JP3697561B2 - Component gradient composite of organic polymer and metal oxide and method for producing the same - Google Patents
Component gradient composite of organic polymer and metal oxide and method for producing the same Download PDFInfo
- Publication number
- JP3697561B2 JP3697561B2 JP01652396A JP1652396A JP3697561B2 JP 3697561 B2 JP3697561 B2 JP 3697561B2 JP 01652396 A JP01652396 A JP 01652396A JP 1652396 A JP1652396 A JP 1652396A JP 3697561 B2 JP3697561 B2 JP 3697561B2
- Authority
- JP
- Japan
- Prior art keywords
- metal oxide
- composite
- component
- organic polymer
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属アルコキシドの加水分解・重縮合反応により得られる金属酸化物と有機高分子との複合体において、金属酸化物の含有率が複合体の厚み方向に傾斜的に異なる領域を有することを特徴とする有機高分子と金属酸化物との成分傾斜複合体とその製造法に関する。
【0002】
【従来の技術】
有機高分子の性能を改質するために、これまで種々の方法が検討されており、複数の有機高分子をブレンドして新規な特性を持つ樹脂を調製したり、異種の補強材と複合化して目的とする特性を有する成形体を調製すること等が広く行われている。
【0003】
例えば、有機高分子同士のブレンド複合化では、相溶性を示す有機高分子を探索して溶融混合等の方法で均質な複合体としたり、また非相溶性である有機高分子をミクロ相分離構造を含む特定の分散構造を持つように、混合条件を工夫してブレンドすること等で、使用目的に応じた有機高分子の改質がなされてきた。
【0004】
一方、強化材を有機高分子に混合・分散させることによる物性改質も広範囲に検討されている。具体的にはアラミド繊維、パルプ、ガラス繊維、炭素繊維等の有機または無機の繊維状物質や炭酸カルシウム、シリカ、アルミナ等の粉末状無機材料等を有機高分子と混合することが広く行われている。
【0005】
特に無機材料との混合による複合化は、無機材料の優れた耐熱性や機械的性質を生かせることから、容易な高性能改質手段として広く検討されてきている。
しかし無機材料の場合、その熱不溶融性、薬品不溶解性、高比重、表面特性などの点での有機高分子材料との本質的な性質の違いから、分散状態をミクロに制御することは簡単ではなく、もっぱら出来るだけ均質なバルク複合材料を得ることを目的として複合化されるのが一般的である。
【0006】
即ち、改質効果を上げる為に、より小さい形状を持ち、且つマトリックス高分子との濡れ性の良いものを補強用無機材料として選択し、それらを所定量だけ、出来るだけ均質に分散することが複合化における重要な因子となっている。
しかしこの場合でも、無機材料は微粒子状になる程、均質分散が困難となり、またエネルギ−、コスト的にも高いものとなる問題がある。
【0007】
従って、有機材料と微粒子状無機材料とから成る、ミクロ的に均質で、且つ分散構造が制御された、高性能の有機材料と無機材料との複合材を得るためには、上述のような単に微粒子状の無機材料を有機高分子と混合する方法では全く困難であり、新しい技術の開発が必要である。
【0008】
本発明者らは、このような目的に対して有効な新規の有機材と無機材との複合材の開発研究を行ってきた。その一例として、例えば、金属アルコキシドから得られる金属酸化物と有機高分子とのミクロハイブリッド複合材料がある。
【0009】
該複合体は有機高分子マトリックス中にて、in−situで金属アルコキシドの加水分解・重縮合を行うことにより、ナノオ−ダ−からミクロンオ−ダ−の金属酸化物粒子が有機高分子中に濡れ性良く、均質に分散・複合化されたものであり、機械的性質を始めとして非常に優れた特性を有する有機材と無機材との複合材料である。
【0010】
しかしながら、該複合体中の金属酸化物成分割合を過度に大きくしていくと、複合化する有機高分子と金属酸化物との本質的な特性の差により良好な複合材が得られなくなってくる。即ち、金属酸化物含有率が高いものではクラックが生じ易くなったり、脆くなったり、成形性が悪くなったり、また反り、歪等の変形を生じたりする。一方、金属酸化物含有率が微量のものでは、所望の複合物性が得られなくなる。
【0011】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、金属酸化物の高含有率領域までの特性を効果的に発現しうるような良好な複合体を得ることであり、より具体的にはクラックが生じ難く、かつ加熱や経時変化により表層面だけの剥離が生じるようなことが無い良好な成形性を有する、有機高分子と金属酸化物との成分傾斜複合体及びその製造法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は有機高分子と金属酸化物からなる複合体において、広範囲な組成領域の優れた特性を有する複合体を得るべく鋭意研究に取り組み、本研究を完成するに至ったものである。
【0013】
即ち、本発明は有機高分子成分と、金属酸化物成分(A)の少なくとも2種の成分を含む有機高分子と金属酸化物との複合体であって、複合体の表面から深さ方向に、金属酸化物成分(A)の複合体中での含有率が連続的に変化する、成分傾斜構造を有し、且つ当該含有率が最も高い場所で5〜100重量%、最も低い場所で0〜50重量%であり、且つ高い所と低い所との含有率の比が1.5以上であることを特徴とする有機高分子と金属酸化物との成分傾斜複合体である。
【0014】
本発明の有機高分子と金属酸化物との成分傾斜複合体は、詳しくは、その金属酸化物成分(A)が、有機高分子成分の存在下で金属アルコキシドまたはその低縮合物の加水分解・重縮合により得られたものであることを特徴とする有機高分子と金属酸化物との成分傾斜複合体である。
【0015】
また本発明の有機高分子と金属酸化物との成分傾斜複合体は、詳しくは、金属酸化物成分(A)が、複合体の少なくとも1つの表面において、複合体全体での平均含有率を越えて存在していることを特徴とするものである。
【0016】
更に本発明の有機高分子と金属酸化物との成分傾斜複合体は、金属酸化物成分(A)が、複合体の少なくとも1つの表面において、複合体全体での平均含有率以下の比率で存在していることを特徴とする有機高分子と金属酸化物との成分傾斜複合体である。
【0017】
また本発明の有機高分子と金属酸化物との成分傾斜複合体は、複合体の深さ方向において、金属酸化物成分(A)の含有率が連続的に変化している厚み(d1)が、金属酸化物成分(A)の最も高い含有率を示す厚み(d2)より大きいことを特徴とする有機高分子と金属酸化物との成分傾斜複合体である。
【0018】
更に、本発明の有機高分子と金属酸化物との成分傾斜複合体は、複合体中の金属酸化物の大きさが、平均径0.01〜5μmであることを特徴とする有機高分子と金属酸化物との成分傾斜複合体と、複合体中の金属酸化物の大きさが、平均径0.01〜0.5μmであることを特徴とする有機高分子と金属酸化物との成分傾斜複合体を含むものである。
【0019】
また本発明の有機高分子と金属酸化物との成分傾斜複合体は、その金属酸化物成分が、有機高分子成分の存在下で金属アルコキシドまたはその低縮合物の加水分解・重縮合により得られたものであり、特にその金属アルコキシドまたはその縮合物が一般式1で表されるものであることを特徴とする有機高分子と金属酸化物との成分傾斜複合体である。
【0020】
(一般式1)
【化3】
(式中、Mは珪素原子、RはCmH2m+1、mは1〜4の整数、nは1〜10の整数を表わす。)
【0023】
本発明は、有機高分子と金属アルコキシドとそれらの共通溶媒及び/又は金属アルコキシドの重合触媒からなる均質溶液を、有機高分子または無機の基材上に塗布したものを、水及び/又は金属アルコキシドの重合触媒及び/又は有機溶媒を空気中に含ませた雰囲気下に保持した後、乾燥、熱処理を行うことを特徴とする有機高分子と金属酸化物との成分傾斜複合体の製造方法を含むものである。
【0024】
本発明の有機高分子と金属酸化物との成分傾斜複合体の製造方法は、その金属酸化物成分が、有機高分子成分の存在下で金属アルコキシドまたはその低縮合物の加水分解・重縮合により、有機高分子成分中に均質に分散して得られたものであり、特に金属アルコキシドが一般式1で示されるシリコンアルコキシドまたはその低縮合物であることを特徴とする有機高分子と金属酸化物との成分成分傾斜複合体の製造法である。
【0025】
(一般式1)
【化4】
(式中、Mは珪素原子、RはCmH2m+1、mは1〜4の整数、nは1〜10の整数を表わす。)
【0026】
また本発明の有機高分子と金属酸化物との成分傾斜複合体の製造方法は、特に雰囲気中及び/又は均質溶液中に含まれる金属アルコキシドの重合触媒として、同種または異種の塩基性物質を用いることを特徴とする有機高分子と金属酸化物との成分傾斜複合体の製造方法を含むものである。
【0027】
即ち、本発明は、少なくとも1種ずつの有機高分子と金属酸化物を含有する有機高分子と金属酸化物との複合体において、含有される金属酸化物成分が複合体の内部において異なる濃度で存在し、複合体の表面から深さ方向に、金属酸化物成分濃度が連続的に変化する成分傾斜構造を形成していること、
【0028】
且つ複合体中の金属酸化物成分濃度が最も高い所で5〜100重量%、最も低いところで0〜50重量%であること、且つ高い所と低い所との含有率の比が1.5以上であることを特徴とする有機高分子と金属酸化物との成分傾斜複合体に関するものであり、特に有機高分子存在下で金属アルコキシドまたはその低縮合物を重縮合して得られる金属酸化物と有機高分子からなる、有機高分子と金属酸化物との成分傾斜複合体を中心としたものである。
【0029】
当該有機高分子と金属酸化物との成分傾斜複合体では、複合体の少なくとも1つの表面において、金属酸化物成分が複合体の平均金属酸化物濃度を越えて存在しているもの、または少なくとも1つの表面において金属酸化物成分が複合体の平均金属酸化物濃度以下であるものを含む。また当該有機高分子と金属酸化物との成分傾斜複合体は、深さ方向において金属酸化物の最高含有率を有する厚みより金属酸化物濃度傾斜を有する厚みが大きいものを含むものである。
【0030】
また当該有機高分子と金属酸化物との成分傾斜複合体は、複合体中に含有される金属酸化物の大きさが平均径0.01μm〜5μmであるものを含む。また当該有機高分子と金属酸化物との成分傾斜複合体は、その形態が塗膜や糸、フィルム、球状のものであるほかブロック等の各種形状の成形体であるものを含む。
【0031】
本発明においては、金属酸化物が有機高分子中において深さ方向以外では均質性を保ちながら、深さ方向に連続的に変化している領域を有することを基本とする。従って、単に不規則な凝集や相分離により、不連続的に金属酸化物濃度の異なる領域を有するものや、塗装により形成される一定金属酸化物含有率を有する均一塗膜を基材の表面上に有するものなどとは異なる。
【0032】
本発明に使用できる有機高分子としては、有機高分子存在下での金属アルコキシドの重縮合により、均質な有機高分子と金属酸化物との複合体をつくることが可能なものであればよく、特に限定されないが、具体的には、例えばフェノ−ル樹脂、エポキシ樹脂、アクリル樹脂、アルキド樹脂、メラミン樹脂、尿素樹脂等の熱硬化性樹脂やナイロン、ポリエステル、アクリル樹脂等の熱可塑性樹脂、またポリブタジエンやSBSのようなゴム系樹脂等を用いることが可能であり、特に熱硬化性樹脂、中でもエポキシ樹脂、アクリル樹脂、アルキド樹脂、メラミン樹脂が好ましい。
【0033】
製造上の容易さからの観点では、金属アルコキシドやその縮合物またはそれらと溶媒等からなる均質溶液に溶解するか、または膨潤する有機高分子またはその前駆体樹脂であるものが望ましい。
【0034】
本発明における金属アルコキシドとしては、一般式1に示されるシリコンアルコキシド及び/またはその縮合物が用いられる。その他の金属アルコキシド類としては、Ti、Al、Zr等の金属アルコキシドも可能であるが、Siのアルコキシド類、またはSiを主成分とする他金属アルコキシド類との混合物を用いると、加水分解・重縮合の反応速度が緩やかで濃度傾斜を制御する上で特に好ましい。
【0035】
本発明における有機高分子と金属酸化物との成分傾斜複合体は、金属酸化物成分(A)の複合体中での含有率(以下、単に金属酸化物含有率と言うことがある。)の最も高い部分が5〜100重量%であり、最も低い部分では0〜50重量%であるものが好ましい。
【0036】
最も高い部分での金属酸化物含有率が5重量%未満では、複合化の効果が不十分であり、また最も低い部分での金属酸化物含有率が50重量%を越えるものは複合体が脆くなったり、クラック等の発生が生じ易くなったり、また複合体全体の厚みが非常に薄くなくてはならない等の制限が大きくなり、好ましくない。
【0037】
また金属酸化物含有率の最も高い所と低い所との比は1.5以上、好ましくは2以上であることが必要である。当該比が1.5未満では成分傾斜複合体としての効果が不十分である。また金属酸化物濃度が深さ方向に傾斜的に変化している厚み(d1)が、最も高い金属酸化物含有率を示す領域の厚み(d2)より大きい場合に傾斜複合材としての効果がより明確である。
【0038】
本発明における金属酸化物の大きさとしては、直径0.01μm〜5μmである。特に金属酸化物の大きさが0.01μm〜0.5μmで、用いる有機高分子が透明なものである場合は、本発明の複合体は透明〜半透明の外観を有する。
また金属酸化物の大きさが0.5μm〜5μmの場合は、半透明〜不透明の外観を有する。
【0039】
いずれにしても、金属アルコキシドまたはその縮合物を有機高分子存在下で重縮合させて得られる金属酸化物と有機高分子からなる成分傾斜複合体では、予め製造された金属酸化物粒子と有機高分子を混合分散させるのに比べて、金属酸化物粒子の粒径制御が極微小粒径まで容易である。
【0040】
従来のシリカ等の補強添加用粒子としては、直径1〜2μm程度のものまでが均質分散の可能性またコスト的にみて、その限界となっている。さらに小さい微粒子を用いる場合は、有機高分子との密度差や微粒子の凝集により、均質な分散またはその制御が困難である場合が多い。
【0041】
本発明においては、金属酸化物の平均粒径がナノメ−タ−サイズのものまで均質に含まれ、且つ分散構造制御された成分傾斜複合体を得ることができる。
本発明における金属酸化物の大きさは、走差型電子顕微鏡等による測定では0.01μm以下の粒径をとらえるのが難しいことから0.01μmの数値を付しているが、0.01μmより小さくてもなんら差し支えない。しかし平均粒径が5μm以上では均質な成分傾斜複合体が得られ難くなる。
【0042】
本発明の有機高分子と金属酸化物との成分傾斜複合体を得る方法としては、最終的に得られる成分傾斜複合体がミクロ的に均質な分散を保ちながら、且つ複合体の深さ方向に連続的に金属酸化物濃度が変化する領域を有するものであれば良く、特に製造方法によって限定されないものである。
【0043】
しかしながら、その具体的製造方法の一例を挙げれば、例えば、有機高分子成分及び金属アルコキシドまたはその縮合物、及び/又は水、及び/または触媒、及び/または有機溶媒を原料として用いて、金属アルコキシドの加水分解・重縮合、樹脂の硬化反応、及び/または溶媒キャストを行わせる際に、最終的に得られる複合体の深さ方向において不均一な金属アルコキシド類の加水分解・重縮合を生じるような操作を行うものである。
【0044】
更に具体的には、上記原料の内、特定の原料成分(例えば、金属アルコキシドや塩基性触媒や水)の濃度分布を深さ方向にもたせたり、一方向からの外部刺激(例えば加熱)を行うことにより、傾斜的な金属酸化物濃度分布を発現させることが可能である。
【0045】
例えば、有機高分子と金属アルコキシドまたはその縮合物とそれらの共通溶媒及び/又は金属アルコキシドの重合触媒からなる均質溶液を基材上に塗布したものを、水及び/又は金属アルコキシドの重合触媒及び/又は有機溶媒を空気中に含ませてなる雰囲気下に保持した後、乾燥、熱処理を行うことで、塗膜中での金属酸化物濃度の傾斜を発現させることができる。
【0046】
本発明において、雰囲気中または均質溶液中に含まれる金属アルコキシドの重合触媒としては同一または異種の酸または塩基性物質が用いられるが、特に各種アミン化合物やアンモニアのような塩基性物質を用いるのは傾斜複合体中の金属酸化物の微粒子化や成分傾斜制御において好ましい。
【0047】
また本発明において雰囲気中に含まれる有機溶媒としては、有機高分子等からなる溶液と均質に混和するものが好ましく、また溶液中に既に含まれている有機溶媒とは異なる種類のものであるのが特に好ましい。
【0048】
本発明の有機高分子と金属酸化物との成分傾斜複合体は、塗膜や糸、フィルム、微粒子等の各種成形体や成形原料に用いることが可能である。また他の金属やガラス等の無機繊維及び/またはセルロ−スやアラミド等有機繊維及び/またはそれらの粉末を含んだ系にて調製することも可能である。
【0049】
本発明の有機高分子と金属酸化物との成分傾斜複合体では、例えば複合体全体の金属酸化物の平均濃度が非常に低いにもかかわらず、少なくとも1つの表面部に5〜100重量%と高い金属酸化物濃度を有しており、且つその表面部から内部にかけて傾斜的にその濃度が漸減している分散状態の構造を有するものが可能である。
【0050】
従って、この場合は表面部のみは金属酸化物濃度がより高いことによる特性、例えば、高硬度や優れた耐溶剤性、耐熱性を有するが、その層は表面からの一定厚みに限定されるため、例えばクラック等による劣化因子が見られず、且つ内部にかけて成分傾斜的になっているために、加熱や経時変化により表層面だけの剥離が生じるようなことが無く、安定した複合材特性を発現することができる。
逆に、内部の金属酸化物濃度が表面部より高いものや、より複雑に多層濃度分布を示すものも可能である。
【0051】
【実施例】
次いで本発明を実施例によって更に説明する。尚、例中の%は特に断りの無い限り重量基準である。
【0052】
(実施例1)
アクリル樹脂(大日本インキ化学工業株式会社製:アクリディック A−405)30g(樹脂分57%;キシレン、ブタノール溶液)、メラミン樹脂(大日本インキ化学工業株式会社製:スーパーベッカミン G−821)6.5g(樹脂分60%;イソブチル溶液)、エポキシ樹脂(大日本インキ化学工業株式会社製:エピクロン 1050)2.5g、テトラメトキシシラン(以下、TMOSと呼ぶ。:東京化成工業社製 特級試薬)10g、及び脱水テトラヒドロフラン(THF;関東化学株式会社製 特級試薬)20gからなる均質溶液を
【0053】
基材(ナイロン−66板)上に滴下し、0.09モル/lのアンモニア濃度の飽和水蒸気雰囲気下で約5時間放置した後、更に、28℃、50%に約1日間放置した。80℃で2時間、更に150℃で1時間熱処理を行いアクリル樹脂/シリカ系からなる塗膜(約40ミクロン厚)を得た。
【0054】
電子線マイクロアナライザー(EPMA)を用いて、塗膜の断面のSiの分布を表面からスキャンした結果を図1に示す。図1の結果より、表面側に強いSiの分布が見られ、且つ約40ミクロンの深さ方向に渡って連続的にSi濃度が変化していることが認められる。
【0055】
また、かかる深さ方向のSi濃度分布は、同じ塗膜の異なる数カ所の位置で測定しても同じ分布を示すことより、深さ方向と直角の方向には均質なSi濃度を保持していることがわかった。以上の結果より、得られた塗膜は、塗膜全体の平均金属酸化物濃度より高い濃度のシリカ含有層を表面部に持ち、深さ方向と直角方向には均質で、且つ深さ方向には連続的な濃度変化を有する複合体(塗膜)であることが確認された。ここで、
【0056】
濃度傾斜領域の厚み=約23μm、濃度傾斜領域厚み/全体厚み=0.54
濃度傾斜領域厚み/最大濃度領域厚み=約9
最大金属酸化物濃度/最低金属酸化物濃度=28重量%/3.5重量%=7.3
であった。
【0057】
この成分傾斜複合体は薄い白濁を呈しており、走査型電子顕微鏡(SEM)を用いて塗膜断面の観測を行ったところ、直径0.2〜0.4μmの大きさのシリカ微粒子が観測された。シリカ粒子の分布の状態は均質であるが、塗膜表面付近で高く分布し、塗膜内部に行くにつれて低下していた。
【0058】
尚、EPMAは島津製作所株式会社製のEPM−810型を用いて、出力15kV−50nA、分解能1〜1.5ミクロン、10ミクロン/分のスキャン速度、検出はSiのKα線(7.126オングストロ−ム)で行った。また、SEMは、日立製作所株式会社製のS−800型のオームストロングSEMを用い、約3nmのプラチナをスパッタリングした試料で観測を行った。
【0059】
(実施例2)
実施例1の製造条件において、THF20gのかわりにメタノ−ル20gを用い、更に均質溶液のキャストをアンモニア水の飽和水蒸気中で行う代わりに、25℃、50%の雰囲気下で行った場合について検討した。透明性に優れた塗膜が得られた。EPMA測定の結果を図2に示す。基盤側に高い金属酸化物濃度を有する成分傾斜複合体となっているのがわかる。
【0060】
濃度傾斜領域の厚み=40μm、濃度傾斜領域厚み/全体厚み=0.7
濃度傾斜領域厚み/最大濃度領域厚み=10
最大金属酸化物濃度/最低金属酸化物濃度=11.5重量%/4.5重量%=2.5であった。
【0061】
成分傾斜複合体は透明で、SEM観測では直径約0.04〜0.1μmの微粒子がミクロな範囲で均質に分散しているのが観測された。
【0062】
(比較例1)
実施例1の均質溶液に5gの蒸留水を添加して得られる均質溶液を用いて、実施例1と同様な手法でサンプルを作成し検討を行った。EPMA測定の結果を図3に示す。シリカ濃度に傾斜は見られなく、均質に分布しているのが判る。
【0063】
濃度傾斜領域の厚み=0μm、
最大金属酸化物濃度/最低金属酸化物濃度=12重量%/11重量%=1.1
複合体は透明で、SEM観測では直径0.06〜0.15μmの微粒子が均質に分散しているのが確認された。
【0064】
(比較例2)
実施例1におけるアンモニア水のアンモニア濃度を0.5モル/lとした場合について、実施例1と同様な方法でサンプルを調製し検討を行った。EPMA測定の結果を図4に示す。シリカ濃度に傾斜は見られなく、均質に分布しているのが判る。
【0065】
濃度傾斜領域の厚み=0μm、
最大金属酸化物濃度/最低金属酸化物濃度=13.5重量%/12.5重量%=1.1で複合体は透明体であった。
【0066】
(実施例3)
実施例1と同じ均質溶液をナイロン−66板上に滴下し、0.06モル/lのアンモニア水とメタノールの10:3(重量比)混合溶液の飽和水蒸気雰囲気下で22℃で約10時間放置した後、実施例1と同様な処理を行いアクリル樹脂/シリカ系からなる塗膜(約75ミクロン厚)を得た。EPMA測定の結果を図5に示す。塗膜表面側に極めて高いシリカ濃度を有する傾斜複合体が得られているのが判る。
【0067】
濃度傾斜領域厚み=40μm、濃度傾斜領域厚み/全体厚み=0.53
濃度傾斜領域厚み/最大濃度領域厚み=13.3
最大金属酸化物濃度/最低金属酸化物濃度=30重量%/3重量%=10
傾斜複合体は白濁を呈しており、SEM観測では直径約0.3〜2μmの粒子がミクロな範囲で均質に分散しているのが観測された。
【0068】
(実施例4)
実施例1と同じ均質溶液に更に0.06gのトリエチルアミン(東京化成工業株式会社製、特級試薬)を添加して得られる均質溶液を用いて、実施例3と同様な条件で溶媒キャストと熱処理を行いアクリル樹脂/シリカ系からなる塗膜(約120ミクロン厚)を得た。EPMA測定の結果を図6に示す。塗膜表面側に高いシリカ濃度を有する傾斜複合体となっているのが判る。
【0069】
濃度傾斜領域厚み=70μm、濃度傾斜領域厚み/全体厚み=0.58
濃度傾斜領域厚み/最大濃度領域厚み=17.5
最大金属酸化物濃度/最低金属酸化物濃度=40重量%/7.5重量%=5.3
【0070】
実施例3の複合体に比べて、金属酸化物の濃度傾斜がなだらかになっている。
傾斜複合体は薄い白濁を呈しており、SEM観測では直径約60〜200nmの微粒子がミクロな範囲で均質に分散しているのが観測された。実施例3の複合体に比べて、粒径の小さな分散粒子が得られた。
【0071】
(実施例5)
ビスフェノール型エポキシ樹脂(大日本インキ化学工業株式会社製:エピクロン 850)10gと脂肪族ポリアミン系エポキシ硬化剤(大日本インキ化学工業株式会社製:エピクロン B−053)2gとTHF 5gの混合溶液を室温で26時間混合攪拌させた後、5gのTMOSを均質に混合した。得られた均質ゾル溶液を基板に塗布し、室温(18℃、40%)で溶媒キャストし、80℃で5時間、150℃で3時間熱処理を行いエポキシ樹脂とシリカとの複合体を得た。EPMA測定の結果を図7に示す。塗膜表面の約50μm内部にシリカ濃度が最大となる形態の傾斜複合体となっているのが判る。
【0072】
濃度傾斜領域厚み=170μm、濃度傾斜領域厚み/全体厚み=0.7、濃度傾斜領域厚み/最大濃度領域厚み=8.5、最大金属酸化物濃度/最低金属酸化物濃度=26.5重量%/10.0重量%=2.65であった。傾斜複合体は均質透明であり、SEM観測では直径約30〜200nmの微粒子がミクロな範囲で均質に分散しているのが観測された。
【0073】
(実施例6)
アルキド樹脂(大日本インキ化学工業株式会社製:ベッコゾール 1343)15gとブチル化メラミン樹脂(大日本インキ化学工業株式会社製:スーパーベッカミン G−821−60)5gとエタノール 10gとTMOS 5gの混合溶液を攪拌し、均質ゾル溶液を得た。得られた均質ゾル溶液を基板に塗布し、0.4モル/lのアンモニア水の雰囲気下(30℃)で溶媒キャストをした後、80℃で5時間、150℃で1時間熱処理を行いアルキド樹脂とシリカとの複合体を得た。EPMA測定の結果を図8に示す。塗膜表面部にシリカ濃度が最大となる形態の傾斜複合体となっているのが判る。傾斜は膜厚(約120μm)全体に渡って形成されており、乳白濁化していた。
【0074】
濃度傾斜領域厚み=120μm、濃度傾斜領域厚み/全体厚み=1、濃度傾斜領域厚み/最大濃度領域厚み=120以上、最大金属酸化物濃度/最低金属酸化物濃度=62重量%/14重量%=4.4であった。
【0075】
【発明の効果】
本発明により得られる有機高分子と金属酸化物との成分傾斜複合体は、有機高分子中に種々の大きさ(μmオ−ダ−から約10nmまで)の金属酸化物を極めて均質に分散させ、且つ当該複合体の厚み方向に金属酸化物の含有濃度が分布を持つように分散されているため、例えば、表面部もしくは内部に、複合体全体での金属酸化物の平均濃度よりも高い(低い)金属酸化物濃度を有する部分を有する複合体の製造が可能で、高(もしくは低)金属酸化物濃度を含有する有機高分子複合体特有の物性を有し、且つ金属酸化物濃度が傾斜的に変化していることにより、一般の塗膜のように加熱や経時変化により表層面と内部の剥離が生じるようなことがない、安定な複合材を提供できる。
【図面の簡単な説明】
【図1】実施例1で得られた有機高分子と金属酸化物との成分傾斜複合体(塗膜)の厚み方向の電子線マイクロアナライザ−(EPMA)によるSi分布測定結果を示す図である。
【図2】実施例2で得られた有機高分子と金属酸化物との成分傾斜複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。
【図3】比較例1で得られた有機高分子と金属酸化物との複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。
【図4】比較例2で得られた有機高分子と金属酸化物との複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。
【図5】実施例3で得られた有機高分子と金属酸化物との成分傾斜複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。
【図6】実施例4で得られた有機高分子と金属酸化物との成分傾斜複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。
【図7】実施例5で得られた有機高分子と金属酸化物との成分傾斜複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。
【図8】実施例6で得られた有機高分子と金属酸化物との成分傾斜複合体(塗膜)の厚み方向のEPMAによるSi分布測定結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
In the composite of a metal oxide obtained by hydrolysis / polycondensation reaction of a metal alkoxide and an organic polymer, the present invention has a region in which the content of the metal oxide is inclined differently in the thickness direction of the composite. The present invention relates to a component gradient composite of an organic polymer and a metal oxide characterized by the following:
[0002]
[Prior art]
In order to improve the performance of organic polymers, various methods have been studied so far. A resin with novel properties can be prepared by blending multiple organic polymers or combined with different types of reinforcing materials. For example, it has been widely practiced to prepare a molded article having desired characteristics.
[0003]
For example, when blending organic polymers together, search for compatible organic polymers and make them into homogeneous composites by methods such as melt mixing, or incompatible organic polymers with a microphase separation structure. Organic polymers have been modified in accordance with the purpose of use, for example, by devising blending conditions so as to have a specific dispersion structure including
[0004]
On the other hand, physical property modification by mixing and dispersing a reinforcing material in an organic polymer has been extensively studied. Specifically, organic or inorganic fibrous materials such as aramid fiber, pulp, glass fiber, and carbon fiber, and powdered inorganic materials such as calcium carbonate, silica, and alumina are widely mixed with organic polymers. Yes.
[0005]
In particular, compounding by mixing with an inorganic material has been widely studied as an easy high-performance reforming means because it makes use of the excellent heat resistance and mechanical properties of the inorganic material.
However, in the case of inorganic materials, it is difficult to control the dispersion state microscopically due to the difference in properties from organic polymer materials in terms of heat infusibility, chemical insolubility, high specific gravity, surface characteristics, etc. In general, it is not simple, but is generally compounded for the purpose of obtaining a bulk composite material that is as homogeneous as possible.
[0006]
That is, in order to improve the modification effect, it is possible to select a reinforcing inorganic material having a smaller shape and good wettability with the matrix polymer, and disperse them as uniformly as possible in a predetermined amount. It is an important factor in compounding.
However, even in this case, there is a problem that as the inorganic material becomes finer, homogeneous dispersion becomes more difficult and the energy and cost are higher.
[0007]
Therefore, in order to obtain a high-performance organic material / inorganic material composite material composed of an organic material and a particulate inorganic material, which is microscopically homogeneous and whose dispersion structure is controlled, It is quite difficult to mix fine inorganic materials with organic polymers, and new technology needs to be developed.
[0008]
The present inventors have conducted research and development of a novel composite material of an organic material and an inorganic material effective for such purposes. One example is a micro-hybrid composite material of a metal oxide obtained from a metal alkoxide and an organic polymer.
[0009]
The composite is subjected to in-situ hydrolysis and polycondensation of metal alkoxides in an organic polymer matrix so that nano-order to micro-order metal oxide particles are wetted in the organic polymer. It is a composite material composed of an organic material and an inorganic material, which is well dispersed and uniformly dispersed and has excellent properties including mechanical properties.
[0010]
However, if the proportion of the metal oxide component in the composite is excessively increased, a good composite material cannot be obtained due to the difference in essential characteristics between the organic polymer to be combined and the metal oxide. . That is, when the metal oxide content is high, cracks are likely to be generated, the mold becomes brittle, the moldability is deteriorated, and warping and deformation such as strain are generated. On the other hand, if the metal oxide content is very small, desired composite properties cannot be obtained.
[0011]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to obtain a good composite that can effectively express the characteristics up to a high content region of the metal oxide, more specifically, cracks hardly occur, It is another object of the present invention to provide a component-graded composite of an organic polymer and a metal oxide having a good moldability in which only the surface layer is not peeled off due to heating or changes over time, and a method for producing the same.
[0012]
[Means for Solving the Problems]
The present inventors have intensively studied to obtain a composite having excellent characteristics in a wide range of composition in a composite composed of an organic polymer and a metal oxide, and have completed this research.
[0013]
That is, the present invention is a complex of an organic polymer and a metal oxide containing at least two components of an organic polymer component and a metal oxide component (A), and the depth from the surface of the complex. The content of the metal oxide component (A) in the composite continuously changes, the composition has a gradient structure, and the content is 5 to 100% by weight at the highest place, and 0 at the lowest place. It is a component gradient composite of an organic polymer and a metal oxide, characterized in that it is ˜50% by weight and the ratio of the content ratio between the high part and the low part is 1.5 or more.
[0014]
Specifically, the component-graded composite of the organic polymer and metal oxide of the present invention is such that the metal oxide component (A) is hydrolyzed / decomposed of a metal alkoxide or a low condensate thereof in the presence of the organic polymer component. It is a component gradient composite of an organic polymer and a metal oxide, which is obtained by polycondensation.
[0015]
In addition, in the component gradient composite of the organic polymer and metal oxide of the present invention, in detail, the metal oxide component (A) exceeds the average content of the entire composite on at least one surface of the composite. It is a feature that exists.
[0016]
Furthermore, in the component gradient composite of the organic polymer and metal oxide of the present invention, the metal oxide component (A) is present at a ratio of not more than the average content of the entire composite on at least one surface of the composite. It is a component gradient composite of an organic polymer and a metal oxide.
[0017]
The component gradient composite of the organic polymer and metal oxide of the present invention has a thickness (d1) in which the content of the metal oxide component (A) continuously changes in the depth direction of the composite. A component-graded composite of an organic polymer and a metal oxide, characterized in that it is larger than the thickness (d2) showing the highest content of the metal oxide component (A).
[0018]
Furthermore, the component gradient composite of the organic polymer and metal oxide of the present invention is characterized in that the size of the metal oxide in the composite is an average diameter of 0.01 to 5 μm, Component gradient composite of metal oxide, and component gradient of organic polymer and metal oxide characterized in that the average size of the metal oxide in the composite is 0.01 to 0.5 μm It contains a complex.
[0019]
In addition, the component gradient composite of the organic polymer and the metal oxide of the present invention is obtained by hydrolysis / polycondensation of the metal oxide component or metal alkoxide or a low condensate thereof in the presence of the organic polymer component. In particular, it is a component gradient composite of an organic polymer and a metal oxide, characterized in that the metal alkoxide or the condensate thereof is represented by the
[0020]
(General formula 1)
[Chemical 3]
(Wherein M is a silicon atom, R is C m H 2m + 1 , M represents an integer of 1 to 4, and n represents an integer of 1 to 10. )
[0023]
The present invention relates to water and / or metal alkoxide obtained by applying a homogeneous solution comprising an organic polymer, metal alkoxide, a common solvent thereof and / or a metal alkoxide polymerization catalyst on an organic polymer or an inorganic substrate. Including a method for producing a component gradient composite of an organic polymer and a metal oxide, wherein the polymerization catalyst and / or an organic solvent is maintained in an atmosphere containing air, followed by drying and heat treatment. It is a waste.
[0024]
The method for producing a component gradient composite of an organic polymer and a metal oxide according to the present invention is such that the metal oxide component is obtained by hydrolysis / polycondensation of a metal alkoxide or a low condensate thereof in the presence of the organic polymer component. An organic polymer and a metal oxide obtained by homogeneously dispersing in an organic polymer component, in particular, wherein the metal alkoxide is a silicon alkoxide represented by the
[0025]
(General formula 1)
[Formula 4]
(Wherein M is a silicon atom, R is C m H 2m + 1 , M represents an integer of 1 to 4, and n represents an integer of 1 to 10. )
[0026]
The method for producing a component gradient composite of an organic polymer and a metal oxide according to the present invention uses the same or different basic substance as a polymerization catalyst for a metal alkoxide contained in an atmosphere and / or homogeneous solution. The manufacturing method of the component inclination composite_body | complex of the organic polymer and metal oxide characterized by the above is included.
[0027]
That is, the present invention relates to a composite of an organic polymer and a metal oxide containing at least one organic polymer and a metal oxide, and the contained metal oxide component has a different concentration inside the composite. A component gradient structure in which the metal oxide component concentration continuously changes in the depth direction from the surface of the composite,
[0028]
And the metal oxide component concentration in the composite is 5 to 100% by weight at the highest point, 0 to 50% by weight at the lowest point, and the ratio of the content ratio between the high and low parts is 1.5 or more. And a metal oxide obtained by polycondensing a metal alkoxide or a low condensate thereof in the presence of the organic polymer. The main component is a component gradient composite of an organic polymer and a metal oxide.
[0029]
In the component gradient composite of the organic polymer and the metal oxide, the metal oxide component is present beyond the average metal oxide concentration of the composite on at least one surface of the composite, or at least 1 In one surface, the metal oxide component is less than or equal to the average metal oxide concentration of the composite. In addition, the component gradient composite of the organic polymer and the metal oxide includes one having a thickness having a metal oxide concentration gradient larger than the thickness having the highest content of metal oxide in the depth direction.
[0030]
In addition, the component gradient composite of the organic polymer and the metal oxide includes those in which the size of the metal oxide contained in the composite is an average diameter of 0.01 μm to 5 μm. In addition, the component gradient composite of the organic polymer and the metal oxide includes those in which the form is a coating film, a thread, a film, a spherical shape, or a molded body having various shapes such as a block.
[0031]
In the present invention, the metal oxide basically has a region that continuously changes in the depth direction while maintaining homogeneity in the organic polymer except in the depth direction. Therefore, a uniform coating film having a different metal oxide concentration discontinuously due to irregular agglomeration or phase separation or a uniform coating film having a constant metal oxide content formed by coating is applied on the surface of the substrate. It is different from what you have.
[0032]
As the organic polymer that can be used in the present invention, any organic polymer that can form a complex of a homogeneous organic polymer and a metal oxide by polycondensation of a metal alkoxide in the presence of the organic polymer may be used. Specific examples include, but are not limited to, thermosetting resins such as phenol resin, epoxy resin, acrylic resin, alkyd resin, melamine resin, and urea resin, and thermoplastic resins such as nylon, polyester, and acrylic resin. Rubber-based resins such as polybutadiene and SBS can be used, and thermosetting resins, particularly epoxy resins, acrylic resins, alkyd resins, and melamine resins are particularly preferable.
[0033]
From the viewpoint of ease of production, an organic polymer or precursor resin thereof that dissolves or swells in a homogeneous solution comprising a metal alkoxide, a condensate thereof or a solvent thereof and the like is desirable.
[0034]
As the metal alkoxide in the present invention, a silicon alkoxide represented by the
[0035]
The component gradient composite of the organic polymer and the metal oxide in the present invention has a content of the metal oxide component (A) in the composite (hereinafter sometimes simply referred to as a metal oxide content). The highest part is 5 to 100% by weight, and the lowest part is preferably 0 to 50% by weight.
[0036]
If the metal oxide content in the highest part is less than 5% by weight, the effect of the composite is insufficient, and if the metal oxide content in the lowest part exceeds 50% by weight, the composite is brittle. Such as cracking, cracking, and the like, and the total thickness of the composite must be very thin.
[0037]
Further, the ratio between the place with the highest metal oxide content and the place with the lowest metal oxide content needs to be 1.5 or more, preferably 2 or more. If the ratio is less than 1.5, the effect as a component gradient composite is insufficient. Further, when the thickness (d1) in which the metal oxide concentration changes in the depth direction is larger than the thickness (d2) of the region showing the highest metal oxide content, the effect as the graded composite material is more effective. It is clear.
[0038]
The size of the metal oxide in the present invention is 0.01 μm to 5 μm in diameter. In particular, when the size of the metal oxide is 0.01 μm to 0.5 μm and the organic polymer used is transparent, the composite of the present invention has a transparent to translucent appearance.
Moreover, when the size of the metal oxide is 0.5 μm to 5 μm, it has a translucent to opaque appearance.
[0039]
In any case, in the component gradient composite composed of a metal oxide and an organic polymer obtained by polycondensation of a metal alkoxide or a condensate thereof in the presence of an organic polymer, the metal oxide particles prepared in advance and the organic polymer Compared to mixing and dispersing molecules, it is easier to control the particle size of the metal oxide particles up to a very small particle size.
[0040]
Conventional particles for reinforcing additives such as silica have a limit of about 1 to 2 μm in diameter in view of the possibility of homogeneous dispersion and cost. When smaller fine particles are used, it is often difficult to uniformly disperse or control the fine particles due to the density difference from the organic polymer and the aggregation of the fine particles.
[0041]
In the present invention, it is possible to obtain a component gradient composite in which the average particle diameter of the metal oxide is homogeneously contained up to that of nanometer size and the dispersion structure is controlled.
The size of the metal oxide in the present invention is given a numerical value of 0.01 μm because it is difficult to capture a particle size of 0.01 μm or less by measurement with a scanning electron microscope or the like. There is no problem even if it is small. However, when the average particle size is 5 μm or more, it is difficult to obtain a homogeneous component gradient composite.
[0042]
As a method for obtaining the component gradient composite of the organic polymer and the metal oxide of the present invention, the final component gradient composite is maintained in a microscopically uniform dispersion while maintaining a microscopically homogeneous dispersion. What is necessary is just to have the area | region where a metal oxide density | concentration changes continuously, and it is not specifically limited by a manufacturing method.
[0043]
However, an example of a specific production method thereof includes, for example, an organic polymer component and a metal alkoxide or a condensate thereof, and / or water, and / or a catalyst, and / or an organic solvent as raw materials. Hydrolysis and polycondensation of heterogeneous metal alkoxides in the depth direction of the final composite will occur during hydrolysis / polycondensation of resin, resin curing reaction, and / or solvent casting This is a simple operation.
[0044]
More specifically, the concentration distribution of a specific raw material component (for example, metal alkoxide, basic catalyst, or water) among the above raw materials is given in the depth direction, or external stimulation (for example, heating) from one direction is performed. Thus, it is possible to develop a gradient metal oxide concentration distribution.
[0045]
For example, water and / or metal alkoxide polymerization catalyst and / or a solution in which a homogeneous solution comprising an organic polymer and a metal alkoxide or a condensate thereof and a common solvent thereof and / or a metal alkoxide polymerization catalyst is coated on a substrate is used. Or after hold | maintaining in the atmosphere which contains the organic solvent in the air, the gradient of the metal oxide density | concentration in a coating film can be expressed by performing drying and heat processing.
[0046]
In the present invention, the same or different acid or basic substance is used as the polymerization catalyst for the metal alkoxide contained in the atmosphere or in the homogeneous solution. In particular, various amine compounds and basic substances such as ammonia are used. This is preferable in the formation of fine particles of metal oxide in the gradient composite and the component gradient control.
[0047]
In the present invention, the organic solvent contained in the atmosphere is preferably one that is homogeneously mixed with a solution comprising an organic polymer or the like, and is of a different type from the organic solvent already contained in the solution. Is particularly preferred.
[0048]
The component gradient composite of the organic polymer and metal oxide of the present invention can be used for various molded products such as coating films, yarns, films, and fine particles, and molding raw materials. It is also possible to prepare in a system containing other inorganic fibers such as metal and glass and / or organic fibers such as cellulose and aramid and / or powders thereof.
[0049]
In the component gradient composite of the organic polymer and the metal oxide of the present invention, for example, the average concentration of the metal oxide of the entire composite is very low, but at least one surface portion is 5 to 100% by weight. What has a high metal oxide density | concentration and has the structure of the dispersion state which the density | concentration decreases gradually from the surface part to the inside is possible.
[0050]
Therefore, in this case, only the surface portion has characteristics due to higher metal oxide concentration, for example, high hardness, excellent solvent resistance, and heat resistance, but the layer is limited to a certain thickness from the surface. For example, no deterioration factors due to cracks, etc. are seen, and since the components are inclined toward the inside, peeling of only the surface layer does not occur due to heating or change over time, and stable composite material characteristics are expressed can do.
Conversely, a metal oxide having an internal metal oxide concentration higher than that of the surface portion or a more complicated multi-layer concentration distribution is also possible.
[0051]
【Example】
The invention is then further illustrated by the examples. In the examples, “%” is based on weight unless otherwise specified.
[0052]
(Example 1)
30 g of acrylic resin (Dainippon Ink Chemical Co., Ltd .: Acrydic A-405) (57% resin content; xylene, butanol solution), melamine resin (Dainippon Ink Chemical Co., Ltd .: Super Becamine G-821) 6.5 g (resin content 60%; isobutyl solution), epoxy resin (Dainippon Ink & Chemicals, Inc .: Epicron 1050) 2.5 g, tetramethoxysilane (hereinafter referred to as TMOS): Tokyo Kasei Kogyo Co., Ltd. A homogeneous solution consisting of 10 g and 20 g of dehydrated tetrahydrofuran (THF; special grade reagent manufactured by Kanto Chemical Co., Ltd.)
[0053]
The solution was dropped on a base material (nylon-66 plate), allowed to stand for about 5 hours in a saturated water vapor atmosphere having an ammonia concentration of 0.09 mol / l, and further allowed to stand at 28 ° C. and 50% for about 1 day. Heat treatment was performed at 80 ° C. for 2 hours and further at 150 ° C. for 1 hour to obtain a coating film (about 40 microns thick) made of an acrylic resin / silica system.
[0054]
The result of scanning the distribution of Si in the cross section of the coating from the surface using an electron beam microanalyzer (EPMA) is shown in FIG. From the results of FIG. 1, it can be seen that a strong Si distribution is seen on the surface side, and that the Si concentration continuously changes over a depth direction of about 40 microns.
[0055]
Moreover, the Si concentration distribution in the depth direction shows the same distribution even when measured at several different positions of the same coating film, so that a uniform Si concentration is maintained in the direction perpendicular to the depth direction. I understand. From the above results, the obtained coating film has a silica-containing layer having a concentration higher than the average metal oxide concentration of the entire coating film on the surface portion, and is homogeneous in the direction perpendicular to the depth direction and in the depth direction. Was confirmed to be a composite (coating film) having a continuous concentration change. here,
[0056]
Concentration gradient region thickness = about 23 μm, concentration gradient region thickness / overall thickness = 0.54
Concentration gradient region thickness / maximum concentration region thickness = approximately 9
Maximum metal oxide concentration / minimum metal oxide concentration = 28 wt% / 3.5 wt% = 7.3
Met.
[0057]
This component gradient composite is thinly clouded. When the cross section of the coating film is observed using a scanning electron microscope (SEM), silica fine particles having a diameter of 0.2 to 0.4 μm are observed. It was. The distribution of the silica particles was homogeneous, but it was highly distributed in the vicinity of the coating film surface and decreased as it went into the coating film.
[0058]
The EPMA is an EPM-810 model manufactured by Shimadzu Corporation. The output is 15 kV-50 nA, the resolution is 1 to 1.5 microns, the scanning speed is 10 microns / minute, and the detection is Si Kα ray (7.126 Å). -). In addition, SEM was observed with a sample obtained by sputtering about 3 nm of platinum using an S-800 ohm strong SEM manufactured by Hitachi, Ltd.
[0059]
(Example 2)
In the production conditions of Example 1, 20 g of methanol was used instead of 20 g of THF, and a case where the homogeneous solution was cast in a saturated water vapor of ammonia water instead of 25 ° C. in a 50% atmosphere was examined. did. A coating film excellent in transparency was obtained. The results of EPMA measurement are shown in FIG. It can be seen that the component gradient composite has a high metal oxide concentration on the substrate side.
[0060]
Thickness of concentration gradient region = 40 μm, concentration gradient region thickness / total thickness = 0.7
Concentration gradient region thickness / maximum concentration region thickness = 10
The maximum metal oxide concentration / minimum metal oxide concentration = 11.5 wt% / 4.5 wt% = 2.5.
[0061]
The component gradient composite was transparent, and it was observed by SEM that fine particles having a diameter of about 0.04 to 0.1 μm were uniformly dispersed in a micro range.
[0062]
(Comparative Example 1)
Using a homogeneous solution obtained by adding 5 g of distilled water to the homogeneous solution of Example 1, a sample was prepared and examined in the same manner as in Example 1. The results of EPMA measurement are shown in FIG. It can be seen that there is no gradient in the silica concentration, and the silica concentration is homogeneously distributed.
[0063]
Thickness of concentration gradient region = 0 μm,
Maximum metal oxide concentration / minimum metal oxide concentration = 12 wt% / 11 wt% = 1.1
The composite was transparent, and SEM observation confirmed that fine particles having a diameter of 0.06 to 0.15 μm were uniformly dispersed.
[0064]
(Comparative Example 2)
In the case where the ammonia concentration in Example 1 was 0.5 mol / l, a sample was prepared and examined in the same manner as in Example 1. The results of EPMA measurement are shown in FIG. It can be seen that there is no gradient in the silica concentration, and the silica concentration is homogeneously distributed.
[0065]
Thickness of concentration gradient region = 0 μm,
The maximum metal oxide concentration / minimum metal oxide concentration = 13.5 wt% / 12.5 wt% = 1.1, and the composite was transparent.
[0066]
(Example 3)
The same homogeneous solution as in Example 1 was dropped on a nylon-66 plate, and the mixture was stirred at 22 ° C. for about 10 hours in a saturated steam atmosphere of a 0.06 mol / l ammonia water / methanol 10: 3 (weight ratio) mixed solution. After being allowed to stand, the same treatment as in Example 1 was performed to obtain a coating film (about 75 microns thick) made of an acrylic resin / silica system. The results of EPMA measurement are shown in FIG. It can be seen that a gradient composite having an extremely high silica concentration is obtained on the coating surface side.
[0067]
Concentration gradient region thickness = 40 μm, concentration gradient region thickness / total thickness = 0.53
Density gradient area thickness / maximum density area thickness = 13.3
Maximum metal oxide concentration / minimum metal oxide concentration = 30 wt% / 3 wt% = 10
The tilted composite was cloudy, and SEM observation showed that particles having a diameter of about 0.3 to 2 μm were uniformly dispersed in a microscopic range.
[0068]
(Example 4)
Using a homogeneous solution obtained by adding 0.06 g of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd., special grade reagent) to the same homogeneous solution as in Example 1, solvent casting and heat treatment were performed under the same conditions as in Example 3. A coating film (about 120 microns thick) made of an acrylic resin / silica system was obtained. The results of EPMA measurement are shown in FIG. It can be seen that the gradient composite has a high silica concentration on the coating surface side.
[0069]
Concentration gradient region thickness = 70 μm, concentration gradient region thickness / total thickness = 0.58
Density gradient area thickness / maximum density area thickness = 17.5
Maximum metal oxide concentration / minimum metal oxide concentration = 40 wt% / 7.5 wt% = 5.3
[0070]
Compared to the composite of Example 3, the concentration gradient of the metal oxide is gentle.
The tilted composite was thinly clouded, and SEM observation showed that fine particles having a diameter of about 60 to 200 nm were uniformly dispersed in a micro range. Compared with the composite of Example 3, dispersed particles having a small particle size were obtained.
[0071]
(Example 5)
A mixed solution of 10 g of a bisphenol type epoxy resin (Dainippon Ink Chemical Co., Ltd .: Epicron 850), 2 g of an aliphatic polyamine epoxy curing agent (Dainippon Ink Chemical Co., Ltd .: Epicron B-053) and 5 g of THF is used at room temperature. Then, the mixture was stirred for 26 hours, and 5 g of TMOS was mixed homogeneously. The obtained homogeneous sol solution was applied to a substrate, solvent casted at room temperature (18 ° C., 40%), and heat-treated at 80 ° C. for 5 hours and at 150 ° C. for 3 hours to obtain a composite of epoxy resin and silica. . The results of EPMA measurement are shown in FIG. It can be seen that the gradient composite has a form in which the silica concentration is maximum within about 50 μm of the coating surface.
[0072]
Concentration gradient region thickness = 170 μm, Concentration gradient region thickness / overall thickness = 0.7, Concentration gradient region thickness / Maximum concentration region thickness = 8.5, Maximum metal oxide concentration / Minimum metal oxide concentration = 26.5 wt% /10.0% by weight = 2.65. The tilted composite was homogeneous and transparent, and SEM observation showed that fine particles with a diameter of about 30 to 200 nm were uniformly dispersed in a micro range.
[0073]
(Example 6)
A mixed solution of 15 g of alkyd resin (Dainippon Ink Chemical Co., Ltd .: Beckosol 1343), 5 g of butylated melamine resin (Dainippon Ink Chemical Co., Ltd .: Super Becamine G-821-60), 10 g of ethanol and 5 g of TMOS Were stirred to obtain a homogeneous sol solution. The obtained homogeneous sol solution was applied to a substrate and casted with a solvent in an atmosphere of 0.4 mol / l ammonia water (30 ° C.), followed by heat treatment at 80 ° C. for 5 hours and 150 ° C. for 1 hour to obtain alkyd A composite of resin and silica was obtained. The results of EPMA measurement are shown in FIG. It can be seen that the gradient composite has a form in which the silica concentration is maximized on the surface of the coating film. The slope was formed over the entire film thickness (about 120 μm) and was milky white.
[0074]
Concentration gradient region thickness = 120 μm, concentration gradient region thickness / overall thickness = 1, concentration gradient region thickness / maximum concentration region thickness = 120 or more, maximum metal oxide concentration / minimum metal oxide concentration = 62 wt% / 14 wt% = 4.4.
[0075]
【The invention's effect】
The component-graded composite of organic polymer and metal oxide obtained by the present invention has extremely uniform dispersion of metal oxides of various sizes (from μm order to about 10 nm) in the organic polymer. In addition, since the concentration of the metal oxide is dispersed in the thickness direction of the composite, the concentration is higher than the average concentration of the metal oxide in the entire composite, for example, on the surface or inside ( It is possible to produce a composite having a portion having a low (low) metal oxide concentration, a physical property unique to an organic polymer composite containing a high (or low) metal oxide concentration, and a gradient of the metal oxide concentration. As a result, it is possible to provide a stable composite material in which peeling between the surface layer surface and the inside is not caused by heating or a change over time unlike a general coating film.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of Si distribution measurement by an electron microanalyzer (EPMA) in the thickness direction of a component gradient composite (coating film) of an organic polymer and a metal oxide obtained in Example 1. FIG. .
2 is a graph showing the Si distribution measurement result by EPMA in the thickness direction of the component gradient composite (coating film) of organic polymer and metal oxide obtained in Example 2. FIG.
FIG. 3 is a diagram showing the results of Si distribution measurement by EPMA in the thickness direction of a composite (coating film) of an organic polymer and a metal oxide obtained in Comparative Example 1.
4 is a graph showing Si distribution measurement results by EPMA in the thickness direction of a composite (coating film) of an organic polymer and a metal oxide obtained in Comparative Example 2. FIG.
5 is a diagram showing the results of Si distribution measurement by EPMA in the thickness direction of a component gradient composite (coating film) of an organic polymer and a metal oxide obtained in Example 3. FIG.
6 is a graph showing the results of Si distribution measurement by EPMA in the thickness direction of the component gradient composite (coating film) of organic polymer and metal oxide obtained in Example 4. FIG.
7 is a graph showing the results of Si distribution measurement by EPMA in the thickness direction of the component gradient composite (coating film) of organic polymer and metal oxide obtained in Example 5. FIG.
8 is a graph showing the Si distribution measurement result by EPMA in the thickness direction of the component gradient composite (coating film) of organic polymer and metal oxide obtained in Example 6. FIG.
Claims (12)
(一般式1)
(General formula 1)
(一般式1)
(General formula 1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01652396A JP3697561B2 (en) | 1995-02-14 | 1996-02-01 | Component gradient composite of organic polymer and metal oxide and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-25185 | 1995-02-14 | ||
JP2518595 | 1995-02-14 | ||
JP01652396A JP3697561B2 (en) | 1995-02-14 | 1996-02-01 | Component gradient composite of organic polymer and metal oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08283425A JPH08283425A (en) | 1996-10-29 |
JP3697561B2 true JP3697561B2 (en) | 2005-09-21 |
Family
ID=26352875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01652396A Expired - Lifetime JP3697561B2 (en) | 1995-02-14 | 1996-02-01 | Component gradient composite of organic polymer and metal oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3697561B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3953649B2 (en) | 1998-07-17 | 2007-08-08 | オリヱント化学工業株式会社 | Organic-inorganic hybrid component gradient polymer material and method for producing the same |
JP3897938B2 (en) * | 1998-10-22 | 2007-03-28 | 宇部日東化成株式会社 | Organic-inorganic composite gradient material, its production method and its use |
JP3784981B2 (en) * | 1999-02-26 | 2006-06-14 | オリヱント化学工業株式会社 | Organic-inorganic hybrid material and method for producing the same |
JP4476379B2 (en) * | 1999-06-07 | 2010-06-09 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JP4504480B2 (en) * | 1999-09-24 | 2010-07-14 | 宇部日東化成株式会社 | Organic-inorganic composite gradient material, its production method and its use |
JP2001310943A (en) * | 2000-02-22 | 2001-11-06 | Ube Nitto Kasei Co Ltd | Organic/inorganic functionally gradient material |
JP2001240796A (en) * | 2000-02-29 | 2001-09-04 | Ube Nitto Kasei Co Ltd | Organic/inorganic hybrid-inorganic composite gradient material and its use |
JP4372962B2 (en) * | 2000-04-21 | 2009-11-25 | 宇部日東化成株式会社 | Organic-inorganic composite laminate structure |
JP4836310B2 (en) * | 2000-04-28 | 2011-12-14 | 宇部日東化成株式会社 | Method for producing organic-inorganic composite gradient material and use thereof |
JP2002206059A (en) * | 2001-01-11 | 2002-07-26 | Ube Nitto Kasei Co Ltd | Organic-inorganic composite gradient material and use thereof |
JP3857981B2 (en) * | 2002-01-18 | 2006-12-13 | 三洋電機株式会社 | Method for producing organic-inorganic composite |
JP4204232B2 (en) * | 2002-01-30 | 2009-01-07 | 宇部日東化成株式会社 | Organic-inorganic composite gradient film and its use |
WO2004011244A1 (en) * | 2002-07-31 | 2004-02-05 | Ube Nitto Kasei Co., Ltd. | High durable photocatalyst film and structure having surface exhibiting photocatalytic function |
JP4952582B2 (en) * | 2005-10-13 | 2012-06-13 | Nok株式会社 | Primer composition and metal rubber laminate using the same |
CN101326658B (en) * | 2005-12-06 | 2010-09-29 | Lg化学株式会社 | Organic/ inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same |
JP5799542B2 (en) * | 2010-03-31 | 2015-10-28 | セントラル硝子株式会社 | Oxide molded body and method for producing the same |
JP6416078B2 (en) * | 2012-03-30 | 2018-10-31 | スリーエム イノベイティブ プロパティズ カンパニー | Protective coating for low refractive index materials |
WO2017141436A1 (en) * | 2016-02-19 | 2017-08-24 | Ykk株式会社 | Molded surface fastener |
JP7005907B2 (en) * | 2017-02-23 | 2022-02-10 | 三菱ケミカル株式会社 | Curable composition and membrane |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270036A (en) * | 1985-09-25 | 1987-03-31 | キヤノン株式会社 | Composite material |
JPH05125191A (en) * | 1991-11-06 | 1993-05-21 | Kanegafuchi Chem Ind Co Ltd | Silicon-based hybrid material |
JP3184600B2 (en) * | 1992-04-20 | 2001-07-09 | 三井化学株式会社 | Method for producing crosslinked polyolefin molded article |
JP3555243B2 (en) * | 1995-05-26 | 2004-08-18 | 大日本インキ化学工業株式会社 | Method for producing composite of organic polymer and metal oxide |
JP3603428B2 (en) * | 1995-07-17 | 2004-12-22 | 大日本インキ化学工業株式会社 | PROCESS FOR PRODUCING COMPOSITE OF ORGANIC POLYMER AND METAL OXIDE HAVING COMPONENT CONCENTRATION CONCENTRATION STRUCTURE |
-
1996
- 1996-02-01 JP JP01652396A patent/JP3697561B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08283425A (en) | 1996-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3697561B2 (en) | Component gradient composite of organic polymer and metal oxide and method for producing the same | |
US5834551A (en) | Composite of thermosetting resin with metallic oxide and process for the preparation thereof | |
Sun et al. | Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles | |
Qian et al. | A novel approach to raspberry-like particles for superhydrophobic materials | |
US6200680B1 (en) | Fine zinc oxide particles, process for producing the same, and use thereof | |
Huang et al. | Superhydrophilicity of TiO2/SiO2 thin films: Synergistic effect of SiO2 and phase-separation-induced porous structure | |
CN102099100B (en) | The method and hierarchy of dry dispersion of nanoparticles and the production of coating | |
Aziz et al. | Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin | |
JP3554369B2 (en) | Zinc oxide-polymer composite fine particles, production method thereof and use thereof | |
JP7375547B2 (en) | Manufacturing method for three-dimensional objects | |
JP3603428B2 (en) | PROCESS FOR PRODUCING COMPOSITE OF ORGANIC POLYMER AND METAL OXIDE HAVING COMPONENT CONCENTRATION CONCENTRATION STRUCTURE | |
Zhang et al. | In situ formation of TiO2 in electrospun poly (methyl methacrylate) nanohybrids | |
Chong et al. | Enhanced dispersion of hydroxyapatite whisker in orthopedics 3D printing resin with improved mechanical performance | |
CN1083618A (en) | The coating process of preparation conductive powder | |
Hatui et al. | Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of Polyether Imide (PEI)/Liquid Crystalline Polymer (LCP) blend system | |
Lin et al. | Fabrication of cellulose based superhydrophobic microspheres for the production of magnetically actuatable smart liquid marbles | |
Sohrabi-Kashani et al. | Synthesis of silica nanoparticles from water glass for preparing hydrophobic RTV1 silicone rubber–SiO2 nanocomposite | |
JP3588860B2 (en) | Composite of thermosetting resin and metal oxide and method for producing the same | |
CN108504031A (en) | A kind of preparation method of graphene oxide/phenolic resin film | |
JP3857981B2 (en) | Method for producing organic-inorganic composite | |
CN100503714C (en) | Preparation method of monodisperse polystyrene/zirconium dioxide core-shell colloid composite spherical particles | |
JPH0248580B2 (en) | ||
JP3677688B2 (en) | Thermosetting resin composition | |
KR20030054077A (en) | Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material | |
Karim Jabber Jaber et al. | Synthesis of NiO and NiFe2O4 nanoparticles by ultrasonic method and investigation of microhardness of polymer composites made with these nanoparticles and epoxy resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050616 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080715 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |