JP3703440B2 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP3703440B2
JP3703440B2 JP2002131929A JP2002131929A JP3703440B2 JP 3703440 B2 JP3703440 B2 JP 3703440B2 JP 2002131929 A JP2002131929 A JP 2002131929A JP 2002131929 A JP2002131929 A JP 2002131929A JP 3703440 B2 JP3703440 B2 JP 3703440B2
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
indoor
dehumidifying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002131929A
Other languages
English (en)
Other versions
JP2002340437A (ja
Inventor
啓夫 中村
英範 横山
素生 森本
浩伸 川村
一也 松尾
博志 小暮
哲信 岡村
荘一 小曽戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002131929A priority Critical patent/JP3703440B2/ja
Publication of JP2002340437A publication Critical patent/JP2002340437A/ja
Application granted granted Critical
Publication of JP3703440B2 publication Critical patent/JP3703440B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機に係り、特に除湿絞り装置を有する空気調和機に関する。
【0002】
【従来の技術】
従来の空気調和機としては、湿度を下げるための除湿運転を行う際、主として蒸発器により冷却された空気を電気ヒータにより再び加熱する方式のものや、冷凍サイクルの凝縮熱により再び加熱する方式のものが知られている。この2つの方式のものを特に省エネルギ-の点から比較した場合、前者の方式のものは、消費電力が非常に多くなるため、後者の方式のものの方が優れている。
【0003】
又、除湿運転時に冷却された空気を冷凍サイクル自身により再び加熱する冷凍サイクルの例として、特開昭60−181559号公報、特開平2−183776号公報、特開平3−31640号公報、及び実開昭51−18059号公報に記載のものがある。
【0004】
このうち特開昭60−181559号公報には、圧縮機、四方弁、室外熱交換器、絞り装置、室内熱交換器等を順次冷媒配管で接続し、さらに室内熱交換器を二分割してこれらの間に除湿運転用の除湿絞り装置とこの除湿絞り装置をバイパスする二方弁とを並列に設けたサイクル構成が開示されている。そして除湿運転時には、前記二方弁を閉じて冷媒を除湿絞り装置に流すことにより、二分割した室内熱交換器のうち上流側を凝縮器、下流側を蒸発器とし、室内空気流をこの蒸発器から凝縮器に流し、蒸発器で冷却・除湿した後、凝縮器で再び加熱して温度をあまり下げずに湿度を下げる除湿運転を可能にしている。
【0005】
特開平2−183776号公報では、さらに、除湿絞り装置として小孔付二方弁を用い、室内熱交換器を上下に二分割したサイクル構成として、除湿運転時に上側室内熱交換器を凝縮器、下側室内熱交換器を蒸発器とし、さらに室内空気流をこれらの室内熱交換器に並列に流し、蒸発器で冷却・除湿、凝縮器で加熱することにより、冷え過ぎを防止しながら湿度を下げる除湿運転を可能にしている。
【0006】
特開平3−31640号公報では、前述の特開昭60−181559号公報のサイクル構成に加え、さらに逆止弁4個からなる流路切替手段を設けて四方弁を暖房サイクルに切換えた場合でも室内側で空気流が蒸発器から加熱器に流れるようにして、強力な暖房気味除湿運転が可能なサイクル構成にしている。又室外ファンの回転数制御により室外熱交換器での放熱量をコントロールし、室温が設定温度になるように室内熱交換器での空気加熱量を調節するようにしている。又公知例の中に、室外ファンを、外気温度が22℃以下で微弱運転、22℃以上で弱運転にすることが記載されている。
【0007】
実開昭51−18059号公報におけるサイクル構成を図30に、各部の運転一覧を図31に示す。図30のサイクル構成は、圧縮機を2台設けているが、基本的には前述の特開昭60−181559号公報に記載のサイクル構成と同等である。図31に示す運転方法では、室外ファンや圧縮機は、運転機能に応じた制御を行うが室外温度等に応じた制御は行っていない。例えば、室外ファンは、冷房気味除湿運転では低速で、暖房気味除湿運転では停止させる。又、圧縮機は除湿運転時1台運転である。
【0008】
【発明が解決しようとする課題】
最近は、除湿運転を多目的に使用するようになっている。例えば、(1)梅雨や秋雨の季節で気温はそれほど高くないがじめじめする時に、設定室温を保ちながら除湿を行う、快適除湿運転、(2)蒸し暑い夜や明け方に気流感が無く低騒音状態で、温度をあまり下げずに湿度を下げて快適な睡眠ができるようにする、おやすみ・おめざめ除湿運転、(3)相対湿度を50%位に保ってカビやダニの繁殖を防止する、カビ・ダニ防止除湿運転、(4)梅雨や秋雨の季節で家の中に干した洗濯物を乾かす時に使用する、ランドリー除湿運転等がある。しかし、前記の四つの公知公報には、上記(1)〜(4)の使用目的に対する運転方法については配慮されていない。
【0009】
なお特開平3−31640号公報では、室外ファンの回転数を制御して除湿運転における室内熱交換器での空気加熱量を調整するようにしているが、圧縮機の運転に関しては何も触れておらず、特に上記(1)〜(4)の様な多くの使用目的に適用するためには不十分である。又外気温度の対して、室外ファンを外気温度が22℃以下では微弱運転、22℃以上では弱運転の二段階に制御しているが、室外温度に対する制御としては不十分である。
【0010】
又、空気調和機では、除湿運転の他に冷房運転や暖房運転を行う場合が多いが、前述の四つの公知公報に記載のように二分割した室内熱交換器を直列につなぐと、冷房運転や暖房運転では室内熱交換器の冷媒流路が長くなり、特に2つの室内熱交換器を蒸発器として使用する冷房運転において、室内熱交換器での冷媒流の圧力損失が大きくなり、さらには空気流と冷媒流の流れが対向流にならなかったり、暖房運転時に十分なサブクールが取れなかったりすると、冷凍サイクルの性能が低下してしまう。この場合、特開平2−183776号公報には二分割した室内熱交換器のうちの少なくとも一方の冷媒流路を二経路にして圧力損失が少なくなるようにしているが、まだ不十分である。その他の公知公報では、この問題に付いて特に触れていない。
【0011】
さらに、ルームエアコン等の小形の空気調和器では、室内ユニット(室内機とも言う)の寸法に制限があり、こうした制限された条件下において、室内熱交換器の配管構成と空気流との関係等を工夫して、除湿、冷房、暖房の各運転において室内熱交換器での伝熱性能をできるだけ良くして冷凍サイクルの性能を十分高く保つ必要がある。
【0012】
又さらに実開昭51−18059号公報では、暖房ぎみ除湿運転時、室外側ファンを停止させるため、室外ユニット(室外機ともいう)側の電気部品の温度が高くなり寿命が短くなってしまう。又室外温度によって室外ファンを制御しないため、室外熱交換器からの放熱量(廃熱量)が室外温度により変わり室内吹出空気温度や除湿量を十分には制御できなかったり、圧縮機が一定速で一台であるため、設定湿度と室内湿度の差による除湿量制御が十分にはできない。
【0013】
発明の目的は、冷房、暖房及び除湿運転における第1及び第2室内熱交換器での冷媒流圧力損失を二系統以上の冷媒流路によって低減し冷房、暖房及び除湿運転の性能を向上しつつ、第1室内熱交換器の風上側に設けた一系統の冷媒流路での冷媒流速を速くすることにより管内熱伝達率を高くして伝熱性能を向上することができる空気調和機を提供することにある。
【0014】
【課題を解決するための手段】
記目的を達成するために、本発明は、圧縮機と、室外熱交換器と、室外ファンと、第1室内熱交換器及び第2室内熱交換器を有する室内熱交換器と、除湿運転時に絞り装置として機能する除湿絞り装置と、室内ファンとを備え、除湿運転時に前記圧縮機、前記室外熱交換器、前記第1室内熱交換器、前記除湿絞り装置、前記第2室内熱交換器の順に接続され、冷房運転時に前記圧縮機、前記室外熱交換器、前記第1室内熱交換器、前記第2室内熱交換器の順に接続され、暖房運転時に前記圧縮機、前記第2室内熱交換器、前記第1室内熱交換器、前記室外熱交換器の順に接続される空気調和機において、前記第1室内熱交換器における風上に配置され除湿運転時及び冷房運転時に冷媒入口となると共に暖房運転時に冷媒出口側となり冷媒流れを一系統とした冷媒流路と、前記第1室内熱交換器にあって前記一系統の冷媒流路の除湿運転時及び冷房運転時の冷媒流れ方向下流に配置されると共に前記一系統の冷媒流路の暖房運転時の冷媒流れ方向上流に配置され冷媒流れが二系統以上の冷媒流路と、前記第2室内熱交換器にあって、除湿運転時に前記二系統以上の冷媒流路からの冷媒が前記除湿絞り装置を介して流入する冷媒流れが二系統以上の第冷媒流路と、この二系統以上の冷媒流路の風下に配置され冷媒流れが二系統以上の冷媒流路とを備えたものである。
【0016】
【発明の実施の形態】
以下、本発明の各実施例を建家に取り付ける空気調和機を例にとり、図面により詳細に説明する。
【0017】
本発明による一実施例を図1から図4により説明する。図1は本実施例である冷凍サイクルと制御の系統を示す図、図2は運転モードの流れ図、図3は低風量の除湿運転での運転方法の流れ図、図4は高風量の除湿運転方法の流れ図である。
【0018】
本実施例の空気調和機は次のように構成されている。図1において、1は圧縮機、2は冷房や暖房等の運転状態を切り換える際に切り換えられる四方弁、3は室外熱交換器、4は冷房運転及び暖房運転時に冷媒が流れる主絞り装置、5は主絞り装置4と並列に設けられ除湿運転時に冷媒を流すための二方弁、6a、6bは二分割された室内熱交換器、7は室内熱交換器6aと6bとの間にこれらと直列に設けられ除湿運転時に冷媒の流れる除湿絞り装置、8は室内熱交換器6aと6bとの間に除湿絞り装置7と並列に設けられ冷房及び暖房運転時に冷媒を流すための二方弁、9は圧縮機への液戻りを防止するためのアキュムレータ、10は室外ファン、11は室外ファンモータ、12は室内ファン、13は室内ファンモータ、14、15はそれぞれ室外、室内の風向を示す矢印、16は制御部、17は室内温度を検知する温度センサ等の温度検出手段、18は室内湿度を検知する湿度センサ等の湿度検出手段、21、22、23、24、25はそれぞれ配線を示している。また、圧縮機1は、能力制御が可能で、室外ファン10及び室内ファン12は能力制御すなわち送風量制御が可能にしてある。特に最近は、圧縮機1やファンモータ11、13には、回転数が連続して変えられる回転数制御方式が用いられており、能力をきめ細かく制御することができる。
【0019】
以上のようなサイクル構成において、冷房運転時には、二方弁5を閉じ二方弁8を開くことにより、冷媒を実線の矢印で示すように循環させ、室外熱交換器3を凝縮器、室内熱交換器6a及び6bを蒸発器として室内の冷房を行う。暖房運転時には、四方弁2を切り替え二方弁5を閉じ二方弁8を開くことにより、冷媒を破線の矢印で示すように循環させ、室内熱交換器6a及び6bを凝縮器、室外熱交換器3を蒸発器として室内の暖房を行う。
【0020】
又、除湿運転時には、四方弁2を冷房運転時と同様に切り換え、二方弁5を開き二方弁8を閉じることにより、冷媒を一点鎖線で示すように圧縮機1、四方弁2、室外熱交換器3、二方弁5、室内熱交換器6a、除湿絞り装置7、室内熱交換器6b、四方弁2、アキュムレータ9、圧縮機1の順に循環させ、室外熱交換器3を上流側の凝縮器、室内熱交換器6aを下流側の凝縮器、室内熱交換器6bを蒸発器とするように設定する。そして、室内空気を室内ファン12により矢印15で示すように流すと、空気は蒸発器として作用する室内熱交換器6bで冷却・除湿された後、下流側の凝縮器、すなわち加熱器となる室内熱交換器6aで再び加熱されて室内に吹き出される。この場合、さらに圧縮機1の能力や室内ファン12及び室外ファン10の送風能力を制御することにより、蒸発器6b及び加熱器6aの能力を調節することができ、最終的には除湿量や吹き出し空気温度を使用目的に合わせて制御することができる。
【0021】
ところで、上記したように最近は除湿運転を多目的に使用するようになっている。例えば、(1)梅雨や秋雨の季節等で気温はそれほど高くないが、じめじめする時に設定温度を保ちながら除湿をおこなういわゆる快適除湿運転、(2)蒸し暑い夜や明け方に気流感がなく、低騒音状態で温度を余り下げずに湿度を下げて快適な睡眠ができるようにする、おやすみ・おめざめ除湿運転、(3)相対湿度を50%位に保ってカビやダニの繁殖を防止する、いわゆるカビ・ダニ防止の除湿運転、さらには(4)梅雨や秋雨の季節等で家の中に干した洗濯物を乾かす時に使用する、いわゆるランドリー除湿運転、等がある。
【0022】
又、上記した種々の使用目的の除湿運転における圧縮機や室内ファン、室外ファンの運転状態について考えてみると、おやすみ・おめざめ除湿運転では、特に気流感がなく低騒音で除湿量の多い低風量除湿運転が必要であり、ランドリー除湿運転では、特に気流が広い範囲まで届きしかも乾燥能力の高い高風量除湿運転が必要である。快適除湿運転やカビ・ダニ防止除湿運転では、前記した低風量での除湿運転や高風量での除湿運転を適当に使い分ける必要がある。また、低風量の除湿運転や高風量の除湿運転に対して、さらに室温に応じて冷房気味、等温気味あるいは暖房気味の運転を行う必要がある。
【0023】
以上述べた種々の使用目的の除湿運転方法について、以下に運転モードの流れ図である図2に基づいて説明する。図2に示すように、強制運転あるいは室内外の温湿度を検知した自動運転などにより除湿運転開始(200)の指示がでると、除湿運転における使用モードの選択(201)が行われ、この選択に基づいて快適な除湿運転(210)、カビ・ダニ防止の除湿運転(220)、おやすみ・おめざめ除湿運転(230)、ランドリー除湿運転(240)等のうちの1つが選択される。この時、選択モードの指定がないときには、自動的に快適な除湿運転(210)のモードが選択される。
【0024】
まず、快適除湿運転(210)では、温度センサ17、湿度センサ18により室内空気の温湿度の検出(211)、希望する室内温湿度の設定(212)が行われる。次に低風量で除湿運転を行うかあるいは高風量で除湿運転を行うかの室内ファン12の送風状態の設定(213)が行われ、この設定(213)に基づいて低風量除湿運転(214)または高風量除湿運転(215)が選択される。また、快適除湿運転を行う場合、室内の温湿度は人が快適に感じるように設定する必要があるが、PMV(Predicted Mean Voteの略で予測平均申告を意味する)等の温熱環境評価指標に基づいて制御するようになっており、この温熱環境評価指標に基づいて制御される場合には、室内の気温や湿度だけでなく輻射温度、風速、着衣量、活動量も考慮して温冷感の快適条件を求め、季節や衣服状態、活動状態等を考慮して、自動的に温度や湿度を設定することができる。
【0025】
カビ・ダニ防止除湿運転(220)では、快適除湿運転(210)の場合と同様に、温度センサ17、湿度センサ18により室内空気の温湿度の検出(221)、希望する室内温湿度の設定(222)が行われる。次に低風量で除湿運転を行うかあるいは高風量で除湿運転を行うかの室内ファン12の送風状態の設定(223)が行われ、この設定(223)に基づいて低風量除湿運転(224)または高風量除湿運転(225)が選択される。なお、カビやダニの繁殖を防止するには相対湿度を40〜60%位にすれば良いことがわかっており、従ってカビ、ダニ防止の除湿運転では、例えば湿度を50%位に自動的に固定して設定してもよい。このような除湿運転を行うことにより、体感温度をよく保てる状態で除湿運転が行える。
【0026】
おやすみ・おめざめ除湿運転(230)では、温度センサ17、湿度センサ18により室内空気の温湿度の検出(231)、希望する室内温湿度の設定(232)が行われる。次に、睡眠時において特に寝初めや朝起きる時には、気流感や騒音が高いと寝苦しいため、室内ファン12の送風能力を下げた低風量の除湿運転(233)が行われる。なお、睡眠時における室内の快適な温湿度についてはおおよその値が分かっており、例えば梅雨時や夏の蒸し暑い時には、室温を余り下げずに湿度を十分下げた方が快適で健康的な睡眠環境になる。従って、おやすみ・おめざめ除湿運転では、室内の温度及び湿度をこのような値に自動的に固定して設定してもよい。さらにこの運転モードは、寝初め、熟睡時、朝起きる時など人間の睡眠パターンに合わせてプログラムされた自動運転モードにして使うこともできる。
【0027】
ランドリー除湿運転(240)では、温度センサ17、湿度センサ18により室内空気の温湿度の検出(241)、希望する室内温湿度の設定(242)が行われる。次に、洗濯物の乾燥時には、気流が広い範囲までゆき渡り除湿能力が十分高い必要があるため、室内ファン12の送風能力を上げた高風量除湿運転(243)が行われる。また、洗濯物の乾燥時における温湿度は、微妙に変わる人間の体感と違い、大体一定に設定することができる。従って、ランドリー除湿運転でも室内の温度及び湿度を自動的に固定して設定することができる。
【0028】
なお、図2に示す各使用目的の運転モードにおいて、室内温湿度検出(211)、(221)、(231)、(241)、室内温湿度設定(212)、(222)、(232)、(242)、室内送風状態設定(213)、(223)は必ずしもこの順に行う必要はなく、任意に設定することができる。
【0029】
以上述べたような使用目的のそれぞれにおいて、運転モードは大きく分けて、低風量除湿運転と高風量除湿運転になる。空気調和機自体は、これらの低風量除湿運転と高風量除湿運転を快適な除湿運転、カビ・ダニ防止の除湿運転、おやすみ・おめざめ除湿運転、ランドリー除湿運転等の各使用目的モードに合わせて使うことができる。
【0030】
以上述べた低風量除湿運転及び高風量除湿運転においては、室温の検出値と設定値が異なる場合には、この温度差ΔT(ΔT=検出室温−設定室温で表される)に応じて、検出室温の方が高くΔTがプラスの場合には冷房気味、両者がほぼ等しくΔTがゼロ近傍の場合には等温気味、検出温度の方が低くΔTがマイナスの場合には暖房気味の除湿運転を行う必要がある。以下これらの運転方法について述べる。
【0031】
低風量除湿運転(300)での運転方法を示す図3から分かるように、まず室内ファンを低風量運転に設定(301)する。次に室内において温度センサ17で検出した検出室温と設定室温とを比較(302)し、温度差ΔTがプラスの場合には、低風量冷房気味除湿運転(310)を行う。この場合には、圧縮機1は、能力を下げても十分な除湿能力が得られることから、低能力運転(311)に設定し、さらに冷房気味運転を行うためには、室外熱交換器3での放熱能力を増して加熱器として使用する室内熱交換器6aによる空気流15に対する加熱能力を下げる必要があり、このために室外ファン10の送風能力を増大(312)させる。
【0032】
温度差ΔTがほぼゼロの場合には、低風量等温気味除湿運転(320)を行う。この運転では、圧縮機1は、能力を下げても十分な除湿能力が得られることから、低能力運転(321)にし、さらに等温気味運転にするには、室外熱交換器3での放熱能力を中くらいにして、加熱器として使用する室内熱交換器6aによる空気流15に対する加熱能力を中くらいにする必要があり、このために室外ファン10の送風能力を中くらい(322)に設定する。
【0033】
温度差ΔTがマイナスの場合には、低風量暖房気味除湿運転(330)を行う。この運転では、室外熱交換器3での放熱量を減らして加熱器として使用する室内熱交換器6aにより、空気流15に対する加熱能力を大きくする必要がある。このために室外ファン10の送風能力を極力減らし、必要に応じて室外ファンを停止(332)する。又、圧縮機1は、能力を下げても十分な除湿能力が得られるが、圧縮機1の能力を増すに従って加熱器6aの能力が増し、より暖房気味にすることができる。従って、圧縮機1の能力は、暖房気味の程度にしたがって能力を増大(331)させる。
【0034】
ここで、低風量除湿運転の具体的な運転例としては、例えば室内温湿度24℃、60%、室外温湿度24℃、80%の条件おいて、標準冷房能力2.8kWのルームエアコンを用い、室外風量を十分下げ、室内風量を約2m3/minとした場合、圧縮機の理論押除量を0.98m3/hとすると吹出温度が約21℃の冷房気味運転、圧縮機の理論押除量を1.5m3/hとすると吹出温度が約27℃の暖房気味運転とすることができる。すなわち、室内ユニットの吹出空気温度が室温−3℃の冷房気味除湿運転から室温+3℃までの暖房気味除湿運転を行うことが出来る。
【0035】
なお、以上述べた低風量除湿運転においては、除湿量が十分とれることから、圧縮機1の能力を低く設定したが、これに限るものではなく、圧縮機の能力を上げていっても良く、この場合には入力が大幅に増大するが、除湿能力は徐々に増えてゆく。
【0036】
次に図4により高風量除湿運転(350)の運転方法を説明する。まず、室内ファン12を高風量運転に設定(351)する。次に室内において温度センサ17で検出した検出室温と設定室温とを比較(352)し、温度差ΔTがプラスの場合には、高風量冷房気味除湿運転(360)を行う。この運転では、室内ファン12が高風量運転であることから、蒸発器として作用する室内熱交換器6bの蒸発温度を下げて十分な除湿能力を得るために圧縮機1を高能力運転(361)にし、さらに冷房気味運転にするには、室外熱交換器3での放熱能力を増して加熱器として作用する室内熱交換器6aによる空気流15に対する加熱能力を下げてやる必要がある。このために室外ファン10の送風能力を増大(362)させる。
【0037】
温度差ΔTがほぼゼロの場合には、高風量等温気味除湿運転(370)を行う。この運転では、上述した冷房気味運転と同じ理由により、圧縮機1は高能力運転(371)にする。さらに等温気味運転にするには、室外熱交換器3での放熱能力を中くらいにして、加熱器として作用する室内熱交換器6aによる空気流15に対する加熱能力を中くらいにする必要がある。このために室外ファン10の送風能力を中くらい(372)にする。温度差ΔTがマイナスの場合には、高風量暖房気味除湿運転(380)を行う。この運転では、圧縮機1は、上述した冷房気味運転や等温気味運転と同じ理由で、高能力運転(381)にする。さらに暖房気味運転にするには、室外熱交換器3での放熱量を減らして加熱器として作用する室内熱交換器6aによる空気流15に対する加熱能力を大きくする必要がある。このために室外ファン10の送風能力を極力減らし、必要に応じて室外ファン10を停止(382)する。
【0038】
ここで、高風量除湿運転の具体的な運転例としては、例えば室内温湿度24℃、60%、室外温湿度24℃、80%の条件で、標準冷房能力2.8kWのルームエアコンを用い、室外風量を十分下げ、室内風量を約6m3/minとした場合、圧縮機の理論押除量を1.9m3/hとすると吹出温度が約26.5℃の暖房気味運転とすることができる。すなわち室内ユニットの吹出空気温度が室温+3℃までの暖房気味を行うことが出来る。
【0039】
ところで上記した高風量除湿運転では、圧縮機1を高能力運転に設定することから入力が大きくなる。この入力が大きくなる問題を解決できる室内ユニットの構造を示す側断面図を図5に、この場合の高風量除湿運転方法の流れ図を図6に示す。
【0040】
図5において、6a、6b、12は、それぞれ図1に示したサイクル構成と同一のものであり、それぞれ風下側の室内熱交換器、風上側の室内熱交換器、室内ファンである。また、31は吸い込みグリル、32は通風路を形成している背面側のケーシング、33は凝縮水を受ける露受皿、34は開閉可能なダンパ、35はケーシング32の上部に設けた通風路である。このような構成にすることにより、除湿運転時には室内熱交換器6bが蒸発器、室内熱交換器6aが加熱器となり、室内ファン12を運転して室内空気を矢印で示すように空気流36から空気流37のように流すことにより、空気流36は、吸込みグリル31を通り、蒸発器6bで冷却・除湿された後、加熱器6aで加熱されて、室内ファン12を通って矢印の方向に吹き出される。また、蒸発器6bで生じた凝縮水は、露受皿33に一旦受けられた後、室外へ排出される。
【0041】
次に、以下に図5に示す室内ユニットを用いた場合の高風量除湿運転の方法を図1に示すサイクル構成を参照しながら、図6に示す流れ図により説明する。
【0042】
高風量除湿運転モードが選択(400)されると、まず吸込みダンパ34が34aに示すように開き(401)、室内ファン12を高風量の状態で運転(402)する。次に図1に示す温度センサ17で検出した検出室温を設定室温と比較(403)し、温度差ΔTがプラスの場合には、高風量冷房気味除湿運転(410)を行う。この運転では、室内ファン12は高風量の運転であるが、この風量は通風路35を通る風量と室内熱交換器6b及び6aを通る風量との和であり、室内熱交換器6b及び6aを通る風量は少風量となり、圧縮機1を低能力運転(411)にしても蒸発器6bの蒸発温度が下がり十分な除湿能力が得られる。さらに冷房気味運転にするには、室外熱交換器3での放熱能力を増して加熱器として作用する室内熱交換器6aによる空気流36に対する加熱能力を下げてやる必要がある。このために、室外ファン10の送風能力を増大ぎみ(412)にする。
【0043】
温度差ΔTがほぼゼロの場合には、高風量等温気味除湿運転(420)を行う。この運転では、上述した冷房気味運転と同じ理由により、圧縮機1は低能力運転(421)にする。さらにこの等温気味運転では、室外熱交換器3での放熱能力を中くらいにして加熱器として作用する室内熱交換器6aによる空気流36に対する加熱能力を中くらいにする必要がある。このために、室外ファン10の送風能力を中位(422)にする。
【0044】
温度差ΔTがマイナスの場合には、高風量暖房気味除湿運転(430)を行う。この運転でも、圧縮機1は、上述した冷房気味運転や等温気味運転と同じ理由により、低能力運転(431)にする。さらにこの暖房気味運転を行うには、室外熱交換器3での放熱量を減らして加熱器として作用する室内熱交換器6aによる空気流36に対する加熱能力を大きくする必要がある。このために、室外ファン10の送風能力を極力減らし、必要に応じて室外ファン10を停止(432)する。
【0045】
なお、図5において低風量の除湿運転は、ダンパ34を閉じることにより、図3に示した運転方法と同様にして行うことができる。又、図5において、34は回転開閉可能なダンパとしたが、これに限るものではなく、開閉可能な構造であればよい。また、これまでの説明においては、室内温湿度の検出は、図2について説明した手順で行っているが、これに限らず、図3、図4、図6において検出室温と設定室温の比較(302)、(352)、(403)の前で行うことも可能である。
【0046】
又、本発明による他の実施例を図7及び図8に示す。図7は本実施例のサイクルの室外側部分を示す構成図、図8は室外熱交換器3の放熱量調節方法をに示す図である。
【0047】
図7に示すサイクルの室外側部分は、図1において二点鎖線で囲んだ部分40に相当し、図1に示すサイクル構成において、室外熱交換器3をバイパスさせて二方弁41を介してバイパス管42を設けている。また、図7において、図1と同一番号をつけたものは、同一部分を示す。
【0048】
図7に示すサイクル構成を有する本実施例の空気調和機では、その運転方法は、図1に示すサイクル構成の場合とほぼ同様であるが、図3に示す低風量暖房気味除湿運転(330)におけるステップ332、図4に示す高風量暖房気味除湿運転(380)におけるステップ382及び図5に示す室内ユニットの構造に対応する図6に示した高風量暖房気味除湿運転(430)におけるステップ432での室外熱交換器3の放熱能力を調節する方法において次のように異なっている。
【0049】
暖房気味除湿運転おいては、図8に示す室外熱交換器3の放熱量調節方法により、まず図1に示す実施例において加熱器として作用する室内熱交換器6aの加熱能力を増すために、室外ファン10の送風能力を極力落とすか、さらには室外ファン10を停止(501)する。次に再度室温を検知して設定室温と比較(502)し、検出室温が設定室温より低ければ二方弁41を開く(503)。また、検出室温が設定室温より低くなければ設定を終了(504)する。この結果、ステップ503において二方弁41を開いた場合には、圧縮機1から吐出された高温高圧の冷媒流のほとんどが室外熱交換器3を通らず加熱器として作用する室内熱交換器6aに流入するため、二方弁41を閉じ室外ファン10を止めた場合に、自然対流により外気へ放熱されていた熱量も加熱器として作用する室内熱交換器6aへ運ばれて室内熱交換器6aで加熱量がさらに増し、より暖房気味の除湿運転を行うことができる。
【0050】
これまで図1に示す実施例のサイクル構成において、除湿運転の場合について説明してきたが、冷房、暖房の各運転に対してもサイクル性能及び室内熱交換器6a、6bでの熱交換性能を確保して効率良く運転する必要がある。以下、この方法について説明する。
【0051】
まず、図1に示す実施例では、室内熱交換器を6aと6bに二分割し、これらを二方弁8を介して直列に接続してあるため、冷房運転及び暖房運転、特に冷房運転においては、室内熱交換器6a及び6bとも低圧であり、ガス冷媒の比容積が大きく体積流量として大きくなる蒸発器であるため、室内熱交換器での圧力損失が大きくなってサイクルの性能が低下する。
【0052】
この問題を解決できる一実施例を図9及び図10に示す。図9及び図10に示す実施例は、図1に示す実施例において、一点鎖線で囲んだ室内側部分90の熱交換器部分に相当し、図10は、図9において矢印Pの方向からみた正面図である。図9及び図10において、51a、51bは、それぞれ図1に示す6a、6bに相当する二分割された室内熱交換器であり、室内熱交換器51aは、A点で冷媒配管52と冷媒配管53の二系統の冷媒配管に分かれた後、B点で再び一系統に合流する配管構成を有し、室内熱交換器51bも同様に、C点で冷媒配管54と冷媒配管55の二系統の冷媒配管に分かれた後、D点で再び一系統に合流する配管構成にしてある。また、56は放熱フィンである。その他の図1と同一番号を付したものは同一部分を示す。
【0053】
以上のように構成された空気調和機において、冷房運転時及び暖房運転時には、二方弁8を開くことにより室内熱交換器51aおよび51bにおいて、冷媒はそれぞれ二系統に分かれて流れるため、各系統を流れる冷媒流量は半分になり、室内熱交換器51a及び51bでの冷媒流圧力損失が低減するので、性能の低下を防止できる。
【0054】
なお、図9及び図10に示す実施例では、室内熱交換器51a及び51bの冷媒配管を二系統に分けた場合を示したが、これに限られるものではなく、さらに多くの系統に分ける事も可能であり、この場合も室内熱交換器51a及び51bでの冷媒流圧力損失を低減し、性能の低下を防止できる。但し、冷媒流をあまり多系統にすると、冷媒流の圧力損失は低下するが、熱伝達率の低下が著しく、冷房能力や動作係数といった空気調和機全体の性能が低下してしまうため、最適な系統数に設定する必要があり、この系統数は冷媒配管の内径によって決定される。
【0055】
次に、暖房運転においては、暖房能力や動作係数といった性能を向上するためには、凝縮器として作用する室内熱交換器において、その入口での高温のガス冷媒流が流れる熱交換器部分を、その風下側で熱交換する熱交換器部分のない位置で空気流と熱交換させ、さらに冷媒流の出口にあたる熱交換器部分を十分にサブクールがとれるように、比較的低温の風上側の空気流と熱交換させる必要がある。このように構成した例を図11に示す。図11において、60aは点E、点Fで結合した二系統の冷媒配管61、62からなる室内熱交換器、60bはG点で結合した二系統の冷媒配管63、64からなる室内熱交換器、60cは暖房運転時には冷媒流が室内熱交換器60bの上流側で、かつ空気流15が室内熱交換器60b通過後の風下側になる位置に設けたH点で結合した二系統の冷媒配管66、67からなる室内熱交換器、60dは暖房運転時には冷媒流が室内熱交換器60aの下流側で、かつ空気流15が直接当たりしかも室内熱交換器60bの上方になる位置に設けた冷媒の流れを一系統にした冷媒配管65を有する室内熱交換器であり、基本的には図9に示す実施例に対して、さらに室内熱交換器60c、60dを設けた構成としたものである。
【0056】
以上のように構成されたものにおいては、暖房運転時には冷媒が二方弁8を介して室内熱交換器を60c、60b、60a、60dの順に流れ、破線の矢印で示したように高温のガス冷媒流は、室内熱交換器60cで室内熱交換器60bと熱交換した後の空気流15aと熱交換し、さらに室内熱交換器60bで比較的温度の低い空気流15と熱交換して、室内熱交換器60aで室内熱交換器60bと熱交換した後の空気流15aと熱交換されることによって放熱、冷却され、室内熱交換器60aの出口で十分に凝縮される。次に、この凝縮した液冷媒流は、一系統の室内熱交換器60dに流入して高速となり、管内熱伝達率が十分高くなるとともに、比較的低温の空気流15と熱交換して、サブクールが十分にとれた状態になる。この場合、室内熱交換器60cから60bへかけての冷媒流は、空気流15及び空気流15aと対向流となり、さらに室内熱交換器60aから室内熱交換器60dに流れる冷媒流も空気流15及び15aと対向流となり、いずれの場合も効率のよい熱交換状態となっている。
【0057】
又、冷房運転時には、冷媒が実線の矢印で示すように、室内熱交換器60d、室内熱交換器60a、二方弁8、室内熱交換器60b、室内熱交換器60cの順に流れ、これら全ての室内熱交換器が蒸発器として作用する。
【0058】
除湿運転時には、冷媒が一点鎖線の矢印で示すように、室内熱交換器60d、室内熱交換器60a、除湿湿絞り装置7、室内熱交換器60b、室内熱交換器60cの順に流れ、室内熱交換器60d、室内熱交換器60aが加熱器として、室内熱交換器60b、室内熱交換器60cが冷却・除湿器として作用する。この場合、冷却・除湿器として作用する室内熱交換器60cは、加熱器として作用する室内熱交換器60aの下方に位置するため、室内熱交換器60cで生じた除湿水が、室内熱交換器60aで加熱されて再び蒸発することはない。また、加熱器として作用する室内熱交換器60dは冷却・除湿器となる室内熱交換器60bの上方に位置しているため、室内熱交換器60bで生じた除湿水が室内熱交換器60dで加熱されて再び蒸発することもない。
【0059】
これまで述べたことから分かるように、図11において、室内熱交換器60cは、必ずしも室内熱交換器60aの下にある必要はなく、68の一点鎖線で示す位置であって室内熱交換器60bの下方あるいは68aの一点鎖線で示す位置であって室内熱交換器60aの風下側等も含め、風下側に室内熱交換器部分がないような位置で除湿運転時に室内熱交換器60cで生じた除湿水が加熱器となる室内熱交換器に垂れない位置なら任意の位置におくことができる。また、室内熱交換器60dは、必ずしも室内熱交換器60bの上にある必要はなく、69の二点鎖線で示す位置であって室内熱交換器60aの上方あるいは69aの二点鎖線で示す位置であって室内熱交換器60bの前方等も含め、比較的低温の空気流15が直接当り除湿運転時に除湿水がかからない位置なら任意の位置におくことができる。
【0060】
又、図11においては、暖房運転時に冷媒流の入口高温ガス域側に室内熱交換器60c、出口サブクール域側に室内熱交換器60dの両方を設けたが、これに限らずどちらか一方にしてもよく、この場合には、室内側熱交換器60c、60dのそれぞれの作用による効果を得ることができる。
【0061】
またさらに詳細にいえば、図9において室内熱交換器51a、51bを二系統の冷媒流路にしたり、あるいは図11において室内熱交換器60a、60b,60cを二系統の冷媒流路、室内熱交換器60dを一系統の冷媒流路としたが、これに限らず、各室内熱交換器51a、51bあるいは60a、60b,60c,60dの冷媒流路を、冷媒流量や構成の簡単さ等から判断して、一系統あるいは多系統にすることができる。例えば、冷媒流量が比較的多い場合には、ガス流の混じる室内熱交換器となる図9の51a、51bあるいは図11の60a,60b,60cは、圧力損失を減らすために複数系統の冷媒流路にした方がよく、また暖房運転時にほとんど液流状態になる図11の室内熱交換器60dでは、管内の流速を高めて伝熱性能を上げるために一系統の冷媒流路にしたほうがよい。冷媒流量が比較的少ない場合には、冷房運転時に上流側で冷媒乾き度が比較的低い室内熱交換器となる図9の51aや図11の60aを一系統の冷媒流路にしても(図示省略)、ここでの圧力損失が比較的少なく性能の低下がほとんど問題にならず、しかも配管構成が簡単になる。さらに冷媒流量が少ない場合には、すべての室内熱交換器(図9の51a、51bあるいは図11の60a、60b、60c、60d)を一系統の冷媒配管にしても(図示省略)、性能の低下が問題にならず、配管構成がさらに簡単になる。
【0062】
ところで小形の空気調和機であるルームエアコン等では、室内熱交換器の構造が制約されてほぼ決まっており、配管構成等の自由度が少ないため、この点も考慮する必要がある。以下、このような場合について、図11に示す実施例について配管列を二列にした場合の室内熱交換器を例にとって、具体例を説明する。
【0063】
図12は、配管列を二列に配管の段数を9段に構成した場合の室内熱交換器70の側面図であり、室内熱交換器7の回りの配管の構成例を合わせて示している。図12において、○印で示したものは、複数枚の放熱フィン71を貫通するように設けられた伝熱管73、破線及び実線で示すものは接続配管、7、8は、図1あるいは図11と同様にそれぞれ除湿絞り装置、二方弁を示す。また、室内熱交換器70は、線72で示す部分で放熱フィン71を切断することにより、二つのL形熱交換器70a及び70bに分離されており、伝熱管73a、73bは一系統の冷媒流となるように、それ以外の伝熱管は除湿絞り装置7及び二方弁8をはさんで二系統の冷媒流になるように配管してある。
【0064】
以上のように構成することにより、冷媒流は、冷房、暖房、除湿の各運転において、それぞれ実線で示す矢印、破線で示す矢印、一点鎖線で示す矢印の方向に流れる。このため、冷房運転時には全ての伝熱管が低圧の蒸発器になるが、73a、73bを除く全ての伝熱管が二系統の冷媒流になることから、圧力損失は小さく問題ない。又、暖房運転時には、高温ガス冷媒流は、室内熱交換器70の入口側で伝熱管73c、73dからそれぞれ後流側の伝熱管73e、73fに流れ、空気流15と対向流となるため、効率の良い熱交換状態が実現でき、出口側の伝熱管である73b、73aの伝熱管では、比較的温度の低い空気流15と風上側で熱交換するとともに、冷媒流が一系統であるため高速になり管内の伝熱性能が向上するため、十分なサブクールをとることができる。除湿運転時には、空気流15に対して、室内熱交換器70bが風上側の冷却・除湿器(すなわち蒸発器)、室内熱交換器70aが風下側の加熱器(すなわち凝縮器)となり、空気流15を冷却、除湿したあと再び加熱する。この場合、切断された72を境に高温となる室内熱交換器70aと低温となる室内熱交換器70bとに分離されているため、互いの熱交換器は直接干渉しないため熱ロスがなく、効率の良い除湿運転を行うことができる。また、加熱器として作用する室内熱交換器70aが、冷却・除湿器として作用する室内熱交換器70bの上方にあり、下方に流れる除湿水が加熱されて再び蒸発することもない。
【0065】
また、図13は、伝熱管が二列で9段に配列した図12に示す室内熱交換器の実施例の変形例であり、図12に示す実施例と比較して、暖房運転時に、冷媒流の出口側でサブクールをとるために、冷媒流が一系統になるようにした伝熱管74a、74bを一段上方側にずらし、高温ガスの冷媒流の流入する入口伝熱管が空気流15に対して風上側の伝熱管74cと風下側の伝熱管74dとを有する配管構成にしたものであり、96で示す切断線で2分割されている。この配管構成では、暖房運転時に高温ガス域の伝熱管74cとその風下側の凝縮域の伝熱管74e、74fとは、空気流15と対向流にならないが、除湿運転時に、冷却、除湿した後、再び加熱する熱交換器部分の高さh2が、図12に示すh1に比べて長くなっており、図12に示す実施例より多くの除湿量をとることができる。
【0066】
図14は、伝熱管が二列で9段に配列した図12に示す室内熱交換器のさらに他の変形例であり、暖房運転時に、冷媒流の出口側でサブクールをとるために冷媒流を一系統にした伝熱管75a、75bを最上段の二列とし、高温ガスの冷媒流の流入する入口伝熱管を空気流15に対して両方とも風上側の伝熱管75c、75dになるように配管構成したものであり、89で示す位置で室内熱交換器88を88aと88bに二分割している。この配管構成では、暖房運転時に高温ガス域の入口伝熱管75c、75dとその風下側のより温度の低い伝熱管75b、75e、75f、75gが空気流15と対向流にならないが、除湿運転時に、冷却、除湿したあと再加熱する熱交換器部分の高さh3が図13に示す実施例よりさらに長くでき、より多くの除湿量をとることができる。
【0067】
図15は、伝熱管が二列で10段に配管された室内熱交換器80の一実施例の側面図であり、室内熱交換器80の回りの配管構成を合わせて示している。図12に示す実施例と同様に、図15において○印で示したものは複数枚の放熱フィン81を貫通するように設けた伝熱管、破線及び実線で示すものは接続配管、7、8はそれぞれ除湿絞り装置、二方弁である。また、室内熱交換器80は、分離線82により示される部分で放熱フィン81を切断することにより、二つのL形熱交換器80a及び80bに分離されており、伝熱管83a、83bは一系統の冷媒流、それ以外の伝熱管は除湿絞り装置7及び二方弁8をはさんで二系統の冷媒流になるように配管してある。又、L形熱交換器80bは、分岐するI点とJ点の間が矢印84で示す系統と矢印85で示す系統の二系統の冷媒配管構成としてあるが、84で示す系統の配管の方が85で示す系統の配管に比べて伝熱管の本数(この場合は、2本)が少ないため、冷媒流の流通抵抗が同じになるように、84で示す系統の配管における伝熱管83cとJ点の間に抵抗管86を設けてある。
【0068】
以上の構成により、冷媒流は、冷房、暖房、除湿の各運転において、それぞれ実線で示す矢印、破線で示す矢印、一点鎖線で示す矢印の方向に流れ、冷房運転における低圧力損失の冷媒流状態、暖房運転における入口部高温ガス冷媒流と空気流との対向流による熱交換状態および出口部での一系統の冷媒流で十分なサブクール化、除湿運転における空気流15に対する冷却、除湿と再加熱の作用を、図12に示す実施例と同様に効率よく、問題なく行うことができる。
【0069】
なお、抵抗管86は、84で示す系統の配管におけるI、J点間であればどこに設けてもよい。さらに、複数の系統にした各冷媒流路で流通抵抗の少ない方に抵抗管を設けて各流路の流通抵抗を等しくすることを適用してもよい。例えば、図9あるいは図11に示す実施例において、複数の系統にした各冷媒流路に対し、流通抵抗の少ない流路に抵抗管を設けて流通抵抗を等しくし、冷媒をバランス良く流すような時に適用できる。
【0070】
図16は、伝熱管が二列で10段に配列した図15に示す室内熱交換器の変形例であり、暖房運転時に、冷媒流の出口側でサブクールを取るために冷媒流が一系統になるようにした伝熱管を87a、87b、87iの3本にし、高温ガスの冷媒流の流入する入口伝熱管が空気流15に対して両方とも風上側の伝熱管87c、87dになるように配管構成したものであり、同様に97で切断されている。この配管構成では、暖房運転時に、高温ガス域の入口伝熱管87c、87dとその風下側のより低温度の伝熱管87e、87f、87g、87hが、空気流15に対して対向流とはならないが、除湿運転時に、冷却、除湿したあと再加熱する熱交換器部分の高さh5が図15のh5より長くなり、より多くの除湿量を取ることができる。さらにK点とL点の間の冷媒流は二系統の流れになっているが、各系統の伝熱管の長さは同一に設定してあり、図15に示す実施例のような抵抗管86を設ける必要がなくなる。
【0071】
なお、図12、図13、図14、図16で示す実施例においては、除湿運転時において加熱器となる伝熱管の本数を冷却・除湿器となる伝熱管の本数より多くしてあるが、これは図3、図4、図6、図8で示す実施例で述べた暖房気味の除湿運転を行ううえで有効となるからである。すなわち、除湿運転において、冷却・除湿器の能力をより低くでき、加熱器の能力をより高くできることから、暖房気味の除湿運転がやり易くなる。
【0072】
ここで、図12から図16に示す室内熱交換器においては、二分割した両方の熱交換器とも二系統の冷媒流路を構成しているが、これは図11に示す実施例で説明したように、冷媒流量が比較的多い空気調和機の配管構成として適切なものである。冷媒流量が比較的少ない場合には、図12から図16に示す実施例において、冷房運転時に上流側の蒸発器となる(例えば、図12においては70a、図15において80aで示される)室内熱交換器を一系統の冷媒流路にすることが可能であり、さらに冷媒流量が少ない場合には、冷房運転時に下流側の蒸発器として作用する室内熱交換器(例えば、図12においては70b、図15においては80bで示される)も一系統の冷媒流路にすることができる。
【0073】
一例として、図12に示す実施例に対応し冷媒流量が比較的少ない場合の配管構成を行った実施例として図17を用いて説明する。ここで、図17は、図12に示す熱交換器70aを一系統の冷媒流路にしたものである。図17において、98は、切断線72により二分割し、かつ冷房運転時に上流側の蒸発器となる冷媒流路を一系統にした熱交換器98aと冷房運転時に下流側の蒸発器となる冷媒流路を二系統にした熱交換器98b(図12に示す70bと同一)とからなる室内熱交換器である。また、図17において、図12と同一番号を付けたものは同一部分を示す。
【0074】
以上のように構成された場合、冷媒は、冷房、暖房、除湿の各運転において、それぞれ実線で示す矢印、破線で示す矢印、一点鎖線で示す矢印の方向に流れる。冷房運転時には室内熱交換器98a、98bとも低圧の蒸発器になるが、冷媒流量が比較的少ないことから、乾き度が低い上流側の蒸発器98aでは、冷媒流路が一系統でも圧力損失が比較的少なく、逆に図12に示す実施例に比べて冷媒流速が速くなることから管内熱伝達率が大きくなる。また、下流側の蒸発器73bでは、乾き度が大きくなるが、冷媒流路を二系統にしてあるため、冷媒流速は十分低くなり圧力損失が小さい。
【0075】
又、暖房運転時には、室内熱交換器98において、冷媒流が高圧のためガス冷媒の比容積が小さくなって流速が遅くなるが、高温ガスの冷媒流は最初に冷媒流路が二系統の室内熱交換器98bに入って凝縮し、冷媒乾き度が十分低くなってから冷媒流路が一系統の室内熱交換器98aに入るため、問題となるほどの圧力損失は生じない。従って、冷媒流量が比較的少ない場合には、図17に示す実施例では、冷房及び暖房運転とも性能上の問題はなく、室内熱交換器98aの冷媒流路を一系統にしているため、配管構成が簡単になっている。なお、冷房運転時及び暖房運転時、さらには除湿運転時における室内熱交換器98と空気流15との熱交換状態は、図12に示す実施例と同様である。
【0076】
ここで、図12から図16に示す実施例においては、例えば図12に示す切断線72や図14に示す切断線89により、室内熱交換器を完全に二分割して二つの熱交換器間の熱移動を十分に遮断し、除湿運転時における十分な冷却・除湿及び加熱を可能にしている。しかし、反面熱交換器の組立が複雑になるという問題があり、これを解決するために、伝熱管を組み込む前の放熱フィンは、図18及び図19に示すように構成するのがよい。
【0077】
図18に示す放熱フィン91は、図12に示す切断線72に相当するところに、断続状のスリット92設けた構造にしている。このように構成した結果、スリット92により、図12に示す切断線72よりは多少断熱性能は劣るが、放熱フィン91の91a側と91b側との間の熱移動を遮断でき、さらに放熱フィンの91a側と91b側がつながっているので、熱交換器を組み立てる時にこの組立を容易にできる。
【0078】
又、図19に示す放熱フィン93は、図14に示す切断線89に相当するところに、断続的なスリット94を設けた構造にしている。この場合も、図18に示す実施例と同様に、スリット94により、放熱フィン93の93a側と93b側との間の熱移動を遮断でき、さらに放熱フィンの93a側と93b側がつながっているので、熱交換器を組み立てる時にこの組立を容易にできる。
【0079】
又、以上説明した実施例においては、空気調和機でよく使用されているHCFC22(ハイドロクロロフルオロカ-ボン22の略)等の単一冷媒を使用する場合について説明してきた。しかし、最近は、オゾン層破壊や地球温暖化の点からHCFC22に代わる代替冷媒の研究が盛んになっている。また、代替冷媒としては単一冷媒だけでなく、混合冷媒の使用が検討されている。このうち単一冷媒については、圧力レベルの違いはあるが、冷凍サイクルやその特性はHCFC22と同様であり、又、混合冷媒の場合にも、これまでに図1から図19に示す実施例で述べてきたサイクル構成、室内ユニット構造、運転の制御方法、室内熱交換器の配管構成等を適用でき、同様の効果が得られる。
【0080】
又、混合冷媒を用いた場合では、一般的に、室内熱交換器を図11から図17に示す配管構成にすることにより、冷房運転において、単一冷媒を用いる場合には得られない次のような効果が得られる。
【0081】
図21は、単一冷媒と混合冷媒を用いた場合時の冷凍サイクルについて、モデル化した温度−エントロピ線図を示している。この温度−エントロピ-線図において、例えば図11に示す配管構成において冷房運転をした場合、蒸発器として作用する室内熱交換器において、単一冷媒の場合には圧力損失のために、冷媒流の蒸発温度が、図21にTa点からPa点として示したように、入口から出口に向かって低下し、室内熱交換器60aが高温側の蒸発器、60bが低温側の蒸発器となるため、冷媒流と空気流15が対向流とならない。これに対して、混合冷媒の場合、一般的に蒸発過程で気相と液相における混合冷媒の組成比が変化し、これに伴って図21にT点からP点として示したように、室内熱交換器の入口から出口に向かって蒸発温度が上昇して行く。この結果、図11に示す実施例において、室内熱交換器60aの蒸発温度の方が室内熱交換器60bの蒸発温度より低くなるため、冷媒流と空気流15が対向流状態となり、単一冷媒の場合に比べて、より効率の良い熱交換状態となる。
【0082】
なお、暖房運転においては、凝縮側では、それぞれ図21にQa点からRa点さらにSa点、Q点からR点さらにS点として示したように単一冷媒、混合冷媒とも室内熱交換器の入口から出口に向かって冷媒温度が下がることから、室内熱交換器での冷媒流と空気流との温度関係は、単一冷媒の場合と混合冷媒の場合とでは同様の温度関係となる。
【0083】
なおこれまでは、図1のように、二分割した室内熱交換器6a、6bを空気流15に対して直列(前後)に配置する構造を想定して説明してきたが、これに限らず二分割した室内熱交換器を空気流に対して並列(上下)に配置しても、除湿運転時に同様の作用及び効果を得る事ができる。この一実施例である冷凍サイクルと制御の系統を示す図を図22に示す。この図22において、110a、110bは二分割した室内熱交換器であり、空気流15に対して並列(上下)に配置してある。またそれ以外は図1と同様であり、図1と同一番号を付けたものは同一部分を表し、圧縮機1は能力制御が可能で、室外ファン10及び室内ファン12は能力制御すなわち送風量制御が可能にしてある。
【0084】
ここで、室内ファン12は、室内熱交換器6aと6bとを並列的に空気を流す場合を図示しているが、室内熱交換器6aと6bとをくの字状に曲げて構成し、まず室内熱交換器6bに空気を流し、その後室内熱交換器6aに空気を流すように室内ファン12を配置することができ、このように構成することにより空気の流入および流出を行う通路を形成しやすい。
【0085】
図22のサイクル構成においても、図1のサイクル構成と同様に、冷房運転時には、二方弁5を閉じ二方弁8を開くことにより、冷媒を、実線矢印で示すように循環させ、室外熱交換器3を凝縮器、室内熱交換器6a及び6bを蒸発器として室内を冷房する。暖房運転時には、四方弁2を切り替え二方弁5を閉じ二方弁8を開くことにより、冷媒を破線矢印で示すように循環させ、室内熱交換器6a及び6bを凝縮器、室外熱交換器10を蒸発器として室内を暖房する。
【0086】
又、除湿運転時には、四方弁2を冷房運転と同様に切り換え、二方弁5を開き二方弁8を閉じることにより、冷媒を、一点鎖線で示すように圧縮機1、四方弁2、室外熱交換器3、二方弁5、室内熱交換器110a、除湿絞り装置7、室内熱交換器110b、四方弁2、アキュムレータ9、圧縮機1の順に循環させ、室外熱交換器3を上流側の凝縮器、室内熱交換器6aを下流側の凝縮器、室内熱交換器6bを蒸発器とする。そして、室内空気を室内ファン12により矢印15のように流すと、空気流の一部は蒸発器となる室内熱交換器110bで冷却・除湿されると共に残りの空気流は凝縮器で加熱器となる室内熱交換器110aで加熱されて室内に吹き出される。この場合、圧縮機1の能力や室内ファン12及び室外ファン10の送風能力を制御することにより蒸発器110b及び加熱器110aの能力を調節することができ、最終的には除湿量や吹き出し空気温度を使用目的に合わせて制御することができる。
【0087】
従って、除湿運転において、図22のように空気流15に対して二分割した室内熱交換器110aと110bを並列(上下)に並べた場合にも、図1のように空気流15に対して二分割した室内熱交換器6aと6bを直列(前後)に並べた場合と同様な種々の運転が可能で、図2から図4と同一の運転方法を行う事ができ、さらに同様な効果を得る事ができる。すなわち図1の実施例において述べた、快適除湿運転、おやすみ・おめざめ除湿運転、カビ・ダニ防止除湿運転、ランドリー除湿運転、等の種々の使用目的に応じた除湿運転、さらにこれらの種々の除湿運転に応じた低風量除湿運転と高風量除湿運転の使い分けや室温に応じて冷房気味、等温気味あるいは暖房気味の除湿運転を行う事ができる。
【0088】
ところで上記の高風量除湿運転では、圧縮機を高能力運転にすることから入力が多くなる。この問題を解決できる実施例を図23に示す。図23は、先の図5の実施例に比べて、室内熱交換器を上下に二分割した場合の室内ユニットの側断面を示す図であり、110a、110b,12はそれぞれ図22のサイクル構成の所で述べたものと同一で、それぞれ上側の室内熱交換器、下側の室内熱交換器、室内ファンである。又図5と同一番号を付けたものは同一部分を示す。
【0089】
以上の構成により、除湿運転時には室内熱交換器6bが蒸発器、室内熱交換器6aが加熱器となり、室内ファン12を運転して室内空気を矢印36から37のように流すことにより、空気流36は、吸い込みグリル31を通り一部は蒸発器6bで冷却・除湿されると共に一部は加熱器6aで加熱されて、さらに室内ファン12を通って矢印37の方向に吹き出される。また蒸発器6bで生じた凝縮水は、露受皿33に一旦受けられたのち室外へ排出される。
【0090】
なお図23に示す室内ユニットを用いた場合の種々の運転方法は、先に述べた図5の室内ユニットの場合と同一であり、高風量除湿運転の方法は図6に示した流れ図になり、図5の実施例の場合と同様な効果を得る事ができる。
【0091】
また図22の場合においても、図1の場合と同様に、図7の実施例を適用し同様の効果が得られる事は明かである。すなわち図22の二点鎖線で囲んだ部分40を図7の構成にし、図8に示す暖房気味除湿運転方法により室外熱交換器3での放熱量を調整することにより、図22のサイクル構成の場合よりもさらに暖房気味の除湿運転を行う事ができる。
【0092】
なおこれまでの図2、図3、図4、図6、図8に示す除湿運転時の運転方法は、図1、図7あるいは図22に示すサイクル構成を想定して説明してきたが、これに限らず、室内熱交換器を二分割してその間に除湿絞り装置を設け、除湿運転時に、二分割した室内熱交換器のうちの冷媒流の上流側を加熱器、下流側を冷却・除湿器とするサイクル構成を有する空気調和機に対しては、上述したように、室内熱交換器を前後に並べて空気流をこれらの室内熱交換器に順に流す場合、あるいは上下に並べて空気流をこれらの熱交換器に並列に流す場合を含め、共通に適用することができ、同様の効果を得ることができる。
【0093】
ところで図22に示す実施例のサイクル構成に対して除湿運転の場合を説明したが、図1のサイクル構成の場合と同様に、さらに冷房、暖房の各運転に対してもサイクル性能及び室内熱交換器110a、110bでの熱交換性能を確保して効率良く運転する必要がある。以下この方法について述べる。 まず図22に示す実施例では、室内熱交換器を110aと110bに二分割し、さらに冷房運転及び暖房運転では、これらを二方弁8を介して直列に接続してあるため、特に冷房運転においては、室内熱交換器110a及び110bとも低圧でガス冷媒の比容積が大きく体積流量が多くなる蒸発器となり、室内熱交換器での圧力損失が大きくなってサイクルの性能が低下する。
【0094】
この問題を解決できる一実施例を図24に示す。この実施例は、図22に示す実施例において、一点鎖線で囲んだ室内側部分111の熱交換器部分に相当する。図24において、100a、100bはそれぞれ図22の110a、110bに相当する二分割された室内熱交換器であり、さらに室内熱交換器100aは、P点で101と102の二系統の冷媒配管に分かれたあとQ点で再び一系統に合流する配管構成とし、室内熱交換器100bは、同様に、R点で103と104の二系統の冷媒配管に分かれたあとS点で再び一系統に合流する配管構成にしてある。また図22と同一番号を付したものは同一部分を示す。
【0095】
以上の構成において、冷房運転及び暖房運転時には、二方弁8を開くことにより、室内熱交換器100aおよび100bにおいて冷媒はそれぞれ二系統に分かれて流れるため、各系統を流れる冷媒流量は半分になり、室内熱交換器100a及び100bでの冷媒流圧力損失が低減し、性能の低下を防止できる。
【0096】
なお、図24に示す実施例では、室内熱交換器100a及び100bの冷媒配管を二系統に分けたが、これに限らずさらに多くの系統に分けることも可能であり、この場合も室内熱交換器100a及び100bでの冷媒流圧力損失を低減し、性能の低下を防止できる。但し、冷媒流をあまり多系統にすると、冷媒流の圧力損失は低下するが、熱伝達率が低下し過ぎて、冷房能力や動作係数といった全体の性能が低下してしまうため、最適な系統数があり、またこの値は冷媒配管の内径によって変化する。
【0097】
さらに暖房運転においては、暖房能力や動作係数といった性能を向上するために、凝縮器となる室内熱交換器において、冷媒流出口に当たる熱交換器部分で十分サブクールが取れるようにする必要がある。これを実現できる一実施例を図25に示す。図25において、100cは一系統の冷媒配管105と点Tで結合した二系統の冷媒配管106、107から成る暖房運転時に冷媒流の下流側となる室内熱交換器であり、また図24と同一番号を付けたものは同一部分を示す。すなわち図25の実施例は、図24において、冷媒配管が二系統の室内熱交換器100aを一系統の冷媒配管と二系統の冷媒配管を複合した室内熱交換器100cに置き換えたものである。
【0098】
以上の構成において、暖房運転時には、冷媒が、室内熱交換器100b、二方弁8、室内熱交換器100cの順に流れるが、この場合、破線矢印のように入った高温のガス冷媒流は、空気流15と熱交換して、冷媒配管が103、104の二系統の室内熱交換器100bから室内熱交換器100cの冷媒配管が106、107の二系統の部分で十分凝縮する。次に、この凝縮した液冷媒流は、室内熱交換器100cの一系統の冷媒配管105に入って高速となり、管内熱伝達率が十分高くなることにより、サブクールが十分取れた状態になりる。この結果、効率のよい熱交換状態となる。
【0099】
また、冷房運転時には、冷媒が、実線矢印で示すように、室内熱交換器100cの一系統の冷媒配管105から二系統の冷媒配管106、107、二方弁8、室内熱交換器100bの二系統の冷媒配管103、104の順に流れるが、この場合、一系統の冷媒配管105では、冷媒流の乾き度が低いことから圧力損失がそれほどは大きくならない。さらには一系統の冷媒配管105では、冷媒流の流速が速くなることから、管内熱伝達率が高くなって伝熱性能が向上するという効果もある。
【0100】
またさらに詳細にいえば、図24において室内熱交換器100a、100bを二系統の冷媒流路にしたり、あるいは図25において室内熱交換器100bを二系統の冷媒流路にすると共に室内熱交換器100cを一系統の冷媒流路と二系統の冷媒流路を複合した流路構成としたが、これに限らず、各室内熱交換器100a、100bあるいは100cの冷媒流路を、冷媒流量や構成の簡単さ等から判断して、一系統あるいは多系統にすることができる。例えば、冷媒流量が比較的多い場合には、ガス流の混じる室内熱交換器となる図24の100a、100bあるいは図25の100c、100bは、圧力損失を減らすために複数系統の冷媒流路にした方がよい(図25の室内熱交換器100cは一系統と複数系統の複合でもよい)。冷媒流量が比較的少ない場合には、冷房運転時に上流側で冷媒乾き度が比較的低い室内熱交換器となる図24の100aや図25の100cを一系統の冷媒流路にしても(図示省略)、ここでの圧力損失が比較的少なく性能の低下がほとんど問題にならず、しかも配管構成が簡単になる。冷媒流量がさらに少ない場合には、すべての室内熱交換器(図24の100a、100bあるいは図25の100c、100b)を一系統の冷媒配管にしても(図示省略)、性能の低下が問題にならず、配管構成がさらに簡単になる。
【0101】
また図22の冷凍サイクル内を流れる冷媒の種類については、図1の実施例の場合と同様に、HCFC22等の単一冷媒あるいは種々の混合冷媒に対して、これまでに述べてきたサイクル構成、室内ユニット構造、運転の制御方法、室内熱交換器の配管構成等を適用でき、同様の効果が得られることは明かである。
【0102】
ところでこれまでに述べた図1、図22等のサイクル構成における圧縮機や室内ファン、室外ファンの能力制御方法として、代表的なインバータや直流モータを用いて回転数制御する方式について説明してきたが、この他にも種々の方式が考えられる。例えば、圧縮機については、機械的に能力制御を行う方式、送風機については、交流モータのタップを切り替える方式や通風路を絞る方式、通風抵抗を増大させる方式など種々の方式を用いることができる。また、これまで使用されている除湿運転における室内ファンの高風量は、一般的に言って冷房運転や暖房運転時の風量と同等以下である。
【0103】
又、図1、図9、図11、図12、図13、図14、図15、図16、図17、図22、図24、図25に示す実施例において、これまで説明したように、主絞り装置4あるいは除湿絞り装置7としては、キャピラリチューブのような固定絞り装置に限らず、膨張弁や電動膨張弁のような可変絞り装置を用いることができ、この場合にはさらに細かい制御を行うことができる。特に、流通抵抗の少ない全開状態が可能な電動膨張弁を用いた場合には、二方弁5、あるいは二方弁8が不要となり、例えば、図1及び図22に破線で囲んで示したように、並列に設けた絞り装置4と二方弁5及び絞り装置7と二方弁8の部分45及び46を、図20に示すように、全開可能電動膨張弁95だけで置き換えることができる。
【0104】
又、これまでは冷房、暖房、除湿の三つの運転状態が可能な冷凍サイクルについて説明してきたが、本発明はこれに限るものではなく、他の冷凍サイクルについてもこれまでに説明してきた運転方法及び室内熱交換器の構成を適用できる。例えば、図1あるいは図22に示す実施例において、四方弁2を取り去り、圧縮機1とアキュムレータ9を、室内熱交換器6bあるいは110b、アキュムレータ9、圧縮機1、室外熱交換器3が直列になるように接続した(図示せず)場合には、実線の矢印で示す冷媒流れの冷房運転と一点鎖線で示す冷媒流れの除湿運転が可能な冷凍サイクルとなる。このような冷凍サイクルの除湿運転において、図2、図3、図4に示す運転方法、図5あるいは図23に示す室内ユニット構造における図6に示す運転方法あるいは図7に示す実施例における図8に示す運転方法を行うことにより、同様の効果を得ることができる。
【0105】
さらに、図1及び図22等の冷凍サイクルの構成において、アキュムレータは必ずしも必要ではなく、使用する圧縮機の種類あるいは主絞り装置の種類や制御方法によってはアキュムレータ無しの冷凍サイクル構成とすることができる。
【0106】
次に本発明による除湿運転を中心としたさらに具体的な運転方法の一実施例を図26、図27、図28及び図29を用いて説明する。
【0107】
図26は、サイクル系統図と各部の温度センサ(代表的なものはサーミスタである)や湿度検出手段(代表的なものは湿度センサであり、さらには温度から演算によって推定する場合もある)の位置を示す図である。除湿運転時、圧縮機201より吐出された冷媒は四方弁202、室外熱交換器203、バイパス用二方弁(代表的なものは電磁弁)206を通り加熱器となる室内熱交換器208に入り、更に除湿用絞り装置219で減圧され、蒸発器となる室内熱交換器209を通り、再び圧縮機201に戻る。又、室外ユニットには、外気温度を検出する外気温センサ215が、室内ユニットには、湿度を検出する湿度センサ216、吸込空気温度を検出する室内吸込温度センサ217、吹出空気温度を検出する室内吹出温度センサ218が設けられている。これらの温度センサ及び湿度センサは、制御部(図示省略)に接続されている。
【0108】
本発明の制御方法の一実施例を図27、図28を用いて説明する。
図27は、外気温センサ215で検出した温度に対し、室外ファン211の制御方法を示している。室外温度が低くなると、室外熱交換器203で放熱される熱量が大となり、除湿運転時の加熱量が少なくなり、室内吹出空気温度が低くなってしまうため、室外温度が下がった場合、室外ファン211の回転数を低下させ室内吹出空気温度が低下することを防止する。又、室外ユニット側に電気品を具備し、室外ファン211を運転することにより、室外ユニット側電気品の温度上昇を防止する構造となっている室外ユニットでは、室外温度が上昇すると、室外ユニット側電気品の温度上昇も大きくなるため、室外温度の上昇に合わせて、室外ファン211の回転数を上昇させ電気品の温度上昇を低下させる。
【0109】
この室外温度と室外ファン211の回転数との制御方法をパターン化、又は、演算式として制御部に記憶させておき、外気温センサ215で検出した室外温度により、あらかじめ制御部に記憶させておいたパターンや演算式を用いて室外ファン211を制御する。又、この時、室外温度によって室外ファン211の回転数を変えるだけでなく、ON−OFFの断続運転を行い、そのON−OFF時間の比率を室外温度に合わせて、変化させても同じ効果が得られる。
【0110】
この制御方法によれば、室外温度が低下した場合でも室内吹出空気温度の低下がなく、快適性を向上させるばかりでなく、室外温度が上昇した場合には、室外ファン211の回転数を上昇させることにより、室外ユニット側に具備した電気部品の温度上昇を抑えることができ電気部品の信頼性も確保できる。
【0111】
図28は、湿度センサ216で検出した湿度に対する圧縮機1の制御方法を示している。室内湿度が高い場合は圧縮機201の回転数を増加させ冷凍サイクル内の冷媒循環量を増やし除湿量の多い運転を行い、室内側湿度をすばやく低下させる。又、室内湿度が低い場合は、圧縮機201の回転数を下げて運転を行い効率の良い運転とする。この室内湿度と圧縮機201の制御方法をパターン化又は演算式として制御部に記憶させておき、湿度センサ216で検出した室内湿度に対して、圧縮機201の回転数を制御する。
【0112】
以上、室外ファン211と圧縮機201の回転数の運転パターンをそれぞれ検出した室外温度と室内湿度によって制御することにより、快適で効率の良い除湿運転を行う。
【0113】
この制御方法によれば、室内の湿度が高い場合、例えば運転開始時、圧縮機201の回転数を最大として、除湿能力の大きな、除湿運転を行い、部屋の湿度をすばやく任意の湿度まで低下する。又、室内湿度が任意の湿度まで低下してきたら、圧縮機201の回転数を低下させ比較的除湿量が少なく効率の高い運転とする。これらの制御方法により、より快適で効率の良い除湿運転を行うことが可能となった。
【0114】
本発明のもう一つの制御方法を図29を用いて説明する。
【0115】
一つは室内吹出温度センサ218と室内吸込温度センサ217で検出した温度の差により室外ファン211と圧縮機201の回転数を制御する方法で、室内吹出空気温度が室内吸込空気温度より低下した場合室外ファン211の回転数を低下させ室外ユニット側での放熱量を少なくすることにより、室内吹出空気温度を上昇させる。又、圧縮機201の回転数を変化させる(増加させたり減少させたりする)ことにより、室内吹出空気温度を変える事ができる。圧縮機201の回転数の増加あるいは減少については、冷凍サイクルの室内熱交換器209、加熱用熱交換器208及び室外熱交換器203の大きさの比率によって変わってくる。(圧縮機201の回転数の制御方法が実線や一点鎖線の様になる) 又、室内温度と任意に設定された温度(在室者の希望温度)の差により、室内吹出空気温度と室内吸込空気温度との温度差を決定する様な場合、例えば、室内温度が任意に設定された温度より高い場合には、室内吹出空気温度-室内吸込空気温度≦0の様な制御とし、室外ファン211を比較的高い回転数とし、圧縮機201は適当に制御して運転する。室内温度が任意に設定された温度より低い場合は、室内吹出空気温度-室内吸込空気温度>0の制御とし、室外ファン211を低い回転数で運転し、圧縮機201は適当に制御して運転する。
【0116】
これらの場合、室外ファン211を連続運転するだけでなく、ON−OFFの断続運転を行い、そのON-OFFの時間比率を室内吹出空気温度と室内吸込空気温度との差から決定することにより、更に効果がある。これら室内吹出空気温度と室内吸込空気温度との差と、室外ファン211及び圧縮機201の運転パターンをあらかじめパターン化したり、演算式化して、制御部に記憶させておく。
【0117】
これらの制御方法により、除湿運転時の快適性をより向上することが可能となる。
【0118】
ここで室内温度と設定温度との温度差により制御する場合の、制御部に記憶させておく室外ファン211及び圧縮機201のパターン化する場合の運転パターンの一実施例を図32に示す。また図32の各ブロックには除湿運転モードだけでなく冷房運転及び暖房運転のモードも記載して、冷房運転、除湿運転、暖房運転の各運転モードも室外温度及び室内温度の範囲に応じて適切に選択できるようにしてあることから、室外温度及び室内温度のさらに広い範囲に渡って快適な運転を行う事ができる。
【0119】
図32においては横軸に室外温度、縦軸に室内温度(室内吸込空気温度を使う事が可能)を取り、室外温度範囲を4分割、室内温度範囲を5分割にして▲1▼〜▲5▼の碁盤目状にブロック化し、各ブロックに対して一定の運転条件とする。一定の運転条件としては、冷房・除湿・暖房の運転モード、室外ファンの運転パターン、圧縮機の運転パターン等である。このうち室外ファン211の運転パターンとしては、図27や図29に示した段階的回転速度におけるある回転速度での連続運転、ON−OFFの時間比率を適当に変えた断続運転、さらにはこれらの連続運転と断続運転の複合等、さまざまな運転パターンがある。また圧縮機201の運転パターンについても図28や図29に示した段階的回転速度における回転速度での連続運転、ON−OFFの時間比率を適当に変えた断続運転、さらにはこれらの連続運転と断続運転の複合等、さまざまな運転パターンがある。特に室外ファンや圧縮機において回転数が2〜3種類しか変えられないような場合においても、これらの連続運転とON−OFFの時間比率をさまざまに変える事により多くの運転パターンを設定する事ができる。
【0120】
そしてこれらの室外ファンあるいは圧縮機における運転パターン、及び冷房・除湿・暖房の運転モードを、図32の各ブロックごとに、このブロックに対応する室外温度及び室内温度に合わせて設定する。この結果実際の運転においては、温度センサにより外気温度や室内温度が検出されると、これらの検出された温度が含まれる図32のブロックに応じた(冷房・除湿・暖房の)運転モード、室外ファンの運転パターン、圧縮機の運転パターンで運転され、例えば(7)のブロックでは冷房気味除湿運転となる。この結果、快適な運転を行う事ができる。
【0121】
なお室外温度及び室内温度の分割は必ずしも図32のようにする必要は無く、必要に応じて一個以上適切に分割する事ができる。
【0122】
又、室内温度と設定温度との温度差あるいは室内吹出空気温度と室内吸込空気温度との温度差と、室外ファン211及び圧縮機201の運転パターンとの関係を演算式化して制御部に記憶させておく場合には、さらにきめ細かい制御が可能になり、この制御方法は、特に室外ファンや圧縮機の能力が連続制御可能な場合に対して有効である。
【0123】
また室内温度あるいは室内湿度の設定値を、例えば前に述べたPMV等の温熱環境評価手法に基づいて決定するようにする事もでき、この場合にはより快適な運転を自動的に行う事ができる。このような除湿運転を行うことにより、体感温度のよい除湿運転が行える。
【0124】
ところでこれまでは湿度検出手段として湿度センサを想定して説明してきたが、湿度センサは比較的高価である事からサーミスタ等の安価な温度センサを用いて簡易的に湿度を推定する事も行われる。特に室内温度と熱交換器の蒸発温度と室内湿度の間には相関関係があり、この関係を前もって実験的に求めておき、(精度は落ちるが)室内温度と蒸発温度から湿度を求める事ができる。またこの関係は湿度が目標値まで下がった場合に運転を停止する場合等に有効に使用する事ができる。これまでの経験から、例えば室内湿度が約50%となった時の室内温度T1と蒸発温度T2との間には、A、Bを定数として、次のような関係がある。
【0125】
2=A×T1-B
従って、温度センサにより室内温度と蒸発温度を検出して、蒸発温度が室内温度T1に対応した室内湿度50%の時の温度T2に成ったら、運転を止める様な湿度制御を行う事ができる。この場合、適切な湿度は50%前後といわれており、また温度の場合ほど敏感ではないため、こうした湿度制御でも十分実用的である。しかも湿度センサを使う場合に比べて安価に実現できる。
【0126】
なお、これまでに述べてきたすべての実施例は一般の建屋に用いられる空気調和機を想定して説明してきたが、本発明はこれに限らず、除湿運転が必要な他の用途の装置にも適用可能である。こうした場合、一般に室内熱交換器を利用側熱交換器、室外熱交換器を熱源側熱交換器、又、室内ファンを利用側ファン、室外ファンを熱源側ファンといいかえることができる。
【0127】
以上説明した各実施例を纏めて説明すると、次の通りである。
【0128】
上記実施例における目的は、種々の使用目的の除湿運転ができる空気調和機を提供することにある。
【0129】
また、別の目的は、除湿運転を行うとともに、冷房運転や暖房運転での性能を十分高性能に保てる空気調和機を提供することにある。
【0130】
また、別の目的は、室外温度が変化しても室内吹出空気温度や除湿量が所定の温度及び除湿量を確保し、室内湿度をすばやく設定湿度にできる空気調和器を提供する事にある。
【0131】
また、別の目的は、室外ユニット側の電気部品の温度が過度に高くならず十分な寿命を保てる空気調和機を提供する事にある。
【0132】
上記1番目の目的を達成するために、上記実施例の空気調和機は、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が冷却・除湿部分と加熱部分とを有し、除湿運転時に前記圧縮機の能力、室内熱交換器のファンの風量、室外熱交換器のファンの風量の制御を行うことにより前記加熱部分の加熱能力、前記室外熱交換器の放熱量を制御するものである。
【0133】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分と該冷却・除湿部分と加熱部分との間に設けられた第2の絞り装置を有するとともに、室内温度センサにより検出された温度を入力する制御回路を有するものであって、該制御回路により前記圧縮機の能力、室内熱交換器のファンの風量、室外熱交換器のファンの風量を制御して冷房気味、等温気味、暖房気味の各除湿運転制御を行うものである。
【0134】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、除湿運転として快適除湿運転、おやすみ・おめざめ除湿運転、カビ・ダニ防止除湿運転、ランドリー除湿運転等の各運転モードを備えるものであって、おやすみ・おめざめ除湿運転時には前記室内熱交換器のファンの風量を低下させ、ランドリ-運転時には前記室内熱交換器のファンの風量を高めた運転を行うものである。
【0135】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が室内湿度検出手段と該室内湿度検出手段により検出された湿度を入力する制御回路を備えるとともに、除湿運転時にダニ・カビ防止除湿運転モードを備えるものであって、該運転モードが設定されたとき、前記湿度検出手段により検出された湿度が40%から60%の範囲になるように前記制御回路により、前記圧縮機の能力、室内熱交換器のファンの風量、室外熱交換器のファンの風量の制御を行うものである。
【0136】
又、前記湿度検出手段により検出された湿度が約50%になるように前記制御回路により、前記圧縮機の能力、室内熱交換器のファンの風量、室外熱交換器のファンの風量の制御を行うものである。
【0137】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が冷却・除湿部分と加熱部分とを有するとともに、室内温度センサにより検出された室温を入力する制御回路を有し、該検出された室温と設定温度との差が負と判断された時は、前記制御回路により室外熱交換器の放熱量を低下させ、前記加熱部分の加熱能力を増大させるように運転制御するものである。
【0138】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器を具備した室内ユニットが室内空気を流入させるための通風路が設けられ、かつ該通風路の開閉を行うダンパの様な開閉口を具備するものであって、室内ユニットを通る空気流を室内熱交換器を通過するものと室内熱交換器を通らず前記通風路を通過するものとの二系統設け、除湿運転時において、室内ファンを低風量にした場合には、圧縮機を低能力から高能力に制御するとともに室外ファンを高風量から低風量に制御することにより、室内ファンを高風量にする場合には、室内熱交換器を通過する空気流と前記通風路に設けた開閉口を開いて室内熱交換器を通らず通風路を通る空気流との両方を合わせて高風量とし、さらに圧縮機能力を下げた状態で低能力から高能力に制御すると共に室外ファンを高風量から低風量に制御することにより、冷房気味、等温気味、暖房気味の広い温度範囲にわたって低風量除湿運転あるいは高風量除湿運転を行うものである。
【0139】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器を具備した室内ユニットが室内空気を流入させるための通風路が設けられ、かつ該通風路の開閉を行う開閉口を具備するものであって、室内温度センサにより検出された室温と設定温度との差がほぼ零の時は、開閉口を開き、室内温度センサにより検出された室温と設定温度との差が負の時は開閉口を閉じるように制御するものである。
【0140】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が冷却・除湿部分と加熱部分とを有し、かつ室外熱交換器が二方弁を備えたバイパス管を設けたものであって、室内温度センサにより検出された室温が設定温度より低いと判断された時は、除湿運転時に前記二方弁を開くように制御するものである。
【0141】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分とを有するとともに、室内温度センサにより検出された温度を入力する制御回路を有するものであって、前記室内温度センサにより検出された温度と設定温度との差が正と判断された時は、該制御回路により室外熱交換器のファンの風量を増大させるように制御するとともに、室内熱交換器のファンの風量に応じて圧縮機の回転数を制御するものである。
【0142】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分とを有するとともに、室内温度センサにより検出された温度を入力する制御回路を有するものであって、前記室内温度センサにより検出された温度と設定温度との差がほぼ零と判断された時は、該制御回路により室外熱交換器のファンの風量を中くらいの範囲に制御するとともに、室内熱交換器のファンの風量に応じて圧縮機の回転数を制御するものである。
【0143】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分とを有するとともに、室内温度センサにより検出された温度を入力する制御回路を有するものであって、前記室内温度センサにより検出された温度と設定温度との差が負と判断された時は、該制御回路により室外熱交換器のファンの風量を低下させるように制御するとともに、室内熱交換器のファンの風量に応じて圧縮機の回転数を制御するものである。
【0144】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分とを有するとともに、室内温度センサにより検出された温度を入力する制御回路を有するものであって、前記室内温度センサにより検出された温度と設定温度との差が負と判断された時は、設定温度となるように加熱器の能力を制御するとともに、室内熱交換器のファンの風量に応じて圧縮機の回転数を制御するものである。
【0145】
又、前記室内熱交換器のファンの風量を低風量に設定した時は、前記圧縮機の能力を低下させるように制御するものである。又、前記室内熱交換器のファンの風量を高風量に設定した時は、前記圧縮機の能力を増大させるように制御するものである。
【0146】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、室外温度を検出する検出手段と、該検出手段からの信号に応じて室外ファンモータの回転数を制御する手段と、室内温度を検出する手段からの信号に応じて圧縮機の回転数を制御する手段とを備え、室温と除湿能力を制御するものである。
【0147】
又、室内熱交換器が冷却器と加熱器とよりなる除湿機能を有する空気調和機において、室外ファンモータの回転数を制御する手段と圧縮機の回転数を制御する手段を備え、室外ファンモータの回転数と圧縮機の回転数を制御して室温と除湿能力を制御するものである。
【0148】
又、室内熱交換器が冷却器と加熱器とよりなる除湿機能を有する空気調和機において、室内温度制御とは独立に室内熱交換器の除湿能力を体感温度がほぼ一定に保ちながら制御する手段を有するものである。
【0149】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、除湿運転として、おやすみ運転、カビ、ダニ防止運転の各運転モードを備えるものであって、前記室外熱交換器のファンの風量および圧縮機の回転数を段階的に制御することにより、室温と除湿能力を制御するものである。
【0150】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、室外温度を検出する検出手段と、該検出手段からの信号に応じて圧縮機の回転数を制御する手段と、室内温度を検出する手段からの信号に応じて圧縮機の回転数を制御する手段を備え、設定温度に室温を近ずけるように制御するとともに、湿度が40から60%の範囲となるように除湿能力を制御するものである。
【0151】
又、前記快適除湿運転、カビ・ダニ防止除湿運転、おやすみ・おめざめ除湿運転、ランドリー除湿運転のいずれかの運転モードにおいて、運転モードに適した温度及び湿度を予め記憶しておくとともに、温度センサおよび湿度センサにより温度および湿度を検出し、該検出した温度及び湿度が記憶されている温度及び湿度に合致するように前記制御装置により除湿運転を行うようにしたものである。
【0152】
又、前記室内熱交換器の冷却・除湿部分が加熱部分より風上側に設けられているものである。
【0153】
又、前記室内熱交換機の加熱部分が冷却・除湿部分の上側に設けられているものである。
【0154】
又、前記快適除湿運転が、PMVの温熱環境評価手法に基づいて制御されるものであって、該PMVがほぼ零となるように除湿運転を行うようにしたものである。
【0155】
又、前記圧縮機あるいは送風機が回転数制御を行うものである。
【0156】
又、前記主絞り装置あるいは除湿絞り装置が全開可能な電動膨張弁であるものである。
【0157】
又、前記空気調和機に封入される冷媒が混合冷媒であるものである。
【0158】
又、前記温度検出手段が、2つの温度センサにより検出された温度により換算されるものである。又、前記室内熱交換器からの空気の吹き出し温度が前記設定温度より3度以内高めに制御されるものである。
【0159】
又、前記室内熱交換器の冷却器と加熱器が上下方向に配置されているものである。
【0160】
上記2番目の目的を達成するために、本発明の空気調和機は、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分とを有するとともに、該冷却・除湿部分と加熱部分との間に除湿運転時に使用する除湿絞り装置を設け、前記冷却・除湿部分と加熱部分の冷媒流路がそれぞれ二系統以上に構成されているものである。
【0161】
又、前記二系統以上に構成した各冷媒流路の流通抵抗が等しくなるようにいずれか一方の冷媒流路に抵抗管を設けたものである。
【0162】
又、前記室内熱交換器のうち冷房運転時に上流側となる熱交換器の冷媒流路を一系統にしたものである。
【0163】
又、前記室内熱交換器のうち暖房運転時の冷媒流出口部分を一系統の冷媒流路にしたものである。
【0164】
又、前記室内熱交換器が放熱フィンにあけた孔の中に伝熱管を密着させて組み込むとともにこの放熱フィンに切断線を入れて二分割する構造にしたものである。 又、前記室内熱交換器が放熱フィンにあけた孔の中に伝熱管を密着させて組み込むとともにこの放熱フィンにスリットを設けて熱的に二分割する構造にしたものである。
【0165】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器を熱的に二分割して二分割されたその間に除湿運転時に使用する除湿絞り装置を設けるとともに、該室内熱交換器の暖房運転時の冷媒流出口部分を空気流に最も上流側に設けたものである。
【0166】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器を熱的に二分割して、二分割されたその間に除湿運転時に使用する除湿絞り装置を設けるとともに、該室内熱交換器の暖房運転時の冷媒流出口部分を、この冷媒流出口部分の下側に室内熱交換器の他の部分が配置されないように構成したものである。
【0167】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、室内熱交換器を熱的に二分割して、二分割されたその間に除湿運転時に使用する除湿絞り装置を設けるとともに、該室内熱交換器の暖房運転時の冷媒流入口部分を、この入口部分の風下側に室内熱交換器の他の部分が配置されないように構成したものである。
【0168】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、室内熱交換器を二分割して、二分割されたその間に除湿運転時に使用する除湿絞り装置を設けるとともに、該室内熱交換器の暖房運転時の冷媒流入口部分を、この入口部分の下方に室内熱交換器の他の部分が配置されないように構成したものである。
【0169】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器を熱的に二分割して、二分割されたその間に除湿運転時に使用する除湿絞り装置を設けるとともに、室内熱交換器を、放熱フィンにあけた孔の中に伝熱管を密着させて組み込むと共にこの放熱フィンに切断線を入れて二分割する構造にしたものである。
【0170】
又、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、前記室内熱交換器を熱的に二分割して二分割されたその間に除湿運転時に使用する除湿絞り装置を設けるとともに、室内熱交換器を、放熱フィンにあけた孔の中に伝熱管を密着させて組み込むとともにこの放熱フィンにスリットを設けて熱的に二分割する構造にしたものである。
【0171】
上記3番目又は4番目の目的を達成するために、本発明の空気調和機は、少なくとも圧縮機と室内熱交換器と絞り装置と室外熱交換器を備えた空気調和機において、除湿運転時に、前記室内熱交換器が熱的に分割された冷却・除湿部分と加熱部分とを有し、室内ユニットに室内湿度を検出する湿度検出手段と室外温度を検出する温度センサを具備し、あらかじめ本体マイコンに室外温度と室外ファンモータの制御パターンや室内吹出空気温度と室外ファンモータの制御パターン及び室内湿度と設定湿度の差を圧縮機回転数の制御パターンを入れておき、除湿運転時、室内側の湿度状態や室外温度に対応した最適運転を行う制御としたものである。
【0172】
以上の構成において、上記種々の使用目的の除湿運転において、例えば、おやすみ・おめざめ除湿運転では、特に気流感が無く低騒音でしかも除湿量の多い低風量除湿運転が必要であり、ランドリー除湿運転では特に気流が広い範囲まで届き乾燥能力の高い高風量除湿運転が必要である。快適除湿運転やカビ・ダニ除湿運転では、低風量除湿運転や高風量除湿運転を適当に使い分ける必要がある。又低風量除湿運転や高風量除湿運転に対して、さらに室温に応じて冷房気味、等温気味あるいは暖房気味の運転を行う必要がある。
【0173】
低風量除湿運転は、室内ファンの風量を落とすことにより実現でき、さらに圧縮機を低能力から高能力に制御したりあるいは室外ファンを高風量から低風量に制御することにより、冷房気味から等温気味に、さらに等温気味から暖房気味の広い温度範囲にわたって低風量除湿運転を行うことができる。
【0174】
高風量除湿運転を行うには、室内ファンの風量を増すと共に低風量除湿運転の場合に比べて圧縮機の能力を同等以上にして運転する。一方室内ユニットに前記開閉口を付けて室内側熱交換器を通らない通風路を設けた場合には、圧縮機を低風量除湿運転の場合と同等に低能力状態にして、さらにこの開閉口を開いて室内熱交換器を通る空気流に通らない空気流を加えて高風量にすることにより、高風量除湿運転をより省エネルギ状態で行うことができる。さらにこれらの高風量除湿運転において、圧縮機能力を高能力に制御したり、あるいは室外ファンを高風量から低風量に制御することにより、冷房気味から等温気味に、さらに等温気味から暖房気味の広い温度範囲にわたって高風量除湿運転を行うことができる。
【0175】
又、二分割した各室内側熱交換器の冷媒流路を複数化したことにより、除湿、冷房、暖房の各運転において、各流路の冷媒流量が減少し、二分割した利用側熱交換器を直列に接続したことによる圧力損失の増大を防いで、性能の低下を防止できる。この効果は、特に、両方の室内熱交換器が蒸発器となる冷房運転において大きい。さらに室内熱交換器における暖房運転時の出口流路部分を一系統にしたことにより、暖房運転時に、適切な冷媒のサブクールが取れ、性能を確保できる。又さらには室内熱交換器において、冷媒流と空気流とができるだけ対向流にすることにより、伝熱性能が維持され、性能が確保される。
【0176】
又、制御部は、温度センサで検出した外気温度を用い、室外ファンモータの運転パターンと回転数をあらかじめ記憶したデータテーブル、又は演算式により、その室外温度にあった室外ファンの運転を行う。さらに湿度検出手段で検出した室内湿度を用い、設定された湿度との差によってあらかじめ記憶したデータテーブル、又は演算式によりその湿度に応じた圧縮機の回転数を決定する。
【0177】
又、温度センサで検出した室内吹出空気温度を用い、室外ファンモータと圧縮機の回転数の運転パターンをあらかじめ記憶したデータテーブル、又は演算式により、運転パターンと回転数を決定する。
【0178】
以上説明した実施例の空気調和機によれば、室内熱交換器のような利用側熱交換器を二分割してそのあいだに除湿運転時に使用する除湿絞り装置を設け、除湿運転時に、利用側熱交換器の一方を蒸発器、他方を凝縮器として空気の冷却・除湿及び加熱を行う冷凍サイクルにおいて、室内ファンの様な利用側ファン、室外ファンのような熱源側ファン及び圧縮機を能力制御可能なものとして、これらの機器の能力を適当に制御することにより、除湿量を十分取れる状態で、低風量除湿運転、高風量除湿運転を行ったり、さらにはこれらの各除湿運転に対して暖房気味、等温気味、冷房気味の運転を行うことができる。
【0179】
この結果、除湿運転を、その利用範囲を大幅に拡大して、様々な使用目的の運転モード、例えば快適な除湿運転、おやすみ・おめざめ除湿運転、カビ・ダニ防止除湿運転、ランドリー除湿運転等に使うことが可能になり、最近高まっている快適性や健康に対するニーズを満足でき、さらには空調以外の目的にも使用できる空気調和機を提供することができる。
【0180】
又、それ程暑くない夏場に冷房運転の代わりに室温をそれ程下げずに湿度を下げて体感温度を同一する除湿運転を行ったり、さらには高風量除湿運転を低入力で行うことが出来るため、省エネルギを図ることができる。
【0181】
又、二分割した各利用側熱交換器の冷媒流路を二系統以上にして利用側熱交換器での冷媒流通抵抗の増加を防止したり、利用側熱交換器の冷媒流路における暖房運転時の出口部分を一系統にして暖房運転時に十分な冷媒サブクールが取れるようにしたり、さらには利用側熱交換器における冷媒流と空気流とができるだけ対向流になるようにしたこと等により、性能の低下を防ぐことができる。
【0182】
又、二分割した各利用側熱交換器の冷媒流路を冷媒流量に応じて一系統から複数系統にして利用側熱交換器での冷媒流通抵抗の増加を防止したり、利用側熱交換器の暖房運転時出口部分を一系統にして暖房運転時に十分な冷媒サブクールが取れるようにしたり、さらには利用側熱交換器における冷媒流と空気流とができるだけ対向流になるようにしたこと等により、性能の低下を防ぐことができる。
【0183】
又、室内ユニット側に吹出温度センサや湿度検出手段を設け、室外ユニット側に外気温センサを設けることにより、除湿運転時条件に合った快適な除湿運転を行うことが可能となる。例えば、室外温度が低くなる程、室外ファンの回転数を増して室内での空気加熱量を増すように制御したり、また湿度が高い場合には、室内ファンや圧縮機の回転数を増加し、除湿量の多い運転を行って部屋を素速く所定の湿度にしたり、さらには室温が低温の時、室内ユニットの吹出空気温度を吸込空気温度より高くする除湿運転を行うことが出来る。
【0184】
さらに又、以上のような除湿運転方法及び利用側熱交換器の配管構成は、単一冷媒、混合冷媒を問わず適用でき、同様の効果を得ることができる。
【0186】
【発明の効果】
発明によれば、冷房、暖房及び除湿運転における第1及び第2室内熱交換器での冷媒流圧力損失を二系統以上の冷媒流路によって低減し冷房、暖房及び除湿運転の性能を向上しつつ、第1室内熱交換器の風上側に設けた一系統の冷媒流路での冷媒流速を速くすることにより管内熱伝達率を高くして伝熱性能を向上することができる空気調和機を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例である空気調和機の構成を示す図である。
【図2】様々な使用目的の除湿運転の運転方法を示す流れ図である。
【図3】低風量除湿運転での圧縮機やファンの運転方法を示す流れ図である。
【図4】高風量除湿運転での圧縮機やファンの運転方法を示す流れ図である。
【図5】空気調和機の室内ユニット構造を示す側断面図である。
【図6】高風量除湿運転での圧縮機やファンの運転方法を示す流れ図である。
【図7】本発明の他の実施例である空気調和機の熱源側部分を示す図である。
【図8】暖房気味除湿運転に対応した熱源側部分の運転方法を示す流れ図である。
【図9】利用側熱交換器の配管系統を示す図である。
【図10】利用側熱交換器の正面図である。
【図11】利用側熱交換器の配管系統を示す図である。
【図12】利用側熱交換器の配管構成を示す側面図である。
【図13】利用側熱交換器の配管構成を示す側面図である。
【図14】利用側熱交換器の配管構成を示す側面図である。
【図15】利用側熱交換器の配管構成を示す側面図である。
【図16】利用側熱交換器の配管構成を示す側面図である。
【図17】利用側熱交換器の配管構成を示す側面図である。
【図18】利用側熱交換器の放熱フィンの側面図である。
【図19】利用側熱交換器の放熱フィンの側面図である。
【図20】絞り装置部分の構成図である。
【図21】冷凍サイクルの温度エントロピ線図である。
【図22】本発明のさらに他の実施例である空気調和機の構成を示す図である。
【図23】空気調和機の他の室内ユニット構造を示す側断面図である。
【図24】利用側熱交換器の配管系統を示す図である。
【図25】利用側熱交換器の配管系統を示す図である。
【図26】本発明の空気調和機の構成を示す図である。
【図27】室外ファンの制御方法を示す図である。
【図28】圧縮機の制御方法を示す図である。
【図29】室外ファン-圧縮機の制御方法を示す図である。
【図30】従来技術による空気調和機の構成を示す図である。
【図31】従来技術の制御方法を示す図である。
【図32】本発明による運転パターンの一実施例を示す図である。
【符号の説明】
1、201…圧縮機、2、202…四方弁、3、203…室外熱交換器、4…主絞り装置、5、8、41…二方弁、6a、6b、51a、51b、60a、60b、60c、60d、68、68’、69、69’、70、70a、70b、80、80a、80b、88、88a、88b98、98a、98b、100a、100b、100c、110a、110b、208、209…室内熱交換器、7、210…除湿絞り装置、10、211…室外ファン、11、212…室外ファンモータ、12、213…室内ファン、13、214…室内ファンモータ、16…制御部、17、216…温度センサ、18、216…湿度検出手段、34…開閉ダンパ、35…通風路、52、53、54、55、61、62、63、64、65、66、67、101、102、103、104、105、106、10…冷媒配管、56、71、81、91、91a、91b、93、93a、93b…放熱フィン、72、82、89、96、97…切断線、73a、73b、73c、73d、73e、73f、74a、74b、74c、74d、74e、74f、75a、75b、75c、75d、75e、75f、75g、83a、83b、83c、87a、87b、87c、87d、87e、87f、87g、87h…伝熱管、86…抵抗管、92、94…スリット、95…電動膨張弁、204…暖房用絞り装置、205…冷暖房用絞り装置、206…バイパス用電磁弁、207…逆止弁、210…除湿用絞り装置、215…外気温センサ、217…室内吸込温度センサ、218…室内吹出温度センサ。

Claims (3)

  1. 圧縮機と、室外熱交換器と、室外ファンと、第1室内熱交換器及び第2室内熱交換器を有する室内熱交換器と、除湿運転時に絞り装置として機能する除湿絞り装置と、室内ファンとを備え、除湿運転時に前記圧縮機、前記室外熱交換器、前記第1室内熱交換器、前記除湿絞り装置、前記第2室内熱交換器の順に接続され、冷房運転時に前記圧縮機、前記室外熱交換器、前記第1室内熱交換器、前記第2室内熱交換器の順に接続され、暖房運転時に前記圧縮機、前記第2室内熱交換器、前記第1室内熱交換器、前記室外熱交換器の順に接続される空気調和機において、
    前記第1室内熱交換器における風上に配置され除湿運転時及び冷房運転時に冷媒入口となると共に暖房運転時に冷媒出口側となり冷媒流れを一系統とした冷媒流路と、
    前記第1室内熱交換器にあって前記一系統の冷媒流路の除湿運転時及び冷房運転時の冷媒流れ方向下流に配置されされると共に前記一系統の冷媒流路の暖房運転時の冷媒流れ方向上流に配置され冷媒流れが二系統以上の冷媒流路と、
    前記第2室内熱交換器にあって、除湿運転時に前記二系統以上の冷媒流路からの冷媒が前記除湿絞り装置を介して流入する冷媒流れが二系統以上の冷媒流路と、この二系統以上の冷媒流路の風下に配置され冷媒流れが二系統以上の冷媒流路と
    を備えたことを特徴とする空気調和機。
  2. 請求項1において、除湿運転時に加熱器となる前記第1室内熱交換器を除湿運転時に冷却・除湿器となる前記第2室内熱交換器の除湿水が垂れない位置に設けたことを特徴とする空気調和機。
  3. 請求項2において、除湿運転時に加熱器となる前記第1室内熱交換器の配管本数を除湿運転時に冷却・除湿器となる前記第2室内熱交換器の配管本数より多くしたことを特徴とする空気調和機。
JP2002131929A 1993-06-01 2002-05-07 空気調和機 Expired - Lifetime JP3703440B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131929A JP3703440B2 (ja) 1993-06-01 2002-05-07 空気調和機

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP13025693 1993-06-01
JP22543593 1993-09-10
JP5-237635 1993-09-10
JP5-130256 1993-09-10
JP5-225435 1993-09-10
JP23763593 1993-09-24
JP2002131929A JP3703440B2 (ja) 1993-06-01 2002-05-07 空気調和機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33494493A Division JP3397413B2 (ja) 1993-06-01 1993-12-28 空気調和機

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005178989A Division JP3993616B2 (ja) 1993-06-01 2005-06-20 空気調和機
JP2005178990A Division JP3993617B2 (ja) 1993-06-01 2005-06-20 空気調和機

Publications (2)

Publication Number Publication Date
JP2002340437A JP2002340437A (ja) 2002-11-27
JP3703440B2 true JP3703440B2 (ja) 2005-10-05

Family

ID=27471522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131929A Expired - Lifetime JP3703440B2 (ja) 1993-06-01 2002-05-07 空気調和機

Country Status (1)

Country Link
JP (1) JP3703440B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229208B2 (ja) * 2009-12-24 2013-07-03 ダイキン工業株式会社 空気調和装置
JP5505350B2 (ja) * 2011-03-30 2014-05-28 株式会社デンソー 車両用冷凍サイクル装置
DE102012204404B4 (de) 2011-03-25 2022-09-08 Denso Corporation Wärmeaustauschsystem und Fahrzeugkältekreislaufsystem
JP2012229897A (ja) * 2011-04-27 2012-11-22 Daikin Industries Ltd 熱交換器およびこの熱交換器を備えた空気調和機
CN106440045B (zh) * 2016-10-21 2019-04-16 海信(山东)空调有限公司 一种恒温除湿空调器及空调器控制方法
CN115218299B (zh) * 2022-06-16 2024-05-28 广州万二二麦工程技术有限公司 一种切断过冷段与冷凝段翅片热桥联系的超高能效除湿机

Also Published As

Publication number Publication date
JP2002340437A (ja) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3634818B2 (ja) 空気調和機
JP3397413B2 (ja) 空気調和機
JP3993616B2 (ja) 空気調和機
JP4068927B2 (ja) 空気調和機
JP3645231B2 (ja) 空気調和機
JP3703440B2 (ja) 空気調和機
JP3653261B2 (ja) 空気調和機
JP5049500B2 (ja) 除湿空調システム及び除湿空調機
JP4612001B2 (ja) 空気調和機
JP2008121997A (ja) 空気調和機
JP4092919B2 (ja) 空気調和機
JP2001208401A (ja) 空気調和機
JP3936345B2 (ja) 空気調和機
JP3993617B2 (ja) 空気調和機
JP2006177599A (ja) 空気調和機
JP3724011B2 (ja) 空気調和機
JP3515071B2 (ja) 空気調和機
JP2007240146A (ja) 空気調和機
JP3677887B2 (ja) 空気調和機
JP4483141B2 (ja) 空気調和機
JP2004132573A (ja) 空気調和機
JPH1183125A (ja) 空気調和機
JP3885063B2 (ja) 空気調和機
JP3297105B2 (ja) 空気調和機
JP3596513B2 (ja) 空気調和機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

EXPY Cancellation because of completion of term