JPH11231220A - Optical magnification system having vibration proofing function - Google Patents

Optical magnification system having vibration proofing function

Info

Publication number
JPH11231220A
JPH11231220A JP10048784A JP4878498A JPH11231220A JP H11231220 A JPH11231220 A JP H11231220A JP 10048784 A JP10048784 A JP 10048784A JP 4878498 A JP4878498 A JP 4878498A JP H11231220 A JPH11231220 A JP H11231220A
Authority
JP
Japan
Prior art keywords
lens
group
unit
optical system
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10048784A
Other languages
Japanese (ja)
Other versions
JP4046834B2 (en
Inventor
Hiroshi Endo
宏志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04878498A priority Critical patent/JP4046834B2/en
Publication of JPH11231220A publication Critical patent/JPH11231220A/en
Application granted granted Critical
Publication of JP4046834B2 publication Critical patent/JP4046834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical magnification system having vibration proofing function so as to provide a still image by optically correcting the blur of a photographed image in the case of vibrating the optical magnification system by satisfying specified conditions between the wide angle end and telescopic end of adjacent lens groups. SOLUTION: This system has a first group L1 having negative refracting power, a second group L2 having positive refracting power, a third group L3 having negative refracting power and a fourth group L4 having positive refracting power and performs a magnification while changing the intervals of the respective lens groups. Then, the third lens group L3 is composed of plural lens groups (third (a) group L3a and third (b) group L3b, for example,) and one part of lens groups is moved vertically with an optical axis so that the blur of the photographed image in the case of vibrating the optical magnification system can be corrected. In this case, when an interval between the wide angle end and telescopic end of (i)th and (i+1)th groups is defined as Di, the conditions of D1W>D1T, D2W<D2T and D3W>DST are satisfied. At such a time, a diaphragm SP is arranged just before the third group L3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は防振機能を有した変
倍光学系に関し、特に変倍光学系の一部のレンズ群を光
軸と垂直方向に移動させることにより、該変倍光学系が
振動(傾動)したときの撮影画像のブレを光学的に補正
して静止画像を得るようにし、撮影画像の安定化を図っ
た写真用カメラや電子スチルカメラ、そしてビデオカメ
ラ等に好適な防振機能を有した変倍光学系に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power optical system having an image stabilizing function, and more particularly to a variable power optical system by moving a part of a lens group of the variable power optical system in a direction perpendicular to an optical axis. A camera suitable for a photographic camera, an electronic still camera, a video camera, or the like that stabilizes the captured image by optically correcting a blur of the captured image when the camera is vibrated (tilted) to obtain a still image. The present invention relates to a variable power optical system having a vibration function.

【0002】[0002]

【従来の技術】進行中の車や航空機等移動物体上から撮
影をしようとすると撮影系に振動が伝わり手振れとなり
撮影画像にブレが生じる。撮影画像のブレは、撮影系の
焦点距離が長い望遠型のレンズ系のときに特に多く発生
してくる。
2. Description of the Related Art When an image is taken from a moving object such as a car or an aircraft in progress, vibration is transmitted to an image taking system, resulting in camera shake and blurring of the taken image. Blurred captured images occur particularly frequently in a telephoto lens system having a long focal length of the imaging system.

【0003】従来よりこのときの撮影画像のブレを防止
する機能を有した防振機能を有した変倍光学系が種々と
提案されている。
Conventionally, various variable power optical systems having an image stabilizing function having a function of preventing blurring of a photographed image at this time have been proposed.

【0004】例えば、特開平5-232410号公報では、物体
側より順に正、負、正、そして正の屈折力の第1〜第4
群の4つのレンズ群を有した望遠型のズームレンズにお
いて、第2群を光軸と垂直方向に移動させて防振を行っ
ている。
For example, in Japanese Patent Laid-Open Publication No. Hei 5-232410, the first to fourth refractive powers of positive, negative, positive, and positive refractive powers are sequentially described from the object side.
In a telephoto zoom lens having four lens groups, the second group is moved in a direction perpendicular to the optical axis to perform image stabilization.

【0005】又、特開平7-152002号公報では、物体側よ
り順に負、正、負、そして正の屈折力の第1〜第4群の
4つのレンズ群を有したズームレンズにおいて第3群を
光軸と垂直方向に移動させて防振を行っている。
In Japanese Patent Application Laid-Open No. 7-152002, a third lens unit of a zoom lens having four lens units of first to fourth units having negative, positive, negative, and positive refractive powers in order from the object side is disclosed. Is moved in the direction perpendicular to the optical axis to perform vibration isolation.

【0006】又、特開平7-199124号公報では正、負、
正、そして正の屈折力の4つのレンズ群より成る4群構
成の変倍光学系において、第3群全体を光軸と垂直方向
に振動させて防振を行っている。
In Japanese Patent Application Laid-Open No. 7-199124, positive, negative,
In a variable power optical system having a four-unit configuration including four lens units having positive and positive refractive power, the entire third unit is vibrated in a direction perpendicular to the optical axis to perform image stabilization.

【0007】[0007]

【発明が解決しようとする課題】一般に、撮影系の一部
のレンズを光軸に対して垂直方向に平行偏心させて防振
を行なう防振光学系においては、防振の為に特別な光学
系は要しないという利点がある。
Generally, in a vibration-proof optical system for performing vibration reduction by decentering some lenses of a photographing system in a direction perpendicular to the optical axis, a special optical system is used for vibration reduction. The advantage is that no system is required.

【0008】しかしながら、この方式は移動させるレン
ズの為の空間を必要とし、又防振時における偏心収差の
発生量が多くなってくるという問題点がある。
However, this method requires a space for a lens to be moved and has a problem that the amount of eccentric aberration generated during image stabilization increases.

【0009】本発明は、変倍光学系の一部を構成する比
較的小型軽量のレンズ群を光軸と垂直方向に移動させ
て、該変倍光学系が振動(傾動)したときの画像のブレ
を補正する際、各レンズ群のレンズ構成を適切に構成す
ることにより、装置全体の小型化、機構上の簡素化及び
駆動手段の負荷の軽減化を図りつつ該レンズ群を偏心さ
せたときの偏心発生量を少なく抑え、偏心収差を良好に
補正した広角端の撮影画角73度程度、変倍比3程度の
防振機能を有した変倍光学系の提供を目的とする。
According to the present invention, a relatively small and light lens group constituting a part of a variable power optical system is moved in a direction perpendicular to the optical axis, and an image obtained when the variable power optical system vibrates (tilts). When correcting blur, when the lens units of each lens unit are decentered while appropriately reducing the load on the driving unit by reducing the size of the entire apparatus, simplifying the mechanism, and reducing the load on the driving unit It is an object of the present invention to provide a variable power optical system having an anti-shake function with a shooting angle of view of about 73 degrees at the wide-angle end and a zoom ratio of about 3, in which the amount of eccentricity is reduced and the eccentric aberration is satisfactorily corrected.

【0010】[0010]

【課題を解決するための手段】本発明の防振機能を有し
た変倍光学系は (1−1)物体側より順に負の屈折力の第1群、正の屈
折力の第2群、負の屈折力の第3群、そして正の屈折力
の第4群の4つのレンズ群を有し、各レンズ群間隔を変
えて変倍を行い、該第3群を複数のレンズ群より構成
し、このうち一部のレンズ群SLを光軸と垂直方向に移
動させて該変倍光学系が振動したときの撮影画像のブレ
を補正し、第i群と第i+1群の広角端と望遠端におけ
る間隔をDiとしたとき D1W>D1T ・・・(1) D2W<D2T ・・・(2) D3W>D3T ・・・(3) なる条件を満足することである。
According to the present invention, a variable power optical system having an image stabilizing function includes: (1-1) a first unit having a negative refractive power, a second unit having a positive refractive power, The zoom lens has four lens units, a third unit having a negative refractive power and a fourth unit having a positive refractive power, and performs zooming by changing the distance between the lens units. The third unit is composed of a plurality of lens units. Then, by moving some of the lens units SL in the direction perpendicular to the optical axis to correct the blur of the photographed image when the variable power optical system vibrates, the wide-angle end of the i-th unit and the i + 1-th unit and the telephoto end are corrected. D1W> D1T (1) D2W <D2T (2) D3W> D3T (3) When the distance at the end is Di.

【0011】[0011]

【発明の実施の形態】図1〜図7は本発明の後述する数
値実施例1〜7の広角端のレンズ断面図である。
1 to 7 are sectional views of a lens at a wide angle end according to Numerical Examples 1 to 7 of the present invention which will be described later.

【0012】図中、L1は負の屈折力の第1群、L2は
正の屈折力の第2群、L3は負の屈折力の第3群、L4
は正の屈折力の第4群である。第3群L3は負の屈折力
の第3a群L3aと負の屈折力の第3b群L3bの2つ
のレンズ群を有している。SPは絞りである。
In the figure, L1 is a first lens unit having a negative refractive power, L2 is a second lens unit having a positive refractive power, L3 is a third lens unit having a negative refractive power, and L4 is a negative lens.
Denotes a fourth group having a positive refractive power. The third lens unit L3 has two lens units, a third lens unit L3a having a negative refractive power and a third lens unit L3b having a negative refractive power. SP is an aperture.

【0013】図1、図4、図5、図6の数値実施例1、
4、5、6では広角端から望遠端への変倍に際して矢印
のように第1群L1を像面側に凸状の軌跡を有するよう
に移動させ、又、第2群L2〜第4群L4を物体側へ移
動させている。
Numerical embodiments 1 of FIGS. 1, 4, 5 and 6
At the time of zooming from the wide-angle end to the telephoto end, the first unit L1 is moved so as to have a locus convex on the image surface side as indicated by an arrow in the zoom lens units 4, 5, and 6, and the second unit L2 to the fourth unit L4 is moved to the object side.

【0014】このうち図1、図5の数値実施例1、5で
は変倍に際して第3a群と第3b群との間隔も変化させ
て、変倍の際の収差変動を良好に補正している。
In the numerical examples 1 and 5 shown in FIGS. 1 and 5, the distance between the third lens unit and the third lens unit is also changed at the time of zooming, and the aberration fluctuation at the time of zooming is satisfactorily corrected. .

【0015】図2、図3、図7の数値実施例2、3、7
では、広角端から望遠端への変倍に際して第3群を固定
とし、第1群L1を像面側に凸状の軌跡を有するように
移動させ、第2群と第4群を物体側へ移動させている。
尚、各数値実施例においては、第2群と第4群は一体的
に移動させている。
Numerical Examples 2, 3, and 7 in FIGS. 2, 3, and 7
In zooming from the wide-angle end to the telephoto end, the third lens unit is fixed, the first lens unit L1 is moved so as to have a convex locus on the image surface side, and the second lens unit and the fourth lens unit are moved toward the object side. It is moving.
In each numerical example, the second unit and the fourth unit are moved integrally.

【0016】変倍の際して、絞りSPは第3群L3と一
体的に移動させている。尚、図中、Pは設計上用いたダ
ミーの平面を表している。
During zooming, the stop SP is moved integrally with the third lens unit L3. In the drawing, P represents a dummy plane used for design.

【0017】本実施形態においては第3群L3を複数の
レンズ群(図では2つのレンズ群であるが2つ以上のレ
ンズ群であっても良い)より構成し、このうち平行偏心
敏感度の大きいレンズ群SLを光軸と垂直方向に移動さ
せて変倍光学系が振動したときの像ブレを補正してい
る。
In the present embodiment, the third lens unit L3 is composed of a plurality of lens units (two lens units in the figure, but two or more lens units may be used). The large lens group SL is moved in the direction perpendicular to the optical axis to correct image blurring when the variable power optical system vibrates.

【0018】図1〜図4の数値実施例1〜4では第3b
群を実質光軸方向に垂直に移動して防振を行っており、
図5〜図7の数値実施例5〜7では第3a群を実質光軸
方向に垂直に移動して防振を行っている。図1〜図7の
数値実施例1〜7は有効画面寸法(イメージサークル)
φはφ=43.27である。尚、防振時には絞りSPは
固定である。
In the numerical embodiments 1 to 4 shown in FIGS.
The group is moved substantially perpendicular to the optical axis direction to perform vibration isolation,
In Numerical Examples 5 to 7 shown in FIGS. 5 to 7, the 3a group is moved substantially perpendicularly to the optical axis direction to perform image stabilization. Numerical embodiments 1 to 7 in FIGS. 1 to 7 are effective screen dimensions (image circles).
φ is 43.27. The diaphragm SP is fixed during vibration isolation.

【0019】本実施形態では、絞りSPを第3群L3の
直前に配置し、変倍と共に第3群と一体的に移動させる
ことにより可動レンズ群による収差変動を少なくしてい
る。又、絞りより前方のレンズ群の間隔を望遠側にいく
に従って短くすることにより前玉レンズ径の縮小化を容
易に達成している。フォーカスは第1群を移動させて行
っているが、他のレンズ群を用いて行っても良い。
In the present embodiment, the stop SP is disposed immediately before the third lens unit L3, and is moved together with the third lens unit during zooming, thereby reducing aberration fluctuations caused by the movable lens unit. Further, by reducing the distance between the lens groups in front of the stop toward the telephoto side, the diameter of the front lens can be easily reduced. Focusing is performed by moving the first group, but may be performed using another lens group.

【0020】本発明の防振機能を有した変倍光学系は、
変倍及び防振の際の各レンズ群を前述の如く設定すると
ともに条件式(1)〜(3)を満足させることによって
所定の変倍比を効果的に確保しつつ、防振時に発生する
偏心収差を少なくして標準時(防振しないとき)と防振
時に良好なる光学性能を得ている。
The variable power optical system having the vibration proof function of the present invention comprises:
By setting the respective lens groups during zooming and image stabilization as described above, and satisfying conditional expressions (1) to (3), a predetermined zoom ratio is effectively ensured, and this occurs during image stabilization. Good optical performance is obtained at the standard time (when no image stabilization is performed) and at the time of image stabilization by reducing eccentric aberration.

【0021】次に前述の各条件式の技術的な意味につい
て説明する。
Next, the technical meaning of each of the above conditional expressions will be described.

【0022】条件式(1)〜(3)は広角端から望遠端
への変倍に際して所定の屈折力を有する各レンズ群の移
動条件を設定したものであり、これによって、所定の変
倍比を効果的に確保しつつ、レンズ系全体の小型化を図
っている。
Conditional expressions (1) to (3) set the moving conditions of each lens unit having a predetermined refractive power when changing the magnification from the wide-angle end to the telephoto end. The size of the entire lens system is reduced while effectively ensuring

【0023】本発明の防振機能を有した変倍光学系は以
上のような条件を満足することにより実現されるが、更
にレンズ全長の短縮を図りつつ、良好な光学性能を達成
する為には、以下の条件のうち少なくとも1つを満足す
ることが望ましい。
The variable power optical system having the image stabilizing function of the present invention is realized by satisfying the above conditions. However, in order to further reduce the overall length of the lens and achieve good optical performance. Preferably satisfies at least one of the following conditions.

【0024】(a−1)前記第3群の物体側、又は像面
側、又はレンズ系中に防振の際に固定の絞りを設けてい
ることである。
(A-1) A fixed stop is provided on the object side or image plane side of the third lens unit or in the lens system at the time of image stabilization.

【0025】これによって第1群と第4群のレンズ外径
を小さくするとともにバランス良く収差補正を行ってい
る。
Thus, the outer diameters of the first and fourth lens units are reduced, and aberrations are corrected in a well-balanced manner.

【0026】(a−2)前記第3群を負の屈折力の第3
a群と負の屈折力の第3b群の2つのレンズ群より構成
し、このうち平行偏心敏感度の絶対値の大きい方のレン
ズ群で防振を行っていることである。
(A-2) The third lens unit is a third lens unit having a negative refractive power.
It is composed of two lens groups, a group and a 3b group having a negative refractive power. Of these, the lens group having the larger absolute value of the parallel eccentric sensitivity is used for image stabilization.

【0027】これにより変倍光学系が振動したときの撮
影画像のブレを効果的に補正している。
This effectively corrects the blur of the photographed image when the variable power optical system vibrates.

【0028】(a−3)前記第2群と第4群は変倍の際
に一体的に移動していることである。
(A-3) The second and fourth units are integrally moved during zooming.

【0029】これによって所定の変倍比を確保しつつ、
変倍機構の簡素化を図っている。
With this, while securing a predetermined zoom ratio,
The zoom mechanism is simplified.

【0030】(a−4)前記第3群を負の屈折力の第3
a群と負の屈折力の第3b群の2つのレンズ群を有し、
該第3a群と第3b群の平行偏心敏感度を各々TSa、
TSbとしたとき |TSa|<|TSb|・・・(4) を満足し、該第3b群で防振を行ったことである。
(A-4) The third lens unit is a third lens unit having a negative refractive power.
a lens group having a negative refractive power and a third lens group having a negative refractive power;
The parallel eccentricity sensitivities of the groups 3a and 3b are respectively represented by TSa,
When TSb is satisfied, | TSa | <| TSb | (4) is satisfied, and anti-vibration is performed in the third group b.

【0031】(a−5)前記第3群を負の屈折力の第3
a群と負の屈折力の第3b群の2つのレンズ群を有し、
該第3a群と第3b群の平行偏心敏感度を各々TSa、
TSbとしたとき |TSb|<|TSa|・・・(5) を満足し、該第3a群で防振を行ったことである。
(A-5) The third lens unit is converted to a third lens having a negative refractive power.
a lens group having a negative refractive power and a third lens group having a negative refractive power;
The parallel eccentricity sensitivities of the groups 3a and 3b are respectively represented by TSa,
When TSb is satisfied, | TSb | <| TSa | (5) is satisfied, and anti-vibration is performed by the third lens unit.

【0032】防振用の可動レンズ群(防振レンズ群)の
防振のための駆動機構を小型化し、消費エネルギーを少
なく押さえるためには、防振レンズ群には平行偏心敏感
度が大きく、レンズ重量が軽いことが必要である。
In order to reduce the size of the drive mechanism for the image stabilizing movable lens group (anti-vibration lens group) and to reduce energy consumption, the anti-vibration lens group has a high parallel eccentric sensitivity. It is necessary that the lens weight is light.

【0033】ここで平行偏心敏感度とは、光軸と垂直方
向のレンズ群の移動量に対する像面上での像点の移動量
の比である。
Here, the parallel eccentric sensitivity is the ratio of the amount of movement of the image point on the image plane to the amount of movement of the lens group in the direction perpendicular to the optical axis.

【0034】一般的に、第i群の平行偏心敏感度TSi
は、各レンズ群の倍率をβiとしたとき、 TSi=(1−βi)βi+1……βn で計算される。
Generally, the parallel eccentricity sensitivity TSi of the i-th group
Is calculated as TSi = (1−βi) βi + 1... Βn, where βi is the magnification of each lens group.

【0035】本発明では条件式(4)又は(5)を満足
するレンズ群を防振レンズ群とし、即ち平行偏心敏感度
の高いレンズ群を防振レンズ群として、これによって防
振を効果的に行っている。
In the present invention, a lens group satisfying the conditional expression (4) or (5) is defined as an anti-vibration lens group, that is, a lens group having high parallel decentering sensitivity is defined as an anti-vibration lens group. Have gone to.

【0036】(a−6)前記第3a群と第3b群の球面
収差係数の符号が等しいことである。
(A-6) The third group and the third group have the same spherical aberration coefficient sign.

【0037】本発明に於いては、前記第3群を負の屈折
力の第3a群と負の屈折力の第3b群に分割し、各々の
球面収差係数の符号が同じになるように収差を分担する
ことで、前記第3a群、又は、前記第3b群を光軸と垂
直方向に移動して防振したとき、前記第3群全体を光軸
と垂直方向に移動して防振したときに比べ、防振時の光
学性能を良好にしている。
In the present invention, the third lens unit is divided into a third lens unit having a negative refractive power and a third lens unit having a negative refractive power. When the 3a group or the 3b group was moved in the direction perpendicular to the optical axis to prevent vibration, the entire third group was moved in the direction perpendicular to the optical axis to prevent vibration. The optical performance at the time of anti-vibration is improved as compared with when.

【0038】(a−7)物体側より順に、前記第1群は
像面側に凹面を向けたメニスカス状の負レンズ、像面側
に凹面を向けた負レンズ、そして物体側に凸面を向けた
メニスカス状の正レンズより成り、前記第2群は像面側
に凹面を向けたメニスカス状の負レンズ、両レンズ面が
凸面の正レンズ、そして物体側に凸面を向けた正レンズ
より成り、前記第3群は負の屈折力の第3a群と負の屈
折力の第3b群より成り、該第3a群は物体側に凹面を
向けたメニスカス状の負レンズ、又は正レンズと負レン
ズを接合した負の貼合わせレンズから成り、該第3b群
は正レンズと負レンズとを接合した負の貼合わせレンズ
より成り、前記第4群は像面側に凸面を向けた正レンズ
と、両レンズ面が凸面の正レンズそして負レンズより成
っていることである。
(A-7) In order from the object side, the first lens unit includes a negative meniscus lens having a concave surface facing the image surface, a negative lens having a concave surface facing the image surface, and a convex surface facing the object surface. The second group consists of a meniscus-shaped negative lens with a concave surface facing the image plane side, a positive lens with both lens surfaces convex, and a positive lens with a convex surface facing the object side. The third lens unit includes a third lens unit having a negative refractive power and a third lens unit having a negative refractive power. The third lens unit includes a meniscus negative lens having a concave surface facing the object side, or a positive lens and a negative lens. The third group includes a negative cemented lens in which a positive lens and a negative lens are cemented, and the fourth group includes a positive lens having a convex surface facing the image surface side. The lens surface consists of a convex positive lens and a negative lens. .

【0039】全体の小型化、機構上の簡素化及び駆動手
段の負荷の軽減化を図りつつ該レンズ群を偏心させたと
きの偏心発生量を少なく抑え、偏心収差を良好に補正し
た防振機能を有した変倍光学系を達成している。
An anti-vibration function in which the amount of eccentricity generated when the lens group is decentered is reduced and the eccentric aberration is satisfactorily corrected, while reducing the overall size, simplifying the mechanism, and reducing the load on the driving means. Is achieved.

【0040】(a−8)前記レンズ群SLの望遠端での
平行偏心敏感度をTS、第i群の焦点距離をfi、全系
の広角端と望遠端での焦点距離を各々fW、fT、全系
の望遠端でのFナンバーをFNOt、広角端から望遠端
への変倍における前記第1群と第2群の間隔変化量と前
記第2群と第3群の間隔変化量を各々Δ12、Δ23、
有効画面の寸法をφとしたとき 0.5<φ×|TS|/fT ・・・(6)
(A-8) The parallel eccentric sensitivity at the telephoto end of the lens unit SL is TS, the focal length of the i-th unit is fi, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fW and fT, respectively. The F number at the telephoto end of the entire system is FNot, and the distance between the first and second groups and the distance between the second and third groups during zooming from the wide-angle end to the telephoto end are respectively Δ12, Δ23,
When the size of the effective screen is φ 0.5 <φ × | TS | / fT (6)

【0041】[0041]

【数2】 1.3< f2・FNot/fT <3 ・・・(8) 1.2< |f3|/f2 <2 ・・・(9) 1.1< f4/f2 <4 ・・・(10) 0.15< |Δ23/Δ12| <0.55・・・(11) なる条件を満足することである。(Equation 2) 1.3 <f2 · FNot / fT <3 (8) 1.2 <| f3 | / f2 <2 (9) 1.1 <f4 / f2 <4 (10) 0 .15 <| Δ23 / Δ12 | <0.55 (11)

【0042】条件式(6)は前述の平行偏心敏感度の絶
対値の大きさを規定するものであり、下限値を超えて防
振レンズ群の平行偏心敏感度が小さくなると、防振のた
めの駆動機構が大きくなり好ましくない。そして、防振
群の重量を軽くするために開口絞りは、防振時、光軸と
垂直方向に固定するのが良い。
Conditional expression (6) defines the magnitude of the absolute value of the parallel eccentric sensitivity described above. If the parallel eccentric sensitivity of the image stabilizing lens unit becomes smaller than the lower limit value, the condition for image stabilization is obtained. Is undesirably large. In order to reduce the weight of the image stabilizing unit, the aperture stop is preferably fixed in a direction perpendicular to the optical axis during image stabilization.

【0043】条件式(7)、(8)は負、正、負、正の
屈折力の4つのレンズ群を有するズームレンズに於い
て、所望のスペックを達成しつつ、レンズ系全体のコン
パクト化を図りつつ良好な光学性能を満足するためのも
のである。
Conditional Expressions (7) and (8) are for a zoom lens having four lens units of negative, positive, negative, and positive refractive powers, while achieving desired specifications and miniaturizing the entire lens system. While satisfying good optical performance.

【0044】条件式(7)の下限値を超えて第1群の負
の屈折力が強くなると良好なる収差補正が困難となり、
又、上限値を超えて第1群の負の屈折力が弱くなると、
レンズ系が大きくなり好ましくない。条件式(8)の下
限値を超えて第2群の正の屈折力が強くなるとレンズ全
長の短縮には好ましいが、第2群で発生する諸収差が増
大しこれをバランス良く補正することが困難となり、
又、上限値を超えるとレンズ全長が長くなり好ましくな
い。
If the negative refractive power of the first lens unit is increased beyond the lower limit value of the conditional expression (7), it becomes difficult to achieve satisfactory aberration correction.
Also, when the negative refractive power of the first group is weakened beyond the upper limit,
The lens system is undesirably large. If the positive refractive power of the second lens unit is increased beyond the lower limit value of conditional expression (8), it is preferable to shorten the overall length of the lens. Becomes difficult,
On the other hand, if the value exceeds the upper limit, the entire length of the lens is undesirably increased.

【0045】条件式(9)、(10)は各々第2群の焦
点距離に対する第3群、第4群の焦点距離の比を規定す
るものである。本発明では、第1群で負の屈折力の前群
を構成し、第2群、第3群、第4群で正の屈折力の後群
を構成しており、条件式(2)、(3)のごとく変倍時
に間隔を変化させることで後群全体の前側主点の位置を
広角端より望遠端の方が物体側に出るようにすることで
後群のレンズ群の移動量にたいして変倍効果を大きくす
る構成としている。従って条件式(9)、(10)の下
限値を超えて前記第3群、第4群の屈折力が強くなると
レンズ系のコンパクト化には有利だが、前記レンズ群で
発生する諸収差が大きくなりこれを他のレンズ群でパラ
ンス良く補正することが困難となり、又、上限値を超え
て屈折力が弱くなると、レンズ系が大きくなってしま
う。条件式(11)の下限値を超えて広角端から望遠端
へ変倍する際の第2群と第3群との間隔変化量が第1群
と第2群との間隔変化量に対して小さくなると、負と正
の屈折力の2群ズームレンズに近くなり、多群化してレ
ンズ系のコンパクト化を図った効果が小さくなり、又、
上限値を超えると第4群のレンズ外径が大きくなり好ま
しくない。
Conditional expressions (9) and (10) define the ratios of the focal lengths of the third and fourth lens units to the focal length of the second lens unit, respectively. In the present invention, the first group forms a front group having a negative refractive power, and the second group, the third group, and the fourth group form a rear group having a positive refractive power. By changing the distance at the time of zooming as in (3), the position of the front principal point of the entire rear unit is set so that the telephoto end is closer to the object side than the wide-angle end. It is configured to increase the zooming effect. Therefore, if the refractive powers of the third and fourth units are increased beyond the lower limits of the conditional expressions (9) and (10), it is advantageous for downsizing of the lens system, but various aberrations generated in the lens unit are large. It becomes difficult to correct this with a good balance with other lens groups, and if the refractive power is weakened beyond the upper limit, the lens system becomes large. When the magnification is changed from the wide-angle end to the telephoto end beyond the lower limit value of the conditional expression (11), the distance between the second and third lens groups is smaller than the distance between the first and second lens groups. When the size becomes smaller, the zoom lens becomes closer to a two-group zoom lens having negative and positive refractive powers, and the effect of increasing the number of groups to make the lens system more compact becomes smaller.
When the value exceeds the upper limit, the outer diameter of the lens of the fourth group is undesirably large.

【0046】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass.

【0047】又、前述の各条件式と数値実施例における
諸数値との関係を表−1に示す。 数値実施例 1 f=29.7〜82.0 FNo=1: 3.8 〜 5.9 2ω=72.1 °〜29.6° r 1= 49.437 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2= 24.108 d 2= 6.12 r 3= 229.380 d 3= 1.60 n 2=1.77250 ν 2=49.6 r 4= 32.559 d 4= 2.00 r 5= 29.291 d 5= 3.30 n 3=1.84666 ν 3=23.8 r 6= 57.493 d 6= 可変 r 7= 34.744 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 16.751 d 8= 4.20 n 5=1.65844 ν 5=50.9 r 9= -775.560 d 9= 0.12 r10= 35.455 d10= 2.60 n 6=1.62230 ν 6=53.2 r11= -131.727 d11= 可変 r12= 絞り d12= 1.20 r13= -68.858 d13= 1.20 n 7=1.69680 ν 7=55.5 r14= -177.646 d14= 可変 r15= -56.646 d15= 2.60 n 8=1.74077 ν 8=27.8 r16= -14.714 d16= 1.00 n 9=1.67000 ν 9=51.6 r17= 50.310 d17= 可変 r18= 838.252 d18= 3.50 n10=1.53113 ν10=62.5 r19= -26.182 d19= 0.15 r20= 70.444 d20= 3.20 n11=1.81554 ν11=44.4 r21= -50.796 d21= 2.00 r22= -26.355 d22= 1.40 n12=1.80518 ν12=25.4 r23= 185.868 d23=可変 r24= ∞ 焦点距離 29.73 49.22 81.95 可変間隔 d 6 38.05 15.65 2.82 d 11 2.00 4.37 7.93 d 14 4.04 4.63 5.51 d 17 10.47 7.51 3.07 d 23 0.00 12.16 30.41 数値実施例2 f=29.7〜80.5 FNo=1: 4.1 〜 5.9 2ω=72.1 °〜30.1° r 1= 57.062 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2= 30.101 d 2= 4.98 r 3= 347.672 d 3= 1.60 n 2=1.77250 ν 2=49.6 r 4= 31.249 d 4= 2.00 r 5= 2 9.480 d 5= 3.30 n 3=1.84666 ν 3=23.8 r 6= 50.850 d 6= 可変 r 7= 39.842 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 18.412 d 8= 3.90 n 5=1.65844 ν 5=50.9 r 9= -105.529 d 9= 0.12 r10= 33.533 d10= 2.40 n 6=1.62230 ν 6=53.2 r11= -1328.094 d11=可変 r12= 絞り d12= 1.20 r13= -59.951 d13= 1.20 n 7=1.69680 ν 7=55.5 r14= -67.511 d14=可変 r15= -59.040 d15= 2.20 n 8=1.74077 ν 8=27.8 r16= -16.515 d16= 1.00 n 9=1.67000 ν 9=51.6 r17= 40.150 d17=可変 r18= -185.936 d18= 3.80 n10=1.53113 ν10=62.5 r19= -24.705 d19= 0.12 r20= 70.440 d20= 3.60 n11=1.81554 ν11=44.4 r21= -60.474 d21= 2.00 r22= -29.282 d22= 1.40 n12=1.80518 ν12=25.4 r23= 393.843 d23=可変 r24= ∞ 焦点距離 29.75 48.86 80.51 可変間隔 d 6 37.56 14.18 0.84 d 11 2.00 8.01 17.02 d 14 1.42 1.42 1.42 d 17 17.76 11.75 2.74 d 23 0.00 6.01 15.02 数値実施例3 f=29.3〜81.8 FNo=1: 4.1 〜 5.9 2ω=73.0 °〜29.6 r 1= 56.005 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2= 27.169 d 2= 5.91 r 3= 1377.209 d 3= 1.60 n 2=1.77250 ν 2=49.6 r 4= 35.209 d 4= 0.99 r 5= 31.032 d 5= 3.30 n 3=1.84666 ν 3=23.8 r 6= 63.597 d 6= 可変 r 7= 44.337 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 19.495 d 8= 3.60 n 5=1.65844 ν 5=50.9 r 9= -157.570 d 9= 0.12 r10= 34.770 d10= 2.20 n 6=1.62230 ν 6=53.2 r11= -178.779 d11= 可変 r12= 絞り d12= 1.20 r13= -52.178 d13= 1.20 n 7=1.69680 ν 7=55.5 r14= -58.774 d14= 可変 r15= -51.428 d15= 2.10 n 8=1.74077 ν 8=27.8 r16= -15.987 d16= 1.00 n 9=1.67000 ν 9=51.6 r17= 44.862 d17= 可変 r18= 228.604 d18= 4.60 n10=1.58913 ν10=61.2 r19= -28.140 d19= 0.12 r20= 81.167 d20= 3.40 n11=1.81554 ν11=44.4 r21= -74.381 d21= 2.00 r22= -30.533 d22= 1.40 n12=1.80518 ν12=25.4 r23= 327.366 d23= 可変 r24= ∞ 焦点距離 29.26 49.01 81.75 可変間隔 d 6 37.81 14.16 1.13 d 11 2.00 9.02 19.54 d 14 2.82 2 .82 2.82 d 17 18.22 12.38 3.62 d 23 0.00 5.84 14.60 数値実施例 4 f=29.3〜81.9 FNo=1: 3.8 〜 5.9 2ω=72.8 °〜29.6° r 1= 49.191 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2= 23.364 d 2= 6.39 r 3= 267.493 d 3= 1.60 n 2=1.77250 ν2 =49.6 r 4= 33.209 d 4= 1.40 r 5= 28.731 d 5= 3.50 n 3=1.84666 ν 3=23.8 r 6= 58.081 d 6= 可変 r 7= 34.385 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 16.757 d 8= 4.20 n 5=1.65844 ν 5=50.9 r 9= -793.698 d 9= 0.12 r10= 34.653 d10= 2.60 n 6=1.62230 ν 6=53.2 r11= -166.093 d11= 可変 r12= 絞り d12= 1.00 r13= -75.178 d13= 1.20 n 7=1.69680 ν 7=55.5 r14= -184.322 d14= 可変 r15= -58.080 d15= 2.60 n 8=1.74077 ν 8=27.8 r16= -14.553 d16= 1.00 n 9=1.67000 ν 9=51.6 r17= 47.537 d17= 可変 r18= 929.237 d18= 3.20 n10=1.53113 ν10=62.5 r19= -26.715 d19= 0.15 r20= 67.346 d20= 3.20 n11=1.81554 ν11=44.4 r21= -45.599 d21= 1.70 r22= -26.081 d22= 1.20 n12=1.80518 ν12=25.4 r23= 161.558 d23= 可変 r24= ∞ 焦点距離 29.35 48.93 81.94 可変間隔 d 6 37.49 15.51 3.11 d 11 2.00 4.98 9.46 d 14 4.72 4.72 4.72 d 17 9.75 6.77 2.29 d 23 0.00 12.34 30.85 数値実施例 5 f=29.1〜82.0 FNo=1: 4.1 〜 5.9 2ω=73.3 °〜29.6° r 1= 45.588 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2= 22.345 d 2= 7.04 r 3= -4405.288 d 3= 1.60 n 2=1.69819 ν2 =55.7 r 4= 35.358 d 4= 0.86 r 5= 28.851 d 5= 3.28 n 3=1.84666 ν 3=23.8 r 6= 56.419 d 6= 可変 r 7= 31.152 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 17.273 d 8= 4.50 n 5=1.62280 ν 5=57.0 r 9= -74.682 d 9= 0.12 r10= 31.080 d10= 2.30 n 6=1.55963 ν 6=61.2 r11= 245.938 d11= 可変 r12= 絞り d12= 1.20 r13= -53.021 d13= 2.20 n 7=1.80610 ν 7=40.9 r14= -15.900 d14= 1.00 n 8=1.71300 ν 8=53.9 r15= 52.574 d15= 可変 r16= 787.123 d16= 3.89 n 9=1.58267 ν 9=46.4 r17= -10.548 d17= 0.90 n10=1.60311 ν10=60.6 r18= 185.931 d18= 可変 r19= 697.474 d19= 3.30 n11=1.60311 ν11=60.6 r20= -26.991 d20= 0.12 r21= 62.582 d21= 3.00 n12=1.78590 ν12=44.2 r22= -56.600 d22= 1.70 r23= -27.251 d23= 1.20 n13=1.72825 ν13=28.5 r24= 69.030 d24= 可変 r25= ∞ 焦点距離 29.08 48.67 81.96 可変間隔 d 6 36.02 13.84 1.26 d 11 2.00 6.09 12.21 d 15 1.37 1.52 1.75 d 18 12.37 8.13 1.77 d 24 0.00 9.69 24.23 数値実施例 6 f=29.3〜81.5 FNo=1: 4.1 〜 5.9 2ω=72.9 °〜29.7° r 1= 46.788 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2= 22.713 d 2= 7.07 r 3= -986.969 d 3= 1.60 n 2=1.69819 ν2 =55.7 r 4= 36.350 d 4= 0.98 r 5= 29.696 d 5= 3.18 n 3=1.84666 ν 3=23.8 r 6= 57.986 d 6= 可変 r 7= 32.266 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 17.705 d 8= 4.50 n 5=1.62280 ν 5=57.0 r 9= -67.077 d 9= 0.12 r10= 30.777 d10= 2.30 n 6=1.55963 ν 6=61.2 r11= 185.020 d11= 可変 r12= -52.632 d12= 2.20 n 7=1.80610 ν 7=40.9 r13= -16.371 d13= 1.00 n 8=1.71300 ν 8=53.9 r14= 55.537 d14= 可変 r15= 絞り d15= 1.50 r16= 75.396 d16= 4.11 n 9=1.58267 ν 9=46.4 r17= -11.812 d17= 0.90 n10=1.60311 ν10=60.6 r18= 71.039 d18= 可変 r19= -867.782 d19= 3.30 n11=1.60311 ν11=60.6 r20= -28.083 d20= 0.12 r21= 54.314 d21= 3.00 n12=1.78590 ν12=44.2 r22= -53.588 d22= 1.70 r23= -28.017 d23= 1.20 n13=1.72825 ν13=28.5 r24= 53.239 d24= 可変 r25= ∞ 焦点距離 29.32 48.74 81.50 可変間隔 d 6 35.40 13.69 1.20 d 11 2.00 6.43 13.08 d 14 0.93 0.93 0.93 d 18 12.73 8.30 1.65 d 24 -0.06 9.26 23.24 数値実施例 7 f=29.7〜80.9 FNo=1: 4.1 〜 5.9 2ω=72.2 °〜30.0° r 1= 64.981 d 1= 1.70 n 1=1.88300 ν 1=40.8 r 2 = 24.248 d 2 = 6.38 r 3= -328.420 d 3= 1.60 n 2=1.69819 ν2 =55.7 r 4= 46.286 d 4= -0.14 r 5= 31.889 d 5= 3.42 n 3=1.84666 ν 3=23.8 r 6= 76.947 d 6= 可変 r 7= 39.392 d 7= 1.10 n 4=1.84666 ν 4=23.8 r 8= 19.702 d 8= 4.00 n 5=1.62280 ν 5=57.0 r 9= -67.926 d 9= 0.12 r10= 29.275 d10= 2.20 n 6=1.55963 ν 6=61.2 r11= 295.264 d11= 可変 r12= 絞り d12= 1.20 r13= -56.618 d13= 2.20 n 7=1.80610 ν 7=40.9 r14= -17.247 d14= 1.00 n 8=1.71300 ν 8=53.9 r15= 46.076 d15= 可変 r16= 76.588 d16= 3.76 n 9=1.58267 ν 9=46.4 r17= -11.888 d17= 0.90 n10=1.60311 ν10=60.6 r18= 71.360 d18= 可変 r19= 141.854 d19= 4.20 n11=1.65160 ν11=58.5 r20= -27.702 d20= 0.12 r21= 57.101 d21= 3.00 n12=1.78590 ν12=44.2 r22= -130.566 d22= 2.20 r23= -29.600 d23= 1.20 n13=1.72825 ν13=28.5 r24= 66.685 d24= 可変 r25= ∞ 焦点距離 29.69 48.79 80.87 可変間隔 d 6 36.27 13.89 1.01 d 11 2.00 7.93 16.83 d 15 1.61 1.61 1.61 d 18 16.37 10.44 1.54 d 24 2.00 7.93 16.83
Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples. Numerical example 1 f = 29.7 to 82.0 FNo = 1: 3.8 to 5.9 2ω = 72.1 ° to 29.6 ° r 1 = 49.437 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 24.108 d 2 = 6.12 r 3 = 229.380 d 3 = 1.60 n 2 = 1.77250 ν 2 = 49.6 r 4 = 32.559 d 4 = 2.00 r 5 = 29.291 d 5 = 3.30 n 3 = 1.84666 ν 3 = 23.8 r 6 = 57.493 d 6 = Variable r 7 = 34.744 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 16.751 d 8 = 4.20 n 5 = 1.65844 ν 5 = 50.9 r 9 = -775.560 d 9 = 0.12 r10 = 35.455 d10 = 2.60 n 6 = 1.62230 ν 6 = 53.2 r11 = -131.727 d11 = Variable r12 = Aperture d12 = 1.20 r13 = -68.858 d13 = 1.20 n 7 = 1.69680 ν 7 = 55.5 r14 = -177.646 d14 = Variable r15 = -56.646 d15 = 2.60 n 8 = 1.74077 ν 8 = 27.8 r16 = -14.714 d16 = 1.00 n 9 = 1.67000 ν 9 = 51.6 r17 = 50.310 d17 = Variable r18 = 838.252 d18 = 3.50 n10 = 1.53113 ν10 = 62.5 r19 = -26.182 d19 = 0.15 r20 = 70.444 d20 = 3.20 n11 = 1.81554 ν11 = 44.4 r21 = -50.796 d21 = 2.00 r22 = -26.355 d22 = 1.40 n12 = 1.80518 ν12 = 25.4 r23 = 185.868 d23 = variable r24 = ∞ Focal length 29.73 49.22 81.95 Variable interval d 6 38.05 15.65 2.82 d 11 2.00 4.37 7.93 d 14 4.04 4.63 5.51 d 17 10.47 7.51 3. 07 d 23 0.00 12.16 30.41 Numerical example 2 f = 29.7 to 80.5 FNo = 1: 4.1 to 5.9 2ω = 72.1 ° to 30.1 ° r 1 = 57.062 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 30.101 d 2 = 4.98 r 3 = 347.672 d 3 = 1.60 n 2 = 1.77250 ν 2 = 49.6 r 4 = 31.249 d 4 = 2.00 r 5 = 2 9.480 d 5 = 3.30 n 3 = 1.84666 ν 3 = 23.8 r 6 = 50.850 d 6 = Variable r 7 = 39.842 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 18.412 d 8 = 3.90 n 5 = 1.65844 ν 5 = 50.9 r 9 = -105.529 d 9 = 0.12 r10 = 33.533 d10 = 2.40 n 6 = 1.62230 ν 6 = 53.2 r11 = -1328.094 d11 = Variable r12 = Aperture d12 = 1.20 r13 = -59.951 d13 = 1.20 n 7 = 1.69680 ν 7 = 55.5 r14 = -67.511 d14 = Variable r15 = -59.040 d15 = 2.20 n 8 = 1.74077 ν 8 = 27.8 r16 = -16.515 d16 = 1.00 n 9 = 1.67000 ν 9 = 51.6 r17 = 40.150 d17 = variable r18 = -185.936 d18 = 3.80 n10 = 1.53113 ν10 = 62.5 r19 = -24.705 d19 = 0.12 r20 = 70.440 d20 = 3.60 n11 = 1.81554 ν11 = 44.4 r21 = -60.474 d21 = 2.00 r22 = -29.282 d22 = 1.40 n12 = 1.80518 ν12 = 25.4 r23 = 393.843 d23 = variable r24 = 焦点 Focal length 29.75 48.86 80.51 Variable interval d 6 37.56 14.18 0.84 d 11 2.00 8.01 17.02 d 14 1.42 1.42 1.42 d 17 17.76 11.75 2.74 d 23 0.00 6.01 15.02 Numerical example 3 f = 29.3 to 81.8 FNo = 1: 4.1 to 5.9 2ω = 73.0 ° to 29.6 r 1 = 56.005 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 27.169 d 2 = 5.91 r 3 = 1377.209 d 3 = 1.60 n 2 = 1.77250 ν 2 = 49.6 r 4 = 35.209 d 4 = 0.99 r 5 = 31.032 d 5 = 3.30 n 3 = 1.84666 ν 3 = 23.8 r 6 = 63.597 d 6 = Variable r 7 = 44.337 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 19.495 d 8 = 3.60 n 5 = 1.65844 ν 5 = 50.9 r 9 = -157.570 d 9 = 0.12 r10 = 34.770 d10 = 2.20 n 6 = 1.62230 ν 6 = 53.2 r11 = -178.779 d11 = Variable r12 = Aperture d12 = 1.20 r13 = -52.178 d13 = 1.20 n 7 = 1.69680 ν 7 = 55.5 r14 = -58.774 d14 = Variable r15 = -51.428 d15 = 2.10 n 8 = 1.74077 ν 8 = 27.8 r16 = -15.987 d16 = 1.00 n 9 = 1.67000 ν 9 = 51.6 r17 = 44.862 d17 = Variable r18 = 228.604 d18 = 4.60 n10 = 1.58913 ν10 = 61.2 r19 = -28.140 d19 = 0.12 r20 = 81.167 d20 = 3.40 n11 = 1.81554 ν11 = 44.4 r21 = -74.381 d21 = 2.00 r22 = -30.533 d22 = 1.40 n12 = 1.80518 ν12 = 25.4 r23 = 327.366 d23 = Variable r24 = ∞ Focal length 29.26 49.01 81.75 Variable interval d 6 37.81 14.16 1.13 d 11 2.00 9 .02 19.54 d 14 2.82 2 .82 2.82 d 17 18.22 12.38 3.62 d 23 0.00 5.84 14.60 Numerical example 4 f = 29.3 to 81.9 FNo = 1: 3.8 to 5.9 2ω = 72.8 ° to 29.6 ° r 1 = 49.191 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 23.364 d 2 = 6.39 r 3 = 267.493 d 3 = 1.60 n 2 = 1.77250 ν2 = 49.6 r 4 = 33.209 d 4 = 1.40 r 5 = 28.731 d 5 = 3.50 n 3 = 1.84666 ν 3 = 23.8 r 6 = 58.081 d 6 = Variable r 7 = 34.385 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 16.757 d 8 = 4.20 n 5 = 1.65844 ν 5 = 50.9 r 9 =- 793.698 d 9 = 0.12 r10 = 34.653 d10 = 2.60 n 6 = 1.62230 ν 6 = 53.2 r11 = -166.093 d11 = Variable r12 = Aperture d12 = 1.00 r13 = -75.178 d13 = 1.20 n 7 = 1.69680 ν 7 = 55.5 r14 =- 184.322 d14 = Variable r15 = -58.080 d15 = 2.60 n 8 = 1.74077 ν 8 = 27.8 r16 = -14.553 d16 = 1.00 n 9 = 1.67000 ν 9 = 51.6 r17 = 47.537 d17 = Variable r18 = 929.237 d18 = 3.20 n10 = 1.53113 ν10 = 62.5 r19 = -26.715 d19 = 0.15 r20 = 67.346 d20 = 3.20 n11 = 1.81554 ν11 = 44.4 r21 = -45.599 d21 = 1.70 r22 = -26.081 d22 = 1.20 n12 = 1.80518 ν12 = 25.4 r23 = 161.558 d23 = Variable r24 = ∞ Focal length 29.35 48.93 81.94 Variable spacing d 6 37.49 15.51 3.11 d11 2.00 4.98 9.46 d14 4.72 4.72 4.72 d17 9.75 6.77 2.29 d23 0.00 12.34 30.85 Numerical example 5 f = 29.1 ~ 82.0 FNo = 1: 4.1 ~ 5.9 2ω = 73.3 ° ~ 29.6 ° r 1 = 45.588 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 22.345 d 2 = 7.04 r 3 = -4405.288 d 3 = 1.60 n 2 = 1.69819 ν2 = 55.7 r 4 = 35.358 d 4 = 0.86 r 5 = 28.851 d 5 = 3.28 n 3 = 1.84666 ν 3 = 23.8 r 6 = 56.419 d 6 = Variable r 7 = 31.152 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 17.273 d 8 = 4.50 n 5 = 1.62280 ν 5 = 57.0 r 9 = -74.682 d 9 = 0.12 r10 = 31.080 d10 = 2.30 n 6 = 1.55963 ν 6 = 61.2 r11 = 245.938 d11 = Variable r12 = Aperture d12 = 1.20 r13 = -53.021 d13 = 2.20 n 7 = 1.80610 ν 7 = 40.9 r14 = -15.900 d14 = 1.00 n 8 = 1.71300 ν 8 = 53.9 r15 = 52.574 d15 = Variable r16 = 787.123 d16 = 3.89 n 9 = 1.58267 ν 9 = 46.4 r17 = -10.548 d17 = 0.90 n10 = 1.60311 ν10 = 60.6 r18 = 185.931 d18 = Variable r19 = 697.474 d19 = 3.30 n11 = 1.60311 ν11 = 60.6 r20 = -26.991 d20 = 0.12 r21 = 62.582 d21 = 3.00 n12 = 1.78590 ν12 = 44.2 r22 = -56.600 d22 = 1.70 r23 = -27.251 d23 = 1.20 n13 = 1.72825 ν13 = 28.5 r24 = 69.030 d24 = variable r25 = ∞ focal length 29.08 48.67 81.96 variable distance d 6 36.02 13.84 1.26 d 11 2.00 6.09 12.21 d 15 1.37 1.52 1.75 d 18 12.37 8.13 1.77 d 24 0.00 9.69 24.23 Numerical example 6 f = 29.3 to 81.5 FNo = 1 : 4.1 to 5.9 2ω = 72.9 ° to 29.7 ° r 1 = 46.788 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 22.713 d 2 = 7.07 r 3 = -986.969 d 3 = 1.60 n 2 = 1.69819 ν2 = 55.7 r 4 = 36.350 d 4 = 0.98 r 5 = 29.696 d 5 = 3.18 n 3 = 1.84666 ν 3 = 23.8 r 6 = 57.986 d 6 = Variable r 7 = 32.266 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 17.705 d 8 = 4.50 n 5 = 1.62280 ν 5 = 57.0 r 9 = -67.077 d 9 = 0.12 r10 = 30.777 d10 = 2.30 n 6 = 1.55963 ν 6 = 61.2 r11 = 185.020 d11 = Variable r12 = -52.632 d12 = 2.20 n 7 = 1.80610 ν 7 = 40.9 r13 = -16.371 d13 = 1.00 n 8 = 1.71300 ν 8 = 53.9 r14 = 55.537 d14 = Variable r15 = Aperture d15 = 1.50 r16 = 75.396 d16 = 4.11 n 9 = 1.58267 ν 9 = 46.4 r17 = -11.812 d17 = 0.90 n10 = 1.60311 ν10 = 60.6 r18 = 71.039 d18 = Variable r19 = -867.782 d19 = 3.30 n11 = 1.60311 ν11 = 60.6 r20 = -28.083 d20 = 0.12 r21 = 54.314 d21 = 3.00 n12 = 1.78590 ν12 = 44.2 r22 = -53.588 d22 = 1.70 r23 = -28.017 d23 = 1.20 n13 = 1.72825 ν13 = 28.5 r24 = 53.239 d24 = Variable r25 = 焦点 Focal length 29.32 48.74 81.50 Variable interval d 6 35.40 13.69 1.20 d 11 2.00 6.43 13.08 d 14 0.93 0.93 0.93 d 18 12.73 8.30 1.65 d 24 -0.06 9.26 23.24 Numerical example 7 f = 29.7 to 80.9 FNo = 1: 4.1 to 5.9 2ω = 72.2 ° to 30.0 ° r 1 = 64.981 d 1 = 1.70 n 1 = 1.88300 ν 1 = 40.8 r 2 = 24.248 d 2 = 6.38 r 3 = -328.420 d 3 = 1.60 n 2 = 1.69819 ν2 = 55.7 r 4 = 46.286 d 4 = -0.14 r 5 = 31.889 d 5 = 3.42 n 3 = 1.84666 ν 3 = 23.8 r 6 = 76.947 d 6 = variable r 7 = 39.392 d 7 = 1.10 n 4 = 1.84666 ν 4 = 23.8 r 8 = 19.702 d 8 = 4.00 n 5 = 1.62280 ν 5 = 57.0 r 9 = -67.926 d 9 = 0.12 r10 = 29.275 d10 = 2.20 n 6 = 1.55963 ν 6 = 61.2 r11 = 295.264 d11 = Variable r12 = Aperture d12 = 1.20 r13 = -56.618 d13 = 2.20 n 7 = 1.80610 ν 7 = 40.9 r14 = -17.247 d14 = 1.00 n 8 = 1.71300 ν 8 = 53.9 r15 = 46.076 d15 = Variable r16 = 76.588 d16 = 3.76 n 9 = 1.58267 ν 9 = 46.4 r17 = -11.888 d17 = 0.90 n10 = 1.60311 ν10 = 60.6 r18 = 71.360 d18 = Variable r19 = 141.854 d19 = 4.20 n11 = 1.65160 ν11 = 58.5 r20 = -27. 702 d20 = 0.12 r21 = 57.101 d21 = 3.00 n12 = 1.78590 ν12 = 44.2 r22 = -130.566 d22 = 2.20 r23 = -29.600 d23 = 1.20 n13 = 1.72825 ν13 = 28.5 r24 = 66.685 d24 = Variable r25 = 焦点 Focal length 29.69 48.79 80.87 Variable interval d 6 36.27 13.89 1.01 d 11 2.00 7.93 16.83 d 15 1.61 1.61 1.61 d 18 16.37 10.44 1.54 d 24 2.00 7.93 16.83

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】本発明によれば以上のように、変倍光学
系の一部を構成する比較的小型軽量のレンズ群を光軸と
垂直方向に移動させて、該変倍光学系が振動(傾動)し
たときの画像のブレを補正する際、各レンズ群のレンズ
構成を適切に構成することにより、装置全体の小型化、
機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ
該レンズ群を偏心させたときの偏心発生量を少なく抑
え、偏心収差を良好に補正した広角端の撮影画角73度
程度、変倍比3程度の防振機能を有した変倍光学系を達
成することができる。
As described above, according to the present invention, by moving the relatively small and light lens group constituting a part of the variable power optical system in the direction perpendicular to the optical axis, the variable power optical system is vibrated. When correcting image blurring caused by (tilting), by appropriately configuring the lens configuration of each lens group, it is possible to reduce the size of the entire apparatus,
While simplifying the mechanism and reducing the load on the driving means, the amount of eccentricity generated when the lens group is decentered is suppressed to a small value, and the eccentric aberration is satisfactorily corrected. A variable power optical system having an anti-vibration function with a magnification ratio of about 3 can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の数値実施例1の広角端のレンズ断面
FIG. 1 is a sectional view of a lens at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図2】 本発明の数値実施例2の広角端のレンズ断面
FIG. 2 is a sectional view of a lens at a wide-angle end according to a second numerical embodiment of the present invention.

【図3】 本発明の数値実施例3の広角端のレンズ断面
FIG. 3 is a sectional view of a lens at a wide angle end according to Numerical Embodiment 3 of the present invention.

【図4】 本発明の数値実施例4の広角端のレンズ断面
FIG. 4 is a sectional view of a lens at a wide angle end according to Numerical Example 4 of the present invention.

【図5】 本発明の数値実施例5の広角端のレンズ断面
FIG. 5 is a sectional view of a lens at a wide angle end according to Numerical Example 5 of the present invention.

【図6】 本発明の数値実施例6の広角端のレンズ断面
FIG. 6 is a lens cross-sectional view at a wide angle end according to Numerical Example 6 of the present invention.

【図7】 本発明の数値実施例7の広角端のレンズ断面
FIG. 7 is a sectional view of a lens at a wide-angle end according to a seventh embodiment of the present invention.

【図8】 本発明の数値実施例1(A)、(B)の広角
端の無限遠物体のときの標準と0.5°傾けたときの防
振時の収差図
FIGS. 8A and 8B are aberration charts of Numerical Embodiments 1 (A) and 1 (B) for an object at infinity at the wide-angle end and for vibration proof when tilted by 0.5 °. FIGS.

【図9】 本発明の数値実施例1(A)、(B)の望遠
端の無限遠物体のときの標準と0.5°傾けたときの防
振時の収差図
FIG. 9 is a diagram illustrating aberrations of a numerical example 1 of the present invention (A) and (B) when the object is at infinity at the telephoto end and at the time of image stabilization when the object is tilted by 0.5 °.

【図10】 本発明の数値実施例2(A)、(B)の広
角端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
10A and 10B are aberration diagrams of a numerical example 2 (A) and (B) of an object at infinity at the wide-angle end and a standard image at the time of image stabilization at an angle of 0.5 °.

【図11】 本発明の数値実施例2(A)、(B)の望
遠端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
11A and 11B are aberration diagrams of a numerical example 2 of the present invention (A) and (B) for an object at infinity at the telephoto end, and aberrations at the time of tilting by 0.5 °.

【図12】 本発明の数値実施例3(A)、(B)の広
角端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
12A and 12B are aberration diagrams of a numerical example 3 (A) and (B) when the object is at infinity at the wide angle end and when the image is tilted by 0.5 ° and at the time of image stabilization.

【図13】 本発明の数値実施例3(A)、(B)の望
遠端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
FIG. 13 is a diagram illustrating aberrations of a numerical example 3 of the present invention (A) and (B) when the object is at infinity at the telephoto end and when vibration is reduced by 0.5 °.

【図14】 本発明の数値実施例4(A)、(B)の広
角端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
FIGS. 14A and 14B are aberration charts of a numerical example 4 (A) and (B) for an object at infinity at the wide-angle end and a vibration compensation when tilted by 0.5 °;

【図15】 本発明の数値実施例4(A)、(B)の望
遠端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
15A and 15B are aberration diagrams of a numerical example 4 of the present invention (A) and (B) for an object at infinity at the telephoto end and for vibration proof when tilted by 0.5 °;

【図16】 本発明の数値実施例5(A)、(B)の広
角端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
16A and 16B are aberration charts of Numerical Embodiment 5 (A) and (B) for an object at infinity at the wide-angle end and for vibration proof when tilted by 0.5 °;

【図17】 本発明の数値実施例5(A)、(B)の望
遠端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
17A and 17B are aberration diagrams of a numerical example 5 of the present invention (A) and (B) for an object at infinity at the telephoto end, and aberrations at the time of tilting by 0.5 °.

【図18】 本発明の数値実施例6(A)、(B)の広
角端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
18A and 18B are aberration diagrams of a numerical example 6 (A) and a numerical example 6 (B) of an object at infinity at the wide-angle end and an image of vibration reduction at an angle of 0.5 °.

【図19】 本発明の数値実施例6(A)、(B)の望
遠端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
19A and 19B are aberration diagrams of a numerical example 6 of the present invention (A) and (B) for an object at infinity at the telephoto end, and aberrations at the time of tilting by 0.5 °.

【図20】 本発明の数値実施例7(A)、(B)の広
角端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
20A and 20B are aberration diagrams of a numerical example 7 (A) and (B) for an object at infinity at the wide-angle end and a standard image at the time of tilting by 0.5 °.

【図21】 本発明の数値実施例7(A)、(B)の望
遠端の無限遠物体のときの標準と0.5°傾けたときの
防振時の収差図
21A and 21B are aberration diagrams of a numerical example 7 of the present invention (A) and (B) for an object at infinity at the telephoto end, and an image at the time of image stabilization at a tilt of 0.5 °.

【符号の説明】 L1 第1群 L2 第2群 L3 第3群 L3a 第3a群 L3b 第3b群 L4 第4群 SL 防振レンズ群 SP 絞り d d線 g g線 ΔM メリディオナル像面 ΔS サジタル像面[Explanation of Signs] L1 First group L2 Second group L3 Third group L3a Third group L3b Third group L4 Fourth group SL Vibration-proof lens group SP diaphragm d d-line g g-line ΔM Meridional image plane ΔS Sagittal image plane

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に負の屈折力の第1群、正
の屈折力の第2群、負の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、各レンズ群間隔
を変えて変倍を行い、該第3群を複数のレンズ群より構
成し、このうち一部のレンズ群SLを光軸と垂直方向に
移動させて該変倍光学系が振動したときの撮影画像のブ
レを補正し、第i群と第i+1群の広角端と望遠端にお
ける間隔をDiとしたとき D1W>D1T D2W<D2T D3W>D3T なる条件を満足することを特徴とする防振機能を有した
変倍光学系。
1. A first lens unit having a negative refractive power, a second lens unit having a positive refractive power, a third lens unit having a negative refractive power, and a fourth lens unit having a positive refractive power. The third unit is composed of a plurality of lens units, and some of the lens units SL are moved in a direction perpendicular to the optical axis to perform the magnification change. D1W> D1T D2W <D2T D3W> D3T When the distance between the i-th lens unit and the (i + 1) -th lens unit at the wide-angle end and the telephoto end is Di, the camera shake is corrected when the optical system vibrates. A variable power optical system having an anti-shake function.
【請求項2】 前記第3群の物体側、又は像面側、又は
レンズ系中に防振の際に固定の絞りを設けていることを
特徴とする請求項1の防振機能を有した変倍光学系。
2. The image stabilizing function according to claim 1, wherein a fixed stop is provided at the time of image stabilization on the object side, image surface side, or lens system of said third group. Variable power optical system.
【請求項3】 前記第3群を負の屈折力の第3a群と負
の屈折力の第3b群の2つのレンズ群より構成し、この
うち平行偏心敏感度の絶対値の大きい方のレンズ群で防
振を行っていることを特徴とする請求項1の防振機能を
有した変倍光学系。
3. The third lens unit comprises two lens units, a third lens unit having a negative refractive power and a third lens unit having a negative refractive power, wherein the lens having the larger absolute value of the parallel decentering sensitivity is used. 2. A variable power optical system having an image stabilizing function according to claim 1, wherein image stabilization is performed in groups.
【請求項4】 前記第3群の複数のレンズ群のレンズ間
隔は変倍中、一定であることを特徴とする請求項1の防
振機能を有した変倍光学系。
4. The variable power optical system according to claim 1, wherein the lens interval of the plurality of lens units of the third group is constant during zooming.
【請求項5】 前記第2群と第4群は変倍の際に一体的
に移動していることを特徴とする請求項1の防振機能を
有した変倍光学系。
5. The variable power optical system according to claim 1, wherein the second unit and the fourth unit are moved integrally during zooming.
【請求項6】 前記第3群は変倍の際、固定であること
を特徴とする請求項1の防振機能を有した変倍光学系。
6. The variable power optical system according to claim 1, wherein the third unit is fixed at the time of zooming.
【請求項7】 前記第3群を負の屈折力の第3a群と負
の屈折力の第3b群の2つのレンズ群を有し、該第3a
群と第3b群の平行偏心敏感度を各々TSa、TSbと
したとき |TSa|<|TSb| を満足し、該第3b群で防振を行ったことを特徴とする
請求項1の防振機能を有した変倍光学系。
7. The third lens unit includes two lens units, a third lens unit having a negative refractive power and a third lens unit having a negative refractive power.
2. The anti-vibration method according to claim 1, wherein | TSa | <| TSb | is satisfied when the parallel eccentric sensitivity of the lens group and the third lens group is TSa and TSb, respectively, and the third lens group performs vibration isolation. Variable magnification optical system with functions.
【請求項8】 前記第3群を負の屈折力の第3a群と負
の屈折力の第3b群の2つのレンズ群を有し、該第3a
群と第3b群の平行偏心敏感度を各々TSa、TSbと
したとき |TSb|<|TSa| を満足し、該第3a群で防振を行ったことを特徴とする
請求項1の防振機能を有した変倍光学系。
8. The third lens unit includes two lens units, a third lens unit having a negative refractive power and a third lens unit having a negative refractive power.
2. The anti-vibration method according to claim 1, wherein | TSb | <| TSa | is satisfied when the parallel eccentricity sensitivity of the lens group and the third lens group is TSa and TSb, respectively. Variable magnification optical system with functions.
【請求項9】 前記第3a群と第3b群の球面収差係数
の符号が等しいことを特徴とする請求項7又は8の防振
機能を有した変倍光学系。
9. A variable-power optical system having a vibration-proof function according to claim 7, wherein the sign of the spherical aberration coefficient of said third lens group is equal to that of said third lens group.
【請求項10】 物体側より順に、前記第1群は像面側
に凹面を向けたメニスカス状の負レンズ、像面側に凹面
を向けた負レンズ、そして物体側に凸面を向けたメニス
カス状の正レンズより成り、前記第2群は像面側に凹面
を向けたメニスカス状の負レンズ、両レンズ面が凸面の
正レンズ、そして物体側に凸面を向けた正レンズより成
り、前記第3群は負の屈折力の第3a群と負の屈折力の
第3b群より成り、該第3a群は物体側に凹面を向けた
メニスカス状の負レンズ、又は正レンズと負レンズを接
合した負の貼合わせレンズから成り、該第3b群は正レ
ンズと負レンズとを接合した負の貼合わせレンズより成
り、前記第4群は像面側に凸面を向けた正レンズと、両
レンズ面が凸面の正レンズそして負レンズより成ってい
ることを特徴とする請求項1の防振機能を有した変倍光
学系。
10. The first lens unit includes, in order from the object side, a negative meniscus lens having a concave surface facing the image surface side, a negative lens having a concave surface facing the image surface side, and a meniscus shape having a concave surface facing the object side. The second group includes a meniscus negative lens having a concave surface facing the image surface side, a positive lens having both lens surfaces convex, and a positive lens having a convex surface facing the object side. The group includes a third lens unit having a negative refractive power and a third lens unit having a negative refractive power. The third lens unit is a meniscus negative lens having a concave surface facing the object side, or a negative lens having a positive lens and a negative lens cemented. The third group includes a negative cemented lens in which a positive lens and a negative lens are joined, and the fourth lens group includes a positive lens having a convex surface facing the image surface side and both lens surfaces. It consists of a convex positive lens and a negative lens A variable power optical system having the image stabilizing function according to claim 1.
【請求項11】 前記レンズ群SLの望遠端での平行偏
心敏感度をTS、第i群の焦点距離をfi、全系の広角
端と望遠端での焦点距離を各々fW、fT、全系の望遠
端でのFナンバーをFNOt、広角端から望遠端への変
倍における前記第1群と第2群の間隔変化量と前記第2
群と第3群の間隔変化量を各々Δ12、Δ23、有効画
面の寸法をφとしたとき 0.5<φ×|TS|/fT 【数1】 1.3< f2・FNot/fT <3 1.2< |f3|/f2 <2 1.1< f4/f2 <4 0.15< |Δ23/Δ12| <0.55 なる条件を満足することを特徴とする請求項1の防振機
能を有した変倍光学系。
11. The parallel eccentric sensitivity at the telephoto end of the lens unit SL is TS, the focal length of the i-th unit is fi, and the focal lengths at the wide-angle end and the telephoto end of the entire system are fW and fT, respectively. The F-number at the telephoto end is FNot, the amount of change in the distance between the first and second units during zooming from the wide-angle end to the telephoto end and the second
When the distance between the group and the third group is Δ12 and Δ23, respectively, and the dimension of the effective screen is φ: 0.5 <φ × | TS | / fT 1.3 <f2 · FNot / fT <3 1.2 <| f3 | / f2 <2 1.1 <f4 / f2 <4 0.15 <| Δ23 / Δ12 | <0.55 2. The variable power optical system according to claim 1, wherein the variable power optical system has an image stabilizing function.
【請求項12】 前記第1群で負の屈折力の前群を構成
し、前記第2、第3、第4群で正の屈折力の後群を構成
していることを特徴とする請求項1から11のいずれか
1項記載の防振機能を有した変倍光学系。
12. The device according to claim 1, wherein the first group forms a front group having a negative refractive power, and the second, third, and fourth groups form a rear group having a positive refractive power. Item 12. A variable power optical system having the image stabilizing function according to any one of Items 1 to 11.
JP04878498A 1998-02-13 1998-02-13 Variable magnification optical system with anti-vibration function Expired - Fee Related JP4046834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04878498A JP4046834B2 (en) 1998-02-13 1998-02-13 Variable magnification optical system with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04878498A JP4046834B2 (en) 1998-02-13 1998-02-13 Variable magnification optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JPH11231220A true JPH11231220A (en) 1999-08-27
JP4046834B2 JP4046834B2 (en) 2008-02-13

Family

ID=12812880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04878498A Expired - Fee Related JP4046834B2 (en) 1998-02-13 1998-02-13 Variable magnification optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP4046834B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788464B2 (en) 2000-09-26 2004-09-07 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
JP2005316186A (en) * 2004-04-28 2005-11-10 Canon Inc Image forming apparatus
JP2005352057A (en) * 2004-06-09 2005-12-22 Canon Inc Zoom lens and imaging apparatus having same
JP2006085155A (en) * 2004-08-19 2006-03-30 Canon Inc Zoom lens and imaging apparatus having the same
JP2010211102A (en) * 2009-03-12 2010-09-24 Sigma Corp Inner zoom type and inner focus type zoom lens having vibration-proofing function
US7974012B2 (en) 2008-03-31 2011-07-05 Nikon Corporation Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
US8199411B2 (en) 2009-03-17 2012-06-12 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
US8259400B2 (en) 2009-01-26 2012-09-04 Nikon Corporation Zoom lens system, imaging apparatus, and method for manufacturing zoom lens system
US8379317B2 (en) 2010-07-20 2013-02-19 Panasonic Corporation Zoom lens system, imaging device and camera
US8605370B2 (en) 2010-03-15 2013-12-10 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
EP2793065A1 (en) * 2013-04-16 2014-10-22 Samsung Electronics Co., Ltd. Wide angle lens system and electronic apparatus having the same
US8908273B2 (en) 2010-09-21 2014-12-09 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
JP2016118658A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Zoom lens and imaging apparatus including the same
WO2016121930A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument, and method for manufacturing variable magnification optical system
WO2016121903A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system
WO2016121941A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system
JP2018156101A (en) * 2018-05-31 2018-10-04 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2018169618A (en) * 2018-05-31 2018-11-01 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2019066654A (en) * 2017-09-29 2019-04-25 キヤノン株式会社 Zoom lens and imaging apparatus
JP2019105696A (en) * 2017-12-11 2019-06-27 キヤノン株式会社 Zoom lens and imaging apparatus
US10473901B2 (en) 2015-01-30 2019-11-12 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US10527829B2 (en) 2015-01-30 2020-01-07 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US10678034B2 (en) 2015-01-30 2020-06-09 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US11448893B2 (en) 2016-07-15 2022-09-20 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152002A (en) * 1993-11-29 1995-06-16 Nikon Corp Zoom lens having vibrationproof function
JPH07179026A (en) * 1993-12-22 1995-07-18 Mitsubishi Paper Mills Ltd Ink jet recording sheet
JPH07294853A (en) * 1994-04-27 1995-11-10 Canon Inc Optical system having vibration proof function
JPH08136863A (en) * 1994-11-07 1996-05-31 Canon Inc Variable power optical system provided with vibration proofing function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152002A (en) * 1993-11-29 1995-06-16 Nikon Corp Zoom lens having vibrationproof function
JPH07179026A (en) * 1993-12-22 1995-07-18 Mitsubishi Paper Mills Ltd Ink jet recording sheet
JPH07294853A (en) * 1994-04-27 1995-11-10 Canon Inc Optical system having vibration proof function
JPH08136863A (en) * 1994-11-07 1996-05-31 Canon Inc Variable power optical system provided with vibration proofing function

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788464B2 (en) 2000-09-26 2004-09-07 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
JP2005316186A (en) * 2004-04-28 2005-11-10 Canon Inc Image forming apparatus
JP2005352057A (en) * 2004-06-09 2005-12-22 Canon Inc Zoom lens and imaging apparatus having same
US7126758B2 (en) 2004-06-09 2006-10-24 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
US7453642B2 (en) 2004-06-09 2008-11-18 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
JP4642386B2 (en) * 2004-06-09 2011-03-02 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2006085155A (en) * 2004-08-19 2006-03-30 Canon Inc Zoom lens and imaging apparatus having the same
US8363332B2 (en) 2008-03-31 2013-01-29 Nikon Corporation Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
US7974012B2 (en) 2008-03-31 2011-07-05 Nikon Corporation Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
US8619372B2 (en) 2008-03-31 2013-12-31 Nikon Corporation Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
US8259400B2 (en) 2009-01-26 2012-09-04 Nikon Corporation Zoom lens system, imaging apparatus, and method for manufacturing zoom lens system
JP2010211102A (en) * 2009-03-12 2010-09-24 Sigma Corp Inner zoom type and inner focus type zoom lens having vibration-proofing function
US8199411B2 (en) 2009-03-17 2012-06-12 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
US8605370B2 (en) 2010-03-15 2013-12-10 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US8379317B2 (en) 2010-07-20 2013-02-19 Panasonic Corporation Zoom lens system, imaging device and camera
US8908273B2 (en) 2010-09-21 2014-12-09 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
EP2793065A1 (en) * 2013-04-16 2014-10-22 Samsung Electronics Co., Ltd. Wide angle lens system and electronic apparatus having the same
US9297986B2 (en) 2013-04-16 2016-03-29 Samsung Electronics Co., Ltd. Wide angle lens system and electronic apparatus having the same
US10175464B2 (en) 2014-12-22 2019-01-08 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2016118658A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US10353186B2 (en) 2014-12-22 2019-07-16 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
WO2016121903A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system
US10678034B2 (en) 2015-01-30 2020-06-09 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JPWO2016121903A1 (en) * 2015-01-30 2017-10-12 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JPWO2016121941A1 (en) * 2015-01-30 2017-10-19 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN107407795A (en) * 2015-01-30 2017-11-28 株式会社尼康 The manufacture method of variable-power optical system, optical device and variable-power optical system
US11520127B2 (en) 2015-01-30 2022-12-06 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
EP3252516A4 (en) * 2015-01-30 2018-10-24 Nikon Corporation Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system
US11415787B2 (en) 2015-01-30 2022-08-16 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
WO2016121941A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system
JP2019049727A (en) * 2015-01-30 2019-03-28 株式会社ニコン Variable power optical system
US11231567B2 (en) 2015-01-30 2022-01-25 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JPWO2016121930A1 (en) * 2015-01-30 2017-10-12 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
WO2016121930A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument, and method for manufacturing variable magnification optical system
US10473901B2 (en) 2015-01-30 2019-11-12 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US10527829B2 (en) 2015-01-30 2020-01-07 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US10606047B2 (en) 2015-01-30 2020-03-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US11448893B2 (en) 2016-07-15 2022-09-20 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP2019066654A (en) * 2017-09-29 2019-04-25 キヤノン株式会社 Zoom lens and imaging apparatus
JP2019105696A (en) * 2017-12-11 2019-06-27 キヤノン株式会社 Zoom lens and imaging apparatus
JP2018169618A (en) * 2018-05-31 2018-11-01 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2018156101A (en) * 2018-05-31 2018-10-04 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP4046834B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4950630B2 (en) Zoom lens and imaging apparatus having the same
JP3359131B2 (en) Variable power optical system with anti-vibration function
US6010537A (en) Zoom lens system having an image blur compensation function
JPH11231220A (en) Optical magnification system having vibration proofing function
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP5100411B2 (en) Zoom lens and imaging apparatus having the same
JP4146977B2 (en) Zoom lens
JPH11174329A (en) Variable power optical system having vibration-proof function
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP3352240B2 (en) High zoom ratio zoom lens
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP4880940B2 (en) Zoom lens and imaging apparatus having the same
US7782544B2 (en) Zoom lens system and image pickup apparatus including the same
JP2009175324A5 (en)
JP4545849B2 (en) Variable magnification optical system
JP3706644B2 (en) Variable magnification optical system with anti-vibration function
JP4677210B2 (en) Zoom lens and image pickup apparatus using the same
JPH11316342A (en) Variable power optical system having vibration-proof function
JP2001042217A (en) Zoom lens
JP3144193B2 (en) Zoom lens
JP2000047107A (en) Zoom lens
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
JP4533437B2 (en) Zoom lens
JPH10260356A (en) Variable power optical system with vibration-proof function
JP3352248B2 (en) Zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees