heights of paraxial on-axis rays and off-axis rays are denoted by h, ha, and aberration coefficients with the same suffix. Each lens group is composed of a small number of lenses, and each aberration coefficient has a tendency of insufficient correction.
[0045]
If attention is paid to the Petzval sum of each lens group under such a premise, the Petzval sums P o , P p , P q of each lens unit are proportional to the refractive powers φ o , φ p , φ q of each lens unit, About P o = Cφ o
P p = Cφ p
P q = Cφ q (where C is a constant)
Satisfy the relationship. Therefore, the first-order decentering field curvature (PE) that occurs when the p-th group is decentered in parallel can be arranged as follows by substituting the above equation.
[0046]
(PE) = Cφ p (h p φ q −α p )
Therefore, in order to correct the eccentric field curvature (PE), it is necessary to set φ p = 0 or φ q = α p / h p . However, if φ p = 0, the primary origin movement (ΔE) becomes 0 and displacement correction cannot be performed, so a solution satisfying φ q = α p / h p must be obtained. That is, since h p > 0, at least α p and φ q need to have the same sign.
[0047]
(A) When α p > 0, φ q > 0 and inevitably φ o > 0 for correction of the eccentric field curvature. Further, if φ p > 0 at this time, 0 <α p <α ′ p <1 and the primary origin movement (ΔE) is as follows.
[0048]
(ΔE) = − 2 (α p ′ −α p )> − 2
That is, the sensitivity of decentration (ratio of the amount of blurring of the photographed image to the unit displacement of the decentered lens group) is smaller than 1. As described above, when φ p = 0, the eccentricity sensitivity is zero. Therefore, in such a case, φ p <0 must be satisfied.
[0049]
(B) When α p <0, to correct the eccentric field curvature (PE), φ q <0, and necessarily φ o <0, and thus more necessarily φ p > 0.
[0050]
As described above, the refractive power arrangement of the optical system that can correct the primary decentered field curvature (PE) while sufficiently increasing the primary origin movement (ΔE) is as follows.
[0051]
[Table 1]
Figure 0003706644
The lens configuration with such a refractive power arrangement is shown in FIGS. 18A and 18B, respectively.
[0052]
In the present invention, a variable magnification optical system is configured using such a refractive power arrangement. In general, in a variable magnification optical system, by appropriately setting the refractive power of each lens group, a sufficiently large variable magnification effect is realized with a compact lens configuration, and various aberrations are corrected well. At this time, each lens group that contributes to zooming of the zooming optical system preferably has a relatively strong refractive power in order to make the entire lens system a compact lens configuration. It is preferable that the amount of residual aberration in each lens group is reduced in order to satisfactorily correct variations in various aberrations during zooming.
[0053]
Decentration sensitivity is sufficient as a method of constructing a variable magnification optical system with a vibration isolation function that corrects the displacement of the captured image by decentering some lens groups of the variable magnification optical system in the direction perpendicular to the optical axis. There is a method in which a lens group contributing to zooming is applied as it is as a lens group to be decentered in parallel because it can be made large and correction of decentration aberration is relatively easy.
[0054]
On the other hand, in order to reduce the size of the apparatus itself, it is desirable to select a lens group having a relatively small lens outer diameter as a lens group to be decentered in parallel. In order to prevent the mechanism from becoming complicated, it is desirable in terms of the mechanism to select a fixed lens group at the time of zooming as the decentered lens group to be decentered in parallel.
[0055]
In the present invention, from the above viewpoint, the basic lens configuration has the refractive power arrangement shown in FIGS. 18A and 18B, and the o-th group and the q-th group are moved on the optical axis at the time of zooming. A variable magnification optical system in which the p group is fixed is adopted.
[0056]
In the present invention, the lens group movable upon zooming is not limited to such a basic lens configuration, and the o-th group and the q-th group described above may be divided into one or a plurality of lens groups. According to this, it is possible to realize a variable magnification optical system in which various aberrations are favorably corrected. In each of the embodiments described above, the blur of the photographed image may be corrected by decentering the second group in parallel or by rotating about a point on the optical axis instead of the parallel decentering.
[0057]
Next, reference examples and numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are respectively the i-th lens in order from the object side. Refractive index and Abbe number of glass.
(Reference example)
(Numerical example 1)
R 1 = 101.63 D 1 = 2.8 N 1 = 1.80518 ν 1 = 25.4
R 2 = 65.89 D 2 = 6.8 N 2 = 1.51633 ν 2 = 64.2
R 3 = 1548.66 D 3 = 0.2
R 4 = 207.11 D 4 = 4.2 N 3 = 1.48749 ν 3 = 70.2
R 5 = -337.94 D 5 = variable
R 6 = -125.77 D 6 = 1.5 N 4 = 1.77250 ν 4 = 49.6
R 7 = 151.03 D 7 = 2.8
R 8 = -67.50 D 8 = 1.5 N 5 = 1.61800 ν 5 = 63.4
R 9 = 44.49 D 9 = 3.4 N 6 = 1.84666 ν 6 = 23.8
R10 = 125.21 D10 = variable
R11 = (Aperture) D11 = 1.5
R12 = 157.70 D12 = 3.7 N 7 = 1.48749 ν 7 = 70.2
R13 = -86.24 D13 = 0.2
R14 = 46.44 D14 = 5.7 N 8 = 1.60311 ν 8 = 60.7
R15 = -78.17 D15 = 1.5 N 9 = 1.83400 ν 9 = 37.2
R16 = 308.70 D16 = variable
R17 = 159.74 D17 = 4.6 N10 = 1.60311 ν10 = 60.7
R18 = -35.11 D18 = 1.5 N11 = 1.80518 ν11 = 25.4
R19 = -118.95 D19 = 0.2
R20 = 38.80 D20 = 4.0 N12 = 1.51633 ν12 = 64.2
R21 = 2284.84 D21 = variable
R22 = -68.32 D22 = 1.5 N13 = 1.77250 ν13 = 49.6
R23 = 34.06 D23 = 3.6
R24 = -162.72 D24 = 1.5 N14 = 1.69680 ν14 = 55.5
R25 = 98.00 D25 = 0.2
R26 = 49.20 D26 = 4.3 N15 = 1.80518 ν15 = 25.4
R27 = -185.92
[0058]
[Table 2]
Figure 0003706644
[0059]
[Equation 5]
Figure 0003706644
(Numerical example 2 of the present invention )
R 1 = 104.82 D 1 = 2.8 N 1 = 1.80518 ν 1 = 25.4
R 2 = 65.22 D 2 = 6.6 N 2 = 1.51633 ν 2 = 64.2
R 3 = 1064.41 D 3 = 0.2
R 4 = 157.35 D 4 = 4.6 N 3 = 1.51633 ν 3 = 64.2
R 5 = -339.86 D 5 = variable
R 6 = -172.44 D 6 = 1.5 N 4 = 1.77250 ν 4 = 49.6
R 7 = 63.56 D 7 = 4.9
R 8 = -34.89 D 8 = 1.5 N 5 = 1.51633 ν 5 = 64.2
R 9 = 78.96 D 9 = 3.5 N 6 = 1.84666 ν 6 = 23.8
R10 = -270.70 D10 = variable
R11 = 63.23 D11 = 4.4 N 7 = 1.60311 ν 7 = 60.7
R12 = -77.78 D12 = 0.2
R13 = 57.33 D13 = 4.8 N 8 = 1.48749 ν 8 = 70.2
R14 = -59.18 D14 = 1.5 N 9 = 1.83400 ν 9 = 37.2
R15 = 210.50 D15 = 3.0
R16 = (Aperture) D16 = Variable
R17 = -58.16 D17 = 2.5 N10 = 1.60311 ν10 = 60.7
R18 = -77.22 D18 = variable
R19 = 177.20 D19 = 4.2 N11 = 1.60311 ν11 = 60.7
R20 = -42.39 D20 = 1.5 N12 = 1.80518 ν12 = 25.4
R21 = -88.25 D21 = 0.2
R22 = 56.85 D22 = 2.8 N13 = 1.51633 ν13 = 64.2
R23 = 218.49 D23 = variable
R24 = -44.17 D24 = 1.5 N14 = 1.77250 ν14 = 49.6
R25 = 51.97 D25 = 3.3 N15 = 1.80518 ν15 = 25.4
R26 = 2229.01
[0060]
[Table 3]
Figure 0003706644
[0061]
[Formula 6]
Figure 0003706644
[0062]
【The invention's effect】
According to the present invention, by setting each element as described above, when correcting a blur of an image by moving a part of the lens group of the variable magnification optical system in a direction orthogonal to the optical axis, as a movable lens group A small and lightweight lens group can be used to correct large image blurring with a small amount of movement, and when the movable lens group is moved so as to be substantially parallel decentered, the amount of various decentration aberrations described above is small. A variable magnification optical system having an anti-vibration function capable of obtaining good optical performance can be achieved.
[0063]
In particular, according to the present invention, while sufficiently correcting various decentration aberrations, a sufficiently large displacement correction is realized with a sufficiently small decentration driving amount, and a lens group other than the lens group to be decentered is moved in the optical axis direction. As a configuration for performing zooming, it is possible to achieve a zooming optical system having an anti-vibration function capable of obtaining a good image with a small scale.
[Brief description of the drawings]
[1] Numerical Embodiment of the present lens sectional view of Numerical Example 1 of the reference example of the near-explanatory view in the axial refractive power arrangement [2] The present invention of the numerical example 1 of the reference example of the invention [3] The present invention FIG. 4 is a lens cross-sectional view of Numerical Example 2 of the present invention. FIG. 5 is an aberration diagram of the reference state at the wide-angle end of Numerical Example 1 of the Reference Example of the present invention. FIG. 6 is an aberration diagram when the vibration of 1 degree at the wide-angle end of the numerical example 1 of the reference example of the present invention is corrected. FIG. 7 is a reference state in the middle of the numerical example 1 of the reference example of the present invention. FIG. 8 is an aberration diagram when correcting a vibration of 1 degree in the middle of the numerical example 1 of the reference example of the present invention. FIG. 9 is a telephoto end of the numerical example 1 of the reference example of the present invention. numerical actual aberration diagrams [11] the present invention when corrected for vibration in one degree at the telephoto end according to numerical embodiment 1 of the reference example of the aberration diagram of a reference state [FIG. 10] the present invention FIG. 12 is an aberration diagram in the reference state at the wide-angle end in Example 2. FIG. 12 is an aberration diagram when the vibration of 1 degree at the wide-angle end is corrected in Numerical Example 2 according to the present invention. Fig. 14 is an aberration diagram in the middle of the reference state. Fig. 14 is an aberration diagram when one degree vibration is corrected in the middle of the numerical value example 2 of the invention. Fig. 15 is a telephoto end of the numerical value example 2 of the invention. FIG. 16 is an aberration diagram when a single vibration at the telephoto end of Numerical Example 2 of the present invention is corrected. FIG. 17 is a lens configuration for explaining decentration aberration correction in the present invention. FIG. 18 is a schematic diagram of a lens configuration for explaining decentration aberration correction in the present invention.

Claims (1)

物体側より順に、正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、負の屈折力の第4群、正の屈折力の第5群、そして負の屈折力の第6群の6つのレンズ群から成り、第i群と第(i+1)群の広角端と望遠端での間隔を各々DiW,DiTとするとき、
D1W<D1T
D2W>D2T
D3W<D3T
D5W>D5T
なる条件を満足するように、該第2群は移動せずに他の所定のレンズ群が移動することで各レンズ群の間隔を変化させて変倍を行うズームレンズであって、該第2群を光軸と略垂直方向に移動させて撮影画像のブレを補正すると共に、前記第2群の焦点距離をfa、広角端と望遠端における全系の焦点距離を各々fW,fTとするとき、
Figure 0003706644
なる条件を満足することを特徴とする防振機能を有した変倍光学系。
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, a fourth group having a negative refractive power, a fifth group having a positive refractive power, and it consists of six lens groups in the sixth unit having a negative refractive power, a i group and the (i + 1) DiW each spacing at the wide-angle end and the telephoto end groups, when the DiT,
D1W <D1T
D2W> D2T
D3W <D3T
D5W> D5T
In order to satisfy the following condition, the second lens group is not moved but another predetermined lens unit is moved to change the distance between the lens units to change the magnification. When the group is moved in a direction substantially perpendicular to the optical axis to correct the blur of the photographed image, the focal length of the second group is fa, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fW and fT, respectively. ,
Figure 0003706644
A variable magnification optical system having an anti-vibration function characterized by satisfying the following conditions:
JP22244394A 1994-03-18 1994-08-24 Variable magnification optical system with anti-vibration function Expired - Fee Related JP3706644B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22244394A JP3706644B2 (en) 1994-08-24 1994-08-24 Variable magnification optical system with anti-vibration function
US08/404,870 US6124972A (en) 1994-03-18 1995-03-15 Zoom lens having an image stabilizing function
US09/176,264 US6373639B2 (en) 1994-03-18 1998-10-20 Zoom lens having an image stabilizing function
US09/506,595 US6646803B2 (en) 1994-03-18 2000-02-18 Zoom lens having an image stabilizing function
US09/984,164 US6563643B2 (en) 1994-03-18 2001-10-29 Zoom lens having an image stabilizing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22244394A JP3706644B2 (en) 1994-08-24 1994-08-24 Variable magnification optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JPH0862541A JPH0862541A (en) 1996-03-08
JP3706644B2 true JP3706644B2 (en) 2005-10-12

Family

ID=16782484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22244394A Expired - Fee Related JP3706644B2 (en) 1994-03-18 1994-08-24 Variable magnification optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP3706644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9503647B2 (en) 2014-04-01 2016-11-22 Canon Kabushiki Kaisha Image stabilizer, image pickup apparatus having the same, and control method of image stabilizer

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980309A (en) * 1995-09-18 1997-03-28 Nikon Corp Variable power optical system
JPH1039215A (en) * 1996-07-19 1998-02-13 Sigma Corp Rear focusing telephoto zoom lens
JP3994212B2 (en) * 1996-09-13 2007-10-17 株式会社ニコン Variable-magnification optical system capable of image shift
US7158315B2 (en) 2004-03-30 2007-01-02 Nikon Corporation Zoom lens system
JP4904837B2 (en) 2006-02-03 2012-03-28 株式会社ニコン Zoom lens with anti-vibration function
JP5115848B2 (en) * 2008-01-30 2013-01-09 株式会社ニコン Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
US8503097B2 (en) 2009-05-27 2013-08-06 Nikon Corporation Lens system, optical apparatus and manufacturing method
JP5369897B2 (en) * 2009-05-27 2013-12-18 株式会社ニコン Lens system, optical equipment
JP5423190B2 (en) * 2009-07-09 2014-02-19 株式会社ニコン Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP2011158630A (en) 2010-01-29 2011-08-18 Tamron Co Ltd Anti-vibration zoom lens optical system
US9625733B2 (en) 2011-04-06 2017-04-18 Nikon Corporation Zoom optical system comprising diffractive optical element and imaging device having the same
JP5808311B2 (en) 2012-11-28 2015-11-10 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623470B2 (en) * 1987-03-18 1997-06-25 キヤノン株式会社 Shooting lens with anti-vibration function
JPS63189819A (en) * 1987-02-02 1988-08-05 Ricoh Co Ltd Miniaturized zoom lens with high variable power
JP2727091B2 (en) * 1988-11-17 1998-03-11 旭光学工業株式会社 Vibration compensation telephoto lens
JP3395169B2 (en) * 1993-05-31 2003-04-07 株式会社ニコン Zoom lens with anti-vibration function
JPH07306363A (en) * 1994-05-13 1995-11-21 Nikon Corp Zoom lens
JPH07199070A (en) * 1993-12-28 1995-08-04 Nikon Corp Zoom lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9503647B2 (en) 2014-04-01 2016-11-22 Canon Kabushiki Kaisha Image stabilizer, image pickup apparatus having the same, and control method of image stabilizer

Also Published As

Publication number Publication date
JPH0862541A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP2918115B2 (en) Variable power optical system with vibration proof function
JP3359131B2 (en) Variable power optical system with anti-vibration function
JP5100411B2 (en) Zoom lens and imaging apparatus having the same
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP4865239B2 (en) Zoom lens and imaging apparatus having the same
JP3412964B2 (en) Optical system with anti-vibration function
JP4146977B2 (en) Zoom lens
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
US6010537A (en) Zoom lens system having an image blur compensation function
JP3003370B2 (en) Variable power optical system with anti-vibration function
JP4880940B2 (en) Zoom lens and imaging apparatus having the same
JP2008015251A (en) Zoom lens and imaging apparatus having the same
JP3141681B2 (en) Optical system with anti-vibration function
JP2009175324A5 (en)
JPH11231220A (en) Optical magnification system having vibration proofing function
JPH10197786A (en) Optical system having vibrationproofing function
JP3706644B2 (en) Variable magnification optical system with anti-vibration function
JP3003368B2 (en) Variable power optical system with anti-vibration function
JP4545849B2 (en) Variable magnification optical system
JP4677210B2 (en) Zoom lens and image pickup apparatus using the same
JPH11316342A (en) Variable power optical system having vibration-proof function
JP4533437B2 (en) Zoom lens
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
JP2009198656A (en) Zoom lens and imaging apparatus having the same
JPH10260355A (en) Variable power optical system with vibration-proof function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees