JP3703366B2 - Purification method for contaminated soil, slurry, etc. - Google Patents

Purification method for contaminated soil, slurry, etc. Download PDF

Info

Publication number
JP3703366B2
JP3703366B2 JP2000159279A JP2000159279A JP3703366B2 JP 3703366 B2 JP3703366 B2 JP 3703366B2 JP 2000159279 A JP2000159279 A JP 2000159279A JP 2000159279 A JP2000159279 A JP 2000159279A JP 3703366 B2 JP3703366 B2 JP 3703366B2
Authority
JP
Japan
Prior art keywords
hydrophobic organic
tank
organic substance
soil
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000159279A
Other languages
Japanese (ja)
Other versions
JP2001334290A (en
Inventor
智彦 佐々木
安雄 堀井
浩一 中河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000159279A priority Critical patent/JP3703366B2/en
Publication of JP2001334290A publication Critical patent/JP2001334290A/en
Application granted granted Critical
Publication of JP3703366B2 publication Critical patent/JP3703366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌、スラリー等の浄化方法に関し、一般廃棄物や産業廃棄物等の最終処分場における浸出水、汚染土壌、スラリー等に含まれた有害疎水性有機物を脱着する技術に係るものである。
【0002】
【従来の技術】
従来、土壌やスラリー中に含まれる疎水性有害有機物、例えばダイオキシン類、PCB類、芳香族炭化水素類などは、固相粒子に非常に強く吸着されており、一般的に処理が非常に困難である。bioremediation等の微生物によって有機物を消化する生物学的処理方式では、水相に含まれる有機物しか処理できない場合が多い。また、揮発性の高い物質に関しては、熱脱着により固相からの分離も可能であるが、沸点の高い物質には対応できず、焼却等非常に処理コストの高い方式で対応せざるを得なかった。
【0003】
例えば、固形物中のダイオキシン類を、1200度以上の高温度条件下において溶融する溶融処理法や、370度以上、22MPa以上の高温度、高圧力条件下において処理する超臨界処理法がある。あるいは、処理対象物に水素供与体、アルカリ、溶媒を添加した後に、窒素雰囲気下で、350度程度に加熱処理するアルカリ触媒分解法がある。
【0004】
【発明が解決しようとする課題】
しかし、疎水性有機物に汚染された土壌は、汚染物質が固相に強く吸着しているために浄化が困難であり、bioremediationなどの処理を行なっても土壌中の汚染物濃度が変化しなくなるなど限界があった。さらに、浄化を行なうためには上述した土壌の焼却等の処理コストが高い方式しかなく、現実的でなかった。
【0005】
本発明は上記した課題を解決するものであり、疎水性有機物を、常温、常圧の下で少ないエネルギーによって固相から脱着することができる汚染土壌、スラリー等の浄化方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の汚染土壌、スラリー等の浄化方法は、反応槽に貯留した固液混相の処理対象物に、疎水性有機物に対する吸着能を有する球状樹脂を添加し、槽内の水面付近に浮遊する球状樹脂を槽底部へ巡廻させて槽内で球状樹脂を循環しながら、槽内に配置した超音波発信体から処理対象物へ固相に振動抽出作用を及ぼす超音波を照射し、振動抽出作用によって疎水性有機物を固相から液相に移行させて脱着し、界面活性剤と疎水性有機物との結合によって固相に対する疎水性有機物の再吸着を防止するとともに、脱着した疎水性有機物を球状樹脂に吸着するものである。
【0007】
上記した構成により、処理対象物に含まれたダイオキシン類等の疎水性有機物は、固相の土壌粒子表層に吸着し、あるいは途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する。
【0008】
土壌粒子表層に吸着した疎水性有機物は液相と接していれば平衡状態を保つように土壌から脱着する。このため、液相の疎水性有機物を球状樹脂によって吸着し、液相の疎水性有機物濃度を減じることにより、平衡を保つように土壌から疎水性有機物が脱着し、土壌中の汚染物濃度が低下して処理対象物の浄化が進行する。球状樹脂は槽内を流動することにより、疎水性有機物との接触頻度が高まり、吸着効率が向上する。
【0009】
しかし、途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する疎水性有機物は、非常に強く土壌粒子に吸着されており、液相中へ殆ど移行しない形態となって存在している。
【0010】
このため、処理対象物の固相に作用する超音波を照射し、その振動エネルギーによって疎水性有機物を液相ヘ移行しやすい形態に変化させて固相から液相に移行させる。この振動抽出作用によって抽出した疎水性有機物は再び固相に再吸着し易いが、界面活性剤が疎水性有機物と結合することによって、固相に対する疎水性有機物の再吸着を防止し、疎水性有機物を液相に留める。この液相の疎水性有機物を球状樹脂によって吸着し、液相の疎水性有機物濃度を減じ、土壌から疎水性有機物が脱着することを促進し、処理対象物の浄化を行なう。
【0011】
スラリーの浄化が終了したら、球状粒子はオーバーフロー水と共に槽外へ取り出す。球状樹脂は水に浮くので容易に回収できる。回収効率を上げるため反応槽内に水を入れてもよい。取り出した球状樹脂はトルエン等の溶剤で洗浄して再生し再利用する。溶剤中に溶け込んだ疎水性有機物は別途処理をする。処理済みのスラリーは底部より引き抜いて脱水等の処理を施す。
【0012】
振動抽出作用を及ぼす超音波は、処理対象物の物性、例えば疎水性有機物の種類や組成、汚泥や土壌の性状によって異なり、あるいは反応槽の形状によって異なるので、経験則として予め求める。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1において、反応槽1に貯留する処理対象物2は、産業廃棄物等の最終処分場における埋立地浸出水、汚染土壌、スラリー等であり、ダイオキシン類、PCB類、芳香族炭化水素等の疎水性有機物を含んでいる。
【0014】
反応槽1には、固液混相の処理対象物2を供給する供給系3と、界面活性剤を投入する薬剤供給系4と、疎水性有機物に対する吸着能を有する球状樹脂(XAD2)aを投入する吸着剤供給系5とを接続しており、槽上部と槽底部を連通して循環系6を設け、循環系6から分岐して処理スラリーを取り出す排出系7を設けており、循環系6の上部にオーバーフロー用のバルブ8を設けている。球状樹脂(XAD2)は、巨大網状構造をもった合成吸着剤であって、硬くて、かつ不溶性であって多孔性ポリマーの球状樹脂である。その物性を表1に示す。
【0015】
【表1】

Figure 0003703366
反応槽1の内部には、超音波発信体9(ホーン)を設けており、超音波発信体9は導波管10を通して超音波発振器11に接続している。超音波発振器11は処理対象物2の固相に振動抽出作用を及ぼす超音波振動を発振するものである。超音波発信体9は電圧を受けて発振するセラミック等の振動子を使用することもできる。
【0016】
超音波発信体9から発信する超音波、つまり振動抽出作用を及ぼす超音波の周波数は、処理対象物2の物性、例えば疎水性有機物の種類や組成、汚泥や土壌の性状によって異なり、あるいは反応槽1の形状によって異なるので、経験則として予め求める。
【0017】
以下、上記した構成における作用を説明する。供給系3から反応槽1へ処理対象物2を供給し、所定量の処理対象物2を反応槽1に貯留する。薬剤供給系4から所定量の界面活性剤、例えばLAS(アルキルベンゼンスルフォン酸ナトリウム)を、CMC濃度(臨界ミセル濃度)以上に保たれるように添加し、吸着剤供給系5から適当量の球状樹脂aを投入する。循環系6を通して槽内の水面付近に浮遊する球状樹脂aを処理対象物2とともに槽底部に巡廻し、処理対象物2およぼ球状樹脂aを槽内で循環流動させる。
【0018】
処理対象物2に含まれたダイオキシン類等の疎水性有機物は、固相の土壌粒子表層に吸着し、あるいは途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する。
【0019】
土壌粒子表層に吸着した疎水性有機物は液相と接していれば平衡状態を保つように土壌から脱着する。このため、液相の疎水性有機物を球状樹脂aによって吸着し、液相の疎水性有機物濃度を減じることにより、平衡を保つように土壌から疎水性有機物が脱着し、土壌中の汚染物濃度が低下して処理対象物2の浄化が進行する。このとき、球状樹脂aが槽内を流動することにより、疎水性有機物との接触頻度が高まり、吸着効率が向上する。
【0020】
しかし、途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する疎水性有機物は、液相に接するだけでは、その低い溶解度のために脱着することが困難である。
【0021】
このため、超音波発振器11で発振する超音波を導波管10を通して超音波発信体9から処理対象物2へ照射し、その振動エネルギーによって疎水性有機物を固相から液相に移行させる。この振動抽出作用によって抽出した疎水性有機物は再び固相に再吸着し易いが、界面活性剤が疎水性有機物と結合することによって、固相に対する疎水性有機物の再吸着を防止し、疎水性有機物を液相に留める。一方、液相に移行した疎水性有機物を球状樹脂aによって吸着し、液相の疎水性有機物濃度を減じ、土壌から疎水性有機物が脱着することを促進し、処理対象物2の浄化を行なう。
【0022】
球状樹脂aはバルブ8を開栓してオーバーフロー水と共に槽外へ取り出す。球状樹脂は水に浮くので、容易に回収できる。回収効率を上げるため反応槽内に水を入れてもよい。取り出した球状樹脂はトルエン等の溶剤で疎水性有機物を抽出・洗浄し、再利用する。
【0023】
以下に、上述した構成の実証試験について説明する。図2は水相と土壌の2相モデルの概念図である。土壌に吸着している汚染物には比較的に弱い力で土壌に吸着して早く水相へ移行するものと、強力に吸着して殆ど水中へ移行しないものとがある。弱い吸着物の割合をFで示し、強い吸着物の割合を1−Fで示しており、Fが大きい程に土壌浄化は容易となる。
【0024】
【数1】
Figure 0003703366
この2相モデル方程式は、土壌中の初期汚染物量S0がx時間後にどの程度(Sx)になるかを示したモデル式である。図3は上記のモデル方程式のグラフ図であり、弱い吸着物の割合Fが大きい程に汚染物がたくさん落ちるので最終的な(Sx)は小さくなり、早い脱着の定数k1が大きい程に汚染物が早く落ちるのでカーブの傾きは急になる。
【0025】
図4は、ある汚染土壌を水中で反転攪拌して汚染物を洗い流した2相モデルの結果を示すものであり、ナフタリンは68%、フェナントレンは46%、ピレンは42%が早く水中へ移行している。
【0026】
図5は、同じ汚染土壌を界面活性剤の存在下で超音波処理した後に反転攪拌した2相モデルの結果を示すものであり、ナフタリンは93%、フェナントレンは94%、ピレンは90%が早く水中へ移行しており、浄化効率が確実に上がっていることを示している。
【0027】
図6は、図5に示した処理を行なった後の弱い吸着物の割合Fを示しており、他の物質に関しても、界面活性剤の存在下で超音波処理することが有効であることが伺える。
【0028】
【発明の効果】
以上述べたように本発明によれば、処理対象物に球状樹脂と界面活性剤を添加して超音波を照射することにより、処理対象物から疎水性有機物を脱着するとともに、脱着した疎水性有機物を界面活性剤で液相に留めながら球状樹脂で吸着して、処理対象物から疎水性有機物を分離して浄化することができる。したがって、ダイオキシン類、農薬等の疎水性有機物を、常温、常圧の下で少ないエネルギーによって固相から脱着し、汚染土壌、スラリー等の浄化を行なえる。
【図面の簡単な説明】
【図1】本発明の実施形態における浄化装置の模式図である。
【図2】水相と土壌の2相モデルの概念図である。
【図3】モデル方程式のグラフ図である。
【図4】ある汚染土壌を水中で反転攪拌した2相モデルの結果を示すグラフ図である。
【図5】同汚染土壌を界面活性剤の存在下で反転攪拌するとともに超音波処理した2相モデルの結果を示すグラフ図である。
【図6】図5に示した処理を行なった後の弱い吸着物の割合Fを示すグラフ図である。
【符号の説明】
1 反応槽
2 処理対象物
3 供給系
4 薬剤供給系
5 吸着剤供給系
6 循環系
7 排出系
8 バルブ
9 超音波発信体
10 導波管
11 超音波発振器
a 球状樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification method for contaminated soil, slurry, etc., and relates to a technique for desorbing harmful hydrophobic organic substances contained in leachate, contaminated soil, slurry, etc. at final disposal sites such as general waste and industrial waste. It is.
[0002]
[Prior art]
Conventionally, hydrophobic harmful organic substances contained in soil and slurry, such as dioxins, PCBs, and aromatic hydrocarbons, are adsorbed very strongly to solid phase particles and are generally very difficult to treat. is there. In biological treatment methods such as bioremediation that digest organic matter with microorganisms, only organic matter contained in the aqueous phase can often be treated. In addition, highly volatile substances can be separated from the solid phase by thermal desorption, but they cannot handle substances with a high boiling point, and must be handled by a method with very high processing costs such as incineration. It was.
[0003]
For example, there are a melt processing method in which dioxins in a solid are melted under a high temperature condition of 1200 ° C. or higher, and a supercritical processing method in which a dioxin is processed under a high temperature of 370 ° C. or higher and 22 MPa or higher under high pressure conditions. Alternatively, there is an alkali catalyst decomposition method in which a hydrogen donor, an alkali, and a solvent are added to the object to be treated, and then heat treatment is performed at about 350 ° C. in a nitrogen atmosphere.
[0004]
[Problems to be solved by the invention]
However, soil contaminated with hydrophobic organic matter is difficult to purify because the contaminants are strongly adsorbed on the solid phase, and the concentration of contaminants in the soil does not change even after treatment such as bioremediation. There was a limit. Furthermore, in order to purify, there is only a method with a high processing cost such as incineration of the soil described above, which is not realistic.
[0005]
The present invention solves the above-described problems, and an object of the present invention is to provide a purification method for contaminated soil, slurry, etc. that can desorb a hydrophobic organic substance from a solid phase with a small amount of energy at normal temperature and normal pressure. And
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for purifying contaminated soil, slurry, etc. of the present invention adds a spherical resin having an adsorbing ability to hydrophobic organic substances to a solid-liquid mixed phase treatment object stored in a reaction tank, While circulating the spherical resin floating near the water surface in the tank to the bottom of the tank and circulating the spherical resin in the tank, the ultrasonic transmitter placed in the tank has a vibration extraction action on the solid phase from the treatment object By irradiating sound waves, the hydrophobic organic substance is transferred from the solid phase to the liquid phase by vibration extraction and desorbed, and the resorption of the hydrophobic organic substance to the solid phase is prevented by the binding between the surfactant and the hydrophobic organic substance, The desorbed hydrophobic organic substance is adsorbed on the spherical resin.
[0007]
With the above-described configuration, hydrophobic organic substances such as dioxins contained in the object to be treated are adsorbed on the surface layer of the solid phase soil particles, attached to the pores in the middle of the fine particles, or contained in the soil particles. It is intricately intertwined.
[0008]
Hydrophobic organic matter adsorbed on the soil particle surface layer desorbs from the soil so as to maintain an equilibrium state when it is in contact with the liquid phase. For this reason, the hydrophobic organic matter in the liquid phase is adsorbed by the spherical resin, and the hydrophobic organic matter in the soil is desorbed from the soil so as to maintain equilibrium by reducing the hydrophobic organic matter concentration in the liquid phase, thereby reducing the contaminant concentration in the soil. Then, the purification of the processing object proceeds. When the spherical resin flows in the tank, the frequency of contact with the hydrophobic organic substance is increased and the adsorption efficiency is improved.
[0009]
However, hydrophobic organic substances that are attached to the inner pores of the fine particles in the middle of the process or are intricately entangled with the organic substances contained in the soil particles are adsorbed very strongly by the soil particles and almost migrate into the liquid phase. It exists in a form that does not.
[0010]
For this reason, the ultrasonic wave which acts on the solid phase of a process target object is irradiated, the hydrophobic organic substance is changed into the form which is easy to transfer to a liquid phase with the vibration energy, and it transfers from a solid phase to a liquid phase. Hydrophobic organic substances extracted by this vibration extraction action are likely to be re-adsorbed to the solid phase again, but the surfactant binds to the hydrophobic organic substance, thereby preventing the re-adsorption of the hydrophobic organic substance to the solid phase. In the liquid phase. The hydrophobic organic substance in the liquid phase is adsorbed by the spherical resin, the concentration of the hydrophobic organic substance in the liquid phase is reduced, the desorption of the hydrophobic organic substance from the soil is promoted, and the treatment target is purified.
[0011]
When the purification of the slurry is completed, the spherical particles are taken out of the tank together with the overflow water. The spherical resin floats in water and can be easily recovered. In order to increase the recovery efficiency, water may be put into the reaction vessel. The removed spherical resin is washed with a solvent such as toluene, regenerated and reused. The hydrophobic organic substance dissolved in the solvent is treated separately. The treated slurry is pulled out from the bottom and subjected to treatment such as dehydration.
[0012]
The ultrasonic wave that exerts the vibration extraction action varies depending on the physical properties of the object to be treated, for example, the type and composition of the hydrophobic organic substance, the sludge and soil properties, or varies depending on the shape of the reaction tank.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the processing object 2 stored in the reaction tank 1 is landfill leachate, contaminated soil, slurry, etc. at the final disposal site for industrial waste, etc., such as dioxins, PCBs, aromatic hydrocarbons, etc. Contains hydrophobic organic matter.
[0014]
In the reaction tank 1, a supply system 3 for supplying a solid-liquid mixed phase treatment object 2, a chemical supply system 4 for supplying a surfactant, and a spherical resin (XAD 2) a capable of adsorbing hydrophobic organic substances are introduced. The adsorbent supply system 5 is connected, the circulation system 6 is provided by connecting the tank upper part and the tank bottom, and the discharge system 7 is provided to branch out from the circulation system 6 and take out the processing slurry. An overflow valve 8 is provided at the top of the head. The spherical resin (XAD2) is a synthetic adsorbent having a huge network structure, and is a hard and insoluble porous polymer spherical resin. The physical properties are shown in Table 1.
[0015]
[Table 1]
Figure 0003703366
An ultrasonic transmitter 9 (horn) is provided inside the reaction tank 1, and the ultrasonic transmitter 9 is connected to an ultrasonic oscillator 11 through a waveguide 10. The ultrasonic oscillator 11 oscillates ultrasonic vibration that exerts a vibration extraction action on the solid phase of the processing object 2. The ultrasonic transmitter 9 may be a vibrator such as ceramic that oscillates upon receiving a voltage.
[0016]
The frequency of the ultrasonic wave transmitted from the ultrasonic transmitter 9, that is, the frequency of the ultrasonic wave that exerts the vibration extraction action differs depending on the physical properties of the treatment object 2, for example, the type and composition of the hydrophobic organic substance, the sludge and soil properties, or the reaction tank Since it differs depending on the shape of 1, it is obtained in advance as an empirical rule.
[0017]
Hereinafter, the operation of the above-described configuration will be described. The processing object 2 is supplied from the supply system 3 to the reaction tank 1, and a predetermined amount of the processing object 2 is stored in the reaction tank 1. A predetermined amount of a surfactant such as LAS (sodium alkylbenzene sulfonate) is added from the drug supply system 4 so as to be maintained at a CMC concentration (critical micelle concentration) or more, and an appropriate amount of spherical resin is added from the adsorbent supply system 5. Insert a. The spherical resin a floating near the water surface in the tank through the circulation system 6 is circulated to the bottom of the tank together with the processing object 2, and the processing object 2 and the spherical resin a are circulated and flowed in the tank.
[0018]
Hydrophobic organic substances such as dioxins contained in the treatment object 2 are adsorbed on the surface layer of the soil particles in the solid phase, attached to the pores in the fine particles, or complicatedly entangled with the organic substances contained in the soil particles. It exists.
[0019]
Hydrophobic organic matter adsorbed on the soil particle surface layer desorbs from the soil so as to maintain an equilibrium state when it is in contact with the liquid phase. For this reason, the hydrophobic organic substance in the liquid phase is adsorbed by the spherical resin a, and the hydrophobic organic substance is desorbed from the soil so as to maintain the equilibrium by reducing the hydrophobic organic substance concentration in the liquid phase, so that the contaminant concentration in the soil is reduced. Decrease and purification of the processing object 2 proceeds. At this time, when the spherical resin a flows in the tank, the frequency of contact with the hydrophobic organic substance is increased, and the adsorption efficiency is improved.
[0020]
However, hydrophobic organic substances that are attached to the inner pores of fine particles in the middle of the process or that are intricately entangled with organic substances contained in the soil particles can be desorbed due to their low solubility only by contacting the liquid phase. Have difficulty.
[0021]
For this reason, the ultrasonic wave oscillated by the ultrasonic oscillator 11 is irradiated from the ultrasonic transmitter 9 to the processing object 2 through the waveguide 10, and the hydrophobic organic substance is shifted from the solid phase to the liquid phase by the vibration energy. Hydrophobic organic substances extracted by this vibration extraction action are likely to be re-adsorbed to the solid phase again, but the surfactant binds to the hydrophobic organic substance, thereby preventing the re-adsorption of the hydrophobic organic substance to the solid phase. In the liquid phase. On the other hand, the hydrophobic organic substance transferred to the liquid phase is adsorbed by the spherical resin a, the concentration of the hydrophobic organic substance in the liquid phase is decreased, the desorption of the hydrophobic organic substance from the soil is promoted, and the treatment object 2 is purified.
[0022]
The spherical resin a is taken out of the tank together with overflow water by opening the valve 8. Since the spherical resin floats in water, it can be easily recovered. In order to increase the recovery efficiency, water may be put into the reaction vessel. The extracted spherical resin is extracted and washed with a solvent such as toluene and reused.
[0023]
Below, the verification test of the structure mentioned above is demonstrated. FIG. 2 is a conceptual diagram of a two-phase model of an aqueous phase and soil. Contaminants adsorbed on the soil include those that adsorb to the soil with a relatively weak force and quickly migrate to the water phase, and those that adsorb strongly and hardly migrate to the water. The ratio of weak adsorbate is indicated by F, and the ratio of strong adsorbate is indicated by 1-F, and soil purification becomes easier as F becomes larger.
[0024]
[Expression 1]
Figure 0003703366
This two-phase model equation is a model formula showing how much (Sx) the amount of initial contaminant S 0 in the soil becomes after x hours. FIG. 3 is a graph of the above model equation. The larger the ratio F of weakly adsorbed material, the more contaminants fall, so the final (Sx) becomes smaller, and the faster desorption constant k1 becomes larger, the more contaminants. Falls quickly, so the slope of the curve becomes steep.
[0025]
Fig. 4 shows the results of a two-phase model in which a contaminated soil was inverted and stirred in water to wash away contaminants. Naphthalene 68%, phenanthrene 46%, and pyrene 42% quickly moved into water. ing.
[0026]
FIG. 5 shows the results of a two-phase model in which the same contaminated soil was sonicated in the presence of a surfactant and then inverted and stirred, with 93% naphthalene, 94% phenanthrene, and 90% faster for pyrene. It has moved to the water, indicating that the purification efficiency has definitely increased.
[0027]
FIG. 6 shows the ratio F of weakly adsorbed material after the treatment shown in FIG. 5 is performed, and it is effective to ultrasonically treat other substances in the presence of a surfactant. I can ask.
[0028]
【The invention's effect】
As described above, according to the present invention, by adding a spherical resin and a surfactant to a processing object and irradiating ultrasonic waves, the hydrophobic organic substance is desorbed from the processing object and the desorbed hydrophobic organic substance Can be adsorbed with a spherical resin while being kept in a liquid phase with a surfactant to separate and purify the hydrophobic organic substance from the object to be treated. Accordingly, hydrophobic organic substances such as dioxins and agricultural chemicals can be desorbed from the solid phase with a small amount of energy at normal temperature and normal pressure to purify contaminated soil and slurry.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a purification device according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a two-phase model of an aqueous phase and soil.
FIG. 3 is a graph of a model equation.
FIG. 4 is a graph showing the results of a two-phase model in which a certain contaminated soil is inverted and stirred in water.
FIG. 5 is a graph showing the results of a two-phase model in which the contaminated soil was inverted and stirred in the presence of a surfactant and sonicated.
6 is a graph showing the ratio F of weakly adsorbed material after the processing shown in FIG. 5 is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Processing target object 3 Supply system 4 Drug supply system 5 Adsorbent supply system 6 Circulation system 7 Discharge system 8 Valve 9 Ultrasonic transmitter 10 Waveguide 11 Ultrasonic oscillator a Spherical resin

Claims (1)

反応槽に貯留した固液混相の処理対象物に、疎水性有機物に対する吸着能を有する球状樹脂を添加し、槽内の水面付近に浮遊する球状樹脂を槽底部へ巡廻させて槽内で球状樹脂を循環しながら、槽内に配置した超音波発信体から処理対象物へ固相に振動抽出作用を及ぼす超音波を照射し、振動抽出作用によって疎水性有機物を固相から液相に移行させて脱着し、界面活性剤と疎水性有機物との結合によって固相に対する疎水性有機物の再吸着を防止するとともに、脱着した疎水性有機物を球状樹脂に吸着することを特徴とする汚染土壌、スラリー等の浄化方法。A spherical resin capable of adsorbing hydrophobic organic substances is added to the solid-liquid mixed phase treatment object stored in the reaction tank, and the spherical resin floating near the water surface in the tank is circulated to the bottom of the tank to form a spherical shape in the tank. While circulating the resin, irradiate the treatment object with ultrasonic waves that exert a vibration extraction action on the solid phase from the ultrasonic transmitter placed in the tank, and transfer the hydrophobic organic matter from the solid phase to the liquid phase by the vibration extraction action. Contaminated soil, slurry, etc. characterized by adsorbing the desorbed hydrophobic organic substance to the spherical resin while preventing re-adsorption of the hydrophobic organic substance to the solid phase by binding the surfactant and the hydrophobic organic substance Purification method.
JP2000159279A 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc. Expired - Fee Related JP3703366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000159279A JP3703366B2 (en) 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000159279A JP3703366B2 (en) 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc.

Publications (2)

Publication Number Publication Date
JP2001334290A JP2001334290A (en) 2001-12-04
JP3703366B2 true JP3703366B2 (en) 2005-10-05

Family

ID=18663620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159279A Expired - Fee Related JP3703366B2 (en) 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc.

Country Status (1)

Country Link
JP (1) JP3703366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977076A (en) * 2017-05-02 2017-07-25 温州广德建设有限公司 Municipal sludge processing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654134B2 (en) * 2006-02-10 2011-03-16 本多電子株式会社 Purification system for soil contaminated with volatile organic compounds and purification method thereof
CN104646408B (en) * 2014-10-16 2017-08-29 中山大学 The separator and separation method of polymer in soil
CN107188382B (en) * 2017-06-14 2024-04-16 山西省环境科学研究院 Method for removing polycyclic aromatic hydrocarbon in sediment in situ
CN109264946A (en) * 2018-11-28 2019-01-25 知合环境(北京)有限责任公司 A kind of method of step depth separation oily sludge
CN115405054A (en) * 2022-09-09 2022-11-29 北京建筑大学 Green roof system of matrix normal position restoration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977076A (en) * 2017-05-02 2017-07-25 温州广德建设有限公司 Municipal sludge processing method

Also Published As

Publication number Publication date
JP2001334290A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US5087374A (en) Removal of contaminates from granular solids
JP3703366B2 (en) Purification method for contaminated soil, slurry, etc.
JP2001170695A (en) Gaseous methane refining equipment and domestic animal dung treatment facility
JP3918657B2 (en) Method and apparatus for purifying contaminated soil
JP3703367B2 (en) Purification method for contaminated soil, slurry, etc.
JP3703368B2 (en) Purification method for contaminated soil, slurry, etc.
CN106363015B (en) Method for regenerating and eluting cleaning solution for soil heavily polluted by petroleum
CA2766071C (en) Treatment of liquid with oily contaminants
JP2004504943A5 (en)
JP3236219B2 (en) Soil purification method and equipment
JP2004504943A (en) Reuse of used cooking oil adsorbent
JP3221558B2 (en) Soil purification method and equipment
JP6098822B2 (en) Fly ash cleaning device and fly ash cleaning method
JP2002233859A (en) Method for decontaminating contaminated soil containing oleaginous harmful substance or the like and facility and system therefor
JP6927145B2 (en) Fly ash cleaning device and fly ash cleaning method
JP2006192413A (en) Method for cleaning contaminated soil
Duong et al. Ultrasound‐assisted treatment of kaolin artificially contaminated with phenanhtrene, fluoranthene and hexachlorobenzene
JP6090095B2 (en) Fly ash cleaning device and fly ash cleaning method
JP2002113454A (en) Soil decontamination method and device
JP2008000731A (en) Organic pollutant migration accelerator for accelerating migration of organic pollutant from contaminated soil and/or contaminated bottom mud contaminated with organic pollutant, and cleaning method of contaminated soil and/or contaminated bottom mud using the same
WO1997000129A1 (en) Treatment of contaminated soils
JP2001259073A (en) Method of removing hazardous organic chlorine compound and apparatus for the same
KR100565460B1 (en) Method for washing contaminated soil
JP3714849B2 (en) Method for decomposing persistent organic substances
SU1130523A1 (en) Method for regenerating activated carbon used for dechlorination of waste liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees