JP3704628B2 - Operation method of exhaust gas purification device - Google Patents
Operation method of exhaust gas purification device Download PDFInfo
- Publication number
- JP3704628B2 JP3704628B2 JP28585595A JP28585595A JP3704628B2 JP 3704628 B2 JP3704628 B2 JP 3704628B2 JP 28585595 A JP28585595 A JP 28585595A JP 28585595 A JP28585595 A JP 28585595A JP 3704628 B2 JP3704628 B2 JP 3704628B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- protrusions
- unit
- gas purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000000746 purification Methods 0.000 title claims description 9
- 239000003054 catalyst Substances 0.000 claims description 183
- 238000011049 filling Methods 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 description 27
- 239000007789 gas Substances 0.000 description 24
- 238000005215 recombination Methods 0.000 description 22
- 230000006798 recombination Effects 0.000 description 22
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 230000008707 rearrangement Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000264877 Hippospongia communis Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒構造体とそれを用いた排ガス浄化装置の運転方法に係り、特に排ガス中の窒素酸化物(NOx)を効率良くアンモニア(NH3)で還元するための板状触媒を用いた触媒構造体の性能回復方法に関する。
【0002】
【従来の技術】
発電所,各種工場,自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒には、バナジウム(V)、モリブデン(Mo)あるいはタングステン(W)を活性成分にした酸化チタン(TiO2)系触媒が使用されており、特に活性成分の一つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから、現在の脱硝触媒の主流になっている(特開昭50−128681号公報等)。触媒は通常ハニカム状、板状に成形されて用いられ、各種製造法が発明、考案されてきた。中でも金属薄板をメタルラス加工後アルミニウム溶射を施した網状物やセラミック繊維製織布あるいは不織布を基板に用い、これに前記触媒成分を塗布・圧着して得た板状触媒を図1の様な波形(突条部2)を有するエレメント状に加工後、図2の様に、突条部の長手方向を排ガス流れに平行させて組み込んだ触媒構造体(特開昭54−79188号公報、特願昭63−324676号など)は、通風損失が小さく、煤塵や石炭の燃焼灰で閉塞されにくいなどの優れた特徴があり、現在火力発電用ボイラ排ガスの脱硝装置に多数用いられている。
【0003】
上記板状触媒を用いる脱硝装置の反応器5は、通常図3に示す様に、初期充填触媒の上流もしくは下流部に積み増し用の空間を設けておき、一定期間運転して触媒が劣化して所定性能を満たさなくなった場合に新たな触媒を追加充填できるようにしている。これは図9の様に僅かな積み増し量で装置性能を維持できるため、積み増しによった方が触媒の全量取り替えに比べ最終的な触媒の使用量を少なくできることに加え、必要性能を充分満たしている期間は少ない触媒量で運転し、通風損失を小さくして運転動力を低減するためである。
【0004】
【発明が解決しようとする課題】
このように、上記した従来の脱硝装置のように触媒装置に積み増しスペースを設けることは、触媒寿命をのばすこと、運転動力を低減できることなど、多くの優れた点を有する。しかしながら、一定期間毎に積み増しのために新規積み増し触媒が必要になること、劣化したとは言え初期の活性の70%〜80%の活性を残した触媒を十分利用できないことなど改善すべき点も残している。
【0005】
本発明の目的は、未だ高い活性を残した触媒を有効に利用することにある。
【0006】
【課題を解決するための手段】
上記目的は、図1に示すように、縦方向に延びる突条部2と平面部1とを交互に配置してなる矩形の板状触媒エレメント10を、図2の様なユニットに組み込んだ触媒ユニット枠3を図3の様に積み増し用空間を有する排ガス浄化装置に充填して用い、触媒性能が劣化して所定の装置性能が維持できなくなった時点で触媒ユニットの少なくとも一部を抜出し、触媒エレメント1の突条部2が隣接する触媒エレメントの突条部と互いに直交する図4に示す形に組み込み直した触媒ユニットとして再充填することにより達成することができる。
【0007】
ここで板状触媒エレメント10とは、図5のような各種突条部2(山形部)と平面部1とを交互に所定の間隔で有するものであって、メタルラスやセラミックあるいはガラス繊維製網状物などの基材に触媒成分を塗布あるいはコーティングなどにより担持させることにより得られるものである。また、触媒エレメントの形状は、図2から図4への組み替えが容易である正方形(縦横の長さ比が1であることを意味する)であることが望ましい。触媒エレメントが正方形であれば、図2に示す触媒ユニットから触媒エレメントを一枚毎に90度向きを変えながら別の触媒ユニット枠3に充填し直すだけで、図4に示す構成の触媒ユニットが得られ、機械による組み替え操作も容易である。
【0008】
図2の示す形状から図4に示す形状への組み替えにより、触媒ユニットの体積は約2倍になり、図2の触媒ユニット1個から図4の触媒ユニットが2個得られる。これは、触媒エレメント1の間隔が、図2の場合突条部2の高さSであるのに対し、図4の場合突条部2が交叉するために触媒エレメントの間隔が2Sとなり、触媒エレメントを積層したときの触媒ユニットの体積が約2倍になるためである。但し、これは触媒エレメントの上面側突条部の高さと裏面側突条部の高さが等しくSの場合である。上面側突条部の高さがS1、裏面側突条部の高さがS2(S1>S2とする)の場合、触媒エレメントを積層したときの触媒エレメントの間隔はS1+S2となり、触媒ユニットの体積は、(S1+S2)/S1倍となる。
【0009】
触媒エレメント形状が縦横長さ比1の正方形状でない場合には、上記組み替え操作の過程でエレメントを切断して正方形状にすればよい。
【0010】
また、上記した様に、図4に示す形状に組み直した触媒ユニットを同一装置に再充填して使用することにより、効率よく装置を運転することが可能になるが、図4に示す形状に組み直した触媒ユニットを新規な別の装置に使用することも可能である。この場合には上記した組み替え操作は優れた触媒再生方法として機能することは言うまでもない。
【0011】
要するに、本発明の特徴は、図2の状態で排ガス浄化に供せられた触媒ユニットを図4の如く組み替えることにより、活性の高い状態で再利用する点にあり、図4のユニット形状に組み替えられたものを同一装置で使用するしないに関わらず同様の効果が得られる。
【0012】
本発明は、図2に示す積層形状(突条部が総てガスの流れに平行するように触媒エレメントを重ねた形状)から図4に示す積層形状(突条部が触媒エレメント1個おきにガスの流れに平行するように、かつ1個おきにガスの流れに直交するように触媒エレメントを重ねた形状)に組み替えることによってガス流れが変化し、触媒の活性を大きく向上できるという事実に基づいている。図6の(A)は図2の触媒ユニット、図6の(B)は図4の触媒ユニットについて、触媒エレメント1の間を通過するガス流れの様子を模式的に示したものである。図6の(A)では触媒エレメント1の間のガス流れは層流が発達した状態であるのに対し、図4の触媒ユニットでは図6の(B)に示すように突条部2がガス流れに対し堰として働き乱流の発達した流れを引き起こす。このため図4の触媒ユニットではガスと触媒表面との接触が大きく促進されて高い触媒性能を引き出すことが可能になる、つまり、突条部をガス流れに総て平行に配置したままの場合に比べ、触媒を高い活性状態で反応させることができる。
【0013】
表1に、触媒ユニットを図2に示す積層形状から図4に示す積層形状への組み替えた場合の、単位体積あたりの触媒の活性、触媒ユニットの体積、単位長あたりの通風損失の変化の例を示す。表1に示す例は、触媒エレメントの突条部の高さSが、上面側、裏面側で同じ場合である。本表から明らかなように、図2に示す積層形状から図4に示す積層形状への組み替えにより同一触媒体積の活性が1.2倍程度に増加するだけでなく、体積も2倍になり同一ユニット寸法なら2倍の個数の触媒ユニットが得られることになる。もしここで、組み替えられる時点での触媒の活性が、通常積み増しを必要とする初期活性の0.8程度の活性であったとすると、組み替えによって触媒の活性をほぼ初期活性まで回復でき、かつ触媒ユニットが2倍得られることになる。
【0014】
【表1】
【0015】
従って、図3に示した従来の触媒積み増しに替えて触媒層の一部もしくは全部を図4の様に組み替えれば、新たな触媒エレメントを全く用いることなく、積み増しスペースをも埋めた図7の様な充填ができ活性を回復させることが可能になる。さらに図8に、従来の触媒積み増しの場合と本発明の組み替えによる再生法とによって触媒層の活性がどのようになるかを、初期充填触媒の活性を1として示した。図8から明らかなように、本発明によれば、積み増しスペースに充填される組み替え触媒だけでなく、初期充填スペースの活性をも組替えにより初期と同等レベルまで回復させることが可能であり、新たな触媒の積み増しを行う従来の方法と同一体積の範囲内で、従来の方法以上に装置性能を回復させることが可能である。
【0016】
以上のように、本発明によれば新たな触媒を用いることなく、使用中の触媒の活性を大幅に回復でき、従来の新規触媒の積み増しと同等以上の触媒活性を発揮することができる。さらに、本発明の触媒組み替え方式によれば、一旦排ガス浄化に用いて劣化した触媒の活性を回復させて新たな装置用触媒として用いることが可能になり、触媒再生法としても利用でき資源の有効利用の観点からの効果が大きい。
【0017】
【発明の実施の形態】
以下具体例を用いて本発明を詳細に説明する。
実施例1:
メタチタン酸スラリ(TiO2含有量:30wt%、SO4含有量:8wt%)67kgにパラモリブデン酸アンモン((NH4)6・Mo7O24・4H2O)を2.4kg、メタバナジン酸アンモニウム(NH4VO3)を1.28kg加え、加熱ニーダを用いて水を蒸発させながら混練し、水分約36%のペーストを得る。これを径3mmの柱状に押し出し造粒後流動層乾燥機で乾燥し、次に大気中250℃で2時間焼成した。得られた顆粒をハンマーミルで平均粒径5μmの粒径に粉砕し第一成分とした。このときの組成はV/Mo/Ti=4/5/91(原子比)である。
【0018】
以上の方法で得られた粉末20kgと、Al2O3・SiO2系無機繊維3kgと、水10kgとをニーダを用いて1時間混練し粘土状にした。この触媒ペーストを幅500mm、厚さ0.2mmのSUS304製メタルラス基板のラス目間及び表面にローラプレスを用いて塗布して厚さ約0.9mmの板状触媒を得た。この触媒平板に、山高さ4mm(平面部上面からの高さ、平面部裏面側も同じ)の波状山形をプレス成形機により形成した後、長さ480mmに切断する。得られた触媒エレメントは、交互に反転させて120枚重ねて金属の触媒ユニット枠にいれ、図2と等価の触媒ユニットを得た。このユニットを加熱ガスを通気しながら500℃で2時間焼成して用いた。
【0019】
本触媒ユニット(触媒エレメント120枚で1段)がガス流れ方向に5段直列に積み上げられ、350℃近辺の温度でアンモニア還元法脱硝に供された。脱硝反応の過程で、触媒成分のシンタリングや触媒毒成分により触媒が劣化し触媒活性が徐々に低下する。触媒活性が初期充填時の0.7まで低下した時点でガスの上流部に位置する触媒ユニット2段を取り出し本発明になる組み替えを実施した。すなわち図2に示す形状に組み込まれた触媒ユニットを枠から取り出し、1枚おきに90度回転させて図4の形状に組み替え、2倍の体積(1段の体積を初期充填時の触媒ユニット1段の体積と同じとしたものを4段)の触媒ユニット(ユニット1段当たりの枚数60枚)を得た。得られた触媒ユニットを再び装置内に充填し、当初から充填されている触媒ユニット3段、組み替えられた触媒ユニット4段の計7段に構成した。
【0020】
実施例2:
実施例1において、経時的に活性が0.7まで低下したときの組み替えをユニット1段に施し、組み替えユニット2段を得た。得られた触媒ユニットを再び装置内に充填し、当初から充填されている触媒ユニット4段、本発明の組み替え処理を施した触媒ユニット2段の計6段に構成にした。
【0021】
比較例1:
実施例1において、触媒が経時劣化し触媒活性が初期の0.7まで低下した時点で組み替えを行うことに替えて実施例1の初期充填触媒と同様の未使用新規触媒ユニットを2段積み増し、当初から充填されている触媒5段と新規積み増し触媒2段の計7段構成にした。
【0022】
比較例2:
比較例1の触媒積み増し量を新規触媒ユニット1段にし、初期充填触媒5段と新規積み増し触媒を1段の計6段構成にした。
【0023】
実施例1と2ならびに比較例1と2とについて、装置性能の初期、経時劣化後及び該当する組み替え操作あるいは積み増し操作を行った後の値とを比較して表2に示した。
【0024】
【表2】
【0025】
本表から比較例2の1段の積み増しでは装置性能を初期の値にまで回復させることが出来ず、比較例1に示すように、積み増し量を2段にする必要がある。この様に従来の積み増し法では新規触媒を初期触媒の40%用いても装置性能を初期のレベルと同等にすることが出来るのみである。
【0026】
これに対し、本発明の実施例では触媒の組み替え操作だけで装置性能を回復でき、実施例1の2段の組み替え操作では初期装置性能を大きく上回る結果が得られ、実施例2の1段の組み替えでは従来の新規触媒の積み増しと同等の効果が得られることが解る。
この様に本発明になる方法は、なんら新たな触媒を用いることなく脱硝装置の触媒性能を大幅に改善することができる極めて優れた方法であることは明確である。
【0027】
実施例3:
エレメント寸法が幅480mm長さ550mmである触媒である実施例1と同組成の触媒を図2の形状に組み、プロパン排ガス中450℃で5000h時間用いて強制劣化させた。そのときの触媒の活性は初期活性に対し0.8であった。
【0028】
この劣化触媒をユニットから取り出し、エレメントを長さ440mmに切断した後1枚毎に90度回転させて60枚組込み、図4形状の触媒ユニット2個を得た。本触媒ユニットを用いた脱硝試験の結果、触媒ユニット単位体積の当たりの活性は0.95であった。
【0029】
このことは組み替えによって図2に示す新規触媒と同等の性能を有する触媒ユニット2個を生産したと同等の効果があり、新規装置に使用済触媒を再生して用いる手段として応用可能であることを示すものである。
【0030】
一般に触媒成分の活性低下は初期に大きく経時後は小さい傾向にある。従って、経時劣化後組み替えによって再生された触媒は触媒成分の劣化が小さいため、上記再生触媒を用いた装置では装置性能の経時低下が小さいという付随的効果が発揮され、組み替えによる活性回復に留まらない優れた触媒再生法として広く利用可能である。
【0031】
なお、板状触媒エレメント10の突条部2が、触媒エレメント10の一方の面にのみ形成されている場合、板状触媒エレメント10を1枚おきに90度回転させてそのまま積み重ねたのでは、突条部と触媒エレメント10の平面部が接触して排ガスの通路がなくなる。このような場合は、別にスペーサを用いて、突条部とこの突条部に対向する触媒エレメント10の平面部の間に排ガスの通路が確保できるように触媒エレメント10相互の間隔を突条部2の高さ以上に保持する必要がある。
【0032】
【発明の効果】
本発明により何等新規の触媒を用いることなく図2のユニット形状で用いられている触媒装置の性能を回復することが可能であり、現在国内外で広く用いられている図2型の脱硝装置の再生法として利用できる。
【0033】
また装置建設時に触媒所定の量の触媒を通風損失が小さい図2のユニットで充填して用いて運転動力の低減を図り、触媒活性が低下して装置性能が必要値を満たさなくなった時点で逐次組み替えによる本発明の再生処理を実施することにより装置運転動力費の少ない経済的運転が可能な、新しい運転方法として用いることが可能である。
【図面の簡単な説明】
【図1】本発明に用いる触媒エレメントを示す斜視図である。
【図2】本発明の組替え操作を行う前の触媒ユニット形状を示す斜視図である。
【図3】本発明の実施対象である脱硝装置の例を示す概念図である。
【図4】本発明の組替え操作を行った後の触媒ユニット形状を示す斜視図である。
【図5】本発明に用いる触媒エレメントに形成する突条部の各種形状の例を示す斜視図である。
【図6】本発明の原理を説明するエレメント間のガス流れを示す断面図である。
【図7】本発明を実施後の触媒装置の状態を示す概念図である。
【図8】本発明の方法と従来の方法による触媒活性の回復度合いの差を説明する概念図である。
【図9】従来の触媒積み増し法における触媒活性の変化を説明する概念図である。
【符号の説明】
1 触媒エレメントの平坦部
2 触媒エレメントの突条部
3 触媒ユニット枠
4 触媒ユニット(図2形状)
5 反応器
6 組み替え触媒(図4形状)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst structure and an operation method of an exhaust gas purifying apparatus using the same, and in particular, a plate catalyst for efficiently reducing nitrogen oxide (NOx) in exhaust gas with ammonia (NH 3 ). The present invention relates to a method for recovering the performance of a catalyst structure.
[0002]
[Prior art]
NOx in flue gas discharged from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, selective using ammonia (NH 3 ) as a reducing agent The flue gas denitration method by catalytic reduction is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used, and those containing vanadium as an active component are particularly active. In addition to being high, the deterioration due to impurities contained in the exhaust gas is small, and since it can be used at a lower temperature, it has become the mainstream of current denitration catalysts (Japanese Patent Laid-Open No. 50-128681 etc.). Catalysts are usually used in the form of honeycombs or plates, and various manufacturing methods have been invented and devised. In particular, a plate-like catalyst obtained by applying a metal-laser-processed mesh or ceramic fiber woven fabric or non-woven fabric to a substrate, and applying and pressing the catalyst component to the substrate, has a waveform as shown in FIG. After processing into an element shape having (projection 2), as shown in FIG. 2, a catalyst structure in which the longitudinal direction of the projection is incorporated in parallel with the exhaust gas flow (Japanese Patent Application Laid-Open No. 54-79188, Japanese Patent Application) Sho 63-324676, etc.) have excellent characteristics such as low ventilation loss and are not easily blocked by dust or coal combustion ash, and are currently used in many denitration systems for boiler exhaust gas for thermal power generation.
[0003]
As shown in FIG. 3, the
[0004]
[Problems to be solved by the invention]
As described above, providing an additional space in the catalyst device as in the conventional denitration device described above has many excellent points such as extending the catalyst life and reducing the driving power. However, there are also points to be improved, such as the need for a new catalyst to be added every certain period, and the fact that the catalyst that has deteriorated but remains 70% to 80% of the initial activity cannot be used sufficiently. I'm leaving.
[0005]
An object of the present invention is to effectively utilize a catalyst that still has high activity.
[0006]
[Means for Solving the Problems]
As shown in FIG. 1, the above-mentioned object is to provide a catalyst in which rectangular plate-
[0007]
Here, the plate-
[0008]
By rearranging the shape shown in FIG. 2 to the shape shown in FIG. 4, the volume of the catalyst unit is approximately doubled, and two catalyst units shown in FIG. 4 are obtained from one catalyst unit shown in FIG. This is because the distance between the
[0009]
When the shape of the catalyst element is not a square shape with a length to width ratio of 1, the element may be cut into a square shape in the process of the recombination operation.
[0010]
In addition, as described above, it is possible to operate the apparatus efficiently by refilling and using the catalyst unit reassembled in the shape shown in FIG. 4 in the same apparatus. It is also possible to use the catalyst unit in a new and separate apparatus. In this case, it goes without saying that the above-described recombination operation functions as an excellent catalyst regeneration method.
[0011]
In short, the feature of the present invention is that the catalyst unit used for exhaust gas purification in the state of FIG. 2 is reused in a highly active state by recombination as shown in FIG. Similar effects can be obtained regardless of whether or not the same is used in the same apparatus.
[0012]
The present invention changes from the stacked shape shown in FIG. 2 (a shape in which the catalyst elements are stacked so that all the protrusions are parallel to the gas flow) to the stacked shape shown in FIG. Based on the fact that the catalyst flow can be greatly improved by changing the shape of the catalyst element so that it is parallel to the gas flow and perpendicular to the gas flow. ing. 6A schematically shows the state of gas flow passing between the
[0013]
Table 1 shows examples of changes in catalyst activity per unit volume, catalyst unit volume, and ventilation loss per unit length when the catalyst unit is rearranged from the laminated shape shown in FIG. 2 to the laminated shape shown in FIG. Indicates. The example shown in Table 1 is a case where the height S of the protruding portion of the catalyst element is the same on the upper surface side and the back surface side. As is clear from this table, the rearrangement from the laminated shape shown in FIG. 2 to the laminated shape shown in FIG. 4 not only increases the activity of the same catalyst volume by about 1.2 times, but also doubles the volume and is the same. If it is a unit size, twice as many catalyst units will be obtained. If the activity of the catalyst at the time of recombination is about 0.8 of the initial activity that normally requires additional loading, the activity of the catalyst can be restored to almost the initial activity by recombination, and the catalyst unit Will be obtained twice.
[0014]
[Table 1]
[0015]
Therefore, if a part or all of the catalyst layer is rearranged as shown in FIG. 4 instead of the conventional catalyst addition shown in FIG. 3, a new catalyst element is not used at all and the additional space is filled as shown in FIG. Such filling can be performed and the activity can be recovered. Further, in FIG. 8, the activity of the catalyst layer is shown by 1 as the activity of the catalyst layer by the conventional catalyst accumulation and the regeneration method by the recombination of the present invention. As apparent from FIG. 8, according to the present invention, not only the recombination catalyst filled in the additional space but also the activity of the initial filling space can be restored to the same level as the initial by recombination. It is possible to recover the apparatus performance more than the conventional method within the same volume range as that of the conventional method for increasing the amount of catalyst.
[0016]
As described above, according to the present invention, the activity of the catalyst in use can be significantly recovered without using a new catalyst, and the catalytic activity equivalent to or more than that of the conventional new catalyst can be exhibited. Furthermore, according to the catalyst recombination method of the present invention, it is possible to recover the activity of the catalyst once used for exhaust gas purification and use it as a new apparatus catalyst, which can also be used as a catalyst regeneration method and effectively use resources. Great effect from the viewpoint of use.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail using specific examples.
Example 1:
67 kg of metatitanate slurry (TiO 2 content: 30 wt%, SO 4 content: 8 wt%) and 2.4 kg of ammonium paramolybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O), ammonium metavanadate 1.28 kg of (NH 4 VO 3 ) is added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into a columnar shape with a diameter of 3 mm, granulated, dried in a fluidized bed dryer, and then fired at 250 ° C. for 2 hours in the atmosphere. The obtained granules were pulverized with a hammer mill to a particle size of 5 μm in average particle size, and used as the first component. The composition at this time is V / Mo / Ti = 4/5/91 (atomic ratio).
[0018]
20 kg of the powder obtained by the above method, 3 kg of Al 2 O 3 · SiO 2 inorganic fiber, and 10 kg of water were kneaded for 1 hour using a kneader to make a clay. This catalyst paste was applied on the surface and surface of a SUS304 metal lath substrate having a width of 500 mm and a thickness of 0.2 mm using a roller press to obtain a plate catalyst having a thickness of about 0.9 mm. On this catalyst flat plate, a corrugated chevron having a peak height of 4 mm (the height from the upper surface of the flat portion, the same applies to the rear surface of the flat portion) is formed by a press molding machine, and then cut into a length of 480 mm. The obtained catalyst elements were alternately reversed and 120 sheets were stacked and placed in a metal catalyst unit frame to obtain a catalyst unit equivalent to FIG. This unit was used after baking at 500 ° C. for 2 hours while supplying heated gas.
[0019]
This catalyst unit (one stage with 120 catalyst elements) was stacked in series in the gas flow direction and was subjected to ammonia reduction denitration at a temperature around 350 ° C. During the denitration reaction, the catalyst deteriorates due to the sintering of the catalyst component and the catalyst poison component, and the catalyst activity gradually decreases. When the catalyst activity decreased to 0.7 at the time of initial filling, two stages of the catalyst unit located in the upstream portion of the gas were taken out and rearrangement according to the present invention was performed. That is, the catalyst unit incorporated in the shape shown in FIG. 2 is taken out from the frame, rotated every other 90 degrees and recombined into the shape shown in FIG. 4, and doubled in volume (one stage of
[0020]
Example 2:
In Example 1, recombination when the activity decreased to 0.7 over time was applied to one stage of the unit to obtain two stages of recombination units. The obtained catalyst unit was again filled in the apparatus, and the catalyst unit was composed of 6 stages in total, 4 stages of catalyst units filled from the beginning and 2 stages of catalyst units subjected to the recombination treatment of the present invention.
[0021]
Comparative Example 1:
In Example 1, instead of recombination when the catalyst deteriorates with time and the catalyst activity is reduced to 0.7 at the initial stage, the same number of unused new catalyst units as the initial packed catalyst of Example 1 are added in two stages, A total of 7 stages, 5 stages of catalyst from the beginning and 2 stages of newly added catalyst, were added.
[0022]
Comparative Example 2:
The amount of additional catalyst in Comparative Example 1 was set to one stage of a new catalyst unit, and the initial charge catalyst was set to 5 stages and the newly added catalyst was configured to have a total of 6 stages.
[0023]
Table 1 compares the values of Examples 1 and 2 and Comparative Examples 1 and 2 with respect to the initial performance of the apparatus, after deterioration with time, and after the corresponding recombination operation or stacking operation.
[0024]
[Table 2]
[0025]
From this table, the one-stage increase in Comparative Example 2 cannot restore the device performance to the initial value, and as shown in Comparative Example 1, the increase amount needs to be two-stage. Thus, in the conventional stacking method, even if 40% of the initial catalyst is used, the apparatus performance can only be made equal to the initial level.
[0026]
On the other hand, in the embodiment of the present invention, the device performance can be recovered only by the catalyst recombination operation, and the result of the two-stage recombination operation of Example 1 is much higher than the initial device performance. It can be seen that the recombination can provide the same effect as the accumulation of conventional new catalysts.
Thus, it is clear that the method according to the present invention is an extremely excellent method that can greatly improve the catalyst performance of the denitration apparatus without using any new catalyst.
[0027]
Example 3:
A catalyst having the same composition as that of Example 1, which is a catalyst having an element size of 480 mm wide and 550 mm long, was assembled in the shape shown in FIG. 2, and was forcedly deteriorated in propane exhaust gas at 450 ° C. for 5000 hours. At that time, the activity of the catalyst was 0.8 relative to the initial activity.
[0028]
This deteriorated catalyst was taken out from the unit, the element was cut into a length of 440 mm, and rotated 90 degrees for each one, and 60 pieces were assembled to obtain two catalyst units having the shape of FIG. As a result of the denitration test using this catalyst unit, the activity per unit volume of the catalyst unit was 0.95.
[0029]
This has the same effect as the production of two catalyst units having the same performance as the new catalyst shown in FIG. 2 by recombination, and can be applied as a means to regenerate and use the used catalyst in the new apparatus. It is shown.
[0030]
In general, the decrease in the activity of the catalyst component tends to be large initially and small after time. Therefore, since the catalyst regenerated by recombination after deterioration with time is less deteriorated in the catalyst component, the apparatus using the regenerated catalyst exhibits the accompanying effect that the deterioration of the apparatus performance with time is small, and it is not limited to the activity recovery by recombination. It can be widely used as an excellent catalyst regeneration method.
[0031]
In addition, when the
[0032]
【The invention's effect】
According to the present invention, it is possible to recover the performance of the catalyst device used in the unit shape of FIG. 2 without using any new catalyst, and the denitration device of FIG. It can be used as a regeneration method.
[0033]
In addition, when a device is constructed, a predetermined amount of catalyst is filled in the unit shown in FIG. 2 with a small airflow loss to reduce the operating power, and when the catalyst performance decreases and the device performance does not meet the required value, By implementing the regeneration process of the present invention by recombination, it can be used as a new operation method capable of economical operation with low apparatus operating power cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a catalyst element used in the present invention.
FIG. 2 is a perspective view showing the shape of a catalyst unit before performing the recombination operation of the present invention.
FIG. 3 is a conceptual diagram showing an example of a denitration apparatus that is an object of the present invention.
FIG. 4 is a perspective view showing the shape of a catalyst unit after performing a rearrangement operation of the present invention.
FIG. 5 is a perspective view showing examples of various shapes of protrusions formed on the catalyst element used in the present invention.
FIG. 6 is a cross-sectional view showing a gas flow between elements for explaining the principle of the present invention.
FIG. 7 is a conceptual diagram showing a state of the catalyst device after the present invention is carried out.
FIG. 8 is a conceptual diagram illustrating the difference in the degree of recovery of catalyst activity between the method of the present invention and the conventional method.
FIG. 9 is a conceptual diagram illustrating changes in catalyst activity in a conventional catalyst stacking method.
[Explanation of symbols]
DESCRIPTION OF
5
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28585595A JP3704628B2 (en) | 1995-11-02 | 1995-11-02 | Operation method of exhaust gas purification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28585595A JP3704628B2 (en) | 1995-11-02 | 1995-11-02 | Operation method of exhaust gas purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09122448A JPH09122448A (en) | 1997-05-13 |
JP3704628B2 true JP3704628B2 (en) | 2005-10-12 |
Family
ID=17696933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28585595A Expired - Fee Related JP3704628B2 (en) | 1995-11-02 | 1995-11-02 | Operation method of exhaust gas purification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3704628B2 (en) |
-
1995
- 1995-11-02 JP JP28585595A patent/JP3704628B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09122448A (en) | 1997-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4544465B2 (en) | Catalyst structure and gas purification device | |
US7438876B2 (en) | Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury | |
US9724683B2 (en) | Catalyst structure | |
JP5896883B2 (en) | Exhaust gas purification catalyst structure | |
AU739981B2 (en) | Catalyst element and catalyst structure for purifying exhaust gas, process for producing the same, exhaust gas purifying apparatus, and process for purifying exhaust gas using the same | |
US8323597B2 (en) | Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same | |
JP3704628B2 (en) | Operation method of exhaust gas purification device | |
JP5198744B2 (en) | Catalyst structure | |
CN115023289B (en) | Denitration catalyst structure | |
JP2008126148A (en) | Exhaust gas denitration device | |
JP2010253366A (en) | Catalytic structure | |
JP5804909B2 (en) | Exhaust gas purification catalyst structure and manufacturing method thereof | |
KR20220025883A (en) | Regenerated denitration catalyst, manufacturing method thereof, and denitration device | |
JPH11267459A (en) | Reducing method of nitrogen oxide and so3 in exhaust gas | |
JPH0910599A (en) | Unit-plate-shaped catalyst, plate-shaped catalyst structure, and gas purification apparatus | |
CN108025291B (en) | Honeycomb catalyst for removing nitrogen oxides in flue gas and waste gas and preparation method thereof | |
JP2021121423A5 (en) | ||
JP4435964B2 (en) | Denitration apparatus and maintenance method in denitration apparatus | |
JP6978827B2 (en) | Exhaust gas purification catalyst unit | |
JP3759832B2 (en) | Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure | |
JP2002191986A (en) | Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof | |
JP2000117120A (en) | Catalyst structure body | |
JPH09239243A (en) | Apparatus and method for exhaust gas denitration | |
JP4864231B2 (en) | Denitration catalyst structure and exhaust gas denitration method using the same | |
JP3900312B2 (en) | Catalyst structure and method for producing the catalyst structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050713 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120805 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |