JPH07306363A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH07306363A
JPH07306363A JP6124599A JP12459994A JPH07306363A JP H07306363 A JPH07306363 A JP H07306363A JP 6124599 A JP6124599 A JP 6124599A JP 12459994 A JP12459994 A JP 12459994A JP H07306363 A JPH07306363 A JP H07306363A
Authority
JP
Japan
Prior art keywords
lens group
lens
group
wide
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6124599A
Other languages
Japanese (ja)
Inventor
Motoyuki Otake
基之 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6124599A priority Critical patent/JPH07306363A/en
Priority to KR1019940016944A priority patent/KR100301874B1/en
Priority to US08/503,338 priority patent/US5666229A/en
Publication of JPH07306363A publication Critical patent/JPH07306363A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-

Abstract

PURPOSE:To provide a zoom lens capable of decreasing the amount of work at the time of focusing and having a small number of lens components, excellent image forming performance and a high variable power ratio. CONSTITUTION:This zoom lens is provided, in order from the object side, with a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, a third lens group G3 having positive refractive power, a fourth lens group G4 having positive refractive power and a fifth lens group G5 having-negative refractive power. Focusing is performed by moving the fourth group G4 to the object side for a long distance object to a short distance object so as to satisfy the conditions: 0.15 <f3/f1<0.7, 0.1<(d2w-d2t)/(d1t-d1w)<0.85. In the relations, f1, f3 are focal distances of the lens groups G1, G2, d1w, d2w are air gaps between the lens groups G1 and G2, between G2 and G3 at the wide-angle end and d1t, d2t are air gaps along the optical axis between the lens groups G1 and G2, between G2 and G3 at the telescopic end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はズームレンズに関し、特
にレンズシャッター式のカメラ等に適したズームレンズ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a zoom lens suitable for a lens shutter type camera.

【0002】[0002]

【従来の技術】レンズシャッター式のカメラでは、ズー
ムレンズを備えたカメラが主流となりつつある。特に近
年、鏡筒技術の進歩等により、3群以上の可動レンズ群
により構成される、いわゆる多群ズームレンズを用いる
ことで、高変倍化を図ったズームタイプが種々提案され
てきている。
2. Description of the Related Art Among lens shutter type cameras, cameras equipped with a zoom lens are becoming mainstream. Particularly in recent years, various zoom types have been proposed in which a high zoom ratio is achieved by using a so-called multi-group zoom lens configured by three or more movable lens groups due to the progress of lens barrel technology and the like.

【0003】まず、3群以上の可動レンズ群を有する、
いわゆる多群ズームレンズに関する一般論を述べる。多
群構成のズームレンズにおいては、広角端から望遠端へ
の変倍に際する各レンズ群のズーミング軌道に選択の自
由度が増えるため、収差補正上の自由度が多くなる。ま
た、変倍を担うレンズ群の数が増えるため、各レンズ群
の変倍負担の均等化がしやすくなるので、高変倍化を図
りつつ高性能化を図ることが可能となる。従来、可動部
分の増加に伴う鏡筒構造の複雑化等の問題もあったが、
近年の鏡筒技術の進歩により、この問題もある程度克服
されている。
First, it has three or more movable lens groups,
The general theory of so-called multi-group zoom lenses will be described. In a zoom lens having a multi-group configuration, the degree of freedom in selecting a zooming trajectory of each lens group during zooming from the wide-angle end to the telephoto end increases, so that the degree of freedom in aberration correction increases. In addition, since the number of lens groups responsible for zooming increases, it is easy to equalize the zooming load of each lens group, and it is possible to achieve high performance while achieving high zooming. Conventionally, there has been a problem that the lens barrel structure is complicated due to the increase of movable parts,
Recent advances in lens barrel technology have overcome this problem to some extent.

【0004】従来より、バックフォーカスに制約のない
ズームレンズにおいては、レンズ全長の短縮化および各
レンズ径の小型化を図るために、最も像側に負レンズ群
を配置しており、広角端から望遠端への変倍に際するバ
ックフォーカスの変化を大きくすることによって変倍を
効果的に行っていた。また、レンズ系の最も物体側に正
レンズ群を配置することによって、レンズ全長の短縮化
を図っていた。以上のことから、具体的に高変倍化が可
能で且つ小型化に適した多群ズームレンズとしては、正
正負3群ズームレンズや正負正負4群ズームレンズなど
が挙げられ、それらに関して種々の提案がなされてき
た。
Conventionally, in a zoom lens having no restriction on back focus, a negative lens group is arranged closest to the image side in order to shorten the overall lens length and the size of each lens, and from the wide-angle end. Zooming was effectively performed by increasing the change in the back focus upon zooming to the telephoto end. Further, by arranging the positive lens group on the most object side of the lens system, the total lens length is shortened. From the above, as a multi-group zoom lens that is capable of achieving a high zoom ratio and is suitable for downsizing, a positive / negative 3 group zoom lens, a positive / negative positive / negative 4 group zoom lens, and the like can be mentioned. Suggestions have been made.

【0005】正正負3群ズームレンズは、物体側より順
に、正屈折力の第1レンズ群と、正屈折力の第2レンズ
群と、負屈折力の第3レンズ群とから構成され、広角端
から望遠端への変倍に際して、前記第1レンズ群と前記
第2レンズ群との空気間隔が増大し、前記第2レンズ群
と前記第3レンズ群との空気間隔が減少するように構成
されている。
The positive / negative three-group zoom lens comprises, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. When zooming from the end to the telephoto end, the air gap between the first lens group and the second lens group increases, and the air gap between the second lens group and the third lens group decreases. Has been done.

【0006】一方、正負正負4群ズームレンズは、物体
側より順に、正屈折力の第1レンズ群と、負屈折力の第
2レンズ群と、正屈折力の第3レンズ群と、負屈折力の
第4レンズ群とから構成され、広角端から望遠端への変
倍に際して前記第1レンズ群と前記第2レンズ群との空
気間隔は増大し、前記第2レンズ群と前記第3レンズ群
との空気間隔は減少し、前記第3レンズ群と前記第4レ
ンズ群との空気間隔は減少するように構成されている。
On the other hand, the positive, negative, positive and negative four-group zoom lens comprises, in order from the object side, a first lens group having a positive refracting power, a second lens group having a negative refracting power, a third lens group having a positive refracting power, and a negative refracting power. And a fourth lens group of optical power, the air gap between the first lens group and the second lens group increases during zooming from the wide-angle end to the telephoto end, and the second lens group and the third lens group increase. The air gap between the lens unit and the third lens unit is reduced, and the air gap between the third lens unit and the fourth lens unit is reduced.

【0007】次いで、多群ズームレンズにおけるフォー
カシング(合焦)について説明する。一般的に、物体に
対してズームレンズを合焦させる際に光軸に沿って移動
するレンズ群すなわちフォーカシング群に要求されるこ
とは、その移動量が少ないことおよびその重量が小さい
ことである。これは、フォーカシング群の移動量が少な
いほどレンズ系全体の小型化に有利であり、フォーカシ
ング群の重量が小さいほど、フォーカシング群を駆動す
る機構の簡略化に有利であるためである。
Next, focusing in a multi-group zoom lens will be described. Generally, what is required of a lens group that moves along the optical axis when focusing a zoom lens on an object, that is, a focusing group, is that the amount of movement is small and the weight thereof is small. This is because a smaller amount of movement of the focusing unit is advantageous for downsizing the entire lens system, and a smaller weight of the focusing unit is advantageous for simplifying the mechanism for driving the focusing unit.

【0008】従来より、多群ズームレンズにおいて遠距
離物体から近距離物体に対して合焦させる場合、 (A)1群繰り出し方式 (B)IF(インナー・フォーカス)方式 (C)RF(リア・フォーカス)方式 の3通りの方法があり、これらの方法について種々の提
案がなされてきた。
Conventionally, when focusing a long-distance object to a short-distance object in a multi-group zoom lens, (A) first group extension method (B) IF (inner focus) method (C) RF (rear There are three methods, the focus method, and various proposals have been made for these methods.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
正正負3群ズームレンズでは、レンズ系全体での変倍に
対して第3レンズ群が変倍を負担する割合が大きい。そ
の結果、高変倍化を図る場合、変倍に際して第3レンズ
群で発生する軸外収差の変動が大きくなってしまうとい
う不都合があった。
However, in the conventional positive / negative three-group zoom lens, the ratio of the third lens group to the zooming is large relative to the zooming of the entire lens system. As a result, in the case of achieving a high zoom ratio, there is a disadvantage that the fluctuation of the off-axis aberration generated in the third lens group during zooming becomes large.

【0010】また、従来の正負正負4群ズームレンズで
は、従来の正正負3群ズームレンズと比べて望遠端にお
けるレンズ全長の短縮化を図ることができ且つ高変倍化
にも適している。しかしながら、第1レンズ群と第2レ
ンズ群との合成屈折力が負に小さいため、発散作用が弱
く、広角端において十分なバックフォーカスが得られ
ず、後玉有効径が大型化してしまうという不都合があっ
た。以上のように、従来の多群ズームレンズでは、広角
化、高変倍化および小型化を図りながら、少ない構成レ
ンズ枚数で優れた結像性能を得ることは、極めて困難で
あった。
Further, in the conventional positive / negative / negative / four-group zoom lens, the total lens length at the telephoto end can be shortened as compared with the conventional positive / negative / three-group zoom lens, and it is also suitable for high zooming. However, since the combined refractive power of the first lens group and the second lens group is negatively small, the diverging action is weak, sufficient back focus cannot be obtained at the wide angle end, and the rear lens effective diameter becomes large. was there. As described above, with the conventional multi-group zoom lens, it has been extremely difficult to obtain excellent image forming performance with a small number of constituent lenses while achieving a wide angle, high zoom ratio, and size reduction.

【0011】従来の正正負3群ズームレンズや従来の正
負正負4群ズームレンズのようなバックフォーカスに制
約のない多群ズームレンズにおいては、レンズ系の最も
物体寄りに正レンズ群が配置されている。しかしなが
ら、広角端において発生する正の歪曲収差を良好に補正
するために、この最も物体寄りの正レンズ群の屈折力が
正に弱く構成されている。このため、(A)の1群繰り
出し方式を用いてフォーカシングをする場合、フォーカ
シング群である第1レンズ群の移動量が過大になってし
まう。
In a multi-group zoom lens such as a conventional positive / negative three-group zoom lens or a conventional positive / negative positive / negative four-group zoom lens which has no restriction on back focus, the positive lens group is arranged closest to the object in the lens system. There is. However, in order to satisfactorily correct the positive distortion that occurs at the wide-angle end, the refractive power of the positive lens unit closest to the object is set to be positively weak. Therefore, when focusing is performed using the (1) first group extension method, the amount of movement of the first lens group, which is the focusing group, becomes excessive.

【0012】また、(C)のリア・フォーカス方式を用
いてフォーカシングをする場合、広角端におけるバック
フォーカスが小さいため、近距離物体に対してフォーカ
シングを行なうことができなくなってしまう。さらに、
(B)のインナー・フォーカス方式を用いてフォーカシ
ングをする場合、たとえば特開平4−338910号公
報に示す正正負3群ズームレンズのように、第2レンズ
群を前群と後群とに分割し、物体側の第2レンズ群前群
によりフォーカシングを行う。しかしながら、フォーカ
シング群である第2レンズ群前群の屈折力が正に弱いた
め、近距離合焦時のフォーカシング群の移動量が過大に
なってしまう。
Further, in the case of focusing using the rear focus method of (C), since the back focus at the wide-angle end is small, it becomes impossible to focus on a short-distance object. further,
When focusing is performed by using the inner focus method of (B), the second lens group is divided into a front group and a rear group, as in a positive / negative three-group zoom lens disclosed in Japanese Patent Laid-Open No. 4-338910. Focusing is performed by the front group of the second lens unit on the object side. However, since the front lens group of the second lens group, which is a focusing lens group, has a weak refractive power, the moving amount of the focusing lens group at the time of short-distance focusing becomes excessive.

【0013】以上のように、従来の多群ズームレンズの
フォーカシング方式では、フォーカシング時の仕事量、
すなわちフォーカシング群の重量×移動量が大きいとい
う不都合があった。本発明は、前述の課題に鑑みてなさ
れたものであり、フォーカシング時の仕事量を小さくす
るとともに、構成レンズ枚数が少なく、結像性能が優
れ、且つ高変倍化が可能なズームレンズを提供すること
を目的とする。
As described above, in the conventional focusing method for a multi-group zoom lens, the work amount at the time of focusing,
That is, there is a disadvantage that the weight of the focusing group × the moving amount is large. The present invention has been made in view of the above-described problems, and provides a zoom lens that reduces the workload during focusing, has a small number of constituent lenses, has excellent imaging performance, and is capable of high zooming. The purpose is to do.

【0014】[0014]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、物体側より順に、正の屈折力を
有する第1レンズ群G1と、負の屈折力を有する第2レ
ンズ群G2と、正の屈折力を有する第3レンズ群G3
と、正の屈折力を有する第4レンズ群G4と、負の屈折
力を有する第5レンズ群G5とを備え、広角端から望遠
端への変倍に際して、少なくとも前記第1レンズ群G1
および前記第5レンズ群G5は物体側に移動し、前記第
1レンズ群G1と前記第2レンズ群G2との空気間隔は
増大し、前記第3レンズ群G3と前記第4レンズ群G4
との空気間隔は増大し、前記第4レンズ群G4と前記第
5レンズ群G5との空気間隔は減少するズームレンズに
おいて、遠距離物体から近距離物体に対して前記第4レ
ンズ群G4を物体側に移動させてフォーカシングを行
い、前記第1レンズ群G1の焦点距離をf1とし、前記
第3レンズ群G3の焦点距離をf3とし、広角端におけ
る前記第1レンズ群G1と前記第2レンズ群G2との間
の光軸に沿った空気間隔をd1wとし、望遠端における前
記第1レンズ群G1と前記第2レンズ群G2との間の光
軸に沿った空気間隔をd1tとし、広角端における前記第
2レンズ群G2と前記第3レンズ群G3との間の光軸に
沿った空気間隔をd2wとし、望遠端における前記第2レ
ンズ群G2と前記第3レンズ群G3との間の光軸に沿っ
た空気間隔をd2tとしたとき、 0.15<f3/f1<0.7 0.1<(d2w−d2t)/(d1t−d1w)<0.85 の条件を満足することを特徴とするズームレンズを提供
する。
In order to solve the above problems, in the present invention, a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power are arranged in order from the object side. G2 and the third lens group G3 having a positive refractive power
And a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a negative refractive power, and at least the first lens group G1 at the time of zooming from the wide-angle end to the telephoto end.
And the fifth lens group G5 moves to the object side, the air gap between the first lens group G1 and the second lens group G2 increases, and the third lens group G3 and the fourth lens group G4.
In the zoom lens, the air distance between the fourth lens group G4 and the fifth lens group G5 decreases, and the fourth lens group G4 is changed from a long-distance object to a short-distance object. To the side to perform focusing, the focal length of the first lens group G1 is set to f1, the focal length of the third lens group G3 is set to f3, and the first lens group G1 and the second lens group at the wide angle end are set. An air space between the first lens group G1 and the second lens group G2 at the telephoto end is d1t, and an air space between the first lens group G1 and the second lens group G2 at the telephoto end is d1t. An air gap along the optical axis between the second lens group G2 and the third lens group G3 is set to d2w, and an optical axis between the second lens group G2 and the third lens group G3 at the telephoto end. Air spacing along the line is d2t When, to provide 0.15 <f3 / f1 <0.7 0.1 <(d2w-d2t) / (d1t-d1w) <zoom lens satisfies the 0.85 condition.

【0015】本発明の好ましい態様によれば、広角端に
おける前記第4レンズ群G4の結像倍率をβ4wとし、望
遠端における前記第4レンズ群G4の結像倍率をβ4tと
したとき、0.8<β4t/β4w<2.5の条件を満足す
る。また、広角端におけるバックフォーカスをBfwと
し、望遠端におけるバックフォーカスをBftとし、広
角端におけるレンズ系全体の焦点距離をfwとし、望遠
端におけるレンズ系全体の焦点距離をftとしたとき、 0.4<(Bft−Bfw)/(ft−fw)<0.8 の条件を満足するのが好ましい。
According to a preferred embodiment of the present invention, when the image forming magnification of the fourth lens group G4 at the wide-angle end is β4w and the image forming magnification of the fourth lens group G4 at the telephoto end is β4t, it is 0. The condition of 8 <β4t / β4w <2.5 is satisfied. When the back focus at the wide-angle end is Bfw, the back focus at the telephoto end is Bft, the focal length of the entire lens system at the wide-angle end is fw, and the focal length of the entire lens system at the telephoto end is ft, 0. It is preferable that the condition of 4 <(Bft−Bfw) / (ft−fw) <0.8 is satisfied.

【0016】[0016]

【作用】本発明によるズームレンズは、正の屈折力を有
する第1レンズ群G1と、負の屈折力を有する第2レン
ズ群G2と、正の屈折力を有する第3レンズ群G3と、
正の屈折力を有する第4レンズ群G4と、負の屈折力を
有する第5レンズ群G5とを備え、広角端から望遠端へ
の変倍に際して、少なくとも前記第1レンズ群G1およ
び前記第5レンズ群G5は物体側に移動し、前記第1レ
ンズ群G1と前記第2レンズ群G2との空気間隔は増大
し、前記第3レンズ群G3と前記第4レンズ群G4との
空気間隔は増大し、前記第4レンズ群G4と前記第5レ
ンズ群G5との空気間隔は減少し、遠距離物体から近距
離物体に対して前記第4レンズ群G4を物体側に移動さ
せてフォーカシングを行う構成を採用している。こうし
て、少ない構成レンズ枚数で小型に構成しながら、高変
倍化可能なズームレンズを達成することができる。
The zoom lens according to the present invention comprises a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power.
A fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a negative refractive power are provided, and at least the first lens group G1 and the fifth lens group G5 are used at the time of zooming from the wide-angle end to the telephoto end. The lens group G5 moves toward the object side, the air distance between the first lens group G1 and the second lens group G2 increases, and the air distance between the third lens group G3 and the fourth lens group G4 increases. However, the air distance between the fourth lens group G4 and the fifth lens group G5 decreases, and the fourth lens group G4 is moved toward the object side from a long-distance object to a short-distance object to perform focusing. Has been adopted. In this way, it is possible to achieve a zoom lens capable of achieving a high zoom ratio while having a small size with a small number of constituent lenses.

【0017】なお、開口絞りはレンズ系(最も物体側の
面から最も像側の面まで)の中央付近に配置することが
望ましい。特に、第2レンズ群G2と第3レンズ群G3
との間、第3レンズ群G3と第4レンズ群G4との間、
あるいは第4レンズ群G4と第5レンズ群G5との間に
開口絞りを配置することが好ましい。以下、本発明のズ
ームレンズの特徴について説明する。
The aperture stop is preferably arranged near the center of the lens system (from the surface closest to the object to the surface closest to the image). In particular, the second lens group G2 and the third lens group G3
Between the third lens group G3 and the fourth lens group G4,
Alternatively, it is preferable to dispose an aperture stop between the fourth lens group G4 and the fifth lens group G5. The features of the zoom lens of the present invention will be described below.

【0018】前述のとおり、レンズシャッター式カメラ
に用いられるズームレンズ(バックフォーカスに制限の
ないズームレンズ)では、レンズ全長の短縮化を図るた
めに、最も像側に負レンズ群を配置することが有効であ
る。したがって、本発明においても、最も像側に配置さ
れる第5レンズ群G5を負屈折力としている。また、広
角化を図るために、広角端でのバックフォーカスをある
程度小さくして、第5レンズ群G5を通過する軸外光束
の高さを光軸から離し、画角の変化に伴うコマ収差の変
動の補正を容易にしている。ただし、広角端でのバック
フォーカスを短くしすぎると、第5レンズ群G5を通過
する軸外光束の高さが光軸から離れすぎてレンズ径が大
型化してしまうため、広角端でのバックフォーカスを適
切な値とすることが望ましい。
As described above, in a zoom lens used in a lens shutter type camera (a zoom lens having no limitation on back focus), a negative lens group may be arranged closest to the image side in order to shorten the total lens length. It is valid. Therefore, also in the present invention, the fifth lens group G5 arranged closest to the image side has a negative refractive power. Further, in order to achieve a wide angle, the back focus at the wide angle end is made small to some extent, and the height of the off-axis light flux passing through the fifth lens group G5 is separated from the optical axis to reduce the coma aberration caused by the change in the angle of view. It facilitates correction of fluctuations. However, if the back focus at the wide-angle end is made too short, the height of the off-axis light flux passing through the fifth lens group G5 becomes too far from the optical axis, and the lens diameter becomes large. Should be an appropriate value.

【0019】そして、広角端から望遠端への変倍に際す
るバックフォーカスの変化を大きくすることにより、第
5レンズ群G5を通過する軸外光束の高さの変化を大き
くし、変倍時のコマ収差の変動を良好に補正している。
また、望遠端よりも広角端においてレンズ全長を短くす
る(広角端におけるレンズ全長の短縮化)ことにより、
広角端において第1レンズ群G1を通過する軸外光束の
高さを光軸に近づけて、第1レンズ群G1のレンズ径の
小型化を図っている。
Then, by increasing the change of the back focus at the time of zooming from the wide-angle end to the telephoto end, the change of the height of the off-axis light flux passing through the fifth lens group G5 is increased, and at the time of zooming. The fluctuation of the coma aberration of is well corrected.
Also, by shortening the total lens length at the wide-angle end rather than at the telephoto end (shortening the total lens length at the wide-angle end),
At the wide-angle end, the height of the off-axis light flux that passes through the first lens group G1 is brought closer to the optical axis to reduce the lens diameter of the first lens group G1.

【0020】本発明においては、高変倍化と高性能化と
の両立を図るために、最も像面寄りに配置される第5レ
ンズ群G5が変倍作用を担う割合を軽減し、第1レンズ
群G1乃至第4レンズ群G4で変倍作用を負担してい
る。特に、本発明においては、第2レンズ群G2の結像
倍率が大きく変化しており、第2レンズ群G2が変倍作
用を多く担っている。
In the present invention, in order to achieve both high zooming and high performance, the ratio of the fifth lens group G5 arranged closest to the image plane to carry out zooming is reduced, The lens group G1 to the fourth lens group G4 bear the zooming action. In particular, in the present invention, the image forming magnification of the second lens group G2 is largely changed, and the second lens group G2 plays a large amount of zooming action.

【0021】広角端では、第1レンズ群G1と第2レン
ズ群G2とをできるだけ近づけて、第1レンズ群G1と
第2レンズ群G2との合成屈折力を強い負屈折力とし、
これを像面から離れた位置に配置することによって、バ
ックフォーカスを十分得ている。また、正屈折力の第3
レンズ群G3と第4レンズ群G4とを近づけて、強い正
屈折力を得ている。逆に、望遠端では、正屈折力の第1
レンズ群G1を物体側に移動させて、第1レンズ群G1
と第2レンズ群G2との間隔を広げることによって、収
斂作用を強めてレンズ全長の短縮化を図っている。ま
た、正屈折力の第3レンズ群G3を物体側に移動させ
て、第2レンズ群G2との間隔を狭めることにより、さ
らにレンズ全長の短縮化に図っている。
At the wide-angle end, the first lens group G1 and the second lens group G2 are brought as close as possible to each other to make the combined refractive power of the first lens group G1 and the second lens group G2 a strong negative refractive power.
By arranging this at a position away from the image plane, a sufficient back focus is obtained. In addition, the third of the positive refractive power
A strong positive refracting power is obtained by bringing the lens group G3 and the fourth lens group G4 close to each other. On the contrary, at the telephoto end,
The first lens group G1 is moved by moving the lens group G1 to the object side.
By widening the distance between the second lens group G2 and the second lens group G2, the converging action is strengthened and the total lens length is shortened. Further, the third lens group G3 having a positive refracting power is moved to the object side to narrow the gap between the third lens group G3 and the second lens group G2, thereby further reducing the total lens length.

【0022】本発明においては、第1レンズ群G1と第
2レンズ群G2との合成屈折力が変倍中常に負であり、
広角端から望遠端への変倍に際して第1レンズ群G1と
第2レンズ群G2との空気間隔が増大する。このため、
第2レンズ群G2の結像倍率が負に増大するように増倍
に用いられており、広角端から望遠端への変倍に際して
第1レンズ群G1と第2レンズ群G2との合成屈折力が
負に小さくなる。また、広角端における第2レンズ群G
2の結像倍率をβ2wとするとき、−1<β2w<0とする
ことにより、広角端において十分なバックフォーカスを
得ることができる。また、第1レンズ群G1を通過する
軸外光束の高さが光軸により近づくため、第1レンズ群
G1のレンズ径(前玉有効径)の小型化を図ることがで
きる。
In the present invention, the combined refractive power of the first lens group G1 and the second lens group G2 is always negative during zooming,
During zooming from the wide-angle end to the telephoto end, the air gap between the first lens group G1 and the second lens group G2 increases. For this reason,
The second lens group G2 is used for multiplication so that the imaging magnification increases negatively, and when the magnification is changed from the wide-angle end to the telephoto end, the combined refractive power of the first lens group G1 and the second lens group G2. Becomes smaller negatively. Also, the second lens group G at the wide-angle end
When the imaging magnification of 2 is β2w, by setting -1 <β2w <0, a sufficient back focus can be obtained at the wide-angle end. Further, since the height of the off-axis light flux passing through the first lens group G1 becomes closer to the optical axis, the lens diameter (front lens effective diameter) of the first lens group G1 can be reduced.

【0023】次に、第4レンズ群G4によりフォーカシ
ングを行うための条件について述べる。被写体の位置が
遠距離から近距離に移動する際、第1レンズ群G1乃至
第4レンズ群G4による像位置が第5レンズ群G5に対
して一定となるように第4レンズ群G4を移動させれ
ば、合焦を行うことができる。この際、第4レンズ群G
4の移動量Δを小さくする条件について薄肉レンズ系を
用いて説明する。
Next, the conditions for focusing by the fourth lens group G4 will be described. When the position of the subject moves from a long distance to a short distance, the fourth lens group G4 is moved so that the image positions of the first lens group G1 to the fourth lens group G4 are constant with respect to the fifth lens group G5. If so, focusing can be performed. At this time, the fourth lens group G
The conditions for reducing the movement amount Δ of No. 4 will be described using a thin lens system.

【0024】まず、図2に示すように、第4レンズ群G
4に対する物点の位置がδだけ移動するとき、第4レン
ズ群G4の結像倍率をβ4とすると、第4レンズ群G4
の移動量Δは、次の数式(a)で与えられる。 Δ=〔β42 /(β42 −1)〕・δ (a) (a)式において、k=β42 /(β42 −1)とする
と、kの値はβ42 の値に依存して次の式(b)および
(c)で表すようになる。 1≦k (β42 >1) (b) 0>k (β42 <1) (c)
First, as shown in FIG. 2, the fourth lens group G
When the position of the object point with respect to 4 moves by δ, if the imaging magnification of the fourth lens group G4 is β4, the fourth lens group G4
The movement amount Δ of is given by the following mathematical expression (a). Δ = [β4 2 / (β4 2 -1)] · δ (a) In the equation (a), if k = β4 2 / (β4 2 -1), the value of k depends on the value of β4 2. It is expressed by the following equations (b) and (c). 1 ≦ k (β4 2 > 1) (b) 0> k (β4 2 <1) (c)

【0025】したがって、第4レンズ群4の移動量Δを
小さくするには、(b)の場合にはkを1に近づける、
すなわち1/β4を0に近づけることがことが必要であ
り、(c)の場合には、kを0に近づける、すなわちβ
4を0に近づけることが必要である。本発明において
は、β4を0に近づけることにより、フォーカシング時
の第4レンズ群G4の移動量Δを小さくしている。
Therefore, in order to reduce the movement amount Δ of the fourth lens group 4, in the case of (b), k is brought close to 1.
That is, it is necessary to bring 1 / β4 close to 0, and in the case of (c), k is made close to 0, that is, β
It is necessary to bring 4 closer to 0. In the present invention, by making β4 close to 0, the movement amount Δ of the fourth lens group G4 during focusing is reduced.

【0026】このとき、本発明においては、前述の通り
β4をできるだけ0に近づけているので、第1レンズ群
G1乃至第3レンズ群G3の合成屈折力をできるだけ0
に近づけることが望ましい。すなわち、第3レンズ群G
3の使用倍率をβ3とすると、1/β3を0に近づける
ことが望ましい。このように、第4レンズ群G4により
フォーカシングを行う場合、第3レンズ群G3および第
4レンズ群G4の結像倍率を適切な値にすることが要求
される。
At this time, in the present invention, β4 is set as close to 0 as possible as described above, so that the combined refractive power of the first lens group G1 to the third lens group G3 is set to 0 as much as possible.
It is desirable to approach. That is, the third lens group G
When the usage magnification of 3 is β3, it is desirable to bring 1 / β3 close to 0. As described above, when focusing is performed by the fourth lens group G4, it is required to set the image forming magnifications of the third lens group G3 and the fourth lens group G4 to appropriate values.

【0027】以下、本発明の各条件式について説明す
る。本発明のズームレンズは、以下の条件式(1)およ
び(2)を満足する。 0.15<f3/f1<0.7 (1) 0.1<(d2w−d2t)/(d1t−d1w)<0.85 (2) ここで、 f1:第1レンズ群G1の焦点距離 f3:第2レンズ群G3の焦点距離 d1w:広角端での第1レンズ群G1と第2レンズ群G2
との軸上空気間隔 d1t:望遠端での第1レンズ群G1と第2レンズ群G2
との軸上空気間隔 d2w:広角端での第2レンズ群G2と第3レンズ群G3
との軸上空気間隔 d2t:望遠端での第2レンズ群G2と第3レンズ群G3
との軸上空気間隔
Each conditional expression of the present invention will be described below. The zoom lens of the present invention satisfies the following conditional expressions (1) and (2). 0.15 <f3 / f1 <0.7 (1) 0.1 <(d2w-d2t) / (d1t-d1w) <0.85 (2) where, f1: focal length of the first lens group G1 f3 : Focal length of second lens group G3 d1w: First lens group G1 and second lens group G2 at wide-angle end
On-axis air distance d1t: first lens group G1 and second lens group G2 at the telephoto end
On-axis air distance d2w: second lens group G2 and third lens group G3 at the wide-angle end
On-axis air distance d2t: second lens group G2 and third lens group G3 at the telephoto end
On-axis air distance from

【0028】条件式(1)は、第1レンズ群G1の焦点
距離と第3レンズ群G3の焦点距離との比を規定するも
ので、広角化と望遠端におけるレンズ全長の短縮化との
バランスを図る条件式である。条件式(1)の上限値を
上回る場合、第1レンズ群G1の収斂作用が強まり、望
遠端におけるレンズ全長の短縮化を図ることができる。
しかしながら、広角端において第1レンズ群G1を通過
する軸外光束の高さが光軸から離れすぎて、第1レンズ
群G1のレンズ径が大型化してしまうとともに、正の歪
曲収差を抑えることが困難となってしまう。
Conditional expression (1) defines the ratio between the focal length of the first lens group G1 and the focal length of the third lens group G3, and is a balance between widening the angle and shortening the total lens length at the telephoto end. Is a conditional expression for When the value exceeds the upper limit of conditional expression (1), the converging action of the first lens group G1 is strengthened, and the total lens length at the telephoto end can be shortened.
However, at the wide-angle end, the height of the off-axis light flux passing through the first lens group G1 is too far from the optical axis, the lens diameter of the first lens group G1 becomes large, and positive distortion can be suppressed. It will be difficult.

【0029】逆に、条件式(1)の下限値を下回る場
合、第1レンズ群G1の収斂作用が弱まるので、望遠端
でのレンズ全長が大型化してしまう。また、第3レンズ
群G3の収斂作用が強まり、変倍に際して第3レンズ群
G3を通過する軸外光束の高さがあまり変化せず、入射
角度が大きくなる傾向になる。その結果、少ないレンズ
枚数でズームレンズを構成しようとすると、変倍時に第
3レンズ群G3において発生する軸外収差の変動を補正
することができなくなってしまう。
On the other hand, when the value goes below the lower limit of conditional expression (1), the converging action of the first lens group G1 is weakened, so that the total lens length at the telephoto end becomes large. Further, the converging action of the third lens group G3 is strengthened, the height of the off-axis light flux passing through the third lens group G3 does not change much during zooming, and the incident angle tends to increase. As a result, if an attempt is made to construct a zoom lens with a small number of lenses, it becomes impossible to correct the fluctuation of off-axis aberration that occurs in the third lens group G3 during zooming.

【0030】条件式(2)は、変倍に際する第1レンズ
群G1と第2レンズ群G2との軸上空気間隔の変化量と
第2レンズ群G2と第3レンズ群G3との軸上空気間隔
の変化量との比を規定するものである。条件式(2)の
上限値を上回る場合、変倍に際して第2レンズ群G2と
第3レンズ群G3との軸上空気間隔の変化量が大きくな
るため、広角端において第1レンズ群G1乃至第3レン
ズ群G3の各レンズ群を通過する軸外光束の高さが光軸
より離れすぎて、画角によるコマ収差の変動を抑えるこ
とができなくなる。
Conditional expression (2) is expressed by the amount of change in the axial air gap between the first lens group G1 and the second lens group G2 upon zooming and the axis between the second lens group G2 and the third lens group G3. It defines the ratio to the change amount of the upper air space. If the upper limit of conditional expression (2) is exceeded, the amount of change in the axial air gap between the second lens group G2 and the third lens group G3 during zooming becomes large, so the first lens group G1 through the first lens group G1 at the wide-angle end. The height of the off-axis light flux passing through each lens group of the third lens group G3 is too far from the optical axis, and it becomes impossible to suppress the variation of coma aberration depending on the angle of view.

【0031】逆に、条件式(2)の下限値を下回る場
合、変倍に際して第2レンズ群G2と第3レンズ群G3
との軸上空気間隔の変化量が小さくなりすぎて、広角端
において充分なバックフォーカスを得ることができず、
第5レンズ群G5のレンズ径が大型化してしまう。ま
た、変倍時の第1レンズ群G1と第2レンズ群G2との
軸上空気間隔の変化量が大きくなり、望遠端において第
1レンズ群G1を通過する軸外光束の高さが光軸より離
れて、正の歪曲収差を抑えることができなくなる。
On the contrary, if the lower limit value of the conditional expression (2) is not reached, the second lens group G2 and the third lens group G3 will be used during zooming.
Since the amount of change in the axial air distance between and becomes too small, sufficient back focus cannot be obtained at the wide-angle end,
The lens diameter of the fifth lens group G5 becomes large. Further, the amount of change in the axial air distance between the first lens group G1 and the second lens group G2 during zooming becomes large, and the height of the off-axis light flux passing through the first lens group G1 at the telephoto end is the optical axis. Further away, the positive distortion cannot be suppressed.

【0032】なお、本発明において、望遠端におけるレ
ンズ全長の短縮化をさらに図るには、条件式(1)の上
限値を0.65とするのが望ましい。また、さらに高変
倍化を図るには、条件式(1)の下限値を0.2とする
か、あるいは条件式(2)の上限値を0.75とするの
が望ましい。
In the present invention, in order to further reduce the total lens length at the telephoto end, it is desirable to set the upper limit of conditional expression (1) to 0.65. Further, in order to further increase the zoom ratio, it is desirable to set the lower limit of conditional expression (1) to 0.2 or the upper limit of conditional expression (2) to 0.75.

【0033】さらに高性能化を図るには、以下の条件式
(3)を満足することが望ましい。 0.8<β4t/β4w<2.5 (3) ここで、 β4w:広角端における第4レンズ群G4の結像倍率 β4t:望遠端における第4レンズ群G4の結像倍率
In order to further improve the performance, it is desirable to satisfy the following conditional expression (3). 0.8 <β4t / β4w <2.5 (3) where β4w: Imaging magnification of the fourth lens group G4 at the wide-angle end β4t: Imaging magnification of the fourth lens group G4 at the telephoto end

【0034】条件式(3)は、遠距離物体から近距離物
体に対して第4レンズ群G4を移動させてフォーカシン
グを行う際に発生する諸収差の変動を良好に補正するた
めの条件である。条件式(3)の上限値を上回る場合、
変倍に際する第4レンズ群G4の結像倍率の変化が大き
くなる。すなわち、第4レンズ群G4に対する物点位置
が変倍に際して大きく変化するようになる。したがっ
て、物点位置の変化に伴う諸収差の変動が発生し、特に
望遠端における軸上収差の変動が増大してしまう。ま
た、望遠端での第4レンズ群G4の移動量が大きくなり
すぎてしまう。
Conditional expression (3) is a condition for satisfactorily correcting fluctuations of various aberrations that occur when focusing is performed by moving the fourth lens group G4 from a long-distance object to a short-distance object. . If the upper limit of conditional expression (3) is exceeded,
The change in the imaging magnification of the fourth lens group G4 during zooming becomes large. That is, the object point position with respect to the fourth lens group G4 changes significantly during zooming. Therefore, variations in various aberrations occur with changes in the position of the object point, and particularly variations in axial aberration at the telephoto end increase. Further, the movement amount of the fourth lens group G4 at the telephoto end becomes too large.

【0035】条件式(3)の下限値を下回る場合、第4
レンズ群G4の結像倍率が変倍に際してあまり変化しな
くなる。すなわち、レンズ系全体での変倍に対して、第
1レンズ群G1乃至第4レンズ群G4が変倍を担う割合
が減少する。その結果、第5レンズ群G5が変倍を担う
割合が増大し過ぎてしまい、変倍時に第5レンズ群G5
において発生する軸外収差の変動を良好に抑えることが
できなくなってしまう。なお、望遠端においてフォーカ
シングに伴う軸上収差を抑えるには、条件式(3)の上
限値を1.8とすることが望ましい。
If the lower limit of conditional expression (3) is not reached, the fourth
The imaging magnification of the lens group G4 does not change much during zooming. That is, the ratio of the first lens group G1 to the fourth lens group G4 responsible for zooming to the zooming of the entire lens system decreases. As a result, the ratio of the fifth lens group G5 responsible for zooming increases too much, and the fifth lens group G5 does during zooming.
The fluctuation of the off-axis aberration that occurs in 1 cannot be suppressed well. In order to suppress the axial aberration associated with focusing at the telephoto end, it is desirable to set the upper limit of conditional expression (3) to 1.8.

【0036】さらに高変倍化を図るには、以下の条件式
(4)を満足することが望ましい。 0.4<(Bft−Bfw)/(ft−fw)<0.8 (4) ここで、 Bfw:広角端におけるバックフォーカス Bft:望遠端におけるバックフォーカス fw:広角端におけるレンズ系全体の焦点距離 ft:望遠端におけるレンズ系全体の焦点距離
To further increase the zoom ratio, it is desirable to satisfy the following conditional expression (4). 0.4 <(Bft−Bfw) / (ft−fw) <0.8 (4) where Bfw: back focus at wide-angle end Bft: back focus at telephoto end fw: focal length of entire lens system at wide-angle end ft: focal length of the entire lens system at the telephoto end

【0037】条件式(4)は、変倍におけるレンズ系全
体の焦点距離の変加量に対するバックフォーカスの変化
量の割合を規定するもので、第5レンズ群G5の変倍を
担う割合を規定するものである。条件式(4)の上限値
を上回る場合、レンズ系全体での変倍に対する第5レン
ズ群G5の変倍を担う割合が大きくなりすぎて、変倍時
に第5レンズ群G5において発生する軸外収差の変動を
抑えることが困難となってしまう。
Conditional expression (4) defines the ratio of the amount of change in the back focus to the amount of change in the focal length of the entire lens system during zooming, and defines the ratio responsible for zooming in the fifth lens group G5. To do. If the upper limit of conditional expression (4) is exceeded, the ratio of the fifth lens group G5 responsible for zooming to the zooming of the entire lens system becomes too large, and the off-axis that occurs in the fifth lens group G5 during zooming. It becomes difficult to suppress variation in aberration.

【0038】逆に、条件式(4)の下限値を下回る場
合、レンズ系全体での変倍に対する第5レンズ群G5の
変倍を担う割合が小さくなり、第1レンズ群G1乃至第
4レンズ群G4で変倍を担う割合が大きくなりすぎる。
このため、レンズ系の簡易構成化を図ることができず、
本発明の目的に反してしまう。なお、さらに高変倍化を
図るには、条件式(4)の上限値を0.7とすることが
好ましい。
On the contrary, when the value goes below the lower limit of the conditional expression (4), the ratio of the zooming of the fifth lens group G5 to the zooming of the entire lens system becomes small, and the first to fourth lenses G1 to G4. The ratio of zooming in the group G4 becomes too large.
Therefore, it is not possible to simplify the lens system,
It goes against the purpose of the present invention. In order to further increase the zoom ratio, it is preferable to set the upper limit of conditional expression (4) to 0.7.

【0039】[0039]

【実施例】図1は、本発明の各実施例にかかるズームレ
ンズの基本的な構成並びに広角端から望遠端への変倍時
における各レンズ群の移動の様子および遠距離物体から
近距離物体に対するフォーカシングにおける第4レンズ
群G4の移動の様子を示す図である。図1に示すよう
に、本発明によるズームレンズは各実施例において、物
体側より順に、正の屈折力を有する第1レンズ群G1
と、負の屈折力を有する第2レンズ群G2と、正の屈折
力を有する第3レンズ群G3と、正の屈折力を有する第
4レンズ群G4と、負の屈折力を有する第5レンズ群G
5とを備え、広角端から望遠端への変倍に際して、少な
くとも前記第1レンズ群G1および前記第5レンズ群G
5は物体側に移動し、前記第1レンズ群G1と前記第2
レンズ群G2との空気間隔は増大し、前記第3レンズ群
G3と前記第4レンズ群G4との空気間隔は増大し、前
記第4レンズ群G4と前記第5レンズ群G5との空気間
隔は減少する。なお、遠距離物体から近距離物体に対し
てフォーカシングを行う際には、第4レンズ群G4を物
体側に移動させている。
FIG. 1 shows the basic structure of a zoom lens according to each embodiment of the present invention, the state of movement of each lens group during zooming from the wide-angle end to the telephoto end, and the object from a long-distance object to a short-distance object. FIG. 11 is a diagram showing a state of movement of a fourth lens unit G4 in focusing with respect to. As shown in FIG. 1, in each embodiment, the zoom lens according to the present invention includes, in order from the object side, the first lens group G1 having a positive refractive power.
A second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens having a negative refractive power. Group G
And 5 at the time of zooming from the wide-angle end to the telephoto end, at least the first lens group G1 and the fifth lens group G
5 moves to the object side, and the first lens group G1 and the second lens group G1
The air distance between the lens group G2 increases, the air distance between the third lens group G3 and the fourth lens group G4 increases, and the air distance between the fourth lens group G4 and the fifth lens group G5 increases. Decrease. It should be noted that when focusing from a long-distance object to a short-distance object, the fourth lens group G4 is moved to the object side.

【0040】以下、本発明の各実施例を、添付図面に基
づいて説明する。 〔実施例1〕図3は、本発明の第1実施例にかかるズー
ムレンズの構成を示す図である。図示のズームレンズ
は、物体側より順に、両凹レンズと両凸レンズとの貼合
わせレンズL11および両凸レンズL12からなる第1
レンズ群G1と、両凹レンズL21、両凸レンズL22
および両凹レンズL23からなる第2レンズ群G2と、
両凸レンズL3からなる第3レンズ群G3と、両凸レン
ズと物体側に凹面を向けた負メニスカスレンズとの接合
正レンズ成分L4からなる第4レンズ群G4と、物体側
に凹面を向けた正メニスカスレンズL51、物体側に凹
面を向けた負メニスカスレンズL52および物体側に凹
面を向けた負メニスカスレンズL53からなる第5レン
ズ群G5とから構成されている。
Each embodiment of the present invention will be described below with reference to the accompanying drawings. Example 1 FIG. 3 is a diagram showing the configuration of a zoom lens according to Example 1 of the present invention. The illustrated zoom lens is a first lens including, in order from the object side, a cemented lens L11 including a biconcave lens and a biconvex lens, and a biconvex lens L12.
Lens group G1, biconcave lens L21, biconvex lens L22
And a second lens group G2 including a biconcave lens L23,
A third lens group G3 composed of a biconvex lens L3, a fourth lens group G4 composed of a positive lens component L4 cemented with a biconvex lens and a negative meniscus lens having a concave surface facing the object side, and a positive meniscus having a concave surface facing the object side. It includes a lens L51, a negative meniscus lens L52 having a concave surface facing the object side, and a fifth lens group G5 including a negative meniscus lens L53 having a concave surface facing the object side.

【0041】図3は、広角端における各レンズ群の位置
関係を示しており、望遠端への変倍時には図1に矢印で
示すズーム軌道に沿って光軸上を移動する。また、開口
絞りSは、第3レンズ群G3と第4レンズ群G4との間
に配置され、広角端から望遠端への変倍に際して第4レ
ンズ群G4と一体的に移動する。次の表(1)に、本発
明の実施例1の諸元の値を掲げる。表(1)において、
fは焦点距離を、FNはFナンバーを、2ωは画角を、
Bfはバックフォーカスを、Rは撮影距離を表す。さら
に、屈折率およびアッベ数はそれぞれd線(λ=58
7.6nm)に対する値を示している。
FIG. 3 shows the positional relationship of each lens group at the wide-angle end, and when the magnification is changed to the telephoto end, it moves on the optical axis along the zoom orbit shown by the arrow in FIG. The aperture stop S is arranged between the third lens group G3 and the fourth lens group G4, and moves integrally with the fourth lens group G4 during zooming from the wide-angle end to the telephoto end. Table 1 below lists values of specifications of the first embodiment of the present invention. In Table (1),
f is the focal length, FN is the F number, 2ω is the angle of view,
Bf represents the back focus, and R represents the shooting distance. Further, the refractive index and the Abbe number are d-line (λ = 58
7.6 nm).

【0042】[0042]

【表1】 f=38.80 〜75.68 〜121.80mm FN=4.3 〜6.9 〜9.0 2ω=59.2〜31.4〜19.8゜ 面番号 曲率半径 面間隔 アッベ数 屈折率 1 -136.6894 1.50 33.89 1.80384 2 39.0402 3.51 60.69 1.56384 3 -80.2574 0.13 4 42.4571 3.01 57.03 1.62280 5 -147.2072 (d5= 可変) 6 -32.7823 1.26 49.45 1.77279 7 28.5446 1.00 8 18.8958 2.76 25.80 1.78472 9 -251.4186 1.00 10 -26.8968 1.26 45.37 1.79668 11 129.1609 (d11=可変) 12 360.3996 1.88 59.60 1.53996 13 -20.5975 (d13=可変) 14 ∞ 1.51 (絞り) 15 21.9826 3.27 59.60 1.53996 16 -13.3086 1.26 25.35 1.80518 17 -36.5419 (d17=可変) 18 -71.7851 2.89 25.35 1.80518 19 -20.7264 0.38 20 -37.6538 1.26 45.35 1.84042 21 -504.2084 4.40 22 -12.4513 1.51 49.45 1.77279 23 -53.6689 (Bf) (変倍における可変間隔) f 38.8006 75.6784 121.8082 d5 2.1349 10.3930 17.1158 d11 4.7612 3.5057 1.2558 d13 3.1959 4.4513 6.7013 d17 15.1723 6.4633 2.5116 Bf 9.4854 33.6355 54.8653 (撮影倍率−1/40倍時の第4レンズ群のフォーカシ
ング移動量) f 38.8006 75.6784 121.8082 R 1621.2778 3113.3359 4977.7728 移動量 0.5229 0.3701 0.3292 (移動量Δの符号は被写体方向を正とする) (条件対応値) f1=68.3664 f3=37.7648 d1w=2.1349 d1t=17.1158 d2w=4.7612 d2t=1.2558 β4w=0.15099 β4t=0.20497 Bfw=9.4854 Bft=54.8653 fw=38.80 ft=121.80 (1)f3/f1 =0.552 (2)(d2w−d2t)/(d1t−d1w) =0.234 (3)β4t/β4w =1.358 (4)(Bft−Bfw)/(ft−fw)=0.547
[Table 1] f = 38.80 to 75.68 to 121.80mm FN = 4.3 to 6.9 to 9.0 2ω = 59.2 to 31.4 to 19.8 ° Surface number Curvature radius Surface spacing Abbe number Refractive index 1 -136.6894 1.50 33.89 1.80384 2 39.0402 3.51 60.69 1.56384 3- 80.2574 0.13 4 42.4571 3.01 57.03 1.62280 5 -147.2072 (d5 = variable) 6 -32.7823 1.26 49.45 1.77279 7 28.5446 1.00 8 18.8958 2.76 25.80 1.78472 9 -251.4186 1.00 10 -26.8968 1.26 45.37 1.79668 11 129.1609 (d11 = variable) 12 360.3996 1. 1.53996 13 -20.5975 (d13 = variable) 14 ∞ 1.51 (aperture) 15 21.9826 3.27 59.60 1.53996 16 -13.3086 1.26 25.35 1.80518 17 -36.5419 (d17 = variable) 18 -71.7851 2.89 25.35 1.80518 19 -20.7264 0.38 20 -37.6538 1.26 45.35 1.84042 21 -504.2084 4.40 22 -12.4513 1.51 49.45 1.77279 23 -53.6689 (Bf) (Variable spacing during zoom) f 38.8006 75.6784 121.8082 d5 2.1349 10.3930 17.1158 d11 4.7612 3.5057 1.2558 d13 3.1959 4.4513 6.7013 d17 15.1723 6.4633 2.5116 Bf 9.4854 33.6355 54.86 -Of the 4th lens group at 1/40 times Focusing moving amount) f 38.8006 75.6784 121.8082 R 1621.2778 3113.3359 4977.7728 Moving amount 0.5229 0.3701 0.3292 (The sign of the moving amount Δ is the subject direction is positive) (Condition corresponding value) f1 = 68.3664 f3 = 37.76848 d1w = 2. 1349 d1t = 17.1158 d2w = 4.7612 d2t = 1.2558 β4w = 0.15099 β4t = 0.20497 Bfw = 9.4854 Bft = 54.8653 fw = 38.80 ft = 121.80 (1) f3 /F1=0.552 (2) (d2w-d2t) / (d1t-d1w) = 0.234 (3) β4t / β4w = 1.358 (4) (Bft-Bfw) / (ft-fw) = 0 .547

【0043】図4乃至図9は実施例1の諸収差図であっ
て、それぞれ広角端(最短焦点距離状態)での無限遠合
焦状態における諸収差図、中間焦点距離状態での無限遠
合焦状態における諸収差図、望遠端(最長焦点距離状
態)での無限遠合焦状態における諸収差図、広角端での
近距離合焦状態(撮影倍率−1/40倍)における諸収
差図、中間焦点距離状態での近距離合焦状態(撮影倍率
−1/40倍)における諸収差図、および望遠端での近
距離合焦状態(撮影倍率−1/40倍)における諸収差
図である。各収差図において、FNはFナンバーを、H
は入射光の高さを、Yは像高を、Aは主光線の入射角を
それぞれ示している。また、非点収差を示す収差図にお
いて実線はサジタル像面を示し、破線はメリディオナル
像面を示している。各収差図から明らかなように、本実
施例では、各焦点距離状態において遠距離物体から近距
離物体にかけて、諸収差が良好に補正されていることが
わかる。
4 to 9 are graphs showing various aberrations of the first embodiment, which are graphs showing various aberrations at the wide-angle end (shortest focal length state) at infinity and in the intermediate focal length state, respectively. Various aberration diagrams in the in-focus state, various aberration diagrams in the infinity in-focus state at the telephoto end (longest focal length state), various aberration diagrams in the short-distance in-focus state at the wide-angle end (shooting magnification-1 / 40 times), FIG. 9 is a diagram showing various aberrations in a short-distance focus state (shooting magnification −1 / 40 ×) in the intermediate focal length state, and various aberration diagrams in a short-distance focus state (shooting magnification −1 / 40 ×) at the telephoto end. . In each aberration diagram, FN is the F number and H is
Indicates the height of incident light, Y indicates the image height, and A indicates the incident angle of the chief ray. Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present embodiment, it is understood that various aberrations are satisfactorily corrected from the long-distance object to the short-distance object in each focal length state.

【0044】〔実施例2〕図10は、本発明の第2実施
例にかかるズームレンズの構成を示す図である。図示の
ズームレンズは、物体側より順に、両凹レンズと両凸レ
ンズとの貼合わせレンズL11および両凸レンズL12
からなる第1レンズ群G1と、両凹レンズL21、両凸
レンズL22および両凹レンズL23からなる第2レン
ズ群G2と、物体側に凹面を向けた正メニスカスレンズ
L3からなる第3レンズ群G3と、両凸レンズと物体側
に凹面を向けた負メニスカスレンズとの接合正レンズ成
分L4からなる第4レンズ群G4と、物体側に凹面を向
けた正メニスカスレンズL51、物体側に凹面を向けた
負メニスカスレンズL52および物体側に凹面を向けた
負メニスカスレンズL53からなる第5レンズ群G5と
から構成されている。
Example 2 FIG. 10 is a diagram showing the structure of a zoom lens according to Example 2 of the present invention. The zoom lens shown in the figure is, in order from the object side, a cemented lens L11 and a biconvex lens L12 that are a biconcave lens and a biconvex lens.
A second lens group G2 including a biconcave lens L21, a biconvex lens L22, and a biconcave lens L23, a third lens group G3 including a positive meniscus lens L3 having a concave surface facing the object side, and A fourth lens group G4 composed of a positive lens component L4 cemented with a convex lens and a negative meniscus lens having a concave surface facing the object side, a positive meniscus lens L51 having a concave surface facing the object side, and a negative meniscus lens having a concave surface facing the object side. L52 and a fifth lens group G5 including a negative meniscus lens L53 having a concave surface facing the object side.

【0045】図10は、広角端における各レンズ群の位
置関係を示しており、望遠端への変倍時には図1に矢印
で示すズーム軌道に沿って光軸上を移動する。また、開
口絞りSは、第4レンズ群G4と第5レンズ群G5との
間に配置され、広角端から望遠端への変倍に際して第4
レンズ群G4と一体的に移動する。次の表(2)に、本
発明の実施例2の諸元の値を掲げる。表(2)におい
て、fは焦点距離を、FNはFナンバーを、2ωは画角
を、Bfはバックフォーカスを、Rは撮影距離を表す。
さらに、屈折率およびアッベ数はそれぞれd線(λ=5
87.6nm)に対する値を示している。
FIG. 10 shows the positional relationship between the lens groups at the wide-angle end, which moves along the optical axis along the zoom orbit indicated by the arrow in FIG. 1 during zooming to the telephoto end. Further, the aperture stop S is arranged between the fourth lens group G4 and the fifth lens group G5, and is used for zooming from the wide-angle end to the telephoto end at the fourth position.
It moves integrally with the lens group G4. Table 2 below lists values of specifications of the second embodiment of the present invention. In Table (2), f is the focal length, FN is the F number, 2ω is the angle of view, Bf is the back focus, and R is the shooting distance.
Further, the refractive index and the Abbe number are d-line (λ = 5, respectively).
87.6 nm).

【0046】[0046]

【表2】 f=38.80 〜75.57 〜121.82mm FN=4.2 〜6.4 〜9.1 2ω=59.2〜31.4〜19.8゜ 面番号 曲率半径 面間隔 アッベ数 屈折率 1 -100.5729 1.50 33.89 1.80384 2 42.6868 3.51 60.69 1.56384 3 -71.3582 0.13 4 39.2139 3.01 57.03 1.62280 5 -183.9500 (d5= 可変) 6 -31.2574 1.26 46.54 1.80411 7 26.1122 1.00 8 18.5106 2.76 25.80 1.78472 9 -85.1359 1.00 10 -21.4109 1.26 46.80 1.76684 11 301.5949 (d11=可変) 12 -2139.4562 1.88 69.98 1.51860 13 -17.7170 (d13=可変) 14 23.2348 3.27 59.60 1.53996 15 -12.1777 1.26 25.35 1.80518 16 -32.5065 0.63 17 ∞ (d17=可変) (絞り) 18 -64.1787 2.89 25.35 1.80518 19 -18.9047 0.68 20 -25.1436 1.26 45.35 1.84042 21 -120.8813 4.10 22 -12.9063 1.51 49.45 1.77279 23 -53.5807 (Bf) (変倍における可変間隔) f 38.8004 75.5681 121.8183 d5 2.1349 12.3788 17.2777 d11 3.5163 2.1298 1.0047 d13 4.0186 5.4051 6.5302 d17 14.2797 6.1305 1.8837 Bf 9.4962 31.2449 56.5986 (撮影倍率−1/40倍時の第4レンズ群のフォーカシ
ング移動量) f 38.8004 75.5681 121.8183 R 1553.4629 3015.8638 4861.5888 移動量 0.5077 0.3860 0.3021 (移動量Δの符号は被写体方向を正とする) (条件対応値) f1=69.0790 f3=34.4379 d1w=2.1349 d1t=17.2777 d2w=3.5163 d2t=1.0047 β4w=0.23882 β4t=0.18342 Bfw=9.4962 Bft=56.5986 fw=38.80 ft=121.82 (1)f3/f1 =0.499 (2)(d2w−d2t)/(d1t−d1w) =0.166 (3)β4t/β4w =1.302 (4)(Bft−Bfw)/(ft−fw)=0.567
[Table 2] f = 38.80 to 75.57 to 121.82 mm FN = 4.2 to 6.4 to 9.1 2 ω = 59.2 to 31.4 to 19.8 ° Surface number Curvature radius Surface spacing Abbe number Refractive index 1 -100.5729 1.50 33.89 1.80384 2 42.6868 3.51 60.69 1.56384 3- 71.3582 0.13 4 39.2139 3.01 57.03 1.62280 5 -183.9500 (d5 = variable) 6 -31.2574 1.26 46.54 1.80411 7 26.1122 1.00 8 18.5106 2.76 25.80 1.78472 9 -85.1359 1.00 10 -21.4109 1.26 46.80 1.76684 11 301.5949 (d11 = variable) 12 -2139.4562 1.88 69.98 1.51860 13 -17.7170 (d13 = variable) 14 23.2348 3.27 59.60 1.53996 15 -12.1777 1.26 25.35 1.80518 16 -32.5065 0.63 17 ∞ (d17 = variable) (aperture) 18 -64.1787 2.89 25.35 1.80518 19 -18.9047 0.68 20 -25.1436 1.26 45.35 1.84042 21 -120.8813 4.10 22 -12.9063 1.51 49.45 1.77279 23 -53.5807 (Bf) (Variable spacing during zoom) f 38.8004 75.5681 121.8183 d5 2.1349 12.3788 17.2777 d11 3.5163 2.1298 1.0047 d13 4.0186 5.4051 6.5302 d17 14.2797 6.1305 1.8837 Bf 9.4962 31.2449 56. 4th lens group at 1 / 40x magnification Focusing movement amount) f 38.8004 75.5681 121.8183 R 1553.4629 3015.8638 4861.5888 Movement amount 0.5077 0.3860 0.3021 (The sign of the movement amount Δ is positive in the direction of the subject) (Condition corresponding value) f1 = 69.0790 f3 = 34.4379 d1w = 2. 1349 d1t = 17.2777 d2w = 3.5163 d2t = 1.0047 β4w = 0.23882 β4t = 0.13842 Bfw = 9.4962 Bft = 56.5986 fw = 38.80 ft = 121.82 (1) f3 /F1=0.499 (2) (d2w-d2t) / (d1t-d1w) = 0.166 (3) β4t / β4w = 1.302 (4) (Bft-Bfw) / (ft-fw) = 0 .567

【0047】図11乃至図16は実施例2の諸収差図で
あって、それぞれ広角端(最短焦点距離状態)での無限
遠合焦状態における諸収差図、中間焦点距離状態での無
限遠合焦状態における諸収差図、望遠端(最長焦点距離
状態)での無限遠合焦状態における諸収差図、広角端で
の近距離合焦状態(撮影倍率−1/40倍)における諸
収差図、中間焦点距離状態での近距離合焦状態(撮影倍
率−1/40倍)における諸収差図、および望遠端での
近距離合焦状態(撮影倍率−1/40倍)における諸収
差図である。各収差図において、FNはFナンバーを、
Hは入射光の高さを、Yは像高を、Aは主光線の入射角
をそれぞれ示している。また、非点収差を示す収差図に
おいて実線はサジタル像面を示し、破線はメリディオナ
ル像面を示している。各収差図から明らかなように、本
実施例では、各焦点距離状態において遠距離物体から近
距離物体にかけて、諸収差が良好に補正されていること
がわかる。
11 to 16 are graphs showing various aberrations of the second embodiment, that is, graphs showing various aberrations at the wide-angle end (shortest focal length state) in the infinity state and in the intermediate focal length state. Various aberration diagrams in the in-focus state, various aberration diagrams in the infinity in-focus state at the telephoto end (longest focal length state), various aberration diagrams in the short-distance in-focus state at the wide-angle end (shooting magnification-1 / 40 times), FIG. 9 is a diagram showing various aberrations in a short-distance focus state (shooting magnification −1 / 40 ×) in the intermediate focal length state, and various aberration diagrams in a short-distance focus state (shooting magnification −1 / 40 ×) at the telephoto end. . In each aberration diagram, FN is the F number,
H indicates the height of the incident light, Y indicates the image height, and A indicates the incident angle of the chief ray. Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present embodiment, it is understood that various aberrations are satisfactorily corrected from the long-distance object to the short-distance object in each focal length state.

【0048】〔実施例3〕図17は、本発明の第3実施
例にかかるズームレンズの構成を示す図である。図示の
ズームレンズは、物体側より順に、両凹レンズと両凸レ
ンズとの貼合わせレンズL11および両凸レンズL12
からなる第1レンズ群G1と、両凹レンズL21、両凸
レンズL22および両凹レンズL23からなる第2レン
ズ群G2と、両凸レンズL3からなる第3レンズ群G3
と、両凸レンズと物体側に凹面を向けた負メニスカスレ
ンズとの接合正レンズ成分L4からなる第4レンズ群G
4と、物体側に凹面を向けた正メニスカスレンズL5
1、物体側に凹面を向けた負メニスカスレンズL52お
よび物体側に凹面を向けた負メニスカスレンズL53か
らなる第5レンズ群G5とから構成されている。
Example 3 FIG. 17 is a diagram showing the structure of a zoom lens according to Example 3 of the present invention. The zoom lens shown in the figure is, in order from the object side, a cemented lens L11 and a biconvex lens L12 that are a biconcave lens and a biconvex lens.
A second lens group G2 including a biconcave lens L21, a biconvex lens L22 and a biconcave lens L23, and a third lens group G3 including a biconvex lens L3.
And a fourth lens unit G composed of a cemented positive lens component L4 of a biconvex lens and a negative meniscus lens having a concave surface facing the object side.
4 and a positive meniscus lens L5 having a concave surface facing the object side
1. The fifth lens unit G5 includes a negative meniscus lens L52 having a concave surface facing the object side and a negative meniscus lens L53 having a concave surface facing the object side.

【0049】図17は、広角端における各レンズ群の位
置関係を示しており、望遠端への変倍時には図1に矢印
で示すズーム軌道に沿って光軸上を移動する。また、開
口絞りSは、第4レンズ群G4と第5レンズ群G5との
間に配置され、広角端から望遠端への変倍に際して第4
レンズ群G4と一体的に移動する。次の表(3)に、本
発明の実施例3の諸元の値を掲げる。表(3)におい
て、fは焦点距離を、FNはFナンバーを、2ωは画角
を、Bfはバックフォーカスを、Rは撮影距離を表す。
さらに、屈折率およびアッベ数はそれぞれd線(λ=5
87.6nm)に対する値を示している。
FIG. 17 shows the positional relationship between the lens groups at the wide-angle end, which moves along the optical axis along the zoom orbit shown by the arrow in FIG. 1 during zooming to the telephoto end. Further, the aperture stop S is arranged between the fourth lens group G4 and the fifth lens group G5, and is used for zooming from the wide-angle end to the telephoto end at the fourth position.
It moves integrally with the lens group G4. Table 3 below lists values of specifications of the third embodiment of the present invention. In Table (3), f is the focal length, FN is the F number, 2ω is the angle of view, Bf is the back focus, and R is the shooting distance.
Further, the refractive index and the Abbe number are d-line (λ = 5, respectively).
87.6 nm).

【0050】[0050]

【表3】 f=38.80 〜77.87 〜134.38mm FN=3.9 〜6.5 〜9.5 2ω=60.6〜31.0〜18.2゜ 面番号 曲率半径 面間隔 アッベ数 屈折率 1 -118.8494 1.50 33.89 1.80384 2 43.4496 3.51 60.69 1.56384 3 -123.1496 0.13 4 39.7137 3.01 57.03 1.62280 5 -151.1848 (d5= 可変) 6 -31.3246 1.26 46.54 1.80411 7 29.6582 0.88 8 20.5366 2.89 25.80 1.78472 9 -121.1359 1.00 10 -25.3972 1.26 46.80 1.76684 11 530.2191 (d11=可変) 12 158.0786 1.88 61.09 1.58913 13 -23.4619 (d13=可変) 14 25.8414 3.27 59.60 1.53996 15 -13.2417 1.26 25.35 1.80518 16 -39.2875 0.63 17 ∞ (d17=可変) (絞り) 18 -58.5051 2.89 25.35 1.80518 19 -19.5210 0.13 20 -28.8382 1.26 45.35 1.84042 21 -181.9438 4.65 22 -13.0533 1.51 49.45 1.77279 23 -41.2762 (Bf) (変倍における可変間隔) f 38.8004 75.5681 121.8183 d5 2.1349 11.0232 17.2356 d11 4.3380 2.7166 1.0047 d13 4.0186 5.6400 7.3506 d17 14.9595 6.2751 1.8837 Bf 9.5605 36.4211 68.9655 (撮影倍率−1/40倍時の第4レンズ群のフォーカシ
ング移動量) f 38.8004 75.5681 121.8183 R 1553.4629 3015.8638 4861.5888 移動量 0.5077 0.3860 0.3021 (移動量Δの符号は被写体方向を正とする) (条件対応値) f1=62.0761 f3=27.7205 d1w=2.1349 d1t=17.2356 d2w=4.3380 d2t=1.0047 β4w=0.2495 β4t=0.2220 Bfw=9.5605 Bft=68.9655 fw=38.80 ft=134.38 (1)f3/f1 =0.447 (2)(d2w−d2t)/(d1t−d1w) =0.221 (3)β4t/β4w =1.124 (4)(Bft−Bfw)/(ft−fw)=0.622
[Table 3] f = 38.80 to 77.87 to 134.38 mm FN = 3.9 to 6.5 to 9.5 2 ω = 60.6 to 31.0 to 18.2 ° Surface number Curvature radius Surface spacing Abbe number Refractive index 1 -118.8494 1.50 33.89 1.80384 2 43.4496 3.51 60.69 1.56384 3- 123.1496 0.13 4 39.7137 3.01 57.03 1.62280 5 -151.1848 (d5 = variable) 6 -31.3246 1.26 46.54 1.80411 7 29.6582 0.88 8 20.5366 2.89 25.80 1.78472 9 -121.1359 1.00 10 -25.3972 1.26 46.80 1.76684 11 530.2191 (d11 = variable) 12 158.0 7 1.58913 13 -23.4619 (d13 = variable) 14 25.8414 3.27 59.60 1.53996 15 -13.2417 1.26 25.35 1.80518 16 -39.2875 0.63 17 ∞ (d17 = variable) (aperture) 18 -58.5051 2.89 25.35 1.80518 19 -19.5210 0.13 20 -28.8382 1.26 45.35 1.84042 21 -181.9438 4.65 22 -13.0533 1.51 49.45 1.77279 23 -41.2762 (Bf) (Variable spacing during zoom) f 38.8004 75.5681 121.8183 d5 2.1349 11.0232 17.2356 d11 4.3380 2.7166 1.0047 d13 4.0186 5.6400 7.3506 d17 14.9595 6.2751 1.8837 Bf 9.5605 36.4211 68.9655 -4th lens group at 1/40 times Focusing moving amount) f 38.8004 75.5681 121.8183 R 1553.4629 3015.8638 4861.5888 Moving amount 0.5077 0.3860 0.3021 (The sign of the moving amount Δ is the subject direction is positive) (Conditional value) f1 = 62.0761 f3 = 27.7205 d1w = 2. 1349 d1t = 17.2356 d2w = 4.3380 d2t = 1.0047 β4w = 0.2495 β4t = 0.2220 Bfw = 9.5605 Bft = 68.9655 fw = 38.80 ft = 134.38 (1) f3 /F1=0.447 (2) (d2w-d2t) / (d1t-d1w) = 0.221 (3) β4t / β4w = 1.124 (4) (Bft-Bfw) / (ft-fw) = 0 .622

【0051】図18乃至図23は実施例3の諸収差図で
あって、それぞれ広角端(最短焦点距離状態)での無限
遠合焦状態における諸収差図、中間焦点距離状態での無
限遠合焦状態における諸収差図、望遠端(最長焦点距離
状態)での無限遠合焦状態における諸収差図、広角端で
の近距離合焦状態(撮影倍率−1/40倍)における諸
収差図、中間焦点距離状態での近距離合焦状態(撮影倍
率−1/40倍)における諸収差図、および望遠端での
近距離合焦状態(撮影倍率−1/40倍)における諸収
差図である。各収差図において、FNはFナンバーを、
Hは入射光の高さを、Yは像高を、Aは主光線の入射角
をそれぞれ示している。また、非点収差を示す収差図に
おいて実線はサジタル像面を示し、破線はメリディオナ
ル像面を示している。各収差図から明らかなように、本
実施例では、各焦点距離状態において遠距離物体から近
距離物体にかけて、諸収差が良好に補正されていること
がわかる。
18 to 23 are graphs showing various aberrations of the third embodiment, that is, graphs showing various aberrations at the wide-angle end (shortest focal length state) at infinity and infinity at intermediate focal length. Various aberration diagrams in the in-focus state, various aberration diagrams in the infinity in-focus state at the telephoto end (longest focal length state), various aberration diagrams in the short-distance in-focus state at the wide-angle end (shooting magnification-1 / 40 times), FIG. 9 is a diagram showing various aberrations in a short-distance focus state (shooting magnification −1 / 40 ×) in the intermediate focal length state, and various aberration diagrams in a short-distance focus state (shooting magnification −1 / 40 ×) at the telephoto end. . In each aberration diagram, FN is the F number,
H indicates the height of the incident light, Y indicates the image height, and A indicates the incident angle of the chief ray. Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present embodiment, it is understood that various aberrations are satisfactorily corrected from the long-distance object to the short-distance object in each focal length state.

【0052】〔実施例4〕図24は、本発明の第4実施
例にかかるズームレンズの構成を示す図である。図示の
ズームレンズは、物体側より順に、物体側に凸面を向け
た負メニスカスレンズと両凸レンズとの貼合わせレンズ
L1からなる第1レンズ群G1と、両凹レンズL21、
物体側に凸面を向けた正メニスカスレンズL22および
物体側に凹面を向けた負メニスカスレンズL23からな
る第2レンズ群G2と、両凸レンズL31、および両凸
レンズと両凹レンズとの貼合わせレンズL32からなる
第3レンズ群G3と、両凸レンズと物体側に凹面を向け
た負メニスカスレンズとの接合正レンズ成分L4からな
る第4レンズ群G4と、正レンズと負レンズとの貼合わ
せレンズL51、および物体側に凹面を向けた負メニス
カスレンズL52からなる第5レンズ群G5とから構成
されている。
Example 4 FIG. 24 is a diagram showing the structure of a zoom lens according to Example 4 of the present invention. The illustrated zoom lens includes, in order from the object side, a first lens group G1 including a cemented lens L1 including a negative meniscus lens having a convex surface facing the object side and a biconvex lens, and a biconcave lens L21,
A second lens group G2 including a positive meniscus lens L22 having a convex surface facing the object side and a negative meniscus lens L23 having a concave surface facing the object side, a biconvex lens L31, and a cemented lens L32 including a biconvex lens and a biconcave lens. A third lens group G3, a fourth lens group G4 composed of a cemented positive lens component L4 of a biconvex lens and a negative meniscus lens having a concave surface facing the object side, a cemented lens L51 of a positive lens and a negative lens, and an object The fifth lens group G5 is composed of a negative meniscus lens L52 having a concave surface facing toward the side.

【0053】図24は、広角端における各レンズ群の位
置関係を示しており、望遠端への変倍時には図1に矢印
で示すズーム軌道に沿って光軸上を移動する。また、開
口絞りSは、第3レンズ群G3と第4レンズ群G4との
間に配置され、広角端から望遠端への変倍に際して第4
レンズ群G4と一体的に移動する。なお、変倍に際し
て、第3レンズ群G3と第5レンズ群G5とが一体的に
移動する。次の表(4)に、本発明の実施例4の諸元の
値を掲げる。表(4)において、fは焦点距離を、FN
はFナンバーを、2ωは画角を、Bfはバックフォーカ
スを、Rは撮影距離を表す。さらに、屈折率およびアッ
ベ数はそれぞれd線(λ=587.6nm)に対する値
を示している。
FIG. 24 shows the positional relationship between the lens groups at the wide-angle end, which moves on the optical axis along the zoom orbit shown by the arrow in FIG. 1 during zooming to the telephoto end. Further, the aperture stop S is arranged between the third lens group G3 and the fourth lens group G4, and is used for zooming from the wide-angle end to the telephoto end at the fourth position.
It moves integrally with the lens group G4. Note that the third lens group G3 and the fifth lens group G5 move integrally during zooming. Table (4) below lists values of specifications of the fourth embodiment of the present invention. In Table (4), f is the focal length, FN
Represents the F number, 2ω represents the angle of view, Bf represents the back focus, and R represents the shooting distance. Furthermore, the refractive index and the Abbe number show values for the d-line (λ = 587.6 nm), respectively.

【0054】[0054]

【表4】 f=38.80 〜75.33 〜146.85mm FN=3.9 〜6.1 〜9.7 2ω=60.4〜31.0〜16.4゜ 面番号 曲率半径 面間隔 アッベ数 屈折率 1 120.2315 1.38 23.01 1.86074 2 43.7628 4.40 69.98 1.51860 3 -53.8968 (d3= 可変) 4 -40.1762 1.26 52.30 1.74809 5 20.8189 0.88 6 21.3856 2.76 25.50 1.80458 7 1851.4159 1.60 8 -21.7157 1.26 45.37 1.79668 9 -52.5487 (d9= 可変) 10 27.3726 1.88 60.14 1.62041 11 -52.4243 0.13 12 30.8175 2.51 60.69 1.56384 13 -30.7809 1.26 40.90 1.79631 14 125.5814 (d14=可変) 15 ∞ 1.88 (絞り) 16 38.5145 2.51 60.23 1.51835 17 -15.3596 1.26 25.35 1.80518 18 -40.1933 (d18=可変) 19 109.9525 2.89 25.80 1.78472 20 -24.7439 1.26 45.37 1.79668 21 617.7218 4.63 22 -12.9093 1.51 45.37 1.77279 23 -57.6176 (Bf) (変倍における可変間隔) f 38.7990 75.3280 146.8528 d3 2.2273 7.6100 14.7855 d9 9.7152 4.4285 1.2558 d14 3.7674 7.3613 10.3543 d18 7.6555 4.0613 1.0687 Bf 14.8873 34.1176 67.8124 (撮影倍率−1/40倍時の第4レンズ群のフォーカシ
ング移動量) f 38.7990 75.3280 146.8528 R 1614.6686 3093.6601 5986.8050 移動量 0.5983 0.5097 0.3958 (移動量Δの符号は被写体方向を正とする) (条件対応値) f1=111.9170 f3=25.1163 d1w=2.227 d1t=14.7855 d2w=9.7152 d2t=1.2558 β4w=0.6088 β4t=0.5740 Bfw=14.8873 Bft=67.8124 fw=38.7990 ft=146.8528 (1)f3/f1 =0.224 (2)(d2w−d2t)/(d1t−d1w) =0.674 (3)β4t/β4w =0.943 (4)(Bft−Bfw)/(ft−fw)=0.490
[Table 4] f = 38.80 to 75.33 to 146.85 mm FN = 3.9 to 6.1 to 9.7 2 ω = 60.4 to 31.0 to 16.4 ° Surface number Curvature radius Surface spacing Abbe number Refractive index 1 120.2315 1.38 23.01 1.86074 2 43.7628 4.40 69.98 1.51860 3 -53.8968 (d3 = variable) 4 -40.1762 1.26 52.30 1.74809 5 20.8189 0.88 6 21.3856 2.76 25.50 1.80458 7 1851.4159 1.60 8 -21.7157 1.26 45.37 1.79668 9 -52.5487 (d9 = variable) 10 27.3726 1.88 60.14 1.62041 11 -52.4243 0.13 12 30.8175 2.51 60. 13 -30.7809 1.26 40.90 1.79631 14 125.5814 (d14 = variable) 15 ∞ 1.88 (aperture) 16 38.5145 2.51 60.23 1.51835 17 -15.3596 1.26 25.35 1.80518 18 -40.1933 (d18 = variable) 19 109.9525 2.89 25.80 1.78472 20 -24.7439 1.26 45.37 1.79668 21 617.7218 4.63 22 -12.9093 1.51 45.37 1.77279 23 -57.6176 (Bf) (Variable spacing during zoom) f 38.7990 75.3280 146.8528 d3 2.2273 7.6100 14.7855 d9 9.7152 4.4285 1.2558 d14 3.7674 7.3613 10.3543 d18 7.6555 4.0613 1.0687 Bf 14.8873 34.1176 67.8124 4th lens at 40 times Focusing movement amount of the lens group) f 38.7990 75.3280 146.8528 R 1614.6686 3093.6601 5986.8050 Movement amount 0.5983 0.5097 0.3958 (The sign of the movement amount Δ is positive in the direction of the subject) (Conditional value) f1 = 111.9170 f3 = 25.1163 d1w = 2.227 d1t = 14.7855 d2w = 9.7152 d2t = 1.258 β4w = 0.6088 β4t = 0.5740 Bfw = 14.8873 Bft = 67.8124 fw = 38.7990 ft = 146.528 ( 1) f3 / f1 = 0.224 (2) (d2w-d2t) / (d1t-d1w) = 0.674 (3) β4t / β4w = 0.943 (4) (Bft-Bfw) / (ft-fw) ) = 0.490

【0055】図24乃至図30は実施例4の諸収差図で
あって、それぞれ広角端(最短焦点距離状態)での無限
遠合焦状態における諸収差図、中間焦点距離状態での無
限遠合焦状態における諸収差図、望遠端(最長焦点距離
状態)での無限遠合焦状態における諸収差図、広角端で
の近距離合焦状態(撮影倍率−1/40倍)における諸
収差図、中間焦点距離状態での近距離合焦状態(撮影倍
率−1/40倍)における諸収差図、および望遠端での
近距離合焦状態(撮影倍率−1/40倍)における諸収
差図である。各収差図において、FNはFナンバーを、
Hは入射光の高さを、Yは像高を、Aは主光線の入射角
をそれぞれ示している。また、非点収差を示す収差図に
おいて実線はサジタル像面を示し、破線はメリディオナ
ル像面を示している。各収差図から明らかなように、本
実施例では、各焦点距離状態において遠距離物体から近
距離物体にかけて、諸収差が良好に補正されていること
がわかる。
24 to 30 are graphs showing various aberrations of the fourth embodiment, that is, graphs showing various aberrations at the wide-angle end (shortest focal length state) at infinity and infinity at intermediate focal length. Various aberration diagrams in the in-focus state, various aberration diagrams in the infinity in-focus state at the telephoto end (longest focal length state), various aberration diagrams in the short-distance in-focus state at the wide-angle end (shooting magnification-1 / 40 times), FIG. 9 is a diagram showing various aberrations in a short-distance focus state (shooting magnification −1 / 40 ×) in the intermediate focal length state, and various aberration diagrams in a short-distance focus state (shooting magnification −1 / 40 ×) at the telephoto end. . In each aberration diagram, FN is the F number,
H indicates the height of the incident light, Y indicates the image height, and A indicates the incident angle of the chief ray. Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present embodiment, it is understood that various aberrations are satisfactorily corrected from the long-distance object to the short-distance object in each focal length state.

【0056】なお、本発明においては、少なくとも1面
の非球面を導入することにより、より高性能な結像性能
を得ることや簡易構成化を図ることが可能である。ま
た、1つのレンズ群あるいは複数のレンズ群を光軸とほ
ぼ直交する方向に適宜移動(偏心)させることにより、
手振れ等に起因する像位置の変動の補正をして、いわゆ
る防振効果を得ることも可能である。さらに、上述の実
施例では、フォーカシングに際して第4レンズ群G4だ
けが移動する例を示したが、第4レンズ群G4と他のレ
ンズ群とを異なる移動量で移動させることにより、被写
体が遠距離から近距離に亘る場合においてさらに良好な
結像性能を得ることも可能である。
In the present invention, by introducing at least one aspherical surface, it is possible to obtain higher-performance imaging performance and to simplify the structure. Further, by appropriately moving (decentering) one lens group or a plurality of lens groups in a direction substantially orthogonal to the optical axis,
It is also possible to obtain the so-called anti-vibration effect by correcting the fluctuation of the image position due to camera shake or the like. Furthermore, in the above-described embodiment, an example in which only the fourth lens group G4 moves during focusing is shown, but by moving the fourth lens group G4 and the other lens groups by different amounts of movement, the subject is at a long distance. It is also possible to obtain a better imaging performance over a short distance from.

【0057】[0057]

【効果】以上説明したように、本発明によれば、フォー
カシング時の仕事量を小さくするとともに、少ないレン
ズ枚数で構成され、結像性能に優れ且つ高変倍化が可能
なズームレンズを実現することができる。
As described above, according to the present invention, it is possible to realize a zoom lens which has a reduced amount of work during focusing, is configured with a small number of lenses, has excellent imaging performance, and is capable of high zooming. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の各実施例にかかるズームレンズの基本
的な構成並びに広角端から望遠端への変倍時における各
レンズ群の移動の様子および遠距離物体から近距離物体
に対するフォーカシングにおける第4レンズ群G4の移
動の様子を示す図である。
FIG. 1 is a view showing a basic configuration of a zoom lens according to each embodiment of the present invention, a state of movement of each lens unit during zooming from a wide-angle end to a telephoto end, and focusing in a long-distance object to a short-distance object. It is a figure which shows the mode of movement of the 4th lens group G4.

【図2】本発明のフォーカシング方法を説明する図であ
る。
FIG. 2 is a diagram illustrating a focusing method of the present invention.

【図3】本発明の第1実施例にかかるズームレンズの構
成を示す図である。
FIG. 3 is a diagram showing a configuration of a zoom lens according to Example 1 of the present invention.

【図4】実施例1の広角端での無限遠合焦状態における
諸収差図である。
FIG. 4 is a diagram of various types of aberration in the first embodiment at a wide-angle end and at an infinity in-focus state.

【図5】実施例1の中間焦点距離状態での無限遠合焦状
態における諸収差図である。
FIG. 5 is a diagram of various types of aberration in the in-focus state at the intermediate focal length state of Example 1;

【図6】実施例1の望遠端での無限遠合焦状態における
諸収差図である。
FIG. 6 is a diagram of various types of aberration in the first embodiment at the telephoto end in the in-focus state at infinity.

【図7】実施例1の広角端での近距離合焦状態における
諸収差図である。
FIG. 7 is a diagram of various types of aberration in a short-distance focused state at the wide-angle end according to the first exemplary embodiment.

【図8】実施例1の中間焦点距離状態での近距離合焦状
態における諸収差図である。
FIG. 8 is a diagram of various types of aberration in a short-distance focused state in the intermediate focal length state of Example 1.

【図9】実施例1の望遠端での近距離合焦状態における
諸収差図である。
FIG. 9 is a diagram of various types of aberration in a close-range in-focus state at the telephoto end according to the first exemplary embodiment.

【図10】本発明の第2実施例にかかるズームレンズの
構成を示す図である。
FIG. 10 is a diagram showing a configuration of a zoom lens according to Example 2 of the present invention.

【図11】実施例2の広角端での無限遠合焦状態におけ
る諸収差図である。
FIG. 11 is a diagram of various types of aberration in a second embodiment at a wide-angle end when focused on an object at infinity;

【図12】実施例2の中間焦点距離状態での無限遠合焦
状態における諸収差図である。
FIG. 12 is a diagram of various types of aberration in Example 2 in the in-focus state at the intermediate focal length state;

【図13】実施例2の望遠端での無限遠合焦状態におけ
る諸収差図である。
FIG. 13 is a diagram of various types of aberration in Example 2 at the telephoto end in the in-focus state at infinity.

【図14】実施例2の広角端での近距離合焦状態におけ
る諸収差図である。
FIG. 14 is a diagram of various types of aberration in a short-distance focus state at the wide-angle end according to the second exemplary embodiment.

【図15】実施例2の中間焦点距離状態での近距離合焦
状態における諸収差図である。
FIG. 15 is a diagram of various types of aberration in a short-distance focusing state in the intermediate focal length state of Example 2.

【図16】実施例2の望遠端での近距離合焦状態におけ
る諸収差図である。
FIG. 16 is a diagram of various types of aberration in a short-distance focus state at the telephoto end according to the second exemplary embodiment.

【図17】本発明の第3実施例にかかるズームレンズの
構成を示す図である。
FIG. 17 is a diagram showing a configuration of a zoom lens according to Example 3 of the present invention.

【図18】実施例3の広角端での無限遠合焦状態におけ
る諸収差図である。
FIG. 18 is a diagram of various types of aberration in Example 3 at the wide-angle end when focused on an object at infinity;

【図19】実施例3の中間焦点距離状態での無限遠合焦
状態における諸収差図である。
FIG. 19 is a diagram of various types of aberration in an in-focus state of infinity in the intermediate focal length state of Example 3;

【図20】実施例3の望遠端での無限遠合焦状態におけ
る諸収差図である。
FIG. 20 is a diagram of various types of aberration in the infinity in-focus state at the telephoto end according to the third example.

【図21】実施例3の広角端での近距離合焦状態におけ
る諸収差図である。
FIG. 21 is a diagram of various types of aberration in a short-distance focused state at the wide-angle end according to the third example.

【図22】実施例3の中間焦点距離状態での近距離合焦
状態における諸収差図である。
FIG. 22 is a diagram of various types of aberration in a short distance in-focus state in the intermediate focal length state of Example 3.

【図23】実施例3の望遠端での近距離合焦状態におけ
る諸収差図である。
FIG. 23 is a diagram of various types of aberration in a close-range in-focus state at the telephoto end according to the third example.

【図24】本発明の第4実施例にかかるズームレンズの
構成を示す図である。
FIG. 24 is a diagram showing a configuration of a zoom lens according to Example 4 of the present invention.

【図25】実施例4の広角端での無限遠合焦状態におけ
る諸収差図である。
FIG. 25 is a diagram of various types of aberration in Example 4 at the wide-angle end when focused on an object at infinity;

【図26】実施例4の中間焦点距離状態での無限遠合焦
状態における諸収差図である。
FIG. 26 is a diagram of various types of aberration in an infinity in-focus state in the intermediate focal length state of Example 4.

【図27】実施例4の望遠端での無限遠合焦状態におけ
る諸収差図である。
FIG. 27 is a diagram of various types of aberration in the fourth embodiment at the telephoto end and in the in-focus state at infinity.

【図28】実施例4の広角端での近距離合焦状態におけ
る諸収差図である。
FIG. 28 is a diagram of various types of aberration in a short-distance focusing state at the wide-angle end according to the fourth example.

【図29】実施例4の中間焦点距離状態での近距離合焦
状態における諸収差図である。
FIG. 29 is a diagram of various types of aberration in a short distance in-focus state in the intermediate focal length state of Example 4.

【図30】実施例4の望遠端での近距離合焦状態におけ
る諸収差図である。
FIG. 30 is a diagram of various types of aberration in a short-distance-focused state at the telephoto end according to the fourth example.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 G4 第4レンズ群 G5 第5レンズ群 S 開口絞り G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group S Aperture stop

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、正の屈折力を有する第
1レンズ群G1と、負の屈折力を有する第2レンズ群G
2と、正の屈折力を有する第3レンズ群G3と、正の屈
折力を有する第4レンズ群G4と、負の屈折力を有する
第5レンズ群G5とを備え、 広角端から望遠端への変倍に際して、少なくとも前記第
1レンズ群G1および前記第5レンズ群G5は物体側に
移動し、前記第1レンズ群G1と前記第2レンズ群G2
との空気間隔は増大し、前記第3レンズ群G3と前記第
4レンズ群G4との空気間隔は増大し、前記第4レンズ
群G4と前記第5レンズ群G5との空気間隔は減少する
ズームレンズにおいて、 遠距離物体から近距離物体に対して前記第4レンズ群G
4を物体側に移動させてフォーカシングを行い、 前記第1レンズ群G1の焦点距離をf1とし、前記第3
レンズ群G3の焦点距離をf3とし、広角端における前
記第1レンズ群G1と前記第2レンズ群G2との間の光
軸に沿った空気間隔をd1wとし、望遠端における前記第
1レンズ群G1と前記第2レンズ群G2との間の光軸に
沿った空気間隔をd1tとし、広角端における前記第2レ
ンズ群G2と前記第3レンズ群G3との間の光軸に沿っ
た空気間隔をd2wとし、望遠端における前記第2レンズ
群G2と前記第3レンズ群G3との間の光軸に沿った空
気間隔をd2tとしたとき、 0.15<f3/f1<0.7 0.1<(d2w−d2t)/(d1t−d1w)<0.85 の条件を満足することを特徴とするズームレンズ。
1. A first lens group G1 having a positive refractive power and a second lens group G having a negative refractive power in order from the object side.
2, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power, from the wide-angle end to the telephoto end. At the time of zooming, at least the first lens group G1 and the fifth lens group G5 move to the object side, and the first lens group G1 and the second lens group G2
The air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 decreases. In the lens, the fourth lens group G from a long-distance object to a short-distance object
4 is moved to the object side for focusing, and the focal length of the first lens group G1 is set to f1.
The focal length of the lens group G3 is f3, the air gap along the optical axis between the first lens group G1 and the second lens group G2 at the wide-angle end is d1w, and the first lens group G1 at the telephoto end. And an air gap between the second lens group G2 and the second lens group G2 along the optical axis is d1t, and an air gap along the optical axis between the second lens group G2 and the third lens group G3 at the wide-angle end is set. When d2w is set and the air gap along the optical axis between the second lens group G2 and the third lens group G3 at the telephoto end is set to d2t, 0.15 <f3 / f1 <0.7 0.1 A zoom lens characterized by satisfying a condition of <(d2w-d2t) / (d1t-d1w) <0.85.
【請求項2】 広角端における前記第4レンズ群G4の
結像倍率をβ4wとし、望遠端における前記第4レンズ群
G4の結像倍率をβ4tとしたとき、 0.8<β4t/β4w<2.5 の条件を満足することを特徴とする請求項1に記載のズ
ームレンズ。
2. When the image forming magnification of the fourth lens group G4 at the wide angle end is β4w and the image forming magnification of the fourth lens group G4 at the telephoto end is β4t, 0.8 <β4t / β4w <2 The zoom lens according to claim 1, wherein the zoom lens satisfies the condition (5).
【請求項3】 広角端におけるバックフォーカスをBf
wとし、望遠端におけるバックフォーカスをBftと
し、広角端におけるレンズ系全体の焦点距離をfwと
し、望遠端におけるレンズ系全体の焦点距離をftとし
たとき、 0.4<(Bft−Bfw)/(ft−fw)<0.8 の条件を満足することを特徴とする請求項1または2に
記載のズームレンズ。
3. The back focus at the wide-angle end is set to Bf.
When w, the back focus at the telephoto end is Bft, the focal length of the entire lens system at the wide-angle end is fw, and the focal length of the entire lens system at the telephoto end is ft, 0.4 <(Bft−Bfw) / The zoom lens according to claim 1, wherein the condition (ft-fw) <0.8 is satisfied.
JP6124599A 1993-07-12 1994-05-13 Zoom lens Pending JPH07306363A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6124599A JPH07306363A (en) 1994-05-13 1994-05-13 Zoom lens
KR1019940016944A KR100301874B1 (en) 1993-07-12 1994-07-12 Zoom lens
US08/503,338 US5666229A (en) 1993-07-12 1995-07-17 Variable focal length optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6124599A JPH07306363A (en) 1994-05-13 1994-05-13 Zoom lens

Publications (1)

Publication Number Publication Date
JPH07306363A true JPH07306363A (en) 1995-11-21

Family

ID=14889441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6124599A Pending JPH07306363A (en) 1993-07-12 1994-05-13 Zoom lens

Country Status (1)

Country Link
JP (1) JPH07306363A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862541A (en) * 1994-08-24 1996-03-08 Canon Inc Variable power optical system having vibration damping function
JPH1039215A (en) * 1996-07-19 1998-02-13 Sigma Corp Rear focusing telephoto zoom lens
JPH1152236A (en) * 1997-08-04 1999-02-26 Canon Inc Rear focus type zoom lens
JP2013164623A (en) * 2008-04-02 2013-08-22 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
WO2016017727A1 (en) * 2014-07-30 2016-02-04 株式会社ニコン Variable power optical system, optical device, and manufacturing method for variable power optical system
WO2017094663A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2018173487A (en) * 2017-03-31 2018-11-08 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2020115231A (en) * 2015-09-18 2020-07-30 株式会社ニコン Zoom optical system, optical device, image capturing device, and method of manufacturing zoom optical system
JP2020134684A (en) * 2019-02-19 2020-08-31 株式会社タムロン Zoom lens and imaging apparatus
JPWO2019097717A1 (en) * 2017-11-20 2020-10-22 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862541A (en) * 1994-08-24 1996-03-08 Canon Inc Variable power optical system having vibration damping function
JPH1039215A (en) * 1996-07-19 1998-02-13 Sigma Corp Rear focusing telephoto zoom lens
JPH1152236A (en) * 1997-08-04 1999-02-26 Canon Inc Rear focus type zoom lens
JP2013164623A (en) * 2008-04-02 2013-08-22 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP2019139251A (en) * 2014-07-30 2019-08-22 株式会社ニコン Variable power optical system, optical device, and, method of manufacturing variable power optical system
US10254520B2 (en) 2014-07-30 2019-04-09 Nikon Corporation Variable power optical system, optical device, and manufacturing method for variable power optical system
JPWO2016017727A1 (en) * 2014-07-30 2017-05-18 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN107076970A (en) * 2014-07-30 2017-08-18 株式会社尼康 The manufacture method of variable-power optical system, Optical devices and variable-power optical system
CN107076970B (en) * 2014-07-30 2019-10-25 株式会社尼康 Variable-power optical system and Optical devices
WO2016017727A1 (en) * 2014-07-30 2016-02-04 株式会社ニコン Variable power optical system, optical device, and manufacturing method for variable power optical system
JP2020115231A (en) * 2015-09-18 2020-07-30 株式会社ニコン Zoom optical system, optical device, image capturing device, and method of manufacturing zoom optical system
JPWO2017094663A1 (en) * 2015-11-30 2018-09-13 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN108292028A (en) * 2015-11-30 2018-07-17 株式会社尼康 The manufacturing method of variable-power optical system, optical device and variable-power optical system
WO2017094663A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
US10831006B2 (en) 2015-11-30 2020-11-10 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP2018173487A (en) * 2017-03-31 2018-11-08 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JPWO2019097717A1 (en) * 2017-11-20 2020-10-22 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
JP2020134684A (en) * 2019-02-19 2020-08-31 株式会社タムロン Zoom lens and imaging apparatus

Similar Documents

Publication Publication Date Title
JPH02201310A (en) Zoom lens with internal focus lens
JPH07151970A (en) Zoom lens
JP2876823B2 (en) Rear focus zoom lens
JPH08220438A (en) Zoom lens focusable at short distance
JPH1048518A (en) Variable power optical system
JPH1195105A (en) Focusing system for variable power optical system
JPH11271614A (en) Variable focus distance lens system
JPH07199070A (en) Zoom lens
US5499141A (en) Zoom lens
JPH08122640A (en) Zoom lens
JPH11202202A (en) Zoom lens
JPH07306363A (en) Zoom lens
JP3491136B2 (en) Large aperture telephoto zoom lens
JPH1164732A (en) Zoom lens
JPH07151975A (en) Zoom lens
JPH11160621A (en) Zoom lens
JPH0843734A (en) Zoom lens
JP3219574B2 (en) Zoom lens
JP4360088B2 (en) Zoom lens
JPH1026727A (en) Zoom lens
JPH0727979A (en) Zoom lens
JPH0772390A (en) Small-sized zoon lens
JPH11142738A (en) Variable focal-length lens system
JP3593400B2 (en) Rear focus zoom lens
JPH08190052A (en) Zoom lens capable of focusing at short distance

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050405

Free format text: JAPANESE INTERMEDIATE CODE: A02