JP6978827B2 - Exhaust gas purification catalyst unit - Google Patents

Exhaust gas purification catalyst unit Download PDF

Info

Publication number
JP6978827B2
JP6978827B2 JP2016011027A JP2016011027A JP6978827B2 JP 6978827 B2 JP6978827 B2 JP 6978827B2 JP 2016011027 A JP2016011027 A JP 2016011027A JP 2016011027 A JP2016011027 A JP 2016011027A JP 6978827 B2 JP6978827 B2 JP 6978827B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas
catalyst unit
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016011027A
Other languages
Japanese (ja)
Other versions
JP2017127846A (en
Inventor
啓一郎 甲斐
尚美 今田
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2016011027A priority Critical patent/JP6978827B2/en
Publication of JP2017127846A publication Critical patent/JP2017127846A/en
Application granted granted Critical
Publication of JP6978827B2 publication Critical patent/JP6978827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、排ガス浄化用触媒ユニットに係り、例えば、ボイラ排ガス中の窒素酸化物を除去するための脱硝装置に用いて、触媒効率を向上させるのに好適な排ガス浄化用触媒ユニットに関する。 The present invention relates to an exhaust gas purification catalyst unit, and relates to an exhaust gas purification catalyst unit suitable for improving catalyst efficiency, for example, in a denitration device for removing nitrogen oxides in boiler exhaust gas.

発電所、各種工場、自動車等から排出される排煙中の例えばNOxは、光化学スモッグや酸性雨の原因物質である。その効果的な除去方法として、アンモニア(NH)を還元剤とした触媒による選択的接触還元脱硝方法が石炭火力発電所を中心に広く用いられている。 For example, NOx in flue gas emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, a selective catalytic reduction denitration method using a catalyst using ammonia (NH 3 ) as a reducing agent is widely used mainly in coal-fired power plants.

脱硝触媒には、バナジウム(V)やモリブデン(Mo)、タングステン(W)を活性成分とした酸化チタン系触媒が用いられる。一般に、それら活性成分の塩類と酸化チタン或いはその前駆体とを水存在下で混練し、得られたペーストを板状、またはハニカム状に成型後、乾燥および焼成したものを用いる。例えば、金属製の薄鋼板をメタルラスに加工した網状基板、あるいはセラミック繊維製の織布または不織布の基板に前述の触媒成分を塗布した後、線条突起と平面部とを所定の間隔で成型して得られた板状の触媒エレメントを用いる。その触媒エレメントを矩形の金属枠内に線条突起をスペーサとして等間隔に複数枚積層し、線条突起をガス流れ方向に平行になるように配置して形成した触媒ユニットは、通風圧力損失が小さいという特徴がある。このため、煤塵や石炭の燃焼灰による摩耗や流路の目詰まりを起こしにくい等の特長を有し、現在火力発電用ボイラの排ガス処理装置に広く用いられている(例えば、特許文献1の第1図、特許文献2の図23等参照)。 As the denitration catalyst, a titanium oxide-based catalyst containing vanadium (V), molybdenum (Mo), and tungsten (W) as active ingredients is used. Generally, salts of these active ingredients and titanium oxide or a precursor thereof are kneaded in the presence of water, and the obtained paste is molded into a plate shape or a honeycomb shape, dried and fired. For example, after applying the above-mentioned catalyst component to a net-like substrate obtained by processing a thin metal steel plate into a metal lath, or a woven or non-woven fabric substrate made of ceramic fibers, the linear protrusions and the flat surface portion are molded at predetermined intervals. The plate-shaped catalyst element thus obtained is used. A catalyst unit formed by stacking a plurality of catalyst elements in a rectangular metal frame with linear protrusions as spacers at equal intervals and arranging the linear protrusions so as to be parallel to the gas flow direction has a ventilation pressure loss. It has the characteristic of being small. For this reason, it has features such as being less likely to cause wear due to soot and coal combustion ash and clogging of the flow path, and is currently widely used in exhaust gas treatment equipment for boilers for thermal power generation (for example, No. 1 of Patent Document 1). 1 and FIG. 23 of Patent Document 2).

また、このような触媒ユニットは、触媒エレメントのスペーサの高さを変えることにより、複数の触媒エレメントを積層して形成される矩形断面の流路の高さを自由に調節することができる。例えば、高効率でコンパクトにする場合は、触媒エレメント間のスペーサの高さを低くして積層枚数を増やすことで対応する。他方、排ガス中のダスト量が多い場合には目詰まりを防止する場合は、触媒エレメント間のスペーサの高さを高くして対応する。 Further, in such a catalyst unit, the height of the flow path having a rectangular cross section formed by laminating a plurality of catalyst elements can be freely adjusted by changing the height of the spacer of the catalyst element. For example, in the case of high efficiency and compactness, the height of the spacer between the catalyst elements is lowered to increase the number of laminated layers. On the other hand, when the amount of dust in the exhaust gas is large and clogging is prevented, the height of the spacer between the catalyst elements is increased.

実開平1−88732号公報Jikkenhei No. 1-88732 Gazette 特開平9−10599号公報Japanese Unexamined Patent Publication No. 9-10599

ところで、特許文献1、2に記載の触媒ユニットは、金属枠の最上部と底部に位置する触媒エレメントと金属枠面との間に形成されるガス流路は、上下面の片方が金属枠面であることから、それらのガス流路を流れる被処理排ガスに対する触媒作用が十分でないという改善すべき点がある。つまり、触媒ユニット内に層状に配置された触媒エレメント間に形成されるガス流路のうち、最上部と底部の触媒エレメントと金属枠面との間に形成されるガス流路は、上下面の一方は触媒面であるが、他方は金属枠面であり、ガス流路の約半分が金属枠面で占められている。金属枠面は、被処理排ガスに対して不活性であるから、これらガス流路の触媒性能は上下面が触媒面で形成される他のガス流路に比べて低い。さらに、上部と底部の金属枠面に接する触媒エレメントのスペーサの数は概ね半分であるから、上部と底部のガス流路の断面積は他の流路よりも大きいので通風抵抗が低い。そのため、未反応のまま吹き抜けるガス量が多くなるので、触媒ユニット全体としての触媒性能が十分に発揮できないという改善すべき点があった。 By the way, in the catalyst unit described in Patent Documents 1 and 2, one of the upper and lower surfaces of the gas flow path formed between the catalyst element located at the top and bottom of the metal frame and the metal frame surface is the metal frame surface. Therefore, there is a point to be improved that the catalytic action on the exhaust gas to be treated flowing through those gas channels is not sufficient. That is, among the gas flow paths formed between the catalyst elements arranged in layers in the catalyst unit, the gas flow paths formed between the catalyst element at the top and bottom and the metal frame surface are on the upper and lower surfaces. One is the catalyst surface, the other is the metal frame surface, and about half of the gas flow path is occupied by the metal frame surface. Since the metal frame surface is inactive with respect to the exhaust gas to be treated, the catalytic performance of these gas flow paths is lower than that of other gas flow paths whose upper and lower surfaces are formed by the catalytic surface. Further, since the number of spacers of the catalyst element in contact with the metal frame surfaces at the top and bottom is approximately half, the cross-sectional area of the gas flow paths at the top and bottom is larger than that of the other flow paths, so that the ventilation resistance is low. Therefore, since the amount of gas that blows through without reacting increases, there is a point to be improved that the catalyst performance of the catalyst unit as a whole cannot be sufficiently exhibited.

本発明が解決しようとする課題は、従来の触媒ユニットの上部と底部に形成されるガス流路の被処理排ガスに対する触媒反応を促進するとともに、未反応のまま吹き抜けるガス量を減らして、全体の排ガス浄化性能を高めることができる排ガス浄化用触媒ユニットを提供することである。 The problem to be solved by the present invention is to promote the catalytic reaction of the gas flow path formed in the upper part and the bottom of the conventional catalyst unit with the exhaust gas to be treated, and to reduce the amount of gas that blows through without reacting, so that the whole is solved. It is to provide a catalyst unit for exhaust gas purification which can improve exhaust gas purification performance.

上記の課題を解決するため、本発明は、板状触媒の両面に線条突起からなる複数のスペーサを有する触媒エレメントと、両端にガス流入口とガス流出口の開口を有する断面矩形の金属枠とを備え、前記触媒エレメントが前記金属枠の上部から底部にわたって前記スペーサの線条方向をガス流れ方向に位置し、かつ複数枚が層状に重ねて収容されており、前記金属枠の上部と底部の枠面に、該枠面に対向する前記触媒エレメント側に突出する線条突起からなるガス撹拌突起を有し、該ガス撹拌突起は、前記触媒エレメントの前記スペーサの伸長方向と交差する方向に伸長している排ガス浄化用触媒ユニットを提案する。 In order to solve the above problems, the present invention presents a catalyst element having a plurality of spacers composed of linear protrusions on both sides of a plate-shaped catalyst, and a metal frame having a rectangular cross section having gas inlet and gas outlet openings at both ends. The catalyst element is located in the linear direction of the spacer from the upper part to the lower part of the metal frame in the gas flow direction, and a plurality of the catalyst elements are stacked and housed in a layered manner. The frame surface has a gas stirring protrusion composed of linear protrusions protruding toward the catalyst element facing the frame surface, and the gas stirring protrusion is in a direction intersecting the extension direction of the spacer of the catalyst element. We propose a growing catalyst unit for exhaust gas purification.

このように構成される本発明によれば、触媒ユニットの上部と底部の触媒エレメントと金属枠面との間に形成されるガス流路に流入する浄化対象の排ガスは、ガス流路中に突出されたガス撹拌突起に衝突してガス流れが撹拌される。その撹拌により、金属枠面の近傍を流れる排ガスもそのガス流路を構成する反対側の触媒エレメントに接触して触媒反応を促進することができる。その結果、全体の排ガス浄化性能を高めることができる。 According to the present invention configured as described above, the exhaust gas to be purified flowing into the gas flow path formed between the catalyst element at the top and bottom of the catalyst unit and the metal frame surface protrudes into the gas flow path. The gas flow is agitated by colliding with the gas agitating protrusion. By the stirring, the exhaust gas flowing in the vicinity of the metal frame surface can also come into contact with the catalyst element on the opposite side constituting the gas flow path to promote the catalytic reaction. As a result, the overall exhaust gas purification performance can be improved.

本発明の排ガス浄化用触媒ユニットにおいて、以下に述べる態様を適宜採用してもよい。
(1)前記スペーサは、一方の面に突出する山状の突起と、他方の面に突出する谷状の突起の一対からなること。
(2)前記山状の突起と前記谷状の突起の一対は、連続して位置していること。
(3)前記ガス撹拌突起は、隣り合う2つの前記触媒エレメントの前記スペーサ間の平坦面に対向して位置していること。
(4)前記触媒エレメントの重ね方向の間隔Pは、4[mm]〜10[mm]の範囲から選択される値であり、前記第2の線条突起の高さHは、H/Pの比の値が1/3〜2/3の範囲に設定されること。
(5)前記ガス撹拌突起は、ガス流れ方向に複数設けられ、その設置間隔Dは20[mm]〜50[mm]の範囲から選択される値に設定されること。
(6)前記金属枠は、1[mm]〜2[mm]厚さに近い公称寸法の圧延鋼板で形成されてなること。
In the exhaust gas purification catalyst unit of the present invention, the following aspects may be appropriately adopted.
(1) The spacer is composed of a pair of mountain-shaped protrusions protruding from one surface and valley-shaped protrusions protruding from the other surface.
(2) The pair of the mountain-shaped protrusions and the valley-shaped protrusions must be continuously located.
(3) The gas stirring protrusion is located so as to face the flat surface between the spacers of the two adjacent catalyst elements.
(4) The distance P 1 in the stacking direction of the catalyst elements is a value selected from the range of 4 [mm] to 10 [mm], and the height H of the second linear projection is H / P. the value of 1 of the ratio is set in the range of 1 / 3-2 / 3.
(5) A plurality of the gas stirring protrusions are provided in the gas flow direction, and the installation interval D thereof is set to a value selected from the range of 20 [mm] to 50 [mm].
(6) The metal frame is made of rolled steel plate having nominal dimensions close to a thickness of 1 [mm] to 2 [mm].

本発明によれば、従来の触媒ユニットの最上部と底部に形成されるガス流路の被処理排ガスに対する触媒反応を促進して、全体の排ガス浄化性能を高めることができる。 According to the present invention, it is possible to promote the catalytic reaction of the gas flow path formed at the top and bottom of the conventional catalyst unit with respect to the exhaust gas to be treated, and to improve the overall exhaust gas purification performance.

本発明の排ガス浄化用触媒ユニットの一実施形態のガス流入口から見た正面図である。It is a front view seen from the gas inlet of one Embodiment of the exhaust gas purification catalyst unit of this invention. 本発明の一実施形態の触媒エレメントの斜視図である。It is a perspective view of the catalyst element of one Embodiment of this invention. 本発明の一実施形態のガス流入口から見た斜視図である。It is a perspective view seen from the gas inlet of one Embodiment of this invention. 本発明の一実施形態の金属枠をガス流入口から見た斜視図である。It is a perspective view which looked at the metal frame of one Embodiment of this invention from a gas inflow port. 本発明の一実施形態の金属枠の底部の枠面に設けられたガス撹拌突起の斜視図である。It is a perspective view of the gas stirring protrusion provided on the frame surface of the bottom of the metal frame of one Embodiment of this invention. 本発明の一実施形態のガス撹拌突起の作用を説明する断面図である。It is sectional drawing explaining the operation of the gas stirring protrusion of one Embodiment of this invention.

本発明の排ガス浄化用触媒ユニットの一実施形態を、図1〜図6を参照して説明する。本実施形態は、石炭焚ボイラの排ガス中の主として窒素酸化物(NOx)を除去するのに用いる排ガス浄化用触媒ユニットに本発明を適用した一例である。しかし、本発明は石炭焚ボイラに限らず、ガス焚、重油焚、原油焚等の各種のボイラ排ガスの有害物除去に用いる排ガス浄化用触媒ユニットに適用できる。また、窒素酸化物(NOx)の除去に限らす、に限らず、種々の有害物除去に用いる排ガス浄化用触媒ユニットに適用できることは言うまでもない。 An embodiment of the exhaust gas purification catalyst unit of the present invention will be described with reference to FIGS. 1 to 6. The present embodiment is an example of applying the present invention to an exhaust gas purification catalyst unit used mainly for removing nitrogen oxides (NOx) in the exhaust gas of a coal-fired boiler. However, the present invention is not limited to coal-fired boilers, and can be applied to exhaust gas purification catalyst units used for removing harmful substances from various boiler exhaust gases such as gas-fired, heavy oil-fired, and crude oil-fired. Further, it is needless to say that the present invention is not limited to the removal of nitrogen oxides (NOx) and can be applied to an exhaust gas purification catalyst unit used for removing various harmful substances.

図1に示すように、本実施形態の排ガス浄化用触媒ユニット(以下、単に触媒ユニットと略称する。)10は、板状に形成された触媒エレメント1と、両端にガス流入口とガス流出口の開口を有する断面矩形の金属枠4とを備えて構成される。触媒エレメント1は、従来技術の欄で説明したように、例えば、バナジウム(V)やモリブデン(Mo)、タングステン(W)を活性成分とした酸化チタン系触媒を用いている。これらの活性成分の塩類と酸化チタン或いはその前駆体とを水存在下で混練し、得られたペーストを板状に成型後、乾燥および焼成したものである。また、板状に成型するために、例えば、金属製の薄鋼板をメタルラスに加工した網状基板、あるいはセラミック繊維製の織布または不織布の基板に前述の触媒成分を塗布して形成する。さらに、触媒エレメント1には、複数枚の触媒エレメント1を間隔を空けて層状に重ねて金属枠4内に収容するために、触媒エレメント1の両面に、複数の線条突起のスペーサ2が形成されている。 As shown in FIG. 1, the exhaust gas purification catalyst unit (hereinafter, simply referred to as a catalyst unit) 10 of the present embodiment includes a plate-shaped catalyst element 1 and gas inlets and gas outlets at both ends. It is configured to include a metal frame 4 having a rectangular cross section having an opening of. As described in the column of the prior art, the catalyst element 1 uses, for example, a titanium oxide-based catalyst containing vanadium (V), molybdenum (Mo), and tungsten (W) as active ingredients. Salts of these active ingredients and titanium oxide or a precursor thereof are kneaded in the presence of water, and the obtained paste is molded into a plate shape, dried and fired. Further, in order to mold into a plate shape, for example, a net-like substrate obtained by processing a thin metal steel plate into a metal lath, or a woven or non-woven fabric substrate made of ceramic fiber is formed by applying the above-mentioned catalyst component. Further, in the catalyst element 1, a plurality of linear projection spacers 2 are formed on both sides of the catalyst element 1 in order to stack the plurality of catalyst elements 1 in layers at intervals and accommodate them in the metal frame 4. Has been done.

触媒エレメント1は、図2に示すように、スペーサ2と平坦面3とを所定の間隔(例えば、126mm)で成型して得られる。スペーサ2は、一方の面(表面)に突出する山状の突起2aと、他方の面(裏面)に突出する谷状の突起2bの一対から構成される。それらの突起2a、2bは連続して位置してスペーサ2を形成している。スペーサ2は、線条方向をガス流れ方向に伸長させて金属枠4内に収容されている。また、図1と図3に示すように、複数枚の触媒エレメント1が、スペーサ2を介して層状に重ねて金属枠4内に収容されている。なお、上下方向に隣り合う2枚の触媒エレメント1は、互いにスペーサ2が相手側の平坦面3の中央部分に位置するように形成されている。 As shown in FIG. 2, the catalyst element 1 is obtained by molding the spacer 2 and the flat surface 3 at predetermined intervals (for example, 126 mm). The spacer 2 is composed of a pair of mountain-shaped protrusions 2a protruding from one surface (front surface) and valley-shaped protrusions 2b protruding from the other surface (back surface). The protrusions 2a and 2b are continuously positioned to form the spacer 2. The spacer 2 is housed in the metal frame 4 by extending the linear direction in the gas flow direction. Further, as shown in FIGS. 1 and 3, a plurality of catalyst elements 1 are stacked in a layered manner via the spacer 2 and housed in the metal frame 4. The two catalyst elements 1 adjacent to each other in the vertical direction are formed so that the spacer 2 is located at the center of the flat surface 3 on the opposite side.

金属枠4は、展延性がよく加工が容易にできる材質の板材を用いて形成する。本実施形態では、一般構造用の圧延鋼材(例えばSS400)を用いて形成されている。しかし、金属枠4に用いる材質は、これに限られるものではなく、ステンレス製圧延鋼材(例えばSUS430)などを用いてもよい。さらに、金属枠4を形成する板材の厚みは、加工性に優れて扱いやすい約1〜2[mm]に近い公称寸法の板材を選定することが好ましい。 The metal frame 4 is formed by using a plate material having good malleability and easy processing. In this embodiment, it is formed by using a rolled steel material for a general structure (for example, SS400). However, the material used for the metal frame 4 is not limited to this, and a rolled stainless steel material (for example, SUS430) may be used. Further, for the thickness of the plate material forming the metal frame 4, it is preferable to select a plate material having a nominal size close to about 1 to 2 [mm], which is excellent in workability and easy to handle.

次に、本発明の特徴事項であるガス撹拌突起6の実施形態について、図1、図4と図5を参照して説明する。本実施形態の金属枠4の上部の枠面4aと底部の枠面4bには、それぞれそれらの枠面4a、4bに対向する触媒エレメント1側に突出する線条突起からなるガス撹拌突起6が形成されている。 Next, an embodiment of the gas stirring protrusion 6, which is a feature of the present invention, will be described with reference to FIGS. 1, 4 and 5. On the upper frame surface 4a and the bottom frame surface 4b of the metal frame 4 of the present embodiment, gas stirring protrusions 6 composed of linear protrusions protruding toward the catalyst element 1 facing the frame surfaces 4a and 4b, respectively, are provided. It is formed.

ガス撹拌突起6は、図1および図4に示すように、触媒エレメント1の線条突起のスペーサ2の伸長方向と交差する方向(図示例では、直交又は略直交する方向)に伸長して形成されている。また、ガス撹拌突起6は、ガス流れ方向に間隔を空けて複数設けられている。本実施形態のガス撹拌突起6は、触媒エレメント1を形成する過程で、所定の金型を設置したプレス機を用いて金属枠4の一部を線条に凹ませて、逆側に突起を形成する。なお、これに限られるものではなく、所定寸法の線条突起物をガス撹拌突起6として、金属枠4の枠面4aまたは4bに接着して形成してもよい。前者のように、プレス機を用いて形成する方が、製造が容易で、かつ重量的にも軽くできるので好ましい。 As shown in FIGS. 1 and 4, the gas stirring protrusion 6 is formed by extending in a direction intersecting the extending direction of the spacer 2 of the linear protrusion of the catalyst element 1 (in the illustrated example, a direction orthogonal to or substantially orthogonal to the extending direction). Has been done. Further, a plurality of gas stirring protrusions 6 are provided at intervals in the gas flow direction. In the gas stirring protrusion 6 of the present embodiment, in the process of forming the catalyst element 1, a part of the metal frame 4 is recessed in a streak using a press machine equipped with a predetermined mold, and a protrusion is formed on the opposite side. Form. The present invention is not limited to this, and linear protrusions having predetermined dimensions may be formed as gas stirring protrusions 6 by adhering them to the frame surface 4a or 4b of the metal frame 4. As in the former case, it is preferable to form the product using a press machine because it is easy to manufacture and the weight can be reduced.

上述した本実施形態の排ガス浄化用触媒ユニットによれば、図1の図示矢印の方向から被処理ガス8が触媒ユニット10に流入し、上部と底部の触媒エレメント1と金属枠面4a、4bとの間に形成されるガス流路に流入する。その結果、図6に示したように、ガス流路中に突出されたガス撹拌突起6に衝突して図中矢印で示したようにガス流れが撹拌される。その撹拌により、金属枠面4a、4bの近傍を流れる排ガスもそのガス流路を構成する反対側の触媒エレメント1に接触して触媒反応を促進することができる。その結果、全体の排ガス浄化性能を高めることができる。 According to the exhaust gas purification catalyst unit of the present embodiment described above, the gas to be treated 8 flows into the catalyst unit 10 from the direction of the arrow shown in FIG. 1, and the catalyst elements 1 at the top and bottom and the metal frame surfaces 4a and 4b It flows into the gas flow path formed between the two. As a result, as shown in FIG. 6, the gas flow is agitated as shown by an arrow in the figure by colliding with the gas agitating protrusion 6 protruding into the gas flow path. By the stirring, the exhaust gas flowing in the vicinity of the metal frame surfaces 4a and 4b can also come into contact with the catalyst element 1 on the opposite side constituting the gas flow path to promote the catalytic reaction. As a result, the overall exhaust gas purification performance can be improved.

次に、ガス撹拌突起6の高さH、幅Wおよびガス流れ方向の間隔Dの関係について説明する。ここで、触媒エレメント1の重ね方向の間隔をPとし、スペーサ2の列設方向の間隔をPとする。特に、ガス撹拌突起6の形状および配置は、次の要件を満たすように決定することが好ましい。
(1)ガス撹拌突起6の高さHは、H/Pの比の値が1/3〜2/3の範囲になるよう設定するのが望ましい。
(2)ガス撹拌突起6のガス流れ方向の間隔Dは、20[mm]〜50[mm]の範囲が望ましい。間隔Dが広すぎると、ガスの撹拌効果が持続しないため効果が小さくなってしまう。一方、間隔Dが狭い程効果は大きくなるが、狭すぎると、金属枠4をプレス加工して線条突起を形成させる場合、金属枠4に歪みが生じたり、圧力損失が高くなり過ぎて、好ましくない。したがって、金属枠4の板厚をも考慮に入れて、間隔Dを設定することが好ましい。
(3)ガス撹拌突起6の流れ方向に沿う断面形状は、山状または谷条の幅広の形状が流路内のガスを効率よく撹拌できるので好ましい。しかし、半円型でも構わない。
(4)2つのスペーサ2と枠面2a、2bおよび触媒エレメント1の平坦面3とに囲まれて形成されるガス流路断面積をAとし、ガス撹拌突起6のガス流れ方向から見た投影面積をSとしたとき、S/Aの割合が20%〜60%になるように、ガス撹拌突起6の幅Wを設定することが好ましい。この割合S/Aを40%〜60%にすれば、ガスの拡散効果を高くして、触媒反応効率を高めることができるので望ましい。つまり、割合S/Aが60%を超えると、攪拌効果による触媒反応の向上に対して、当該ガス流路の通風圧力損失が上昇するので望ましくない。
Next, the relationship between the height H, the width W, and the interval D in the gas flow direction of the gas stirring protrusion 6 will be described. Here, the spacing in the stacking direction of the catalyst elements 1 is P 1, and the spacing in the rowing direction of the spacers 2 is P 2 . In particular, the shape and arrangement of the gas stirring protrusion 6 is preferably determined so as to satisfy the following requirements.
(1) It is desirable that the height H of the gas stirring protrusion 6 is set so that the value of the ratio of H / P 1 is in the range of 1/3 to 2/3.
(2) The interval D of the gas stirring protrusions 6 in the gas flow direction is preferably in the range of 20 [mm] to 50 [mm]. If the interval D is too wide, the effect of stirring the gas will not be sustained and the effect will be small. On the other hand, the narrower the interval D, the greater the effect, but if it is too narrow, when the metal frame 4 is pressed to form streak protrusions, the metal frame 4 is distorted or the pressure loss becomes too high. Not preferred. Therefore, it is preferable to set the interval D in consideration of the plate thickness of the metal frame 4.
(3) The cross-sectional shape of the gas stirring protrusion 6 along the flow direction is preferably a mountain shape or a wide shape of valleys because the gas in the flow path can be efficiently agitated. However, a semicircular shape is also acceptable.
(4) Let A be the cross-sectional area of the gas flow path formed by being surrounded by the two spacers 2, the frame surfaces 2a and 2b, and the flat surface 3 of the catalyst element 1, and the projection seen from the gas flow direction of the gas stirring projection 6. When the area is S, it is preferable to set the width W of the gas stirring projection 6 so that the ratio of S / A is 20% to 60%. If this ratio S / A is set to 40% to 60%, the diffusion effect of the gas can be enhanced and the catalytic reaction efficiency can be enhanced, which is desirable. That is, if the ratio S / A exceeds 60%, the ventilation pressure loss of the gas flow path increases with respect to the improvement of the catalytic reaction due to the stirring effect, which is not desirable.

次に、上記の実施形態に示した本発明の排ガス浄化用触媒ユニットを用い、ガス撹拌突起6の形状寸法H、Wと間隔Dを変えた実施例1〜6と比較例1〜5について行った脱硝反応速度比および通風圧力損失を対比して説明する。 Next, using the exhaust gas purification catalyst unit of the present invention shown in the above embodiment, Examples 1 to 6 and Comparative Examples 1 to 5 in which the shape dimensions H and W of the gas stirring protrusions 6 and the interval D are changed are performed. The denitration reaction rate ratio and the ventilation pressure loss will be described in comparison.

実施例1〜7に共通する触媒エレメント1の製造方法について説明する。二酸化チタン10kgとモリブデン酸アンモニウム((NH・Mo24・4HO)を1kg、メタバナジン酸アンモニウム1kg、および蓚酸1kgとを混合し、水を加えながらニーダで1時間、混練してペースト状態にした。その後、シリカ・アルミナ系無機繊維2kgを加えてさらに30分混練して水分約30%の触媒ペーストを得た。得られたペーストを一対の圧延ローラを用いて先に調製しておいた幅500mmのステンレス製メタルラス基板のラス目間および表面に塗布して厚さ約0.7mmの帯状触媒を得た。これにプレス機を用いて図2のように波型のスペーサ(高さP=5[mm]、設置間隔P=126[mm])を成形して、触媒エレメント1を作製した。 The method for manufacturing the catalyst element 1 common to Examples 1 to 7 will be described. Mixed ammonium titanium dioxide 10kg and molybdate ((NH 4) 6 · Mo 7 O 24 · 4H 2 O) to 1 kg, ammonium metavanadate 1 kg, and an oxalic acid 1 kg, 1 hour kneader while adding water, kneaded And put it in a paste state. Then, 2 kg of silica-alumina-based inorganic fiber was added and kneaded for another 30 minutes to obtain a catalyst paste having a water content of about 30%. The obtained paste was applied to the gaps and the surface of a stainless steel metal lath substrate having a width of 500 mm previously prepared using a pair of rolling rollers to obtain a strip-shaped catalyst having a thickness of about 0.7 mm. A corrugated spacer (height P 1 = 5 [mm], installation interval P 2 = 126 [mm]) was formed therein using a press machine as shown in FIG. 2, and the catalyst element 1 was manufactured.

触媒エレメント1の製造とは別に、厚み2mmの圧延鋼材SS400の一部に金型を設置したプレス機を用いて図5に示すガス撹拌突起6を複数個成形した後、図4に示す矩形の金属枠4を形成した。この金属枠4内に板状の触媒エレメント1を層状に重ねて収容し、次いで、24時間の風乾後、空気を流しながら500℃で2時間焼成して触媒ユニット10を製造した。 Separately from the production of the catalyst element 1, a plurality of gas stirring protrusions 6 shown in FIG. 5 are formed by using a press machine in which a mold is installed in a part of a rolled steel material SS400 having a thickness of 2 mm, and then the rectangular shape shown in FIG. 4 is formed. The metal frame 4 was formed. The plate-shaped catalyst elements 1 were stacked and housed in the metal frame 4 in a layered manner, and then air-dried for 24 hours and then fired at 500 ° C. for 2 hours while flowing air to manufacture the catalyst unit 10.

[実施例1]
実施例1のガス撹拌突起6は、高さH=2.5[mm]、幅W=100[mm}、間隔D=30[mm]であり、ガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは40%である。
[Example 1]
The gas stirring protrusion 6 of Example 1 has a height H = 2.5 [mm], a width W = 100 [mm}, and an interval D = 30 [mm], and gas stirring with respect to the cross-sectional area A per gas flow path. The ratio S / A occupied by the projected area S of the protrusion 6 is 40%.

[実施例2]
実施例2のガス撹拌突起6は、高さH=1.7[mm]に変えた以外は、実施例1と同様に触媒ユニット10を製作した。なお、ガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは27%である。
[Example 2]
The catalyst unit 10 was manufactured in the same manner as in Example 1 except that the height of the gas stirring projection 6 of Example 2 was changed to H = 1.7 [mm]. The ratio S / A of the projected area S of the gas stirring projection 6 to the cross-sectional area A per gas flow path is 27%.

[実施例3]
実施例3のガス撹拌突起6は、高さH=3.3[mm]に変えた以外は、実施例1と同様に触媒ユニット10を製作した。本実施例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは52%である。
[Example 3]
The catalyst unit 10 was manufactured in the same manner as in Example 1 except that the height of the gas stirring projection 6 of Example 3 was changed to H = 3.3 [mm]. The ratio S / A of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this embodiment is 52%.

[実施例4]
実施例4のガス撹拌突起6は、高さH=3.3[mm]、幅W=75[mm]に変えた以外は、実施例1と同様に触媒ユニット10を製作した。本実施例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは40%である。
[Example 4]
The catalyst unit 10 was manufactured in the same manner as in Example 1 except that the gas stirring protrusion 6 of Example 4 was changed to a height H = 3.3 [mm] and a width W = 75 [mm]. The ratio S / A of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this embodiment is 40%.

[実施例5]
実施例5のガス撹拌突起6は、設置間隔をD=20[mm]に変えた以外は、実施例1と同様に触媒ユニット10を製作した。本実施例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは40%である。
[Example 5]
For the gas stirring protrusion 6 of Example 5, the catalyst unit 10 was manufactured in the same manner as in Example 1 except that the installation interval was changed to D = 20 [mm]. The ratio S / A of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this embodiment is 40%.

[実施例6]
実施例6のガス撹拌突起6は、設置間隔D=50[mm]に変えた以外は、実施例1と同様に触媒ユニット10を製作した。本実施例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは40%である。
[Example 6]
The catalyst unit 10 was manufactured in the same manner as in Example 1 except that the gas stirring protrusion 6 of Example 6 was changed to the installation interval D = 50 [mm]. The ratio S / A of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this embodiment is 40%.

[比較例1]
比較例1は、実施例1においてガス撹拌突起6を設置しない金属枠4を使用して、従来の触媒ユニットを製造した。
[Comparative Example 1]
In Comparative Example 1, a conventional catalyst unit was manufactured by using the metal frame 4 in which the gas stirring protrusion 6 was not installed in Example 1.

[比較例2]
比較例2は、実施例1においてガス撹拌突起6の高さH=5[mm]に変えた以外は実施例1と同様にして触媒ユニットを製作した。本比較例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは80%である。
[Comparative Example 2]
In Comparative Example 2, the catalyst unit was manufactured in the same manner as in Example 1 except that the height of the gas stirring protrusion 6 was changed to H = 5 [mm] in Example 1. The ratio S / A of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this comparative example is 80%.

[比較例3]
比較例3は、実施例1においてガス撹拌突起6の高さH=1[mm]、幅W=110[mm]に変えた以外は実施例1と同様にして触媒ユニットを製作した。本比較例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/Aは18%である。
[Comparative Example 3]
In Comparative Example 3, a catalyst unit was manufactured in the same manner as in Example 1 except that the height H = 1 [mm] and the width W = 110 [mm] of the gas stirring protrusion 6 were changed in Example 1. The ratio S / A of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this comparative example is 18%.

[比較例4]
比較例4は、実施例1においてガス撹拌突起6の高さH=5[mm]、幅W=35[mm]に変えた以外は実施例1と同様にして触媒ユニットを製作した。本比較例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/A=28%である。
[Comparative Example 4]
In Comparative Example 4, a catalyst unit was manufactured in the same manner as in Example 1 except that the height H = 5 [mm] and the width W = 35 [mm] of the gas stirring protrusion 6 were changed in Example 1. The ratio S / A = 28% of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this comparative example.

[比較例5]
比較例5は、実施例1においてガス撹拌突起6の間隔D=100[mm]に変えた以外は実施例1と同様にして触媒ユニットを製作した。本比較例のガス流路あたりの断面積Aに対するガス撹拌突起6の投影面積Sの占める割合S/A=40%である。
[Comparative Example 5]
In Comparative Example 5, a catalyst unit was manufactured in the same manner as in Example 1 except that the distance D of the gas stirring protrusions 6 was changed to 100 [mm] in Example 1. The ratio S / A = 40% of the projected area S of the gas stirring protrusion 6 to the cross-sectional area A per gas flow path of this comparative example.

実施例1〜6および比較例1〜5で製作した触媒ユニットについて、表1記載の排ガス条件で脱硝反応速度と圧力損失を測定した。比較例1の性能を基準(=1.00)として、実施例および比較例の脱硝反応速度と圧力損失の比をそれぞれ表2に示す。表2より、本発明が規定する範囲でガス撹拌突起6を設置した実施例1〜6の触媒ユニットは、ガス撹拌突起を設置していない比較例1の触媒ユニットに比べて、脱硝反応速度が高いことが分かる。 For the catalyst units manufactured in Examples 1 to 6 and Comparative Examples 1 to 5, the denitration reaction rate and pressure loss were measured under the exhaust gas conditions shown in Table 1. Based on the performance of Comparative Example 1 (= 1.00), Table 2 shows the ratio of the denitration reaction rate and the pressure loss of Examples and Comparative Examples, respectively. From Table 2, the catalyst units of Examples 1 to 6 in which the gas stirring protrusion 6 is installed within the range specified by the present invention have a higher denitration reaction rate than the catalyst unit of Comparative Example 1 in which the gas stirring protrusion is not installed. It turns out to be expensive.

Figure 0006978827
Figure 0006978827

Figure 0006978827
Figure 0006978827

これ対して、比較例2、3、5はガス撹拌突起6の幅Wが広い場合において、比較例2のようにガス撹拌突起6の高さHを対向する触媒エレメント1に接触するほど高くした場合、反応速度は向上するものの圧力損失の上昇度が大きくなり過ぎている。一方、比較例3のようにガス撹拌突起6の高さHが低い場合や比較例5のようにガス撹拌突起6の設置間隔Dが広すぎる場合は、流路内のガスの撹拌効果が小さいため、反応速度の向上は見られない。 On the other hand, in Comparative Examples 2, 3 and 5, when the width W of the gas stirring protrusion 6 was wide, the height H of the gas stirring protrusion 6 was increased so as to come into contact with the facing catalyst element 1 as in Comparative Example 2. In this case, the reaction rate is improved, but the degree of increase in pressure loss is too large. On the other hand, when the height H of the gas stirring protrusion 6 is low as in Comparative Example 3 or when the installation interval D of the gas stirring protrusions 6 is too wide as in Comparative Example 5, the stirring effect of the gas in the flow path is small. Therefore, no improvement in reaction rate is seen.

また、比較例4は、流路断面積Aに対してガス撹拌突起6の投影面積Sの占める割合が実施例2とほぼ同じであるにもかかわらず、実施例2よりも低い反応速度である。これは、比較例4の場合、流路内のガスがガス撹拌突起6の両脇をすり抜けてしまっているためと思われる。これに対して、実施例2の場合は、ガス撹拌突起6の幅Wが広く、なおかつガス撹拌突起6と対向する触媒エレメント1との間に適度な空間があるため、金属枠4の枠面4a、4b近傍を流れるガスが対向する触媒エレメント1に向かって移動する流れができることにより、排ガスと触媒エレメント1との接触反応が効率よく進行していると考えられる。 Further, in Comparative Example 4, the reaction rate is lower than that of Example 2 even though the ratio of the projected area S of the gas stirring projection 6 to the flow path cross-sectional area A is almost the same as that of Example 2. .. This is probably because, in the case of Comparative Example 4, the gas in the flow path has passed through both sides of the gas stirring protrusion 6. On the other hand, in the case of the second embodiment, the width W of the gas stirring protrusion 6 is wide, and there is an appropriate space between the gas stirring protrusion 6 and the catalyst element 1 facing the gas stirring protrusion 6, so that the frame surface of the metal frame 4 is formed. It is considered that the contact reaction between the exhaust gas and the catalyst element 1 is efficiently proceeding because the gas flowing in the vicinity of 4a and 4b can move toward the facing catalyst element 1.

以上、本発明を一実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことである。そのような変形又は変更された形態が本願の特許請求の範囲に属することは言うまでもない。 Although the present invention has been described above based on one embodiment, the present invention is not limited thereto. It is obvious to those skilled in the art that it is possible to carry out in a modified or modified form within the scope of the present invention. It goes without saying that such modified or modified forms fall within the scope of the claims of the present application.

特に、本発明によれば、同一触媒量(同一触媒体積)での脱硝性能を高くできるため、触媒使用量の低減が可能である。また、実機の排ガス条件に応じて、金属枠に設置するガス撹拌突起の設置条件を自由に設定することが可能であるため、広範の排ガス条件に対応することが可能である。 In particular, according to the present invention, the denitration performance with the same catalyst amount (same catalyst volume) can be improved, so that the amount of catalyst used can be reduced. Further, since the installation conditions of the gas stirring protrusions to be installed in the metal frame can be freely set according to the exhaust gas conditions of the actual machine, it is possible to correspond to a wide range of exhaust gas conditions.

また、板状の触媒エレメントを積層して形成する触媒ユニットであれば、浄化対象の有害物が異なる全ての触媒ユニットに適用可能である。特に、触媒エレメントの積層ピッチが大きい触媒ユニットの場合、触媒反応の低いガス流路の占める割合が大きいため、本発明の適用効果は大きい。 Further, any catalyst unit formed by laminating plate-shaped catalyst elements can be applied to all catalyst units having different harmful substances to be purified. In particular, in the case of a catalyst unit having a large stacking pitch of catalyst elements, the gas flow path having a low catalytic reaction occupies a large proportion, so that the application effect of the present invention is large.

上述したように、本発明は、触媒ユニットの通風損失の上昇を低く維持しながらも、脱硝反応活性の高くすることができる。 As described above, the present invention can increase the denitration reaction activity while keeping the increase in ventilation loss of the catalyst unit low.

1 触媒エレメント
2 スペーサ
2a 山状の突起
2b 谷状の突起
3 平坦面
4 金属枠
4a 上部枠面
4b 下部枠面
5 触媒ユニット
6 ガス撹拌突起
7 触媒ユニット
8 被処理ガス流入方向
1 Catalyst element 2 Spacer 2a Mountain-shaped protrusion 2b Valley-shaped protrusion 3 Flat surface 4 Metal frame 4a Upper frame surface 4b Lower frame surface 5 Catalyst unit 6 Gas stirring protrusion 7 Catalyst unit 8 Processed gas inflow direction

Claims (6)

板状触媒の両面に線条突起からなる複数のスペーサを有する触媒エレメントと、両端にガス流入口とガス流出口の開口を有する断面矩形の金属枠とを備え、前記触媒エレメントが前記金属枠の上部から底部にわたって前記スペーサの線条方向をガス流れ方向に位置し、かつ複数枚が層状に重ねて収容され、前記スペーサは、一方の面に突出する山状の突起と、該山状の突起に連続して位置されて他方の面に突出する谷状の突起の一対からなり、上下に隣り合う前記触媒エレメントは、互いに前記スペーサが相手側の平坦面の中央部分に位置して形成されている排ガス浄化用触媒ユニットにおいて、
前記金属枠の上部と底部の枠面に、該枠面に対向する前記触媒エレメント側に突出する線条突起からなるガス撹拌突起を有し、該ガス撹拌突起は、前記触媒エレメントの前記スペーサの伸長方向と交差する方向に伸長していることを特徴とする排ガス浄化用触媒ユニット。
A catalyst element having a plurality of spacers composed of linear protrusions on both sides of a plate-shaped catalyst and a metal frame having a rectangular cross section having openings for a gas inlet and a gas outlet at both ends are provided, and the catalyst element is the metal frame. The spacer is located in the gas flow direction from the top to the bottom in the linear direction of the spacer, and a plurality of the spacers are stacked and accommodated in a layered manner. The catalyst elements, which consist of a pair of valley-shaped protrusions that are continuously located on the other side and project to the other surface, are formed so that the spacers are located in the central portion of the flat surface on the opposite side of the catalyst elements that are adjacent to each other. In the exhaust gas purification catalyst unit
The upper and lower frame surfaces of the metal frame have gas stirring protrusions composed of linear protrusions protruding toward the catalyst element facing the frame surface, and the gas stirring protrusions are the spacers of the catalyst element. An exhaust gas purification catalyst unit characterized by extending in a direction intersecting the extension direction.
請求項1に記載の排ガス浄化用触媒ユニットにおいて、
前記ガス撹拌突起は、前記触媒エレメントの隣り合う2つの前記スペーサ間の平坦面に対向して位置していることを特徴とする排ガス浄化用触媒ユニット。
In the exhaust gas purification catalyst unit according to claim 1,
The exhaust gas purification catalyst unit characterized in that the gas stirring protrusion is located facing a flat surface between two adjacent spacers of the catalyst element.
請求項に記載の排ガス浄化用触媒ユニットにおいて、
前記触媒エレメントの層間隔Pは、4[mm]〜10[mm]の範囲から選択される値であり、
前記ガス撹拌突起の高さHは、H/Pの比の値が1/3〜2/3の範囲に設定されることを特徴とする排ガス浄化用触媒ユニット。
In the exhaust gas purification catalyst unit according to claim 2.
The layer spacing P 1 of the catalyst element is a value selected from the range of 4 [mm] to 10 [mm].
The height H of the gas stirring protrusion is a catalyst unit for exhaust gas purification, wherein the value of the ratio of H / P 1 is set in the range of 1/3 to 2/3.
請求項に記載の排ガス浄化用触媒ユニットにおいて、
前記ガス撹拌突起は、ガス流れ方向に複数設けられ、その設置間隔Dは20[mm]〜50[mm]の範囲から選択される値に設定されることを特徴とする排ガス浄化用触媒ユニット。
In the exhaust gas purification catalyst unit according to claim 3,
A catalyst unit for exhaust gas purification, wherein a plurality of the gas stirring protrusions are provided in the gas flow direction, and the installation interval D is set to a value selected from the range of 20 [mm] to 50 [mm].
請求項に記載の排ガス浄化用触媒ユニットにおいて、
前記金属枠は、1[mm]〜2[mm]厚さの圧延鋼板で形成されてなることを特徴とする排ガス浄化用触媒ユニット。
In the exhaust gas purification catalyst unit according to claim 4,
The exhaust gas purification catalyst unit is characterized in that the metal frame is made of a rolled steel plate having a thickness of 1 [mm] to 2 [mm].
請求項に記載の排ガス浄化用触媒ユニットにおいて、
前記金属枠の枠面と対向する前記触媒エレメントの隣り合う前記スペーサと平坦面とに囲まれるガス流路に位置する前記ガス撹拌突起の高さHは、当該ガス流路の断面積をAとし、前記ガス撹拌突起のガス流れ方向から見た投影面積をSとしたとき、S/Aの割合が20%〜60%の範囲から選択される値に設定されることを特徴とする排ガス浄化用触媒ユニット。
In the exhaust gas purification catalyst unit according to claim 3,
The height H of the gas agitating protrusion located in the gas flow path surrounded by the spacer and the flat surface adjacent to the catalyst element facing the frame surface of the metal frame has the cross-sectional area of the gas flow path as A. For exhaust gas purification, the S / A ratio is set to a value selected from the range of 20% to 60%, where S is the projected area of the gas stirring protrusion viewed from the gas flow direction. Catalyst unit.
JP2016011027A 2016-01-22 2016-01-22 Exhaust gas purification catalyst unit Active JP6978827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011027A JP6978827B2 (en) 2016-01-22 2016-01-22 Exhaust gas purification catalyst unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011027A JP6978827B2 (en) 2016-01-22 2016-01-22 Exhaust gas purification catalyst unit

Publications (2)

Publication Number Publication Date
JP2017127846A JP2017127846A (en) 2017-07-27
JP6978827B2 true JP6978827B2 (en) 2021-12-08

Family

ID=59395877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011027A Active JP6978827B2 (en) 2016-01-22 2016-01-22 Exhaust gas purification catalyst unit

Country Status (1)

Country Link
JP (1) JP6978827B2 (en)

Also Published As

Publication number Publication date
JP2017127846A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP4293569B2 (en) Catalyst structure and gas purification device
US9724683B2 (en) Catalyst structure
JP5896883B2 (en) Exhaust gas purification catalyst structure
JP6978827B2 (en) Exhaust gas purification catalyst unit
JP7154082B2 (en) Exhaust gas purification catalyst structure
JP5198744B2 (en) Catalyst structure
JP2008126148A (en) Exhaust gas denitration device
KR102710154B1 (en) Denitrification catalyst structure
JP2010253366A (en) Catalytic structure
JP5804909B2 (en) Exhaust gas purification catalyst structure and manufacturing method thereof
WO2020059760A1 (en) Catalyst structure for purifying exhaust gas
JP2014050824A (en) Catalyst element for cleaning exhaust gas and catalyst structure for cleaning exhaust gas
JP2014113569A (en) Catalyst structure for purifying exhaust gas
JPH0910599A (en) Unit-plate-shaped catalyst, plate-shaped catalyst structure, and gas purification apparatus
JP2014113568A (en) Catalyst structure for purifying an exhaust gas
JP2014008489A (en) Plate-shaped catalyst, catalytic structure, and method for producing the catalyst
JP2002191986A (en) Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof
JP5863371B2 (en) Catalyst structure
JP2020116490A (en) Catalyst structure for purifying exhaust gas
WO2022092313A1 (en) Exhaust gas purification catalyst structure
JP5245120B2 (en) Catalyst structure
JPH09239243A (en) Apparatus and method for exhaust gas denitration
JP2020116543A (en) Catalyst unit for purifying exhaust gas
JPH11347422A (en) Catalyst structural body and flue gas denitrification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200629

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200703

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200717

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200722

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210528

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210827

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210917

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211015

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211112

R150 Certificate of patent or registration of utility model

Ref document number: 6978827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150