JP3697469B2 - Perpendicular magnetic recording medium and magnetic storage device using the same - Google Patents

Perpendicular magnetic recording medium and magnetic storage device using the same Download PDF

Info

Publication number
JP3697469B2
JP3697469B2 JP19200099A JP19200099A JP3697469B2 JP 3697469 B2 JP3697469 B2 JP 3697469B2 JP 19200099 A JP19200099 A JP 19200099A JP 19200099 A JP19200099 A JP 19200099A JP 3697469 B2 JP3697469 B2 JP 3697469B2
Authority
JP
Japan
Prior art keywords
recording
magnetic recording
disk
recording medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19200099A
Other languages
Japanese (ja)
Other versions
JP2001023152A (en
Inventor
義幸 平山
正昭 二本
幸雄 本多
敦 菊川
武夫 山下
弘 池亀
Original Assignee
株式会社日立グローバルストレージテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立グローバルストレージテクノロジーズ filed Critical 株式会社日立グローバルストレージテクノロジーズ
Priority to JP19200099A priority Critical patent/JP3697469B2/en
Publication of JP2001023152A publication Critical patent/JP2001023152A/en
Application granted granted Critical
Publication of JP3697469B2 publication Critical patent/JP3697469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータの補助記憶装置などに用いる磁気記憶装置及びそれに用いる磁気記録媒体に関する。
【0002】
【従来の技術】
情報化時代の進行により、日常的に扱う情報量は増加の一途を辿っている。これに伴い、磁気記録装置に対する高記録密度化と大容量化の要求が強くなっている。大容量の情報を扱う上では転送速度の高速化も必然的に要求される。磁気記録装置を高記録密度化していった場合、記録ビット当たりの媒体面積が小さくなるため、より高感度の再生ヘッドが使われ、記録媒体には低ノイズ化が求められる。媒体ノイズを低減するためには、磁性膜を薄くして結晶粒の微細化を図ることが効果的である。特に現在の磁気ディスクに用いられている面内磁気記録方式では、隣接ビット間の反磁界を低減してビット境界に生じるノイズを低減するためにも磁性膜の薄膜化が進められている。
【0003】
【発明が解決しようとする課題】
ただし磁性膜を薄くした場合、記録された磁化が熱的に不安定になるため、保磁力を大きくして記録磁化の安定性を確保しなければならない。特に、高い線記録密度で記録する場合には、ビット間に生じる反磁界に逆らって記録し、しかもその状態を安定に保つ必要があるため、媒体保磁力が大きいことが必須である。媒体保磁力が大きくなると、ヘッドに対して高い記録能力が求められることになり、これが不十分であるとオーバーライトに問題が生じる。このように、高密度化を進める上では、ヘッドの記録能力に限界があることを考えると、媒体の低ノイズ化と熱的安定性確保の両立はたいへん難しい課題である。
【0004】
一方、磁気記録装置の転送速度を高速化していった場合、媒体への高周波での記録が必要となる。このとき、媒体に印加されるヘッド磁界のパルス幅が短くなることにより、媒体の磁界を反転させるためにより大きな磁界が必要となる。この現象は、例えばIEEE Transactions on Magnetics第34巻(1998年)の1828〜1832頁に記載されている。反転磁界の増加により、ヘッドに対して高い記録能力が求められることになる。ヘッドの記録能力が限られている場合には、より低い磁界で記録できるように媒体の保磁力を小さくしなければならない。この要求に従って媒体保磁力を小さくした場合には、前述のように高密度記録が難しい。結局、高速転送と高記録密度を両立させた磁気記録装置の実現は現状の技術の改良だけではたいへん難しく、新しい技術の導入が必要である。
【0005】
高密度化を進めるための新しい技術の有力な候補として、垂直磁気記録方式が検討されている。垂直磁気記録方式には記録密度が高くなるにつれて反磁界が減少するという特徴があり、高密度に記録した場合に記録磁化状態が安定で媒体ノイズも小さく、高密度記録に適した方式であると考えられる。ただし、膜面垂直方向の反磁界のために、低密度に記録されたビットは不安定である。低密度記録状態の熱的安定性を確保するためには、記録膜の磁気異方性を高めるなどして媒体保磁力を高めることが有効である。このことは、Journal of Applied Physics第79巻(1996年)の7920〜7925頁に記載されている。媒体保磁力を高めた結果、熱的安定性は確保できても、高速転送のための高周波記録は前述の面内記録方式の場合と同様に困難になると予想される。
【0006】
本発明の目的は、線記録密度300kFCI以上の高密度記録が可能でかつ毎秒50メガバイト以上の高速転送が可能な磁気記憶装置及びこれに用いることのできる垂直磁気記録媒体を提供することである。
【0007】
【課題を解決するための手段】
上記目的の磁気記録媒体は、垂直磁気記録層の残留磁化の飽和磁化に対する比を記録領域内でディスク外周ほど大きく、ディスク最内周で0.7以上とすることにより得られる。また、磁気記録層の保磁力を記録領域内でディスク外周ほど小さく、ディスク最外周で3000エルステッド以下とすることで本発明の効果が容易に得られる。さらに、垂直磁気記録層の膜厚を記録領域内でディスク外周ほど大きく、記録領域内のディスク最外周で30nm以下とすることが好ましく、下地層の膜厚は記録領域内でディスク外周ほど小さくすることが好ましい。
【0008】
上記目的の磁気記憶装置は、磁気記録媒体と、磁気記録媒体駆動部と、磁気ヘッドと、磁気ヘッド駆動部と、記録再生信号処理系を有する磁気記憶装置において、磁気記録媒体として前述の垂直磁気記録媒体を用い、記録周波数を250MHz以上、最高線記録密度を300kFCI以上に設定することにより得られる。
【0009】
【発明の実施の形態】
本発明による磁気記録媒体の基本的な構成の一例を、図2の断面模式図に示した。図2において21はガラス、Ni−P合金メッキアルミ合金、シリコン、カーボン、チタン合金などの材料で作られたディスク基板である。22は稠密六方構造のチタンあるいはチタン系合金又は非晶質構造のコバルト系合金などから成る第1の下地層、23は稠密六方構造のCo−Cr系合金から成る第2の下地層である。24はコバルトとクロムを主成分とし、例えばCo−Cr−Ta、Co−Cr−Pt、Co−Cr−Pt−Ta、Co−Cr−Nb、Co−Cr−Pt−Nb、Co−Cr−Wなどのような強磁性薄膜を用いた垂直磁気記録層である。25はカーボン、あるいは窒素、水素、シリコン、ボロンなどを含有したカーボンから成る保護膜と有機系潤滑膜で構成される保護潤滑層である。
【0010】
作製した磁気記録媒体は、スピンスタンドにおいて記録再生特性の評価を行った。評価の条件としては、ギャップ長0.2μm、トラック幅0.95μm、巻線数20ターンの電磁誘導型ヘッドにより記録し、シールド間隔0.2μm、トラック幅0.85μmの巨大磁気抵抗効果型ヘッドにより再生を行った。媒体の回転速度や測定半径を広範囲に渡って設定して測定するために、ヘッドのスライダーは磁気スペーシングが回転速度や測定半径に依らず15nm前後の一定値になるようなものを選んで用いた。また、高周波記録においてヘッド磁界の立上りの影響を抑えるために、ヘッドアンプとヘッド素子の配線距離を短くするなどの対策を施した。
【0011】
オーバーライト特性は、次のようにして評価した。線記録密度35kFCIの信号を記録した場合の出力強度N′をスペクトラムアナライザで測定し、その後ある線記録密度D(又は記録周波数F)で重ね書きしたときの35kFCI信号の消え残り強度Nを測定し、線記録密度D(又は記録周波数F)のオーバーライト特性として次式の値を求めた。
【0012】
オーバーライト特性(dB)=20Log(N′/N)
媒体S/Nは、線記録密度2kFCIの信号を記録した場合の出力S(μV_0−P)とある線記録密度(ここでは300kFCI)の信号を記録した場合の0Hzから400MHzの周波数帯域において積算した媒体ノイズN(μV_rms)を測定し、次式により求めた。
【0013】
媒体S/N(dB)=20Log(S/N)
保磁力、残留磁化及び飽和磁化などの磁気記録媒体の磁気特性は、ディスクから切り出した一辺6mmの正方形の試料について振動試料型磁力計で磁化曲線を測定することにより求めた。
【0014】
〔実施の形態1〕
基板として表面粗さRaが3nm以下の直径3.5インチの結晶化ガラス製ディスクを用い、下地層、磁気記録層及び保護層の膜形成は直流マグネトロンスパッタ法により、以下の条件で行った。スパッタ装置内の到達真空度は1×10-8トール以下、放電用アルゴンガス圧力は3×10-3トール、投入電力は直径6インチのターゲットに対して1kWとした。スパッタ時の基板温度は260℃に設定した。垂直磁気記録媒体の第1の下地層として、厚さ30nmのTi−10at%Cr合金を基板上に直接形成した。第2の下地層として、厚さ20nmのCo−35atCr合金を形成した。記録層としては、厚さ25nmのCo−19at%Cr−10at%Ptを形成した。保護潤滑層としては、厚さ5nmの窒素含有カーボン膜と厚さ2nmの有機系潤滑膜を形成した。また、比較検討用の面内磁気記録媒体として、厚さ50nmのCr−20at%Ti合金を下地として形成した上に、厚さ20nmのCo−19at%Cr−10at%Ptを形成し、上記と同様の保護潤滑層を形成したものを作製した。
【0015】
保磁力、及び残留磁化の飽和磁化に対する比(以下、これを角形比と呼ぶ)の異なる3種類の垂直磁気記録媒体と保磁力の異なる2種類の面内磁気記録媒体について、媒体の回転速度(10000rpm)及び測定半径(40.4mm)を一定にした条件(周速42.3m/s)で、記録密度を変えてオーバーライト特性の記録周波数依存性を測定した結果、図1に示す結果が得られた。図1において、黒丸で測定値をプロットした曲線11は保磁力3000エルステッドで角形比0.98の垂直磁気記録媒体のオーバーライト特性、測定値を黒い三角でプロットした曲線12は保磁力3020エルステッドで角形比0.72の垂直磁気記録媒体のオーバーライト特性、測定値を黒い四角でプロットした曲線13は保磁力3470エルステッドで角形比0.98の垂直磁気記録媒体のオーバーライト特性である。また、測定値を白丸でプロットした曲線14は保磁力2520エルステッドの面内磁気記録媒体のオーバーライト特性、測定値を白い四角でプロットした曲線15は保磁力3010エルステッドの面内磁気記録媒体のオーバーライト特性である。
【0016】
オーバーライト特性については、信頼性の高い記録再生装置に用いる基準を30dB以上と考えて結果を判断した。面内磁気記録媒体の場合は150MHzを超える記録周波数からオーバーライト特性の劣化が始まる。保磁力が2520エルステッドの媒体では250MHz以上の記録周波数が可能であるが、保磁力が3010エルステッドの媒体では250MHzの記録周波数で十分なオーバーライト特性が得られない。保磁力2520エルステッドの面内磁気記録媒体は、線記録密度300kFCIの記録信号の経時変化を測定すると10時間で約10%の減衰が認められ、記録磁化の熱的安定性に問題があることがわかった。面内磁気記録媒体を用いた場合は、250MHz以上の記録周波数を可能にするために保磁力を小さくすると記録磁化の安定性が損なわれ、逆に記録磁化の安定性を確保するために保磁力を大きくすると高周波記録時のオーバーライト特性が低下するため、この2つの特性を両立させることは困難であると考えられる。
【0017】
これに対して、垂直磁気記録媒体のオーバーライト特性は記録周波数が200MHzを超えても劣化が見られず、劣化が始まってもその変化が面内磁気記録媒体に比べて緩やかである。保磁力が3000エルステッド程度であれば、250MHzにおいても30dB以上のオーバーライト特性が得られ、特に角形比の高い媒体についてはオーバーライト特性の高周波における劣化の割合が小さく、使用可能な周波数帯域が広いことがわかった。以上の結果から、面内磁気記録媒体を用いた場合に生じる高周波記録の問題が、同等の保磁力を持つ垂直磁気記録媒体を用いた場合に抑制されることから、垂直磁気記録媒体が高周波記録に適していることが判明した。
【0018】
次に同じ媒体について、記録密度(300kFCI)及び測定半径(40.4mm)を一定にした条件(記録周波数250MHz)で、ディスクの回転数を変えてオーバーライト特性の周速依存性を測定した。媒体の回転数を10000rpmから15000rpmに増加させて、周速を42.3m/sから63.5m/sに増加させたとき、2種類の面内磁気記録媒体はいずれもオーバーライト特性が約3dB劣化した。一方、角形比0.72及び角形比0.98の垂直磁気記録媒体はそれぞれ、同様の周速変化に対して約2dB及び約1dBのオーバーライト特性の劣化に止まった。この結果、周速を大きくしたときに、面内磁気記録媒体は垂直磁気記録媒体に比べて高周波記録がより厳しくなることが明らかとなった。すなわち、周速の大きな条件のもとで高周波記録を行う場合には、角形比の大きい垂直磁気記録媒体を用いるのが有効であることがわかった。
【0019】
〔実施の形態2〕
実施の形態1と同様の方法で垂直磁気記録媒体を作製した。ただし、ここでは装置に適用できる磁気記録媒体を作製するために、ディスクの外周と内周では周速が異なることを考慮して、磁気記録層の角形比、保磁力などをディスクの半径方向に変化させた種々の媒体を作製して比較した。これらの特性の制御は直流マグネトロンスパッタ用カソードの永久磁石の配置を変えて、ターゲット上のエロージョン領域の位置を変えることで容易に実現できる。
【0020】
通常の磁気記録媒体の作製においては、エロージョン領域はより均一で広範囲に及ぶように設定することで、ターゲットの使用効率を上げ、ディスクの特性を均一にすることが望ましいと考えられているが、ここではあえて磁気記録層の特性に分布ができるような条件でのスパッタを試みた。エロージョン領域を局在化させた場合にはターゲットと基板の間の距離を変えることによっても磁気記録層の特性に関するディスク半径方向の分布を調節することが可能である。その他にもターゲット組成に分布を持たせることやターゲット表面に細かい起伏を設けてスパッタ粒子の飛び出し角度を調節することによっても、上記のような媒体の作製が可能である。
【0021】
記録再生特性の評価はディスクの最内周から最外周まで広い範囲に渡って行い、記録周波数250MHzで線記録密度300kFCIの信号を記録したときの媒体S/Nとオーバーライト特性を測定した。この記録再生特性の測定終了後にディスクから磁気特性用試料を切り出し、最内周と最外周を含む5箇所の半径位置において角形比と保磁力の測定を行った。
【0022】
表1に、ディスクの半径方向における角形比の分布を変えた試料に対する測定結果を示した。保磁力はいずれのディスクも約3000エルステッドであった。No.1は角形比が半径方向に一定で0.92と大きな値を有する試料、No.2は最内周側の角形比が0.68でディスク外周に向かうほど角形比が大くなる試料、No.3は最内周側の角形比が0.75でディスク外周に向かうほど角形比が大きくなる試料、No.4は角形比がディスク外周に向かうほど小さくなる試料、No.5は角形比がディスク外周に向かうほど小さくなるが全体的にNo.4の試料よりは角形比の大きな試料である。
【0023】
【表1】

Figure 0003697469
【0024】
表1から、オーバーライト特性を30dB以上にするためには角形比を大きな値にする必要があり、特に外周部における角形比の値を大きくすることが重要であることが明らかとなった。ただし、ディスク全面について角形比を大きくした場合には媒体S/Nを高いレベルにすることは難しく、ディスク全面に渡ってオーバーライト特性と媒体S/Nを同時に高いレベルにするためには角形比を外周ほど大きくすることが必要であることがわかった。ただし、角形比を0.7以下にするとオーバーライト特性が悪くなるため、角形比は少なくとも0.7以上にすることが重要である。
【0025】
表2に、ディスクの半径方向における保磁力の分布を変えた試料に対する測定結果を示した。角形比は、いずれのディスクも表1のNo.3の試料の分布に準じた値であった。No.1はディスク外周に向かうほど保磁力が大きくなる試料、No.2はディスク外周に向かうほど保磁力が小さくなる試料、No.3はディスク外周に向かうほど保磁力が小さくなるが全体的にNo.2の試料よりは小さな保磁力を有する試料、No.4はディスクの半径方向に保磁力が一定である試料、No.5はディスクの半径方向に保磁力が一定であるが全体的にNo.4の試料よりは大きな保磁力を有する試料である。
【0026】
【表2】
Figure 0003697469
【0027】
オーバーライト特性を30dB以上にするためには保磁力を小さくする必要があり、特に外周部における保磁力の値を小さくすることが重要であることが明らかとなった。特に3000エルステッド以下にすることが重要であった。ただし、ディスク全面について保磁力を小さくした場合には媒体S/Nは低下し、ディスク全面に渡ってオーバーライト特性と媒体S/Nを同時に高いレベルにするためには保磁力を外周ほど小さくすることが望ましいことがわかった。
【0028】
上記のように、ディスクの外周ほど磁気記録膜の角形比を大きくし保磁力を小さくすることは、前記のエロージョン領域の調整などの方法を用いて、結果的に磁気記録層の膜厚をディスク外周ほど大きく、下地層の膜厚を外周ほど小さくなるようにすることで容易に達成できる。具体的には、表2のNo.3の媒体は、磁気記録層の膜厚を最内周で23nm、最外周で25nmとし、第2の下地層であるCo−35at%Cr合金層の膜厚を最内周で24nm、最外周で14nmとして作製したものである。しかも、このような膜厚構成を採用することで、最外周における低線記録密度の記録信号の経時変化を小さく抑える効果もあった。ただし、磁気記録層の膜厚を平均的に増加させた媒体を作製して記録再生特性を測定してみると、磁気記録層膜厚を30nmより大きくした領域のオーバーライト特性が約27dBまで劣化したため、磁気記録層膜厚は30nm以下にする必要がある。
【0029】
〔実施の形態3〕
本実施の形態では、垂直磁気記録媒体の第1の下地層として厚さ500nmのCo−11at%Nb−5at%Zr軟磁性膜を用いた。第2の下地層は実施の形態1と同様のCo−35at%Crを用いた。実施の形態2と同様の種々の磁気特性を持つディスク試料を作製し、同様にしてオーバーライト特性と媒体S/Nを測定したところ、全く同じ傾向の結果を得た。
【0030】
すなわち、図1に示したようなオーバーライト特性の記録周波数依存性を測定すると、オーバーライト特性の高周波領域での劣化の割合が面内磁気記録媒体に比べて緩やかであり、より高い記録周波数まで使用可能であることが分かった。また、角形比を内周側から外周側へ0.77から0.97と傾斜を付けた場合に、媒体S/Nが30.6dBから31.0dBの範囲になり、オーバーライト特性は32.0dBから33.5dBの範囲の高い値を示した。角形比を均一にしたときには媒体S/Nが30dBを下回り、角形比を0.7未満にしたときにはオーバーライト特性に問題を生じた。保磁力に関しては、内周側から外周側へ3020エルステッドから2850エルステッドと傾斜を付けた場合に媒体S/Nとオーバーライト特性はいずれの領域でも31dB以上の優れた値を示し、ディスクの外周ほど保磁力を小さくすることの有効性が確認された。軟磁性の下地層の有無にかかわらず、本発明の効果があることがわかった。
【0031】
また、垂直磁気記録膜としてCo−Cr−Ta、Co−Cr−Pt−Ta、Co−Cr−Nb、Co−Cr−Pt−Nb、Co−Cr−Wを用いた垂直磁気記録媒体に対して実施の形態2と同様の実験を行ったところ、同等の磁気特性が得られた場合には同じ結果となった。
【0032】
〔実施の形態4〕
実施の形態2において作製した垂直磁気記録媒体の中から表2のNo.3に示した垂直磁気記録媒体を選び、それを図3に概略を示す磁気ディスク装置に組み込み、磁気ディスクの記録再生特性を評価した。この磁気ディスク装置は、図3(a)に概略平面図を、図3(b)にそのAA断面図を示すように、磁気ディスク駆動部32により回転駆動される磁気ディスク31、磁気ヘッド駆動部34により保持されて磁気ディスク31に対して記録および再生を行う磁気ヘッド33、磁気ヘッド33の記録信号および再生信号を処理する記録再生信号処理系35を備える周知の構成の装置である。
【0033】
ヘッドとしては、実施の形態1で使用したものと同様のものを用い、ヘッドと媒体の間の磁気スペーシングは20nm以下となるように調整した。その結果、線記録密度を300kFCI以上、記録周波数を250MHz以上に設定することで、毎秒50メガバイト以上の高速転送が可能であることを確認できた。これに対して、面内磁気記録媒体を用いた場合や表2のNo.1やNo.5に示した媒体を用いた場合は、高速転送での記録再生においてエラーが多発し、装置の信頼性に問題があった。
【0034】
【発明の効果】
本発明によると、線記録密度300kFCI以上の高密度記録が可能でかつ毎秒50メガバイト以上の高速転送が可能な磁気記憶装置及びこれに用いることのできる垂直磁気記録媒体が得られる。
【図面の簡単な説明】
【図1】オーバーライト特性の記録周波数依存性を示す図。
【図2】本発明による垂直磁気記録媒体の基本的構造を示す断面模式図。
【図3】磁気記憶装置の概略図。
【符号の説明】
21…ディスク基板、22…第1の下地層、23…第2の下地層、24…垂直磁気記録層、25…保護潤滑層、31…磁気ディスク、32…磁気ディスク駆動部、33…磁気ヘッド、34…磁気ヘッド駆動部、35…記録再生信号処理系[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic storage device used for an auxiliary storage device of a computer and the like and a magnetic recording medium used therefor.
[0002]
[Prior art]
With the progress of the information era, the amount of information handled on a daily basis is constantly increasing. Accordingly, there is an increasing demand for higher recording density and larger capacity for magnetic recording devices. In order to handle a large amount of information, it is necessary to increase the transfer speed. When the recording density of a magnetic recording device is increased, the area of the medium per recording bit is reduced. Therefore, a reproducing head with higher sensitivity is used, and the recording medium is required to have low noise. In order to reduce the medium noise, it is effective to make the magnetic film thin and make the crystal grains finer. In particular, in the in-plane magnetic recording method used in the current magnetic disk, the magnetic film is made thinner in order to reduce the demagnetizing field between adjacent bits and reduce noise generated at the bit boundary.
[0003]
[Problems to be solved by the invention]
However, when the magnetic film is thinned, the recorded magnetization becomes thermally unstable, so the coercive force must be increased to ensure the stability of the recorded magnetization. In particular, when recording at a high linear recording density, it is necessary to record against a demagnetizing field generated between bits and to keep the state stable, and therefore it is essential that the medium coercive force is large. When the medium coercive force is increased, a high recording capability is required for the head, and if this is insufficient, a problem occurs in overwriting. As described above, considering that there is a limit to the recording performance of the head in order to increase the density, it is very difficult to achieve both low noise and ensure thermal stability of the medium.
[0004]
On the other hand, when the transfer speed of the magnetic recording apparatus is increased, recording at a high frequency on the medium is required. At this time, since the pulse width of the head magnetic field applied to the medium is shortened, a larger magnetic field is required to reverse the magnetic field of the medium. This phenomenon is described, for example, on pages 1828-1832 of IEEE Transactions on Magnetics Vol. 34 (1998). Due to the increase of the reversal magnetic field, a high recording capability is required for the head. When the recording capability of the head is limited, the coercive force of the medium must be reduced so that recording can be performed with a lower magnetic field. When the medium coercive force is reduced according to this requirement, high density recording is difficult as described above. In the end, realization of a magnetic recording apparatus that achieves both high-speed transfer and high recording density is very difficult only by improving the current technology, and it is necessary to introduce a new technology.
[0005]
Perpendicular magnetic recording has been studied as a promising candidate for a new technology for increasing the density. The perpendicular magnetic recording system has a feature that the demagnetizing field decreases as the recording density increases. When recording at a high density, the recording magnetization state is stable and the medium noise is small, and the system is suitable for high density recording. Conceivable. However, the bit recorded at low density is unstable due to the demagnetizing field in the direction perpendicular to the film surface. In order to ensure the thermal stability in the low density recording state, it is effective to increase the coercive force of the medium by increasing the magnetic anisotropy of the recording film. This is described in pages 7920-7925 of Journal of Applied Physics vol. 79 (1996). As a result of increasing the coercive force of the medium, high-frequency recording for high-speed transfer is expected to be difficult as in the case of the above-described in-plane recording method, even though thermal stability can be ensured.
[0006]
An object of the present invention is to provide a magnetic storage device capable of high-density recording with a linear recording density of 300 kFCI or more and capable of high-speed transfer of 50 megabytes or more per second, and a perpendicular magnetic recording medium that can be used therefor.
[0007]
[Means for Solving the Problems]
The above-mentioned magnetic recording medium can be obtained by setting the ratio of the residual magnetization of the perpendicular magnetic recording layer to the saturation magnetization to be larger in the recording area toward the outer periphery of the disk and 0.7 or more in the innermost periphery of the disk. Further, the effect of the present invention can be easily obtained by setting the coercive force of the magnetic recording layer to be as small as the outer circumference of the disk in the recording area and not more than 3000 Oersted at the outermost circumference of the disk. Further, it is preferable that the thickness of the perpendicular magnetic recording layer is larger toward the outer periphery of the disk in the recording area, and is 30 nm or less at the outermost periphery of the disk in the recording area, and the thickness of the underlayer is decreased toward the outer periphery of the disk in the recording area. It is preferable.
[0008]
The above-mentioned magnetic storage device includes a magnetic recording medium, a magnetic recording medium driving unit, a magnetic head, a magnetic head driving unit, and a recording / reproducing signal processing system. It can be obtained by using a recording medium and setting the recording frequency to 250 MHz or higher and the maximum linear recording density to 300 kFCI or higher.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An example of the basic configuration of the magnetic recording medium according to the present invention is shown in the schematic sectional view of FIG. In FIG. 2, reference numeral 21 denotes a disk substrate made of a material such as glass, Ni—P alloy plated aluminum alloy, silicon, carbon, or titanium alloy. Reference numeral 22 denotes a first underlayer made of titanium having a dense hexagonal structure, a titanium alloy, or a cobalt alloy having an amorphous structure. Reference numeral 23 denotes a second underlayer made of a Co—Cr alloy having a dense hexagonal structure. 24 is mainly composed of cobalt and chromium, for example, Co-Cr-Ta, Co-Cr-Pt, Co-Cr-Pt-Ta, Co-Cr-Nb, Co-Cr-Pt-Nb, Co-Cr-W. A perpendicular magnetic recording layer using a ferromagnetic thin film such as Reference numeral 25 denotes a protective lubricating layer composed of a protective film made of carbon or carbon containing nitrogen, hydrogen, silicon, boron or the like and an organic lubricating film.
[0010]
The produced magnetic recording medium was evaluated for recording and reproducing characteristics in a spin stand. As evaluation conditions, recording was performed by an electromagnetic induction head having a gap length of 0.2 μm, a track width of 0.95 μm, and the number of windings of 20 turns, and a giant magnetoresistive head having a shield interval of 0.2 μm and a track width of 0.85 μm. Replayed by. In order to set and measure the rotation speed and measurement radius of the medium over a wide range, the head slider should be selected so that the magnetic spacing becomes a constant value around 15 nm regardless of the rotation speed and measurement radius. It was. Further, in order to suppress the influence of the rise of the head magnetic field in high frequency recording, measures such as shortening the wiring distance between the head amplifier and the head element were taken.
[0011]
The overwrite characteristic was evaluated as follows. The output intensity N ′ when a signal with a linear recording density of 35 kFCI is recorded is measured with a spectrum analyzer, and then the unerased intensity N of the 35 kFCI signal when overwritten at a certain linear recording density D (or recording frequency F) is measured. The value of the following equation was obtained as the overwrite characteristic of the linear recording density D (or recording frequency F).
[0012]
Overwrite characteristic (dB) = 20 Log (N '/ N)
The medium S / N is integrated in the frequency band from 0 Hz to 400 MHz when a signal having a linear recording density (300 kFCI in this case) is recorded and an output S (μV_0-P) when a signal having a linear recording density of 2 kFCI is recorded. The medium noise N (μV_rms) was measured and determined by the following equation.
[0013]
Medium S / N (dB) = 20 Log (S / N)
Magnetic characteristics of the magnetic recording medium such as coercive force, residual magnetization, and saturation magnetization were determined by measuring a magnetization curve with a vibrating sample magnetometer on a square sample having a side of 6 mm cut out from the disk.
[0014]
[Embodiment 1]
A crystallized glass disk having a surface roughness Ra of 3 nm or less and a diameter of 3.5 inches was used as a substrate, and the underlayer, magnetic recording layer, and protective layer were formed by direct current magnetron sputtering under the following conditions. . The ultimate vacuum in the sputtering apparatus was 1 × 10 −8 Torr or less, the discharge argon gas pressure was 3 × 10 −3 Torr, and the input power was 1 kW for a target with a diameter of 6 inches. The substrate temperature during sputtering was set at 260 ° C. A Ti-10 at% Cr alloy having a thickness of 30 nm was directly formed on the substrate as the first underlayer of the perpendicular magnetic recording medium. As the second underlayer, a Co-35atCr alloy with a thickness of 20 nm was formed. As the recording layer, Co-19 at% Cr-10 at% Pt with a thickness of 25 nm was formed. As the protective lubricating layer, a nitrogen-containing carbon film having a thickness of 5 nm and an organic lubricating film having a thickness of 2 nm were formed. Further, as an in-plane magnetic recording medium for comparative study, a Cr-20 at% Ti alloy with a thickness of 50 nm was formed as a base, and then Co-19 at% Cr-10 at% Pt with a thickness of 20 nm was formed. What formed the same protective lubricating layer was produced.
[0015]
For three types of perpendicular magnetic recording media having different coercive force and ratio of residual magnetization to saturation magnetization (hereinafter referred to as square ratio) and two types of in-plane magnetic recording media having different coercive forces, the rotational speed of the medium ( 10000 rpm) and the measurement radius (40.4 mm) were constant (circumferential speed 42.3 m / s), and the recording density was changed to measure the recording frequency dependence of the overwrite characteristics. The result shown in FIG. Obtained. In FIG. 1, a curve 11 in which measured values are plotted with black circles is an overwrite characteristic of a perpendicular magnetic recording medium having a coercive force of 3000 oersted and a squareness ratio of 0.98, and a curve 12 in which measured values are plotted with black triangles is a coercive force of 3020 oersteds. The overwrite characteristic of the perpendicular magnetic recording medium having a squareness ratio of 0.72 and the curve 13 in which the measured values are plotted with black squares are the overwrite characteristics of the perpendicular magnetic recording medium having a coercive force of 3470 oersted and a squareness ratio of 0.98. A curve 14 in which the measured values are plotted with white circles is an overwrite characteristic of the in-plane magnetic recording medium having a coercive force of 2520 oersted, and a curve 15 in which the measured values are plotted in white squares is an overshoot of the in-plane magnetic recording medium having a coercive force of 3010 oersted. Light characteristics.
[0016]
Regarding the overwrite characteristics, the result was judged by considering that the standard used for a highly reliable recording / reproducing apparatus is 30 dB or more. In the case of an in-plane magnetic recording medium, the deterioration of the overwrite characteristics starts from a recording frequency exceeding 150 MHz. A recording frequency of 250 MHz or more is possible with a medium having a coercive force of 2520 oersted, but sufficient overwrite characteristics cannot be obtained at a recording frequency of 250 MHz with a medium having a coercive force of 3010 oersted. An in-plane magnetic recording medium having a coercive force of 2520 Oersted has a problem with the thermal stability of the recording magnetization when a change over time of a recording signal with a linear recording density of 300 kFCI is measured and an attenuation of about 10% is recognized in 10 hours. all right. When an in-plane magnetic recording medium is used, if the coercive force is decreased to enable a recording frequency of 250 MHz or higher, the stability of the recording magnetization is impaired, and conversely, the coercive force is ensured to ensure the stability of the recording magnetization. If the value is increased, the overwrite characteristic at the time of high-frequency recording is lowered, so that it is considered difficult to achieve both of these characteristics.
[0017]
On the other hand, the overwrite characteristics of the perpendicular magnetic recording medium are not deteriorated even when the recording frequency exceeds 200 MHz, and even when the deterioration starts, the change is more gradual than the in-plane magnetic recording medium. If the coercive force is about 3000 Oersteds, an overwrite characteristic of 30 dB or more can be obtained even at 250 MHz, and particularly for a medium with a high squareness ratio, the deterioration rate of the overwrite characteristic at a high frequency is small and the usable frequency band is wide. I understand. From the above results, the problem of high-frequency recording that occurs when using an in-plane magnetic recording medium is suppressed when a perpendicular magnetic recording medium having the same coercive force is used. Turned out to be suitable.
[0018]
Next, with respect to the same medium, the peripheral speed dependency of the overwrite characteristic was measured by changing the number of revolutions of the disk under the condition that the recording density (300 kFCI) and the measurement radius (40.4 mm) were constant (recording frequency 250 MHz). When the rotational speed of the medium is increased from 10,000 rpm to 15000 rpm and the peripheral speed is increased from 42.3 m / s to 63.5 m / s, the two types of in-plane magnetic recording media have an overwrite characteristic of about 3 dB. Deteriorated. On the other hand, the perpendicular magnetic recording media having a squareness ratio of 0.72 and a squareness ratio of 0.98 stopped to deteriorate the overwrite characteristics of about 2 dB and about 1 dB, respectively, with respect to the same peripheral speed change. As a result, it has been clarified that when the peripheral speed is increased, the in-plane magnetic recording medium is more severe in high frequency recording than the perpendicular magnetic recording medium. That is, it was found that it is effective to use a perpendicular magnetic recording medium having a large squareness ratio when performing high-frequency recording under a condition with a large peripheral speed.
[0019]
[Embodiment 2]
A perpendicular magnetic recording medium was manufactured by the same method as in the first embodiment. However, here, in order to produce a magnetic recording medium applicable to the apparatus, the square ratio of the magnetic recording layer, the coercive force, etc. are set in the radial direction of the disk in consideration of the fact that the peripheral speed differs between the outer circumference and the inner circumference of the disk. Various changed media were made and compared. Control of these characteristics can be easily realized by changing the position of the erosion region on the target by changing the arrangement of the permanent magnets of the cathode for DC magnetron sputtering.
[0020]
In the production of ordinary magnetic recording media, it is considered desirable to increase the use efficiency of the target and make the characteristics of the disk uniform by setting the erosion area to be more uniform and wide. In this case, sputtering was attempted under the condition that the characteristics of the magnetic recording layer can be distributed. When the erosion region is localized, it is possible to adjust the distribution in the disk radial direction with respect to the characteristics of the magnetic recording layer by changing the distance between the target and the substrate. In addition, the medium as described above can also be produced by providing a distribution in the target composition or adjusting the popping-out angle of the sputtered particles by providing fine undulations on the target surface.
[0021]
The recording / reproduction characteristics were evaluated over a wide range from the innermost circumference to the outermost circumference of the disk, and the medium S / N and overwrite characteristics when a signal with a linear recording density of 300 kFCI was recorded at a recording frequency of 250 MHz were measured. After the measurement of the recording / reproducing characteristics, a sample for magnetic characteristics was cut out from the disk, and the squareness ratio and coercive force were measured at five radial positions including the innermost circumference and the outermost circumference.
[0022]
Table 1 shows the measurement results for the samples in which the distribution of the squareness ratio in the radial direction of the disk is changed. The coercivity was about 3000 Oersted for all disks. No. No. 1 is a sample having a squareness ratio constant in the radial direction and a large value of 0.92, No. 1 No. 2 is a sample in which the squareness ratio on the innermost circumference side is 0.68, and the squareness ratio increases toward the outer circumference of the disk. No. 3 is a sample in which the squareness ratio on the innermost circumference side is 0.75, and the squareness ratio increases toward the outer circumference of the disk. No. 4 is a sample whose squareness ratio decreases toward the outer periphery of the disk, No. 4 No. 5 decreases as the squareness ratio increases toward the outer periphery of the disk. It is a sample having a larger squareness ratio than the sample of 4.
[0023]
[Table 1]
Figure 0003697469
[0024]
From Table 1, it has been clarified that it is necessary to increase the squareness ratio in order to make the overwrite characteristic 30 dB or more, and it is particularly important to increase the value of the squareness ratio in the outer peripheral portion. However, when the squareness ratio is increased on the entire disk surface, it is difficult to increase the medium S / N level. To increase the overwrite characteristic and the medium S / N level simultaneously on the entire disk surface, the rectangular ratio is required. It has been found that it is necessary to increase the outer diameter of the outer periphery. However, when the squareness ratio is 0.7 or less, the overwrite characteristic is deteriorated. Therefore, it is important that the squareness ratio is at least 0.7 or more.
[0025]
Table 2 shows the measurement results for samples with different coercive force distributions in the radial direction of the disk. The squareness ratio of each disk is No. 1 in Table 1. It was a value according to the distribution of 3 samples. No. No. 1 is a sample whose coercive force increases toward the outer periphery of the disk. No. 2 is a sample whose coercive force decreases toward the outer periphery of the disk. No. 3 has a smaller coercive force toward the outer periphery of the disk, but overall, No. 3 No. 2 sample having a smaller coercive force than the sample No. 2 No. 4 is a sample having a constant coercive force in the radial direction of the disk. No. 5 has a constant coercive force in the radial direction of the disk, but overall No. It is a sample having a coercive force larger than that of sample 4.
[0026]
[Table 2]
Figure 0003697469
[0027]
In order to make the overwrite characteristic 30 dB or more, it is necessary to reduce the coercive force, and it has become clear that it is particularly important to reduce the value of the coercive force in the outer peripheral portion. In particular, it was important to make it 3000 or less. However, when the coercive force is reduced over the entire disk surface, the medium S / N decreases, and the coercive force is decreased toward the outer periphery in order to simultaneously increase the overwrite characteristics and the medium S / N over the entire disk surface. I found it desirable.
[0028]
As described above, increasing the squareness ratio of the magnetic recording film and reducing the coercive force toward the outer periphery of the disk results in the film thickness of the magnetic recording layer being reduced by using the method of adjusting the erosion area. This can be easily achieved by increasing the outer periphery and decreasing the thickness of the underlayer as the outer periphery. Specifically, No. 2 in Table 2 is used. In the medium 3, the thickness of the magnetic recording layer is 23 nm at the innermost circumference and 25 nm at the outermost circumference, and the thickness of the Co-35 at% Cr alloy layer as the second underlayer is 24 nm at the innermost circumference. And 14 nm. In addition, by adopting such a film thickness configuration, there is also an effect of suppressing a change with time of a recording signal having a low linear recording density at the outermost periphery. However, when the recording / reproducing characteristics are measured by producing a medium having an average increased thickness of the magnetic recording layer, the overwrite characteristics in a region where the thickness of the magnetic recording layer is larger than 30 nm is deteriorated to about 27 dB. Therefore, the thickness of the magnetic recording layer needs to be 30 nm or less.
[0029]
[Embodiment 3]
In the present embodiment, a Co-11 at% Nb-5 at% Zr soft magnetic film having a thickness of 500 nm is used as the first underlayer of the perpendicular magnetic recording medium. As the second underlayer, Co-35 at% Cr similar to that in Embodiment 1 was used. When disk samples having various magnetic characteristics similar to those of the second embodiment were produced and the overwrite characteristics and the medium S / N were measured in the same manner, results having exactly the same tendency were obtained.
[0030]
That is, when the dependence of the overwrite characteristic on the recording frequency as shown in FIG. 1 is measured, the rate of deterioration of the overwrite characteristic in the high frequency region is gradual compared to the in-plane magnetic recording medium, and even higher recording frequency. It turned out to be usable. Further, when the squareness ratio is inclined from 0.77 to 0.97 from the inner peripheral side to the outer peripheral side, the medium S / N is in the range of 30.6 dB to 31.0 dB, and the overwrite characteristic is 32. A high value in the range of 0 dB to 33.5 dB was shown. When the squareness ratio was made uniform, the medium S / N was less than 30 dB, and when the squareness ratio was less than 0.7, a problem occurred in the overwrite characteristics. With respect to the coercive force, the medium S / N and the overwrite characteristics show excellent values of 31 dB or more in any region when the gradient is applied from 3020 Oersted to 2850 Oersted from the inner circumference side to the outer circumference side. The effectiveness of reducing the coercive force was confirmed. It was found that the present invention is effective regardless of the presence or absence of a soft magnetic underlayer.
[0031]
For perpendicular magnetic recording media using Co—Cr—Ta, Co—Cr—Pt—Ta, Co—Cr—Nb, Co—Cr—Pt—Nb, and Co—Cr—W as perpendicular magnetic recording films. When an experiment similar to that of the second embodiment was performed, the same result was obtained when an equivalent magnetic characteristic was obtained.
[0032]
[Embodiment 4]
Among the perpendicular magnetic recording media manufactured in the second embodiment, No. 1 in Table 2 was obtained. The perpendicular magnetic recording medium shown in FIG. 3 was selected and incorporated in the magnetic disk apparatus schematically shown in FIG. 3, and the recording / reproducing characteristics of the magnetic disk were evaluated. As shown in FIG. 3A and FIG. 3B, a cross-sectional view taken along line AA in FIG. 3A, this magnetic disk apparatus is provided with a magnetic disk 31 rotated by a magnetic disk drive unit 32, a magnetic head drive unit. 34 is a device having a known configuration including a magnetic head 33 which is held by a magnetic head 33 and performs recording and reproduction with respect to the magnetic disk 31, and a recording / reproduction signal processing system 35 which processes a recording signal and a reproduction signal of the magnetic head 33.
[0033]
A head similar to that used in Embodiment 1 was used, and the magnetic spacing between the head and the medium was adjusted to 20 nm or less. As a result, it was confirmed that by setting the linear recording density to 300 kFCI or more and the recording frequency to 250 MHz or more, high-speed transfer of 50 megabytes or more per second was possible. On the other hand, when the in-plane magnetic recording medium is used and 1 and No. When the medium shown in FIG. 5 was used, errors frequently occurred in recording and reproduction at high speed transfer, and there was a problem in reliability of the apparatus.
[0034]
【The invention's effect】
According to the present invention, a magnetic storage device capable of high-density recording with a linear recording density of 300 kFCI or higher and capable of high-speed transfer of 50 megabytes or more per second, and a perpendicular magnetic recording medium that can be used therefor are obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing recording frequency dependence of overwrite characteristics.
FIG. 2 is a schematic cross-sectional view showing the basic structure of a perpendicular magnetic recording medium according to the present invention.
FIG. 3 is a schematic diagram of a magnetic storage device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 ... Disk substrate, 22 ... 1st base layer, 23 ... 2nd base layer, 24 ... Perpendicular magnetic recording layer, 25 ... Protective lubricating layer, 31 ... Magnetic disk, 32 ... Magnetic disk drive part, 33 ... Magnetic head 34 ... Magnetic head drive unit, 35 ... Recording / reproduction signal processing system

Claims (4)

ディスク状基板の上に下地層と垂直磁気記録層とが積層して形成され、前記垂直磁気記録層の残留磁化の飽和磁化に対する比が記録領域内でディスク外周ほど大きく、前記垂直磁気記録層の残留磁化の飽和磁化に対する比が記録領域内のディスク最内周で0.7以上であり、前記垂直磁気記録層の保磁力が記録領域内でディスク外周ほど小さく、記録領域内のディスク最外周で3000エルステッド以下であることを特徴とする垂直磁気記録媒体。And a base layer and a perpendicular magnetic recording layer is formed by laminating on a disk-shaped substrate, wherein the ratio of the saturation magnetization of the residual magnetization of the perpendicular magnetic recording layer is rather large as the outer periphery of the disk in the recording area, the perpendicular magnetic recording layer The ratio of the residual magnetization to the saturation magnetization is 0.7 or more at the innermost circumference of the disk in the recording area, and the coercive force of the perpendicular magnetic recording layer is smaller toward the outer circumference of the disk in the recording area. The perpendicular magnetic recording medium is characterized by being 3000 oersted or less . 前記垂直磁気記録層の膜厚が記録領域内でディスク外周ほど大きく、記録領域内のディスク最外周で30nm以下であることを特徴とする請求項記載の垂直磁気記録媒体。The vertical thickness of the magnetic recording layer is larger as the disk outer periphery in the recording area, perpendicular magnetic recording medium according to claim 1, wherein the disk outermost circumference of the recording area is 30nm or less. 前記下地層の膜厚が記録領域内でディスク外周ほど小さいことを特徴とする請求項記載の垂直磁気記録媒体。 3. The perpendicular magnetic recording medium according to claim 2, wherein the thickness of the underlayer is smaller toward the outer periphery of the disk in the recording area. 磁気記録媒体と、磁気記録媒体駆動部と、磁気ヘッドと、磁気ヘッド駆動部と、記録再生信号処理系を有する磁気記憶装置において、前記磁気記録媒体として請求項1〜のいずれか1項記載の垂直磁気記録媒体を用い、記録周波数が250MHz以上であり、最高線記録密度が300kFCI以上であることを特徴とする磁気記憶装置。A magnetic recording medium, a magnetic recording medium drive unit, a magnetic head, a magnetic head drive unit, the magnetic storage device having a recording and reproducing signal processing system, according to any one of claims 1 to 3 as the magnetic recording medium And a perpendicular magnetic recording medium having a recording frequency of 250 MHz or more and a maximum linear recording density of 300 kFCI or more.
JP19200099A 1999-07-06 1999-07-06 Perpendicular magnetic recording medium and magnetic storage device using the same Expired - Fee Related JP3697469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19200099A JP3697469B2 (en) 1999-07-06 1999-07-06 Perpendicular magnetic recording medium and magnetic storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19200099A JP3697469B2 (en) 1999-07-06 1999-07-06 Perpendicular magnetic recording medium and magnetic storage device using the same

Publications (2)

Publication Number Publication Date
JP2001023152A JP2001023152A (en) 2001-01-26
JP3697469B2 true JP3697469B2 (en) 2005-09-21

Family

ID=16283950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19200099A Expired - Fee Related JP3697469B2 (en) 1999-07-06 1999-07-06 Perpendicular magnetic recording medium and magnetic storage device using the same

Country Status (1)

Country Link
JP (1) JP3697469B2 (en)

Also Published As

Publication number Publication date
JP2001023152A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US7768731B2 (en) Magnetic recording medium, magnetic storage and method for reproducing information from magnetic recording medium
JP2009048720A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002190108A (en) Magnetic recording medium and its production method
JP5610716B2 (en) Perpendicular magnetic recording medium and magnetic storage device
US20020018920A1 (en) Magnetic recording medium and magnetic recording apparatus
US6083599A (en) Perpendicular magnetic recording media and magnetic recording and reproducing apparatus using the same
JP2006079718A (en) Perpendicular magnetic recording medium
JP2991672B2 (en) Magnetic recording media
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP3697469B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
JP3564707B2 (en) Magnetic recording media
JP2991689B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3138453B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
JP3867351B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3102638B2 (en) Magnetic recording / reproducing device
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JP3684047B2 (en) Magnetic recording medium
JPH0268716A (en) Production of magnetic disk medium
JP3670798B2 (en) Perpendicular magnetic recording medium
JP3052406B2 (en) Magnetic recording medium and magnetic storage device
JP3030279B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2005141825A (en) Magnetic recording medium and magnetic recording device
JP2000339657A (en) Magnetic recording medium
JP3933731B2 (en) Metal thin film type magnetic recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees