JP2002191986A - Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof - Google Patents

Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof

Info

Publication number
JP2002191986A
JP2002191986A JP2000395555A JP2000395555A JP2002191986A JP 2002191986 A JP2002191986 A JP 2002191986A JP 2000395555 A JP2000395555 A JP 2000395555A JP 2000395555 A JP2000395555 A JP 2000395555A JP 2002191986 A JP2002191986 A JP 2002191986A
Authority
JP
Japan
Prior art keywords
catalyst
metal lath
plate
catalyst structure
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000395555A
Other languages
Japanese (ja)
Inventor
Eiji Miyamoto
英治 宮本
Yasuyoshi Kato
泰良 加藤
Koichi Yokoyama
公一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000395555A priority Critical patent/JP2002191986A/en
Publication of JP2002191986A publication Critical patent/JP2002191986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst structure for cleaning exhaust gas using a metal lath plate as reticulated matter, preventing the deformation of gas flow channels caused by the curving of the metal lath plate to keep high catalytic contact efficiency. SOLUTION: In the catalyst structure obtained by alternately laminating a large number of catalyst bodies, each of which is molded into a staircase shape, a corrugated shape or a shape having a U-shaped cross section by alternately bending a flat plate-shaped catalyst in opposite directions, and flat plate- shaped metal laths 2 to house them in a unit frame, both ends on the side of the contact parts of the flat plateshaped laths 2 with the unit frame are bent by the same length as a catalyst pitch 9 to form lap widths 6 and the end parts of the lap widths 6 are arranged so as to respectively come into contact with the adjacent flat plate-shaped metal laths 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス浄化用触媒
構造体およびその形成に用いるメタルラス板に係り、特
に排ガス中の窒素酸化物(以下NOxという)を効率よ
くアンモニア(NH3)で還元するための板状触媒を用い
た排ガス浄化触媒構造体およびその形成に用いるメタル
ラス板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst structure for purifying exhaust gas and a metal lath plate used for forming the same, and more particularly to a method for efficiently reducing nitrogen oxides (hereinafter referred to as NOx) in exhaust gas with ammonia (NH 3 ). The present invention relates to an exhaust gas purifying catalyst structure using a plate-like catalyst and a metal lath plate used for forming the same.

【0002】[0002]

【従来の技術】発電所などから排出される排煙中のNO
xは、酸性雨などの原因物質であり、その効果的な処理
方法として、NH3 を還元剤として選択的接触還元を行
なう排煙脱硝法が知られており、火力発電所を中心に幅
広く採用されている。脱硝触媒は、通常ハニカム状、板
状等に成形され、各種製造法が提案されている。中で
も、金属薄板をメタルラス加工した後アルミニウム溶射
を施したエキスパンドメタルまたはセラミック繊維製織
布もしくは不織布を基板とし、これに触媒成分を塗布、
圧着して得られた板状触媒を、例えば波形のエレメント
に加工した後、複数枚積層して触媒構造体としたものは
通風損失が小さく、煤塵や石炭の燃焼灰で閉塞されにく
いなどの優れた特長があり、火力発電ボイラ排ガスの脱
硝装置に多数用いられている。このような従来技術に関
するものとして、例えば特開昭54−79188号公
報、特開昭59−73053号公報等が挙げられる。
2. Description of the Related Art NO in smoke exhausted from power plants and the like
x is a causative substance such as acid rain, and as an effective treatment method there is known a flue gas denitration method of performing selective catalytic reduction using NH 3 as a reducing agent, and is widely used mainly in thermal power plants. Have been. The denitration catalyst is usually formed into a honeycomb shape, a plate shape or the like, and various production methods have been proposed. Among them, expanded metal or woven or non-woven fabric made of ceramic fiber, which has been subjected to aluminum spraying after metal lath processing of a thin metal plate, is used as a substrate, and a catalyst component is applied thereto.
A plate-shaped catalyst obtained by pressing is processed into, for example, a corrugated element, and a plurality of sheets are laminated to form a catalyst structure, which has excellent ventilation loss and is less likely to be blocked by dust and coal combustion ash. It is widely used in denitration equipment for thermal power generation boiler exhaust gas. Japanese Patent Application Laid-Open Nos. 54-79188 and 59-73053, for example, relate to such prior art.

【0003】また、階段状または波板状に成形した触媒
体と、平板状の織布または表裏を貫通した孔を多数有す
る金属板等の網状物とを交互に積層した触媒構造体は、
ガスの流れが網状物の目開き部を通って乱されることに
より、処理ガスと触媒との接触が促進されて反応速度が
飛躍的に向上し、高い触媒性能が得られるうえ、製造工
程が簡略化できるという利点がある。このような従来技
術に関するものとして、例えば、国際公開番号WO99
/24165号が挙げられる。
Further, a catalyst structure in which a catalyst body formed in a stepped or corrugated shape and a mesh material such as a flat woven fabric or a metal plate having a large number of holes penetrating the front and back surfaces is alternately laminated,
By disturbing the gas flow through the mesh openings, the contact between the processing gas and the catalyst is promoted, the reaction rate is dramatically improved, and high catalyst performance is obtained. There is an advantage that it can be simplified. Regarding such prior art, for example, International Publication No. WO99
/ 24165.

【0004】ところで近年、排ガス脱硝装置の高度化を
図るため、触媒の板厚を薄くして原料費や通風損失を低
減しようとする努力が多くの分野でなされている。ま
た、これまで触媒体相互の間隔(以下、触媒ピッチとい
う)の大きい触媒を低ガス流速で使用していた石炭焚き
ボイラ排ガス脱硝等の分野でも、ガス流速を高めると同
時に、触媒ピッチを小さくしたコンパクトな脱硝装置へ
の需要が高まっている。
[0004] In recent years, efforts have been made in many fields to reduce the material cost and the ventilation loss by reducing the thickness of the catalyst in order to improve the efficiency of the exhaust gas denitration apparatus. In the field of denitrification of flue gas from coal-fired boilers, which used a catalyst with a large distance between catalyst bodies (hereinafter referred to as catalyst pitch) at a low gas flow rate, the gas pitch was increased and the catalyst pitch was reduced. The demand for compact denitration equipment is increasing.

【0005】図5(a)、(b)は、このような触媒ピ
ッチを狭くした触媒構造体を示す説明図である。図にお
いてこの触媒構造体3は、触媒体1と網状物2とを交互
に積層したものであり、上述した近年の動向にマッチし
たものであった。なお、米国の脱硝触媒市場は、199
9年をピークに2004年までは下降すると考えられる
が、その中にあって、HRSG用触媒は、逆に年々需要
を拡大し、2004年には脱硝触媒の需要の内約40%
を占めるに至るとの見通しがある。一方、世界的にはH
RSG用触媒として、平成9年頃から2.7mmピッチの
ハニカム触媒が実用化され、さらに近年では2.3mmハ
ニカムも出現している。
FIGS. 5A and 5B are explanatory views showing such a catalyst structure having a narrow catalyst pitch. In the figure, the catalyst structure 3 is obtained by alternately stacking the catalyst bodies 1 and the meshes 2 and matches the recent trend described above. The U.S. denitration catalyst market is 199
It is considered that the demand for HRSG catalysts will increase year by year on the contrary, and the demand for denitration catalysts will increase by about 40% in 2004.
There is a prospect that it will account for. On the other hand, worldwide
As a catalyst for RSG, a honeycomb catalyst having a 2.7 mm pitch has been put into practical use from around 1997, and a 2.3 mm honeycomb has recently appeared in recent years.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、網状物としてメタルラス板を用いた場合、
以下のような問題があった。すなわち、ラス加工の過程
における刻み幅の誤差等により、メタルラス板に、図4
の符号7に示す方向の曲がりが残るという問題がある。
メタルラス板を介して触媒体を多数積層して触媒構造体
を構成する際、通常、メタルラス板の上記湾曲方向は、
触媒構造体のガス流通方向と一致するように配置され
る。このため、網状物としてメタルラス板を用いた触媒
構造体においては、図3に示すように、メタルラス板の
湾曲がガス流れ方向に残り、ガス入口側と出口側端部で
触媒体が持ち上がり、ガス流路形状が変形し易くなる。
なお、この曲がり方向7と直角方向8にせん断力を受け
るとメタルラスは切断し易くなる。
However, in the above-mentioned prior art, when a metal lath plate is used as a mesh,
There were the following problems. That is, due to an error in the step width in the course of lath processing, the metal lath plate is
However, there is a problem that the bending in the direction indicated by reference numeral 7 remains.
When a large number of catalyst bodies are stacked via a metal lath plate to form a catalyst structure, the bending direction of the metal lath plate is usually
It is arranged so as to coincide with the gas flow direction of the catalyst structure. For this reason, in a catalyst structure using a metal lath plate as a mesh, the curvature of the metal lath plate remains in the gas flow direction as shown in FIG. The flow path shape is easily deformed.
When a shearing force is applied in a direction 8 perpendicular to the bending direction 7, the metal lath is easily cut.

【0007】触媒ピッチが大きい場合は、上記メタルラ
ス板の湾曲が触媒活性に及ぼす影響はほとんどないが、
触媒体の狭ピッチ化が進み2〜3mmピッチの構造体に
なると、メタルラス板のわずかな変形がガス流路形状を
不均一にする要因となり、ガスの吹き抜けを起こし、触
媒活性が低下する原因となる。また、触媒基材および網
状物として共に金属を用いた場合には、狭ピッチ化によ
り積層枚数が増加する分だけ触媒構造体の下部への自重
が大きくなり、下側のピッチが狭まるとともに上側のピ
ッチが広がり、このためにガス流れの不均一を引き起こ
し、触媒活性が低下するという問題が発生する。このよ
うに触媒積層体の狭ピッチ化を進めるにあたり、触媒ピ
ッチが広い時には起こらなかったガスの吹き抜けに起因
して触媒性能が低下するという新たな問題が発生するよ
うになる。
When the catalyst pitch is large, the curvature of the metal lath plate has almost no effect on the catalytic activity.
When the pitch of the catalyst body becomes narrower and the structure becomes a 2-3 mm pitch structure, slight deformation of the metal lath plate causes the gas flow path shape to become non-uniform, causing gas blow-through and reducing catalyst activity. Become. When metal is used for both the catalyst substrate and the mesh, the weight of the lower portion of the catalyst structure increases due to the increase in the number of stacked layers due to the narrower pitch, and the pitch on the lower side decreases while the pitch on the upper side decreases. The pitch is widened, which causes a non-uniform gas flow, which causes a problem that catalyst activity is reduced. As described above, when the pitch of the catalyst laminate is reduced, a new problem arises in that the catalyst performance is reduced due to gas blow-through that has not occurred when the catalyst pitch is wide.

【0008】本発明の課題は、上記従来技術の問題点を
解決し、網状物としてメタルラス板を用いた触媒構造体
において前記メタルラス板の湾曲に起因するガス流路の
変形を防止し、高い触媒接触効率を保持することができ
る排ガス浄化用触媒構造体およびその形成に用いるメタ
ルラス板を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to prevent a gas flow path from being deformed due to the curvature of the metal lath plate in a catalyst structure using a metal lath plate as a mesh, thereby providing a high catalyst. An object of the present invention is to provide an exhaust gas purifying catalyst structure capable of maintaining contact efficiency and a metal lath plate used for forming the same.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、触媒体と網状物とを交互に多数積層し
てユニット枠に収容した触媒ピッチの狭まい触媒構造体
における、ガス流路形状の変形と網状物としてのメタル
ラス板の湾曲等との関係について鋭意研究した結果、メ
タルラス板のユニット枠との接触部側の両端を触媒体相
互の間隔(触媒ピッチ)の幅と同じ長さだけ折り曲げて
重ね代を形成し、該重ね代の端部が隣接するメタルラス
板とそれぞれ接触するように積層することにより、メタ
ルラス板の湾曲が矯正されてガス流路の変形がなくな
り、これによってガスの吹き抜けがなくなって触媒構造
体全体としての触媒接触効率が向上することを見出し、
本発明に到達した。
Means for Solving the Problems To solve the above-mentioned problems, the present inventor has proposed a method of forming a gas in a catalyst structure having a narrow catalyst pitch by alternately stacking a large number of catalyst bodies and reticulated objects and housing the unit frame. As a result of intensive studies on the relationship between the deformation of the flow path shape and the curvature of the metal lath plate as a mesh, both ends of the metal lath plate on the contact side with the unit frame are the same as the width of the distance between the catalyst bodies (catalyst pitch). By bending by the length to form an overlap margin, and laminating so that the end of the overlap margin is in contact with the adjacent metal lath plate, the curvature of the metal lath plate is corrected, and the gas flow path is not deformed. It was found that the gas blow-through disappeared and the catalyst contact efficiency as a whole catalyst structure improved.
The present invention has been reached.

【0010】すなわち、本願で特許請求する発明は、以
下のとおりである。 (1)平板状の触媒を交互に逆方向に折り曲げて階段
状、波板状または断面コの字形状に成形した触媒体と、
平板状のメタルラスとを交互に多数積層してユニット枠
に収容した触媒構造体において、前記平板状メタルラス
の前記ユニット枠との接触部側の両端を前記触媒体相互
の間隔と同様の長さだけ折り曲げて重ね代とし、該重ね
代の端部が隣接する平板状メタルラスとそれぞれ接触す
るように配置したことを特徴とする排ガス浄化用触媒構
造体。 (2)前記平板状メタルラスの表面に、チタン、バナジ
ウム、モリブデン、およびタングステンの少なくとも一
種の酸化物からなる触媒成分を担持させたことを特徴と
する上記(1)に記載の排ガス浄化用触媒構造体。
That is, the invention claimed in the present application is as follows. (1) a catalyst body obtained by alternately bending a plate-like catalyst in the opposite direction to form a step-like, corrugated, or U-shaped cross section;
In a catalyst structure in which a large number of flat metal laths are alternately stacked and accommodated in a unit frame, both ends of the flat metal lath on the contact portion side with the unit frame are the same length as the distance between the catalyst bodies. A catalyst structure for purifying exhaust gas, characterized in that it is bent to form an overlap margin, and the ends of the overlap margin are arranged so as to be in contact with adjacent flat metal laths. (2) The exhaust gas purifying catalyst structure according to (1), wherein a catalyst component comprising at least one oxide of titanium, vanadium, molybdenum, and tungsten is carried on the surface of the flat metal lath. body.

【0011】(3)平板状の触媒を交互に逆方向に折り
曲げて階段状、波板状または断面コの字形状に成形した
触媒体を多数積層し、ユニット枠に収容して触媒構造体
を形成する際、前記触媒体相互間に配置される平板状の
メタルラスであって、前記ユニット枠との接触部側の両
端を前記触媒体相互の間隔と同様の長さだけ折り曲げて
先端部がそれぞれ隣接する平板状メタルラスと接触する
ような重ね代を設けたことを特徴とする、上記(1)ま
たは(2)に記載の排ガス浄化用触媒構造体の形成に用
いるメタルラス板。
(3) A large number of catalyst bodies formed by alternately bending plate-shaped catalysts in the opposite direction to form a step-like, corrugated or U-shaped cross section are stacked, and housed in a unit frame to form a catalyst structure. When forming, it is a flat metal lath disposed between the catalyst bodies, both ends of the contact portion side with the unit frame are bent by the same length as the interval between the catalyst bodies, the tip ends respectively The metal lath plate used for forming the exhaust gas purifying catalyst structure according to the above (1) or (2), wherein an overlap margin is provided so as to contact an adjacent flat metal lath.

【0012】[0012]

【発明の実施の形態】図1(a)〜(d)は、本発明の
一実施例の断面を模式的に示した説明図である。図にお
いて、段差部と平板部を有する触媒体1が平板状のメタ
ルラス(メタルラス板)2を介して多数積層された触媒
構造体が示されており、この触媒構造体におけるメタル
ラス板2のユニット枠(図示省略)との接触部側の両端
部に、触媒ピッチ(触媒体1相互の間隔)9の長さと同
じ長さだけ折り曲げて形成した重ね代6が設けられてお
り、該重ね代6の端部がそれぞれ隣接するメタルラス板
2と接触するように配置されている。
1A to 1D are explanatory views schematically showing a cross section of an embodiment of the present invention. FIG. 1 shows a catalyst structure in which a large number of catalyst bodies 1 having a step portion and a flat plate portion are laminated via a flat metal lath (metal lath plate) 2, and a unit frame of the metal lath plate 2 in this catalyst structure is shown. (Not shown), an overlap portion 6 formed by bending the catalyst pitch (interval between the catalyst bodies 1) 9 by the same length as the length of the catalyst pitch (interval between the catalyst bodies 1) 9 is provided. The ends are arranged so as to be in contact with the adjacent metal lath plates 2 respectively.

【0013】本実施例によれば、メタルラス板2の触媒
ユニット枠との接触部側の両端部を折り曲げて所定高さ
の重ね代6を設けたことにより、ガス流れ方向のメタル
ラスの湾曲が矯正される。また、前記重ね代6の長さを
触媒ピッチ9と同じ長さとし、該重ね代6の端部が隣接
するメタルラス板2とそれぞれ接触するように配置した
ことにより、触媒構造体全体の剛性が大きくなり、しか
も触媒ピッチが触媒構造体の上部および下部で不均一に
なることもない。すなわち、ガス流路断面が変形せず、
ガスの偏流を防止して触媒反応効率が向上する。
According to this embodiment, the bending of the metal lath in the gas flow direction is corrected by bending both ends of the metal lath plate 2 on the contact portion side with the catalyst unit frame to provide the overlap margin 6 having a predetermined height. Is done. Further, the length of the overlap margin 6 is set to be the same as the catalyst pitch 9, and the end of the overlap margin 6 is arranged so as to be in contact with the adjacent metal lath plate 2, thereby increasing the rigidity of the entire catalyst structure. In addition, the catalyst pitch does not become uneven at the upper and lower portions of the catalyst structure. That is, the cross section of the gas flow path is not deformed,
Prevention of gas drift improves catalyst reaction efficiency.

【0014】本発明において、触媒体は、例えば表裏に
貫通した貫通孔を多数有する金属基板に前記貫通孔(以
下、網目ともいう)を埋めるように触媒成分を塗布、圧
着した、例えば正方形または長方形の板状体を、その一
対の辺に対して平行な方向に所定の間隔で、例えば階段
状、波板状、コの字状に折り曲げたて成形したものであ
る。図6(a)〜(e)に、本発明に適用される触媒体
の断面形状の一例を示す。触媒成分としては、例えば酸
化チタンを主成分にし、バナジウム(V)、モリブデン
(Mo)、タングステン(W)などの活性成分を添加し
たものが用いられる。なお、触媒体を得るために結合剤
を添加するなどの周知の手段を併用してもよい。
In the present invention, for example, a catalyst component is applied to a metal substrate having a large number of through-holes penetrating on the front and back sides so as to fill the through-holes (hereinafter, also referred to as a mesh), and is pressed, for example, square or rectangular. Are bent at predetermined intervals in a direction parallel to the pair of sides, for example, in a stepped shape, a corrugated shape, or a U-shape. FIGS. 6A to 6E show examples of the cross-sectional shape of the catalyst body applied to the present invention. As the catalyst component, for example, one containing titanium oxide as a main component and an active component such as vanadium (V), molybdenum (Mo), or tungsten (W) is used. In addition, well-known means such as addition of a binder may be used in combination to obtain a catalyst.

【0015】本発明において、メタルラス板としては、
例えばメタルラス加工を施した鋼板が使用される。メタ
ルラス板の表面には、例えば前記触媒体で使用した触媒
成分と同様の成分を有する触媒を、その網目が有する貫
通孔を閉塞させないように担持、被覆させることが好ま
しい。触媒成分は、ローラ掛けまたはプレスなどによっ
て圧延、塗布することもできる。メタルラス板のユニッ
ト枠との接触部側の両端を折り曲げて重ね代を形成する
際の折り曲げ方向は、その両端部で同じ方向であっても
また相互に逆方向であってもよい。図2(a)、(b)
は、本発明の触媒構造体を形成する際に用いられるメタ
ルラス板の排ガス流れ方向に直角な断面を示す図であ
る。図において、両端部を同じ方向に折り曲げて重ね代
6を設けたメタルラス板2(a)と、両端部を逆方向に
折り曲げて重ね代6を設けたメタルラス板2が(b)が
示されている。
In the present invention, as the metal lath plate,
For example, a steel plate subjected to metal lath processing is used. It is preferable that the surface of the metal lath plate is supported and covered with, for example, a catalyst having the same component as the catalyst component used in the catalyst body so as not to block the through holes of the network. The catalyst component can be rolled or applied by rolling or pressing. The bending direction at the time of forming the overlap margin by bending both ends of the metal lath plate on the contact portion side with the unit frame may be the same direction at both ends or may be opposite to each other. FIG. 2 (a), (b)
FIG. 3 is a view showing a cross section of a metal lath plate used for forming the catalyst structure of the present invention, which is perpendicular to the exhaust gas flow direction. In the figure, a metal lath plate 2 (a) having both ends bent in the same direction to provide an overlapping margin 6 and a metal lath plate 2 having both ends bent in opposite directions to provide an overlapping margin 6 (b) are shown. I have.

【0016】[0016]

【実施例】以下、本発明の具体的実施例を説明する。 実施例1 比表面積270m2/gの酸化チタン1.2kgにモリブデン
酸アンモニウム((NH 4)6 ・Mo7 24・4H2 O)を
0.25kg、メタバナジン酸アンモニウム0.23kg、
および蓚酸0.3kg、および水を加えながら混練してペ
ースト状態とし、これにカオリン系無機繊維(商品名カ
オウール)15wt%を加えて、さらに混練し、水分3
0.5%のペーストを得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. Example 1 Specific surface area 270mTwo/ g titanium oxide 1.2kg molybdenum
Ammonium ((NH Four)6・ Mo7Otwenty four・ 4HTwoO)
0.25 kg, ammonium metavanadate 0.23 kg,
And 0.3 kg of oxalic acid and water, and kneaded.
And a kaolin-based inorganic fiber (brand name
Wool) 15% by weight, and further kneaded to obtain a water 3
A paste of 0.5% was obtained.

【0017】上記ペーストを、一対の圧延ローラを用い
て先に調製した板厚0.64mm、開孔率74.0%のメ
タルラス基材の目開き部および基材表面に塗布し、これ
を金型に挟んで図5(b)の断面形状に成形した後、5
00℃で2時間焼成し、幅498mm、長さ500mm、板
厚0.66mmの触媒体を得た。一方、比表面積約270
m2/gの酸化チタン1.2kgにモリブデン酸アンモニウム
((NH4)6 ・Mo7 24・4H2 O)を0.25kg、メ
タバナジン酸アンモニウム0.23kg、および蓚酸0.
3kgとに水を加えて混練して粘土状物にした後、押し出
し造粒機で3φの柱状に成形し、成形体を乾燥した後、
550℃で2時間焼成し、微粉砕機で粉砕して1μm 以
下の粒子が60%以上の触媒粉末を得、得られた粉末に
水を加えて固形分52%の触媒スラリを調製した。
The above paste is applied to the openings of a metal lath base material having a thickness of 0.64 mm and a porosity of 74.0% and the surface of the base material prepared using a pair of rolling rollers. After being molded into the cross-sectional shape of FIG.
It was calcined at 00 ° C. for 2 hours to obtain a catalyst having a width of 498 mm, a length of 500 mm, and a plate thickness of 0.66 mm. On the other hand, the specific surface area is about 270
Ammonium molybdate in 1.2 kg of m 2 / g titanium oxide
((NH 4) 6 · Mo 7 O 24 · 4H 2 O) and 0.25 kg, ammonium metavanadate 0.23 kg, and oxalic 0.
After adding water to 3 kg and kneading to make a clay-like material, it was formed into a 3φ column by an extrusion granulator, and the formed body was dried.
The mixture was calcined at 550 ° C. for 2 hours and pulverized with a fine pulverizer to obtain a catalyst powder having a particle size of 1 μm or less having 60% or more. Water was added to the obtained powder to prepare a catalyst slurry having a solid content of 52%.

【0018】他方、板厚0.2mmの鋼板を加工して、幅
506mm、長さ500mm、板厚0.24mmの脱脂済みメ
タルラス板を得た。このメタルラス板を上記触媒スラリ
に浸し、空気を当てて完全に目開き部を開け、350℃
で2時間焼成した後、幅方向の両端から3mmずつ折り曲
げて図1(a)に示すように重ね代を形成して板厚0.
44mmのメタルラス板を得た。得られた触媒体とメタル
ラス板とを、該メタルラス板の重ね部の外側面が、触媒
ユニット枠に接するように交互に積層し、図1(a)の
構造の触媒構造体を得た。
On the other hand, a steel plate having a thickness of 0.2 mm was processed to obtain a degreased metal lath plate having a width of 506 mm, a length of 500 mm and a thickness of 0.24 mm. This metal lath plate is immersed in the above catalyst slurry, and air is applied to completely open the openings, and 350 ° C.
After baking for 2 hours, the sheet was bent by 3 mm from both ends in the width direction to form an overlap margin as shown in FIG.
A 44 mm metal lath plate was obtained. The obtained catalyst bodies and metal lath plates were alternately laminated so that the outer surface of the overlapping portion of the metal lath plates was in contact with the catalyst unit frame, to obtain a catalyst structure having the structure shown in FIG.

【0019】比較例1 触媒体の幅を500mmとし、メタルラス板を重ね代のな
い幅500mmの平板状とした以外は、上記実施例1と同
様にして触媒構造体を形成した(図4(b)参照)。実
施例1と比較例1の触媒構造体について、表1に示す条
件で脱硝性能試験を行い、結果を表2に示した。表中、
活性比率は体積基準総括反応速度定数の比であり、実施
例1の値を1とした。
Comparative Example 1 A catalyst structure was formed in the same manner as in Example 1 except that the width of the catalyst body was 500 mm and the metal lath plate was a flat plate having a width of 500 mm without overlapping. )reference). The catalyst structures of Example 1 and Comparative Example 1 were subjected to a denitration performance test under the conditions shown in Table 1, and the results are shown in Table 2. In the table,
The activity ratio is the ratio of the volume-based overall reaction rate constant, and the value of Example 1 was set to 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 表2において、比較例1は実施例1に較べて触媒活性が
低いことが分かる。これは、比較例1のメタルラス板に
はそのユニット枠との接触部側端部に重ね代が設けられ
ておらず、メタルラス板の湾曲に起因してガスの吹き抜
けが生じたためと思われる。これに対して実施例1は、
メタルラス板の両端部に重ね代を設けたことにより、メ
タルラス板の湾曲が矯正され、ガス流路形状の変形によ
るガスの吹き抜けがなくなり、接触効率が向上し、高い
触媒活性を示したものと考えられる。
[Table 2] In Table 2, it can be seen that Comparative Example 1 has lower catalytic activity than Example 1. This is presumably because the metal lath plate of Comparative Example 1 was not provided with an overlap margin at the end of the metal lath plate in contact with the unit frame, and gas was blown through due to the curvature of the metal lath plate. On the other hand, in the first embodiment,
It is considered that the metal lath plate was provided with overlapping margins at both ends to correct the curvature of the metal lath plate, eliminate gas blow-through due to deformation of the gas flow path shape, improve contact efficiency, and show high catalytic activity. Can be

【0022】実施例2 断面形状を図5(a)の形状とした以外は実施例1と同
様にして触媒体を得、一方、重ね代の突出方向を図1
(d)のように、両端でそれぞれ異なる方向とした以外
は上記実施例1と同様にしてメタルラス板を調製し、得
られた触媒体とメタルラス板とを、該メタルラス板の重
ね代部分が触媒ユニット枠に接するように交互に積層し
て図1(d)の構造の触媒構造体を得た。本実施例にお
いても、上記実施例1と同様の効果が得られた。
Example 2 A catalyst was obtained in the same manner as in Example 1 except that the cross-sectional shape was changed to the shape shown in FIG. 5 (a).
A metal lath plate was prepared in the same manner as in Example 1 except that the directions were different at both ends as shown in (d), and the obtained catalyst body and the metal lath plate were replaced with the catalyst lath. The catalyst structure having the structure shown in FIG. In this embodiment, the same effect as in the first embodiment was obtained.

【0023】[0023]

【発明の効果】本願の請求項1に記載の発明によれば、
メタルラス特有の湾曲、特にガス流れ方向の湾曲に起因
するガスの吹き抜けを防止し、触媒構造体全体としての
触媒ピッチおよびガス流路断面形状を均一に保つことが
できるので、触媒構造体の剛性が確保され、これによっ
てガスと触媒との接触効率が向上し、高い触媒活性を発
現することができる。
According to the invention described in claim 1 of the present application,
Since the gas blow-through caused by the curvature unique to the metal lath, particularly the curvature in the gas flow direction, can be prevented, and the catalyst pitch and the gas flow path cross-sectional shape of the entire catalyst structure can be kept uniform, the rigidity of the catalyst structure is reduced. As a result, the contact efficiency between the gas and the catalyst is improved, and high catalytic activity can be exhibited.

【0024】本願の請求項2に記載の発明によれば、上
記発明の効果に加え、触媒構造体全体としてより高い触
媒活性を発現することができる。本願の請求項3に記載
の発明によれば、触媒体を多数積層して触媒構造体を形
成する際に用いるメタルラス板であって、ガス流通方向
に湾曲せず、ガス流路断面を変形させることのないメタ
ルラス板が得られる。
According to the invention as set forth in claim 2 of the present application, in addition to the effects of the above-described invention, a higher catalytic activity can be exhibited as the whole catalyst structure. According to the invention as set forth in claim 3 of the present application, a metal lath plate used when forming a catalyst structure by laminating a large number of catalyst bodies, which does not curve in the gas flow direction and deforms the gas flow path cross section. The result is a metal lath plate that does not have any problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明である排ガス浄化用触媒構造体の実施例
の断面を示す模式図。
FIG. 1 is a schematic view showing a cross section of an embodiment of an exhaust gas purifying catalyst structure according to the present invention.

【図2】本発明のメタルラス板の断面を示す図。FIG. 2 is a diagram showing a cross section of the metal lath plate of the present invention.

【図3】従来技術の問題点を示す説明図。FIG. 3 is an explanatory diagram showing a problem of the related art.

【図4】ラス加工後のメタルラス板を示す図。FIG. 4 is a diagram showing a metal lath plate after lath processing.

【図5】触媒体と網状物との積層例を示す説明図。FIG. 5 is an explanatory view showing an example of lamination of a catalyst body and a mesh.

【図6】触媒構造体に適用する触媒体の断面形状を示す
説明図。
FIG. 6 is an explanatory diagram showing a cross-sectional shape of a catalyst body applied to a catalyst structure.

【符号の説明】[Explanation of symbols]

1…触媒体、2…網状物(メタルラス板)、3…触媒構
造体、5…ガス流通方向を示す矢印、6…重ね代、7…
ラスの湾曲方向を示す矢印、8…符号7の方向と直角の
方向を示す矢印、9…触媒ピッチ。
DESCRIPTION OF SYMBOLS 1 ... Catalyst body, 2 ... Net (metal lath plate), 3 ... Catalyst structure, 5 ... Arrow indicating gas flow direction, 6 ... Overlap, 7 ...
Arrows indicating the direction of bending of the lath, 8... Arrows indicating a direction perpendicular to the direction of reference numeral 7, 9...

フロントページの続き (72)発明者 横山 公一 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 3G091 AA06 BA14 GA03 GB01W GB01X GB10W 4D048 AA06 BA07X BA07Y BA23X BA23Y BA26X BA26Y BA27Y BA39X BA39Y BA41X BA41Y BB04 BB07 CA06 4G069 AA01 AA03 AA11 BA17 BB02A BB02B BB04A BB04B BC54A BC54B BC59A BC59B BC60B CA02 CA03 CA13 DA05 EA12 EA25 EA27 EE06 Continuing on the front page (72) Inventor Koichi Yokoyama 3-36 Takara-cho, Kure-shi, Hiroshima F-term inside Babcock Hitachi Kure Laboratory (reference) 3G091 AA06 BA14 GA03 GB01W GB01X GB10W 4D048 AA06 BA07X BA07Y BA23X BA23Y BA26X BA26Y BA27Y BA39X BA39Y BA41X BA41Y BB04 BB07 CA06 4G069 AA01 AA03 AA11 BA17 BB02A BB02B BB04A BB04B BC54A BC54B BC59A BC59B BC60B CA02 CA03 CA13 DA05 EA12 EA25 EA27 EE06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平板状の触媒を交互に逆方向に折り曲げ
て階段状、波板状または断面コの字形状に成形した触媒
体と、平板状のメタルラスとを交互に多数積層してユニ
ット枠に収容した触媒構造体において、前記平板状メタ
ルラスの前記ユニット枠との接触部側の両端を前記触媒
体相互の間隔と同様の長さだけ折り曲げて重ね代とし、
該重ね代の端部が隣接する平板状メタルラスとそれぞれ
接触するように配置したことを特徴とする排ガス浄化用
触媒構造体。
A unit frame formed by alternately stacking a large number of plate-shaped metal laths and a catalyst body formed by alternately bending a plate-shaped catalyst in the opposite direction to form a stepped, corrugated or U-shaped cross section. In the catalyst structure accommodated in, both ends of the plate-shaped metal lath on the side of the contact portion with the unit frame are bent by the same length as the interval between the catalyst bodies to form an overlap margin,
An exhaust gas purifying catalyst structure, wherein an end of the overlap margin is arranged to be in contact with an adjacent flat metal lath.
【請求項2】 前記平板状メタルラスの表面に、チタ
ン、バナジウム、モリブデンおよびタングステンの少な
くとも一種の酸化物からなる触媒成分を担持させたこと
を特徴とする請求項1に記載の排ガス浄化用触媒構造
体。
2. The exhaust gas purifying catalyst structure according to claim 1, wherein a catalyst component comprising at least one oxide of titanium, vanadium, molybdenum and tungsten is carried on the surface of the flat metal lath. body.
【請求項3】 平板状の触媒を交互に逆方向に折り曲げ
て階段状、波板状または断面コの字形状に成形した触媒
体を多数積層し、ユニット枠に収容して触媒構造体を形
成する際、前記触媒体相互間に配置される平板状のメタ
ルラスであって、前記ユニット枠との接触部側の両端を
前記触媒体相互の間隔と同様の長さだけ折り曲げて先端
部がそれぞれ隣接する平板状メタルラスと接触するよう
な重ね代を設けたことを特徴とする、請求項1または2
に記載の排ガス浄化用触媒構造体の形成に用いるメタル
ラス板。
3. A catalyst structure is formed by stacking a large number of catalyst bodies which are formed by bending a plate-like catalyst alternately in the opposite direction to form a step-like, corrugated, or U-shaped cross section, and housed in a unit frame. When doing so, a flat metal lath disposed between the catalyst bodies, both ends of the contact portion side with the unit frame are bent by the same length as the interval between the catalyst bodies, and the tip ends are adjacent to each other. 3. An overlapping margin is provided so as to come into contact with a flat metal lath to be formed.
7. A metal lath plate used for forming the exhaust gas purifying catalyst structure according to the above item.
JP2000395555A 2000-12-26 2000-12-26 Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof Pending JP2002191986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000395555A JP2002191986A (en) 2000-12-26 2000-12-26 Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000395555A JP2002191986A (en) 2000-12-26 2000-12-26 Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof

Publications (1)

Publication Number Publication Date
JP2002191986A true JP2002191986A (en) 2002-07-10

Family

ID=18861001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000395555A Pending JP2002191986A (en) 2000-12-26 2000-12-26 Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof

Country Status (1)

Country Link
JP (1) JP2002191986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511699A (en) * 2003-11-14 2007-05-10 サエス・ゲッタース・ソチエタ・ペル・アツィオニ Exhaust converter for internal combustion engine
WO2015020444A1 (en) * 2013-08-07 2015-02-12 주식회사 이엠따블유에너지 Air sterilization and harmful substance elimination device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511699A (en) * 2003-11-14 2007-05-10 サエス・ゲッタース・ソチエタ・ペル・アツィオニ Exhaust converter for internal combustion engine
WO2015020444A1 (en) * 2013-08-07 2015-02-12 주식회사 이엠따블유에너지 Air sterilization and harmful substance elimination device for vehicle

Similar Documents

Publication Publication Date Title
JP4544465B2 (en) Catalyst structure and gas purification device
US9724683B2 (en) Catalyst structure
TWI224023B (en) Exhaust emission control catalyst structure
JP5896883B2 (en) Exhaust gas purification catalyst structure
JP4309046B2 (en) Exhaust gas purification catalyst element, catalyst structure, manufacturing method thereof, exhaust gas purification device, and exhaust gas purification method using the same
JP7154082B2 (en) Exhaust gas purification catalyst structure
JP2002191986A (en) Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof
JP7195094B2 (en) Exhaust gas purification catalyst structure
JP5198744B2 (en) Catalyst structure
JP2010253366A (en) Catalytic structure
JP6490966B2 (en) Plate-shaped denitration catalyst and method for producing the same
JP5804909B2 (en) Exhaust gas purification catalyst structure and manufacturing method thereof
JP2002119868A (en) Catalytic structural body for purifying waste gas
JP3856868B2 (en) Catalyst unit and gas purification equipment
JP2020116490A (en) Catalyst structure for purifying exhaust gas
JP2014113569A (en) Catalyst structure for purifying exhaust gas
JP2000117120A (en) Catalyst structure body
JP2014050824A (en) Catalyst element for cleaning exhaust gas and catalyst structure for cleaning exhaust gas
JP6978827B2 (en) Exhaust gas purification catalyst unit
JP3762159B2 (en) Coal-fired boiler exhaust gas purification catalyst structure
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
JPH0910599A (en) Unit-plate-shaped catalyst, plate-shaped catalyst structure, and gas purification apparatus
JPH11347422A (en) Catalyst structural body and flue gas denitrification device
JP2001104801A (en) Catalyst structure for cleaning exhaust gas
JP3704628B2 (en) Operation method of exhaust gas purification device